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Abstract—In recent years, deep-learning models gained atten-
tion for electroencephalography (EEG) classification tasks due to
their excellent performance and ability to extract complex fea-
tures from raw data. In particular, convolutional neural networks
(CNN) showed adequate results in brain-computer interfaces
(BCI) based on different control signals, including event-related
potentials (ERP). In this study, we propose a novel CNN, called
EEG-Inception, that improves the accuracy and calibration time
of assistive ERP-based BCIs. To the best of our knowledge, EEG-
Inception is the first model to integrate Inception modules for
ERP detection, which combined efficiently with other structures
in a light architecture, improved the performance of our ap-
proach. The model was validated in a population of 73 subjects,
of which 31 present motor disabilities. Results show that EEG-
Inception outperforms 5 previous approaches, yielding significant
improvements for command decoding accuracy up to 16.0%,
10.7%, 7.2%, 5.7% and 5.1% in comparison to rLDA, xDAWN
+ Riemannian geometry, CNN-BLSTM, DeepConvNet and EEG-
Net, respectively. Moreover, EEG-Inception requires very few
calibration trials to achieve state-of-the-art performances taking
advantage of a novel training strategy that combines cross-subject
transfer learning and fine-tuning to increase the feasibility of this
approach for practical use in assistive applications.

Index Terms—Brain–computer interfaces, event-related po-
tentials, P300, deep learning, convolutional neural networks,
Inception, transfer learning.

I. INTRODUCTION

BRAIN–computer interfaces (BCI) enable direct communi-
cation between humans and external devices through the

analysis of neural signals [?]. These systems have a wide range
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of applications, including neurorehabilitation, cognitive train-
ing or entertainment[?]. However, the most extended use is the
control of assistive technologies to improve the autonomy and
quality of life of people with severe motor disabilities, caused
by spinal cord injury, head trauma, stroke, multiple sclerosis,
lateral amyotrophic sclerosis or cerebral palsy, among others
[?]. In practice, most BCIs use the electroencephalography
(EEG) to record brain activity for its relative low cost, ease of
use and noninvasiveness [?]. This technique uses electrodes
placed over the scalp to register the electrical activity of
superficial neurons, reflecting the ongoing brain processes
with exceptional temporal resolution [?]. Nonetheless, EEG
also has important drawbacks. For instance, it presents poor
spatial resolution, recording activity from volumes between
1 and 10 cm3 around each electrode [?]. Moreover, it is
very sensitive to a wide range of noisy artefacts, such as
muscular movements, corneo-retinal standing potentials or
cardiac activity [?]. Therefore, EEG is an extremely complex
and noisy signal, making direct decoding of individual brain
processes almost impossible.

In order to overcome this limitation, BCIs usually rely
on control signals with higher signal-to-noise ratio (SNR) to
extract discriminative informationfrom the EEG. In particular,
visual event-related potentials (ERP) are waveforms that reflect
the ongoing brain activity happening just after the perception
of an external visual stimuli [?]. ERP-based BCIs, also known
as spellers, were first proposed by Farwell and Donchin [?] in
1988 as a communicationaid for people suffering from severe
physical disability. These systems allow to select commands
from a predefined set of options by detecting ERPs in the
EEG of the user. The main advantages of these systems in
comparison with other BCIs are the very low mental workload
needed to use them, the high number of commands that can
be discriminated and their versatility for a wide range of
applications. However, the accuracy and maximum amount of
informationconveyed by ERP-based spellers per unit of time is
limited due to the low SNR of ERPs, non-stationaryproperties
of the EEG over time, and strong inter-subject variability [?].

A large numberof studies addressed this issue by improving
pattern recognition algorithms for ERP detection [?]. Methods
based on linear discriminant analysis (LDA) and support-
vector machine are the most classical approaches [?], [?],
[?], [?], [?]. They achieve reasonable performance, especially
when a large amount of training examples is available. How-
ever, these methods are noise-sensitive and show poor inter-
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subject and inter-session generalization [?]. Moreover, several
studies have demonstrated that their performance is reduced
drastically in real environments with severely disabled popu-
lations [?], [?]. Additionally, novel tensor classifiers based on
Riemannian geometry (RG) and adaptive methodologies have
led to important improvements in BCIs in recent years [?],
[?].

Nonetheless, the field of pattern recognition is living break-
through advances thanks to the development of deep learning
[?]. Deep neural networks are able to automatically extract
complex features from raw data, learning hierarchical repre-
sentations of the input in different levels of abstraction [?].
This ability has revolutionized fields such as computer vision,
natural language processing, genomics or drug-discovery [?].
In the EEG domain, deep neural networks have been used
for ERP, sensorymotor rhythms (SMR) and steady-state visual
evoked potentials (SSVEP) classification, seizure detection and
prediction, sleep stage scoring, mental workload detection,
data augmentation or emotion recognition, among others [?].
However, there are still relatively few studies of deep-learning
models for EEG analysis [?]. In fact, whether they truly
present advantages over classical methods remain as an open
question [?].

Since the application of deep learning to EEG is relatively
new, most studies explored simple architectures based on
convolutional neural networks (CNN) and recurrent neural
networks (RNN) [?]. Nevertheless, there is still room for
improvement, and more complex architectures specifically
designed for EEG analysis could enhance the performance
of CNNs in this domain. For instance, Inception modules
proposed by Szegedy et al. [?] for computer vision allow a
multiscale analysis of the input data by using convolutional
layers in parallel with different kernel sizes. Empirically, this
structure has proved to extract richer feature maps with less
computational cost, boosting performance while keeping a
reasonable training and evaluation time [?]. In this regard,
EEG is made up of transient and oscillatory patterns of
different temporal lengths that reflect the ongoing activity
of the brain, making multiscale analysis through Inception
modules especially suitable for this signal. However, there are
still very few studies that explored Inception-based architec-
tures for EEG processing. Qiao et al. [?] and Lee et al. [?]
proposed Inception-based architectures to decode movements
from motor imagery and motor execution tasks, respectively.
In both cases, their models yielded higher performance than
other state-of-the-art methods. Additionally, Yue et al. [?]
designed a novel method to evaluate visual fatigue using a
3D Inception CNN. Nevertheless, it has not yet been studied
whether Inception modules are useful for ERP-based spellers.
ERPs are generally considered to have most of their power
in delta (0-4 Hz) and theta (4-7 Hz) bands [?]. Thus, the
majority of algorithms for ERP detection do not take into
account the upper bands (i.e., alpha, beta and gamma), most
even filtering frequencies above 10 Hz [?], [?], [?]. However,
several studies found that these bands contain discriminative
information for target vs non-target conditions, especially in
the gamma range [?]. Therefore, algorithms for ERP detection
should be able to process patterns at very different temporal

scales in order to take full advantage of all the discriminative
information available. In this respect, previous CNNs for ERP
detection used one kernel size per layer, which may limit their
capability to learn features at different temporal scales [?],
[?], [?], [?], [?], [?], [?]. Additionally, there are other open
challenges for deep learning in the EEG domain. Especially ,
the lack of large datasets has hindered the development of
novel training strategies with great impact in other fields,
such as transfer learning and fine-tuning [?]. These techniques
have great potential to reduce the calibration time required by
deep-learning models in BCI applications. However, to our
knowledge, they have not been explored for this purpose in
ERP-based spellers yet.

The main goal of this study is to design, develop and test a
novel CNN in order to improve the accuracy and calibration
time of ERP-based spellers for practical use. To this end, our
model, called EEG-Inception, efficiently integrates Inception
modules and other structures optimized for EEG processing.
Additionally, the dataset used in this study had a total of
701615 observations from 73 subjects (42 controls, 31 severely
disabled), the largest sample among related studies. Taking
advantage from this dataset, we designed a novel training
strategy using cross-subject transfer learning and fine-tuning to
reduce the calibration time required for test subjects. Finally,
we provide a direct and fair comparison with the most success-
ful previous approaches in ERP-based spellers. Noteworthy,
most studies do not evaluate novel classification algorithms
with severely disabled subjects, the end users of these systems.
This is a commonlimitation in the BCI literature, likely caused
by the lack of public datasets with disabled subjects [?]. In
order to address this issue, we released the code and database
used in this study in http://dx.doi.org/10.21227/6bdr-4w65 [?],
providing a new public benchmark for ERP-based spellers.

II. REL ATED WORK

This section presents an overview of previous studies that
proposed deep-learning models for ERP detection in a BCI
framework [?], [?], [?], [?], [?], [?], [?]. Table I summarizes
these approaches, highlighting their main contributions, evalu-
ation approach, subjects and results. As can be seen, CNNs are
the most popular approach. Among them, the model proposed
by Lawhern et al. [?], called EEGNet, stands out as one of the
most successful, using depthwise and separable convolutions
to provide a robust and compact architecture. In fact, this
model won the scientific challenge for ERP detection launched
by International Federation of Medical and Biological Engi-
neering (IFMBE) in 2019 [?]. Noteworthy, the second position
was achieved by other deep-learning model, CNN-BLSTM,
which combines a convolutional layer to extract spatial pat-
terns with 2 recurrent layers based on bidirectional long-short
term memory units (BLSTM) to learn temporal patterns [?].
The use of RNNs for EEG processing is scarce, especially for
ERP detection [?]. This is probably because these architectures
are very expensive in computationalterms, taking considerably
longer times than CNNs to train. Nevertheless, RNNs are
specifically designed to process temporal series, which makes
them a promising alternative to CNNs for EEG processing.

http://dx.doi.org/10.21227/6bdr-4w65
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TABLE I
OVERVIEW OF PREVIOUS DEEP-L EARNING APPROACHES FOR ERP-BAS ED S PEL L ERS

Study Highlights Training/testing approach Total subjects Accuracy
Cecotti et al. 2011 [?] First CNN for BCI classification tasks Intra-subject 2 CS 95%
Manor et al. 2015 [?] Spatio-temporal regularization Cross-subject 15 CS 70%
Liu et al. 2018 [?] Dropout and Batch normalization Intra-subject 3 CS 97%
Lawhern et al. 2018 [?] Depthwise and separable convolutions Cross/intra-subject 18 CS 90/92%
Santamarı́a-Vázquez et al. 2019 [?] Use of bidirectional LSTM layers Hybrid 15 ADHD 84%
Borra et al. 2019 [?] Depthwise and separable convolutions Intra-subject 15 ADHD 92%

CS: control subjects; CNN: convolutional neural network; ADHD: subjects with attention deficit hyperactivity disorder; MDS: motor disabled subjects; LSTM:
long-short term memory; Training/testing approach: intra-subject strategies train and test the models with data from the same subject, cross-subject strategies
train and test the models with data from different subjects and hybrid approaches combine both techniques; Accuracy: test command decoding accuracy.

It should be noted that, to the best of our knowledge,
previous studies failed to test their deep-learning models with
motor-disabled subjects. Moreover, Liu et al. [?] and Cecotti et
al. [?] only included 2 and 3 healthy subjects in their studies.
In this regard, it is well-known that patients generally achieve
lower classification accuracies due to individual aspects related
to their diseases, such as neural damage, visual impairment,
limited sustained attention abilities, involuntary tremors or
limited cognitive performance, among others [?], [?]. Further-
more, these symptoms are highly variable between individuals,
even between those with the same condition, making severely
disabled subjects especially heterogeneous and challenging for
ERP detection. Therefore, comprehensive evaluation in this
group is required to assess the performance of new models
for assistive BCI applications.

III. MATERIAL S AND METHODS

A. Subjects and Signals

Seventy three subjects participated in this study: 42 healthy
controls (mean age: 25.1±4.3 years; 31 males) and 31 severely
disabled (mean age: 44.2±7.7 years; 20 males) suffering from
different conditions (5 spinal cord injury; 4 Friedreich’s ataxia;
4 cerebral palsy; 2 polymalformative syndrome; 1 stroke;
15 multiple sclerosis). The dataset was built on data from
previous studies [?], [?], [?]. In all cases, subjects performed
several sessions with an ERP-based speller using the row-
column paradigm (RCP) [?]. In the RCP, the system displays a
matrix of commands, whose rows and columns are highlighted
randomly. Typically, rows and columns are highlighted several
times (i.e., sequences) to increase the accuracy of the system.
To select a command, the user has to stare at the desired
option, eliciting an ERP when a stimulus is perceived. Finally,
the system decodes the row and the column using signal
processing algorithms to detect the ERPs and executes the
correspondingcommand, providing feedback to the user. Table
II summarizes the key aspects of the database according to the
experimental protocols of each study. Noteworthy, data from
different sessions were mixed to simplify the analysis. For
further details, see the corresponding studies [?], [?], [?].

Participants were split into 3 sets: training, validation and
test. Healthy subjects were randomly divided into 2 groups,
assigning 80% of them to the training set and 20% to the
validation set. The remaining 31 disabled subjects were as-
signed to the test set. This distribution is designed provide a
real estimation of the performance of EEG-Inception through
evaluation in people with severe disabilities, who are the end

users of ERP-based spellers. Table III shows the number of
subjects, trials, and observations of each set. Noteworthy, no
method was applied to handle the inherent class imbalance
associated to datasets from ERP-based spellers.

EEG signals were acquired with a g.USBamp (g.Tec, Guger
Technologies, Austria) at a sampling frequency of 256 Hz
using 8 active electrodes placed at Fz, Cz, Pz, P3, P4, PO7,
PO8 and Oz, the ground placed at FPz and the reference in
the earlobe, according to the International System 10–10 [?].
During the experiments, 2 different platforms were used to
present the stimuli and save the signals: BCI2000 [?], and
MEDUSA [?]. The experimental protocol was approved by
the corresponding local ethics committee, and all participants
gave their informed consent.

B. Novel CNN: EEG-Inception

EEG-Inception is a novel CNN inspired on the work of
Szegedy et al. [21] for image classification, adapting its con-
cepts to provide an enhanced architecture for EEG processing
and ERP detection.

In order to prepare the raw EEG, a simple preprocessing
pipeline was applied. First, signals were decimated to 128 Hz
to reduce the computational cost of the model [?]. Afterward,
a band-pass filter was applied between 0.5 and 45 Hz, keeping
the most discriminative information and eliminating the power
line frequency at 50 Hz [?]. Commonaverage reference (CAR)
spatial filter was also applied to improve the SNR of ERPs
[?]. Finally, epochs were extracted from 0 to 1000 ms after
the stimulus onset [?]. Thus, the model input is an array of
shape 128×8, being the first dimension the temporal axis (i.e.,
samples), whereas the second dimension corresponds to the
spatial axis (i.e., channels).

EEG-Inception includes several concepts adapted from the
image classification domain, including Inception modules to
capture dependencies between features at different scales and
depthwise convolutions. Fig. 1 depicts a visual overview of the
architecture, whereas Table IV details the configurationand ar-
chitectural choices. It should be noted that each convolutional
block (i.e., 2D convolutions and depthwise 2D convolutions)
includes batch normalizationto normalize the feature maps [?],
activation function to introduce non-linearities [?] and dropout
regularization [?] to prevent overfitting.

The architecture of EEG-Inception, is organized in three
main blocks:

1) Inception module 1: this module processes the signal in
3 different temporal scales for each EEG channel, according
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TABLE II
DES CRIPTION OF THE DATAS ET

Study Subjects Sessions Trials/Subject Paradigm SD ISI Description
Mart́ınez-Cagigal et
al. 2017 [?]

10CS
15MD

4 87.9±7.3 RCP 62.5 125–250† Spelling task to control a BCI web browser.
Two matrices with dimensions 5×3 and 9×5
were used.

Mart́ınez-Cagigal et
al. 2019 [?]

10CS
16MD

3 63.4±8.2 RCP 62.5 125–250† Spelling task for smartphone control. Two
matrices with dimensions 4×4 and 6×9 were
used.

Santamaŕıa-Vázquez
et al. 2019 [?]

22CS 2 60 RCP 75 100 Simple spelling task with an alphanumeric
6×6 matrix.

CS: control subjects; MD: motor-disabled; RCP: row-colmn paradigm; SD: stimulus duration in ms, ISI: inter-stimulus interval in ms. Each trial represents a
command or character selection, while the number of sequences is the total stimuli per row and column of the matrix. Column ”Trials/Subject” displays the
total number of trials per subject mixing all sessions. † Random value in the specified range.

TABLE III
CHARACTERIS TICS OF EACH S ET

Subset Subjects Trials Observations
Training 34 CS 2188 315159
Validation 8 CS 502 77046
Test 31 MDS 2333 309410

CS: control subjects. MDS: motor disabled subjects. Characteristics of train-
ing, validation and test sets. Trials represent a single command selection.
Observations represent a single stimulus.

to the kernel sizes of the convolutional blocks C1, C2 and
C3, which are 64×1, 32×1 and 16×1, respectively. Therefore,
since the sampling rate of the input is 128 Hz, these sizes
correspond to temporal windows of 500 ms, 250 ms and 125
ms. Following these layers, D1, D2 and D3 process the signal
in the spatial domain using depthwise convolutions. Depthwise
convolutions were first used in the image classification domain
to factorize a convolution kernel into smaller kernels by acting
on each input channel separately, reducing the total amount of
parameters [?], [?]. When applied to EEG processing, they
provide a method to learn optimal spatial filters (i.e., channels
weights) for each temporal pattern extracted by the previous
layer [?]. Then, the concatenation layer N1 merges the output
features from D1, D2 and D3. Finally, an average pooling is
applied for dimensionality reduction.

2) Inception module 2: this module is organized as the
previous one. It is formed by 3 branches that process the
EEG signal in 3 temporal scales of 500 ms, 250 ms and 125
ms. It should be noticed that, after the average pooling layer
of the first block, these scales correspond to kernel sizes of
16×1, 8×1 and 4×1. This module extracts additional temporal
features in a higher level of abstraction, considering all EEG
channels. As previously, the outputs of convolutional blocks
C4, C5 and C6 are concatenated. Then, an average pooling
for dimensionality reduction is also applied.

3) Output module: the last 2 convolutional layers are
designed to extract the most meaningful patterns for the final
classification, compressing the information into few features.
Noteworthy, the number of filters is decreased progressively,
which, along with the average pooling layers, reduces the
dimensionality in order to avoid overfitting. In fact, only 24
features are fed to the final classification layer. Finally, the
softmax output estimates the probability for each class (target
and non-target) [?].

The model was trained using the following configuration:

Adam optimizer with default hyperparameters β1 = 0.9 and
β2 = 0.999 [?]; categorical cross entropy loss function [?];
mini-batch size of 1024; and 500 epochs. To speed up training
and avoid overfitting, we applied early stopping [?] when the
loss of the validation set did not improve for 10 consecutive
epochs, restoring the weights that minimized this metric.

The choice of hyperparameters in deep-learning models is
crucial to achieve suitable results [?]. In particular, the learning
rate, the activation function and the dropout rate have great
impact [?]. In order to reach an optimal solution, they were
automatically optimized on the validation set using grid search.
The rest of hyperparameters (i.e., number of layers, number of
branches in Inception modules, number of filters, kernel sizes
and pooling sizes) were heuristically chosen.

C. Comparison models

1) Regularized LDA (rLDA): LDA-based approaches are
widely used for ERP detection due to their simplicity and
performance [?], [?], [?]. Specifically , rLDA was proposed for
single-trial analysis and classification of ERP components by
Blankertz et al. [?], achieving acceptable results. This model is
a regularized version of LDA by means of shrinkage estimators
which showed advantages over other LDA-based approaches,
such as stepwise LDA (SWLDA) [?]. Thus, rLDA is a suitable
benchmark for more advanced models. As preprocessing stage,
band pass filtering between 0.5 and 10 Hz and CAR were
applied. Then, epochs were extracted from 0 to 1000 ms after
the stimulus onset and decimated to 20 Hz [?]. EEG channels
were concatenated to arrange the final feature vector, which
was fed to rLDA for classi fication. We used the scikit-learn
implementationof rLDA, which implements the O. Ledoit and
M. Wolf ’s formula to calculate the shrinkage parameter [?].

2) xDAWN + RG: models based on RG have gained
importance for BCI applications in recent years due to their
robustness and transfer learning capabilities [?]. Here, we used
the algorithm that won the ”BCI Challenge NER 2015” for
comparison purposes [?]. This algorithm combines xDAWN
spatial filtering with RG to estimate covariances matrices and
project them into the tangent space, followed by a logistic
regression classifier to achieve a robust ERP classification [?].
In this case, we used the same preprocessing pipeline as for
EEG-Inception. Please refer to [?] for further information and
an open source implementation.
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figures/fig1.png

Fig. 1. Overview of EEG-Inception architecture. 2D convolution blocks and depthwise 2D convolution blocks include batch normalization, activation and
dropout regularization. The kernel size is displayed for convolutional and average pooling layers.

3) CNN-BLSTM: this model was proposed to take part in
the IFMBE scientific challenge launched in 2019 for ERP
classification [?]. In this competition, CNN-BLSTM reached
the second position, beating 7 other approaches [?]. CNN-
BLSTM combines 1D convolutional layers to extract spatial
features with 2 BLSTM layers to detect temporal patterns. As
commented previously, the use of RNNs for EEG process-
ing is scarce [?]. Therefore, CNN-BLSTM is an interesting
alternative that adds variety to the comparison performed in
this study. The same preprocessing was applied as for EEG-

Inception.

4) DeepConvNet: this CNN was proposed by Schirrmeister
et al. [?] as a generic model for EEG decoding tasks in BCI.
DeepConvNet comprises 5 convolution blocks which include
max-pooling layers, with a special first block designed to
handle EEG input, followed by a dense softmax classification
layer [?]. In this work, we used the implementation proposed
by Lawhern et al. [?], which is publicly available. The same
preprocessing was applied as for EEG-Inception.
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TABLE IV
EEG-INCEPTION ARCHITECTURE DETAIL S

Block Type Filters Depth Kernel Padding Output shape Connected to Role
IN Input – – – – 128× 8× 1 C1, C2, C3 Input
C1 Conv2D 8 – 64× 1 Same 128× 8× 8 D1 Temporal analysis
D1 DepthwiseConv2D – 2 1× 8 Valid 128× 1× 16 N1 Spatial analysis
C2 Conv2D 8 – 32× 1 Same 128× 8× 8 D2 Temporal analysis
D2 DepthwiseConv2D – 2 1× 8 Valid 128× 1× 16 N1 Spatial analysis
C3 Conv2D 8 – 16× 1 Same 128× 8× 8 D3 Temporal analysis
D3 DepthwiseConv2D – 2 1× 8 Valid 128× 1× 16 N1 Spatial analysis
N1 Concatenate – – – – 128× 1× 48 A1 Concatenation
A1 AveragePooling2D – – 4× 1 – 32× 1× 48 C4, C5, C6 Concatenation
C4 Conv2D 8 – 16× 1 Same 32× 1× 8 N2 Temporal analysis
C5 Conv2D 8 – 8× 1 Same 32× 1× 8 N2 Temporal analysis
C6 Conv2D 8 – 4× 1 Same 32× 1× 8 N2 Temporal analysis
N1 Concatenate – – – – 32× 1× 24 A2 Concatenation
A2 AveragePooling2D – – 2× 1 – 16× 1× 24 C7 Dimension reduction
C7 Conv2D 12 – 8× 1 Same 16× 1× 12 A3 Temporal analysis
A3 AveragePooling2D – – 2× 1 – 8× 1× 12 C8 Dimension reduction
C8 Conv2D 6 – 4× 1 Same 8× 1× 6 A4 Temporal analysis
A4 AveragePooling2D – – 2× 1 – 4× 1× 6 C7 Dimension reduction
OUT Dense – – – – 2 – Softmax output

Column ”Type” describes the class used to implement each block in Keras framework. It should be taken into account that this implementation may vary
across different frameworks. All convolutional blocks (i.e., Conv2D and DethpwiseConv2D) include batch normalization, activation and dropout regularization.
The model has 15154 parameters, of which 14926 are fitted during training.

5) EEGNET: this CNN proposed by Lawern et al. [?] is es-
pecially designed for BCI classificat ion tasks, keeping a com-
pact and robust architecture that has been tested with different
BCI paradigms (i.e., ERP-based speller, SMR, movement-
related cortical potentials and feedback error-related nega-
tivity). This network uses batch normalization and dropout
to avoid overfitting and average pooling for dimensionality
reduction. The same preprocessing was applied as for EEG-
Inception. For training and testing the models, we used the
open source implementationof EEGNet-8-2 provided by Law-
ern et al. [?] with the same hyperparameters for ERP detection
as the original study.

D. Evaluation Experiment

The evaluation experiment was designed to meet real-life
conditions, where the available amount of training data from
a single subject is usually limited. Fig. 2 offers a graphic
description of the different stages of the study, including the
hyperparameter optimization process and the training and test-
ing phases. Firstly, all models were trained using the training
set. Then, we evaluated them in the test set using a fine-tuning
process for each subject with N = {0, 5, 10, 20, 30} trials. For
N = 0, models are directly evaluated in the test set, simulating
a plug & play device and thus assessing their robustness to
inter-subject variability. ForN > 0, the fine-tuningprocess has
3 stages: (i) the algorithm picks N trials from each subject
randomly; (ii) the trained model is fine-tuned with the data
from these trials (deep-learning models are initialized with the
original weights after the training phase), obtaining a subject-
specific model; and (iii) the fine-tunedmodel is tested with the
rest of trials for each subject. This procedure was repeated 100
times for each N and subject, averaging the obtained results.

The proposed evaluation experiment reproduces a real-life
setting, where the number of training trials for end users
should be under 30 (approximately 20 minutes of effective
training) [?], [?]. Longer calibration times would reduce the

figures/Fig2.png

Fig. 2. Work-flow of the study. First, hyperparameter optimization process of
EEG-Inception was done based on the performance on the validation set. Then,
the models were trained using the training set. Finally, they were evaluated
in the test set using a fine-tuning process for each subject. Fine-tuning trials
were randomly selected, and the process is repeated 100 times for each N
and subject.

usability of an ERP-based speller radically. Therefore, the
proposed experimental approach, together with the distribution
of the dataset, allows to assess the effectiveness of our training
strategy, which combines cross-subject transfer learning and
fine-tuning to reduce the calibration time and overfitting for
end users of ERP-based spellers.

All implementations were programmed in Python. Keras
v2.3 framework with Tensorflow v2.0 backend was used to
implement deep-learning models [?]. For all experiments,
we used a desktop computer with the following hardware
characteristics: Intel Core i9-9900 @ 3.6 GHz, 64 GB RAM,
NVIDIA RTX 2080Ti 11GB.

IV. RES ULTS

A. Hyperparameter optimization

Learning rate (lr), activation function (fact) and dropoutrate
(pdrop) were optimized for EEG-Inception. The search space
for each hyperparameter was: lr = {0.01, 0.001, 0.0001};
fact = {Sigmoid,ReLU ,ELU}; pdrop = {0.00 : 0.05 : 0.5}.
Fig. 3 depicts the results of the optimization process. Note-
worthy, the optimization score was computed as the averaged
command decoding accuracy in the validation set after a fine-
tuning process with N = 30 for each subject, considering
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Fig. 3. Results of the optimization process of EEG-Inception in the validation
set (8 healthy subjects). Each line depicts the mean command decoding
accuracy after a fine-tuningprocess for each subject with N = 30, considering
5 sequences of stimulation. (a) Score for each activation function and dropout
rate using the best value of learning rate (lr = 0.001). (b) Score for each
learning rate and dropout rate using the best activation function (ELU).

5 sequences of stimulation. The values that maximized this
score were selected as optimal and used in the evaluation
experiment. Specifically , the optimal set was lr = 0.001;
fact = ELU ; pdrop = 0.25. The activation function and
learning rate choices were especially important. On the other
hand, dropoutrates between 0.1 and 0.4 were acceptable, while
the performance was reduced in the edges of the search space.

B. Performance evaluation

Table V and Fig. 4 summarize the results of the evaluation
experiment. Table V displays the command decoding accuracy
of the models in the test set for each number of fine-tuning
trials and sequences considered to make the prediction. It
should be noted that models were trained and tested using
observations (i.e., EEG epochs) corresponding to a single
stimulus. Therefore, the command decoding process followed
a single-stimulus approach: the probability of single epochs
was predicted and then averaged per row and column. The
command that corresponds to the row and column with higher
probability was then selected [?]. The last column compares
EEG-Inception with the rest of models. Concretely, this col-
umn shows the performance improvement of EEG-Inception
compared to the other 5 models, calculated as the mean differ-
ence in command decoding accuracy. Wilcoxon Signed-Rank
Test was applied to evaluate statistical differences between
the accuracy of EEG-Inception and the other models. False
Discovery Rate (FDR) for multiple comparisons was corrected
with Benjamini-Hochberg approach [?]. Additionally, Fig. 4
shows the theoretical information transfer rate (ITR) achieved
by the models. This metric is widely used to assess the per-
formance of BCI systems [?]. The ITR, expressed in bits/min,
measures the amount of information conveyed by a BCI
system taking into account the speed of selection, the number
of available commands and the accuracy of the system [?].
As can be seen, EEG-Inception outperformed the comparison
models in these analyses, reaching the highest performance for
commanddecoding accuracy and ITR. Moreover, the statistical
analysis showed that the improvements in command decoding
accuracy are significant (p-value < 0.01), regardless of the
number of fine-tuning trials and sequences considered in the
analysis. Results broken down by subject can be found in
http://dx.doi.org/10.21227/6bdr-4w65.

V. DIS CUS S ION

In this study, we propose a novel CNN architecture for
ERP detection called EEG-Inception. The model was validated
in a population of 73 subjects (i.e., 42 healthy, 31 severely
disabled) using an ERP-based speller. Moreover, we provide
direct comparison with 5 previous approaches: rLDA, xDAWN
+ RG, CNN-BLSTM, DeepConvNet and EEGNet.

A. Architecture design

The growth of computer vision and natural language pro-
cessing have led the theoretical and practical development of
deep learning in recent years [?]. As a consequence, many
of the concepts and architectures that boosted this success are
specific to these fields and do not generalize for EEG process-
ing, hindering the development of deep-learning approaches
in this context [?]. In this work, classic and novel concepts
and techniques from image and EEG processing were smartly
combined to achieve a novel CNN that outperformed previous
approaches for ERP detection. The main contributions of the
proposed architecture are detailed below.

The first highlight is the inclusion of Inception modules
specifically designed for EEG processing. Inception modules
were first proposed by Szegedy et al. [?] for image processing,
providing significant improvements in this domain. However,
there are still very few studies that explored this architecture
for EEG processing, and to our knowledge, none for ERP
detection [?], [?], [?]. EEG-Inception integrates 2 Inception
modules with 3 branches that process the signal in different
temporal scales (i.e., 500ms, 250ms, and 125ms), depending
on the kernel size of the temporal filters (C1, C2, C3, C4,
C5 and C6 as displayed in Fig. 1). In our experiments, the
inclusion of these modules allowed significant improvements
in comparison to single-scale approaches. Nevertheless, the
performance of the model remained comparable for different
kernel sizes, and the optimal values may depend on the specific
context. In this study, the scales were chosen to maximize the
performance for ERP detection.

The novel architecture design, along with the efficient
integration of structures that proved useful in previous studies,
such as depthwise convolutions to extract independent spatial
filters for each temporal pattern, dropout regularization, batch
normalization and average pooling also increased the accuracy
of the model [?], [?], [?]. In this regard, the architecture of
EEG-Inception was especially designed to avoid overfitting,
including an output block that synthesizes the information ex-
tracted by Inception modules in very few, high-level features.
In fact, only 24 features are fed to the final classification layer
(see Table III). This approach maximized the gain of the fine-
tuning process, which used very few calibration trials to adapt
the model to new subjects, and proved especially important in
our experiments.

Finally, the hyperparameter optimization also constitutes
an important contribution and could help to design new ap-
proaches in the future. As can be seen in Fig. 3a, the activation
function proved to be an importantchoice. We tested Sigmoid,
ReLU and ELU functions for their extensive use in deep
learning. In fact, ReLU is the preferred choice for computer

http://dx.doi.org/10.21227/6bdr-4w65
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TABLE V
COMMAND DECODING ACCURACY IN THE TES T S ET

No. Sequences
N Model 1 5 10 15 Imp.

0

rLDA 14.6 ± 8.6 33.1 ± 20.4 40.3 ± 24.2 43.7 ± 25.1 14.7
xDAWN + RG 17.9 ± 9.2 37.5 ± 19.6 46.2 ± 22.8 49.7 ± 23.4 9.6
CNN-BLSTM 19.6 ± 8.8 42.7 ± 19.8 53.6 ± 22.0 57.2 ± 22.5 3.7
DeepConvNet 20.7 ± 9.8 42.0 ± 20.8 53.2 ± 23.4 56.9 ± 23.7 4.0
EEGNet 19.5 ± 9.5 42.3 ± 21.0 51.9 ± 23.2 56.5 ± 23.3 4.6
EEG-Inception 21.3 ± 9.9 46.1 ± 21.1 57.4 ± 23.7 61.4 ± 23.8 —

5

rLDA 18.6 ± 8.6 41.7 ± 18.7 53.4 ± 20.3 58.2 ± 20.0 16.0
xDAWN + RG 20.6 ± 8.9 47.3 ± 19.6 59.0 ± 20.5 63.4 ± 19.9 10.7
CNN-BLSTM 24.3 ± 10.3 52.7 ± 19.8 64.7 ± 20.2 68.5 ± 19.4 5.6
DeepConvNet 23.8 ± 10.3 53.2 ± 20.5 64.3 ± 21.3 68.3 ± 20.4 5.7
EEGNet 23.8 ± 9.8 53.0 ± 20.2 65.3 ± 20.8 69.4 ± 20.1 5.1
EEG-Inception 26.4 ± 10.8 58.7 ± 19.4 70.7 ± 18.8 74.6 ± 17.2 —

10

rLDA 22.0 ± 10.0 50.4 ± 19.5 63.5 ± 20.3 68.2 ± 19.2 11.6
xDAWN + RG 24.1 ± 9.8 54.9 ± 19.4 67.2 ± 19.1 71.5 ± 17.8 7.7
CNN-BLSTM 25.9 ± 10.7 56.0 ± 19.9 68.3 ± 19.5 72.1 ± 18.5 6.7
DeepConvNet 26.4 ± 11.0 58.4 ± 20.3 69.6 ± 20.1 73.3 ± 18.8 5.2
EEGNet 26.1 ± 10.2 58.2 ± 19.8 70.6 ± 19.6 74.5 ± 18.3 4.8
EEG-Inception 28.8 ± 11.1 63.6 ± 18.7 75.3 ± 17.6 78.9 ± 15.5 —

20

rLDA 25.1 ± 11.0 56.7 ± 19.6 69.9 ± 19.6 74.6 ± 17.8 9.9
xDAWN + RG 26.4 ± 10.4 60.1 ± 18.3 72.3 ± 17.3 76.4 ± 15.6 7.2
CNN-BLSTM 27.5 ± 11.2 60.1 ± 19.2 72.3 ± 18.1 75.7 ± 16.8 7.2
DeepConvNet 28.9 ± 11.6 62.7 ± 19.6 73.7 ± 18.7 77.1 ± 17.0 5.6
EEGNet 28.8 ± 10.7 63.2 ± 18.8 75.6 ± 17.9 79.1 ± 16.2 4.3
EEG-Inception 32.0 ± 12.1 68.4 ± 17.9 79.4 ± 16.0 82.8 ± 13.7 —

30

rLDA 26.2 ± 11.2 59.5 ± 19.3 72.7 ± 19.0 77.3 ± 16.9 9.4
xDAWN + RG 27.3 ± 10.6 62.0 ± 17.9 74.2 ± 16.5 78.2 ± 14.9 7.5
CNN-BLSTM 29.0 ± 11.5 62.6 ± 18.9 74.4 ± 17.4 77.7 ± 16.0 7.2
DeepConvNet 29.8 ± 11.8 64.9 ± 19.1 75.8 ± 17.9 79.0 ± 16.3 5.7
EEGNet 30.4 ± 11.3 65.7 ± 18.6 77.8 ± 17.2 81.0 ± 15.5 4.3
EEG-Inception 33.7 ± 12.4 70.6 ± 17.4 81.5 ± 15.3 84.6 ± 13.2 —

N: number of fine-tuning trials for each subject. Command decoding accuracy (%) averaged over the test set subjects (31 motor disabled). Column ”Imp.”
shows the accuracy improvement (%) yielded by EEG-Inception compared to the other 5 models, calculated as the mean difference in command decoding
accuracy for each N. Statistical differences between EEG-Inception and the other models were assessed with Wilcoxon Signed Rank Test, correcting the False
Discovery Rate (FDR) with Benjamini-Hochberg approach. All comparisons were significant (p-value < 0.01), regardless of N and the number of sequences.

vision [?]. However, ELU achieved greater performance in
our experiments. This finding is in accordance with the work
of Schirrmeister et al. [?] for SMR classification. Reducing
the overfitting is also crucial in order to design deep-learning
models for ERP detection, even with large datasets. In our
experiments, dropout regularization proved to be the most
useful technique to reduce this effect [?], [?]. The dropout
rate was automatically optimized, reaching its optimal value
in the validation set at 0.25. Finally, the learning rate used
for training and fine-tune the model also played an important
role to reach an optimal solution. As can be seen in Fig. 3b,
a learning rate of 0.001 maximized the command decoding
accuracy in the validation set.

B. Results and advantages of the training strategy

Table V shows the command decoding accuracy for each
number of fine-tuning trials, model and sequences considered.
As can be seen, EEG-Inception always achieved the highest
accuracy, followed by EEGNet, DeepConvNet, CNN-BLSTM,
xDAWN+RG and rLDA. In fact, the comparison between
EEG-Inception and the rest of models showed improvements
up to 16.0% for rLDA, 10.7% for xDAWN + RG, 7.2% for
CNN-BLSTM, 5.7% for DeepConvNet and 5.1% for EEGNet.
Moreover, the statistical test (i.e., Wilkoxon Signed Rank Test,
FDR corrected with Benjamini-Hochberg approach) showed
that these differences were significant (p-value < 0.01), re-

gardless of the number of fine-tuning trials and sequences. Of
note, the standard deviation reached high values for all models
due to the high inter-subject variability of the test set, which
had subjects with very different pathologies. Nevertheless,
it should be noted that EEG-Inception was generally the
model with the lowest variability, showing greater robust-
ness to individual differences. Additionally, Fig. 4 shows the
theoretical ITR achieved by the models. As before, EEG-
Inception reached the highest value, 25.64 bits/min, which
is comparable to the ITR achieved by healthy subjects using
the same paradigm [?]. This is in accordance with previous
studies, which demonstrated that deep-learning approaches
usually achieve higher performance for ERP detection [?],
[?]. Unsurprisingly, the number of fine-tuning trials had a
positive impact in the performance due to the high inter-
subject variability of ERPs. A larger number of calibration
trials enable classification algorithms to learn subject specific
features, thus increasing the command decoding accuracy.
In return, it also increases the training time before using
the system, which reduces its usability. Therefore, a suitable
balance should be found between performance and calibration
time. In this regard, deep-learning models (i.e., CNN-BLSTM,
DeepConvNet, EEGNet and EEG-Inception) showed a clear
advantage in comparison to rLDA and xDAWN + RG models,
reaching suitable accuracies with fewer fine-tuning trials.
Another aspect to consider is the speed of selection, which
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Fig. 4. ITR: information transfer rate; N: number of fine-tuning trials. ITR in bits/min in the test set (31 motor disabled subjects) as a function of N and the
number of sequences.

depends on the number of sequences (i.e., stimuli per row
and column). A greater number of sequences entails higher
accuracy, regardless of the model, but also increases the time
of selection. As before, a proper trade-off between precision
and speed must be achieved for practical applications. In this
regard, EEG-Inception would provide higher accuracies with
less selection time.

Fundamental differences in the experimental design, stimu-
lation paradigm and subjects make it difficult to compare the
results achieved in this study with previous works in terms

of performance [?], [?], [?], [?], [?], [?], [?]. Especially , our
test set comprised 31 severely disabled subjects, which are
the end users of ERP-based spellers. On the other hand, to
the best of our knowledge, none of the previous works that
proposed deep-learning approaches for ERP-based spellers
tested their models with target users [?], [?], [?], [?], [?], [?],
[?]. As stated before, severely disabled subjects pose a great
challenge for their heterogeneity and special characteristics.
Moreover, it has to be taken into account that, for each subject,
all sessions were mixed. Therefore, results could be affected
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to some extent by inter-session variability. To mitigate this
problem, we opted for the random selection approach with
multiple repetition, performing 100 repetitions and averaging
the results. For these reasons, we implemented several of
the most successful previous classification approaches for
ERP-based spellers in order to assure a fair comparison. As
shown, our proposal significantly outperformed all of them,
demonstratingits feasibili ty in a practical setup with end users.

The designed training strategy also constitutes an important
contribution of the study and allows to draw some insight-
ful conclusions that should not be overlooked. Most related
studies, probably due to dataset limitations, analyzed the
performance of novel BCI classification methods from cross-
subject (i.e., training and testing with different subjects) or
intra-subject (i.e., training and testing with data from the same
subject) points of view [?], [?], [?]. However, we applied a
hybrid approach using transfer learning and fine-tuning. For
N = 0, all models were trained using the training set and
tested using the test set, following the cross-subject evaluation
approach. In contrast, for N > 0, the model was updated with
new data from each subject starting from the original weights
through the fine-tuningprocess. This is a fundamental analysis
to study the potential of deep learning for BCI, measuring the
effectiveness of cross-subject transfer learning and fine-tuning.
In accordance to previous studies with classical methods [?],
our results suggest that deep-learning models can also take
advantage from these techniques to reduce calibration time in
ERP-based spellers without compromising the performance of
the model with end users. In fact, we used a maximum of
30 calibration trials to obtain subject-specific models for the
test set. In contrast, among related studies that used the same
stimulation paradigm, Cecotti et al. [?] used 85 calibration
trials for each subject, Liu et al. [?] included 2 databases with
85 and 42 trials, and Santamaŕıa-Vázquez et al. [?] and Borra
et al. [?] used 140 trials. Furthermore, in this study the models
were initialized using signals from healthy subjects, which are
easier and less expensive to acquire. While public databases
of disabled subjects are scarce, there is a great amount of
data available from healthy subjects. Thus, existing databases
could be used to reduce the calibration time for end users.
As aforementioned, EEG-Inception is designed to make the
most of this training approach, providing advantages for the
practical use of ERP-based spellers in real applications.

C. Limitations and future work

Despite the positive results achieved in this study, we
also acknowledge several limitations that should be addressed
in the future. For instance, the validation of EEG-Inception
in other EEG classification tasks and public datasets is a
promising research line. We only tested the performance of
EEG-Inception to detect ERPs elicited by the RCP, whose
main component is the P3 wave [?]. However, our approach
has not been evaluated with ERPs elicited by other stimulation
paradigms, such as miniature asymmetrical visual evoked
potentials or motion visual evoked potentials [?]. These ERPs
are characterized by different components, which affects the
morphology and spatial distribution of the response. This

variability makes the development of general models for ERP
detection challenging [?]. In this regard, EEG-Inception intro-
duces architectural advantages that could help to overcome this
issue. Therefore, we think that our approach has great potential
to cope with different paradigms after an appropriate fine-
tuning process with enough training examples. Furthermore,
we believe that, after a proper optimization of several hyper-
parameters, EEG-Inception could be applied in other contexts
such as BCIs based on SMR or SSVEP, sleep stage scoring,
disease detection, etc. Nevertheless, additional experiments are
required to corroborate these hypotheses. On the other hand,
online tests would also be interesting to assess the performance
of EEG-Inception in real applications. In fact, EEG-Inception
could be used together with novel stimulation paradigms and
interactive strategies to improve the overall performance [?],
[?]. Additionally, we did not apply any method to explain the
features learned by EEG-Inception. In this regard, explainable
deep-learning models could help to gain insight into brain
processes through EEG and optimize the architectures, being
a field of research with great potential. Therefore, future
endeavors are needed to address this issue. Finally, adap-
tive methodologies for traditional machine-learning classifiers
yield improvements in accuracy and calibration time in BCI
[?], [?]. However, to the best of our knowledge, adaptive
approaches for deep-learning models have not been studied
in this domain yet. Thus, they represent a promising research
line that should be explored in the future.

VI. CONCL US ION

In this study, we proposed a novel CNN architecture for
ERP classification called EEG-Inception. This model effi-
ciently integrates Inception modules to facilitate the extrac-
tion of feature maps at different temporal scales with other
structures optimized for practical use in ERP-based spellers.
EEG-Inception showed excellent performance in this context,
significantly outperforming 5 successful previous approaches
such as rLDA, xDAWN + RG, CNN-BLSTM, DeepConvNet
and EEGNet in an experiment that involved 73 subjects,
including 31 with severe motor disabilities. To the best of
our knowledge, this is the largest sample in related studies,
assuring the generalization of our results. Additionally, the
proposed training strategy reduced the calibration data required
by deep-learning approaches to achieve a suitable accuracy
with new subjects. In the future, these concepts could be
applied to enhance the performance of deep-learning models
in other EEG classification tasks.


	Introduction
	Related work
	Materials and Methods
	Subjects and Signals
	Novel CNN: EEG-Inception
	Inception module 1
	Inception module 2
	Output module

	Comparison models
	Regularized LDA (rLDA)
	xDAWN + RG
	CNN-BLSTM
	DeepConvNet
	EEGNET

	Evaluation Experiment

	Results
	Hyperparameter optimization
	Performance evaluation

	Discussion
	Architecture design
	Results and advantages of the training strategy
	Limitations and future work

	Conclusion

