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Abstract

Non-volatile memory technology is now available in commodity hardware. This technology

can be used as a backup memory for an external DRAM Cache memory without needing to

modify the software. However, the higher read and write latencies of non-volatile memory

may exacerbate the memory wall problem. In this work we present a novel off-chip prefetch

technique based on a Hidden Markov Model that specifically deals with the latency problem

caused by complexity of off-chip memory access patterns. Firstly, we present a thorough

analysis of off-chip memory access patterns to identify its complexity in multicore proces-

sors. Based on this study, we propose a prefetching module located in the LLC which uses

two small tables, and where the computational complexity of which is linear with the number

of computing threads. Our Markov-based technique is able to keep track and make cluster-

ing of several simultaneous groups of memory accesses coming from multiple simultaneous

threads in a multicore processor. It can quickly identify complex address groups and trigger

prefetch with very high accuracy. Our simulations show an improvement of up to 76% in the

hit ratio of an off-chip DRAM Cache for multicore architecture over the conventional prefetch

technique (G/DC). Also, the overhead of prefetch requests (failed prefetches) is reduced by

48% in single core simulations and by 83% in multicore simulations.

Introduction

Non-Volatile Memory architectures have very high memory density with very low energy

consumption, which allows for massive data sets in main RAM memory that can be directly

accessed by the cores [1–6]. Nevertheless, its main problem is that access latency increases by a

factor of 2x to 4x, worsening the memory wall problem [6–9]. Storage-class non volatile main

memory enables RAM with higher density and lower energy so it can outclass traditional

memory architectures [5, 6] if its latency problem is solved. One way to reduce latency is to use

a hardware-managed external DRAM Cache located between on-chip caches (L1-L2-LLC) and

main non-volatile memory [6, 10].
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Off-chip caches based on SDRAM technologies improve latency and bandwidth, but the filter-

ing effect from on-chip cache hierarchy decreases its efficiency because it hides spatial and

temporal locality. Poor locality reduces DRAM Cache hit ratio [11] and low hit ratio decreases

bandwidth and increases cache latency, thus, different and more complex prefetch techniques

are needed in order to manage off-chips caches.

Hardware prefetch is a very well-known technique which hides latency by increasing hit

ratio [12–16]. This technique keeps track of the accessed locations to make a prediction of its

future usage so it can bring them to the cache in advance and timely. Hardware prefetch is

very common in the on-chip cache hierarchy of commercial processors [17–19]. Off-chip

DRAM Cache has some specific characteristics which differ from on-chip caches, like its gigascale

cache capacity and very high bandwidth that makes them very good candidates to apply com-

plex hardware prefetch techniques along with eager data movement with the aim of increasing

bandwidth and reducing latency.

Off-chip caches receive very reduced and filtered information of the programs behavior

because much of the temporal locality is filtered on the on-chip caches, and (depending on its

size and geometry) some of the spatial and algorithmic locality is also filtered. Moreover, as

off-chip caches are shared with all cores, the sequence of misses and replacements received

correspond to different programs running simultaneously. This complicates even more the

task of keeping track the lines used by programs. For all these reasons, it is worth to develop

and test more complex prefetch techniques which could model memory references via Markov

transition diagrams [20] to predict the most probable future address sequence based on the

past references. A lot of similar systems have been proposed since Markov Predictors [21],

some of them with improved data structures that save memory and increase efficiency [14–16,

22, 23].

Several non-volatile memory (NVM) architectures are currently under intense research

because they have good characteristics to become the main RAM storage in future systems.

They are expected to have terabytes of capacity, can directly host file systems like Linux DAX

and its zero power consumption when idle makes them ideal to use in big data centers [16].

One of the most promising architectures (FAM [16]) decouples NVM modules from compute

units to improve utilization, sharing and bandwidth but also highlights the relevance of the

latency problem. Several approaches [14, 15] use hardware prefetching to deal with the prob-

lem of high latency in LLC misses. Overall, it is clear that off-chip latency is a very relevant prob-

lem that must be solved to design efficient memory hierarchies.

In this work we discuss the case of hardware prefetching for off-chip DRAM Cache to mini-

mize latency when running multiple simultaneous applications with very complex off-chip

data access patterns. We also make an statistic analysis of off-chip access patterns that further

motivates the need of a prefetch tool capable to deal with complex memory access patterns.

We develop and evaluate a proposal of hardware prefetcher based on a Hidden Markov

Model. Specifically, our work makes the following contributions:

• We analyze the off-chip memory access profile and extract and study its characteristics.

• We develop an statistical model based on a Hidden Markov Model to keep track of groups of

off-chip accesses triggered by the different threads running on the multicore processors.

• We propose an specific solution for Hidden Markov Model sequence estimation with O(n)

complexity.

• We quantify the hit ratio improvement for off-chip caches and the accuracy of the proposed

technique.
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The paper is organized as follows: Section Off-chip Memory Accesses provides an analysis of

main memory accesses patterns and characteristics that motivates our work; Section Related
Work discusses similar state-of-the-art proposals; Section Prefetch Based on Hidden Markov
Model details the proposed prefetch tecnique and describes a hardware implementation; Sec-

tion Evaluation provides the evaluation environment and results of our models; and Section

Conclusions presents the outcome of this work.

Off-chip memory accesses

On-chip cache hierarchy in modern processors is very efficient for filtering most of the tempo-

ral locality and, when a good prefetch algorithm is used, some of the spatial and algorithmic

locality. This efficiency means that most of the locality is filtered in the on-chip memory hier-

archy. As a result, off-chip caches receive fragmentary locality information and its efficiency is

reduced. Off-chip caches are necessary in modern memory hierarchies due to the use of high

density and long latency backup memories, such as non volatile RAM. Previous studies show

that an specific improvement must be done on these caches to avoid a negative impact in

memory hierarchy [11, 24–26].

In this section we analyze off-chip memory accesses to unveil their specific characteristics.

Off-chip memory accesses are modelled using data collected from real executions of 20 appli-

cations, 17 SPEC CPU2006 and 3 specific applications. The data for this section has been obtained

using the methodology described in section Evaluation. Our analysis has been performed in

three dimensions, temporal locality, spatial locality and algorithmic locality. Results from this

study are used to justify the proposal of more complex DRAM Cache management strategies in

order to improve both hit ratio and latency.

Temporal locality (TL)

In this section we show that LLC filters most of the temporal locality and, as a consequence, the

relevant off-chip memory access patterns become more complicated. The different sources of

off-chip accesses are: regular (data/instructions) memory accesses that misses on LLC, software/

hardware core-side prefetches, and replacements triggered by the first two types. So there are

two different sources of LLC misses and a third one indirectly related to them and all three

types depend upon the data access patterns of the running applications and the size, geometry

and policy of a hierarchy of cache memories. Depending on the efficiency of this on-chip

cache hierarchy, locality information carried by LLC misses can be very limited and fragmen-

tary. To prove this assumption we show temporal histograms representing time interval proba-

bility between consecutive off-chip accesses to the same location. We also provide the number

of such accesses. See Fig 1(a)–1(c) for benchmarks lbm, libquantum and omnetpp. For each

figure, four LLC configurations are used with different size and associativity (size 16MB and

32MB and associativity 1 and 8). The repetition interval is represented as a percentage of the

forget threshold, which is the limit of time in which a repetitive access to the same line is con-

sidered as temporal locality. In those figures 100 represents the forget threshold.

Fig 1(a) shows that lbm benchmark is much more sensitive to associativity than to capacity,

so its main miss category is conflict-type. With 32MB size and 8 associativity, LLC is very effi-

cient in lbm benchmark, filtering 99% of misses. One interesting result of this filtering is that

the main locality behavior in 16MB and Assoc-1 LLC cache is lost and instead a lot of complex

and temporarily dispersed repetitive patterns appear, as seen in the 32MB and Assoc-8 config-

uration. Fig 1(b) shows libquantum benchmark. This application is very sensitive to cache

capacity but does not change when associativity is increased. As it can be seen in the figure,

LLC filters 94% of misses, and also, with the best LLC configuration, a very complex pattern is
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observed. The same behavior is observed in Fig 1(c) for omnetpp benchmark. In this case, the

benchmark is sensitive to both LLC size and associativity, but the same complex pattern appears

with the best LLC configuration.

These three applications are representative of different types of misses, but all three have in

common a deep reduction in the number of repetitive accesses to the same locations in off-

chip accesses and a clear increase in complexity of access patterns. This behavior prevents

DRAM Cache to have good hit ratio and latency. When the main temporal locality behavior is

removed in the LLC, the remaining memory accesses show a significant rise in relevance, as

shown in Fig 1. Because of their complexity these accesses are not filtered in the LLC, thus they

require more sofisticated off-chip cache management heuristics.

Spatial locality

Processes usually have very complex memory access patterns: they use several memory areas at

the same time and the number and location of those areas change through time. Most of these

Fig 1. TL with four LLC configurations. Temporal locality of lbm, libquantum and omnetpp, represented as time interval probability between consecutive accesses (100 in

this figure is the forget threshold), with four different LLC configurations: Size 16MB-32MB and associativity 1-8. The number of off-chip accesses is included showing the

ability of LLC to filter cache misses.

https://doi.org/10.1371/journal.pone.0257047.g001
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complex memory patterns come from linked data, indirect indexing and hash functions.

These types of data structures reduce spatial locality and, consequently, cache performance.

We use the mcf benchmark as an example of such behavior (see results on section Evaluation).

Fig 2 shows two examples of simultaneous off-chip access groups identified and isolated by the

prefetch technique proposed in this work, HMM. As it can be seen, spatial locality exists, but it is

complex since it replicates an algorithmic behavior. For each application, several groups like

the shown in Fig 2 can appear at the same time, and in a multicore this is multiplied by the

number of cores. For this reason, we analyze this behavior as algorithmic locality in the next

section.

Algorithmic locality

Algorithmic locality defines the memory access patterns related to the use of complex data

structures and flow control of the applications. Sometimes this behavior is very complex, and

therefore it is very difficult for prefetchers to identify it. We use frequency analysis of off-chip

memory accesses as a model of representation. Under this analysis, the frequency of main

memory references is discretized and represented so the program behavior related to memory

access patterns is modelled through its execution time. To represent this behavior we use off-
chip operations per kilo-cycle ( OPKC) as the basic metric. The discretized representation of OPKC

through time reflects the behavior of the corresponding code.

Fig 3(a) shows the evolution of off-chip OPKC for mcf benchmark through its running time

with the four LLC configurations. As it can be seen, in the last third of the represented interval,

data access pattern changes very quickly and LLC cannot deal with the complexity in any of its

configurations, so there is a burst of LLC misses, represented by OPKC. Fig 3(b) shows hit ratio

for a proposal of DRAM Cache (see results on section) through the same time interval, compar-

ing our prefetcher HMM vs. a common G/DC prefetcher [22]. When algorithmic complexity

begins to grow starting on cycle 1100-Million, HMM deals correctly with complexity and keeps

high hit ratio while G/DC does not. The reason for this good performance is that HMM is able to

identify complex simultaneous groups, as shown in Fig 2.

In Fig 4 we show off-chip OPKC evolution for lbm, libquantum, omnetpp and milc with four

LLC configurations. lbm benchmark, represented in Fig 4(a), has such a large working set size

Fig 2. Example of two groups identified by HMM in mcf benchmark. The figures represent the off-chip accessed lines through time and the address interval (red lines)

that our prefetcher identify and may use to trigger DRAM Cache prefetches. These groups appear simultaneously and are identified, isolated and grouped by our HMM

proposal so prefetches may be individualized to each group.

https://doi.org/10.1371/journal.pone.0257047.g002
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Fig 3. Analysis of spatial locality in mcf benchmark. Spatial locality is modeled using off-chip OPKC, so when OPKC increases hit ratio in external cache becames critical.

In (a) can be seen how starting on cycle 1100-Million OPKC increases in all LLC configurations. (b) shows how starting on cycle 1100-Million our proposal HMM achieves

very good hit ratio when off-chip cache presure increases, beating clearly G/DC prefetch technique in this scenario.

https://doi.org/10.1371/journal.pone.0257047.g003

Fig 4. Frequency analysis with four LLC configurations. In this figure we use off-chip OPKC to describe the types of misses related to LLC size and associativity. lbm OPKC is

independent of LLC configurations, libquantum misses reduce with LLC size so they are capacity type, omnetpp misses diminish when associativiy increases so they are

conflict type and, finally, milc has both types.

https://doi.org/10.1371/journal.pone.0257047.g004
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that LLC does not filter most of their accesses. Average OPKC are roughly the same for the four

different LLC configurations. Otherwise libquantum, omnetpp and milc, see Fig 4(b)–4(d), show

high sensitivity to LLC size and associativity. In libquantum benchmark, capacity misses are

dominant, most of omnetpp misses are conflict type and milc has both, capacity and conflict.

For all benchmarks but lbm, OPKC reduces broadly with better LLC configurations and so the

requests reaching DRAM Cache are also reduced. This leads to a strong need of developing com-

plex prefetch techniques for DRAM Cache to deal with the complex off-chip access patterns.

Related work

The identification of spatio-temporal locality is the heuristic that the majority of the prefetch-

ers use to increase performance of cache memories. Different methods have been proposed in

order to identify it. Joseph and Grunwald [20] proposed a Markov prefetcher that allows the

identification and prefetch of multiple sequences of memory misses. This idea requires simple

hardware while allowing for very good miss reduction rate. Several proposals based on Markov

appear in the bibliography.

Global History Buffer (GHB) is a simple data structure in which Nesbit and Smith [22] base

a very effective prefetch technique. This proposal allows to correlate the sequence of miss

addresses using different location methods (as PC and address) and three detection mechanims

(constant stride, delta correlation and address correlation). This is an effective and simple solu-

tion, where the performance of which is comparable with other similar techniques while need-

ing simpler hardware support.

Somogyi et al. [27] proposed Spatial Memory Streaming (SMS), which allows for identifying

access patterns that are not always consecutive. They use contextual data as PC to do it. This

technique was proved successful when identifying complex access patterns. Peled et al. [12]

developed Semantic Locality and context-based prefetching as a generalization of SMS. It uses

hardware context information plus compiler injected hints to feed a machine learning tech-

nique which predicts future memory accesses of irregular data and algorithms. This is a com-

plex technique that has good results with both simple and complex locality patterns.

eDRAM LLC prefetch is a similar approach which focus on irregular granularities to predict

irregular memory streams from large working sets in memory-intensive applications [14]. It

contains a prefetch buffer (history table) between LLC and main memory and a controller that

implements three different prefetch modules to find address deltas among irregular memory

streams. The history table stores overall information of memory accesses divided in a page

table, line table and picture table, to detect different access sizes. This technique has good

results dealing with size complexity but does not adapt well to complex address patterns.

Prodigy [15] uses hardware-software codesign to deal with the complexity of data-indirect

irregular workloads. It uses static information from programs and dynamic information from

hardware to extract program semantic data which are used to generate prefetch requests. Prod-

igy gets very good results in energy and latency compared with standard prefetch techniques.

Our proposal succeeds in capturing irregular data access patterns without the use of compiler

information from running programs.

Pre-FAM [16] is targeted to fabric-attached non-volatile memory architectures. This kind

of organization is very sensitive to latency since NVM modules are far from processing modules.

This work shows the relevance of prefetching LLC misses in NVM architectures. It uses an

address map pattern prefetcher dividing memory in multiple zones keeping one entry on a

table for each one. This approach limits the prefetch to the identified zones being less adapta-

tive than our proposal, which dynamically identifies the active zones and adapts to dynamic

changes.
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In summary, some of the proposals show good results identifying complex spatio-temporal

and algorithmic locality but they require a lot of context information and complex algorithms.

Other proposals are simpler but fail when there are multiple memory sequences with complex

spatio-temporal relations. We propose to use only available information (miss addresses) com-

bined with a complex technique to identify different simultaneous regions and successfully dis-

patch prefetches on each one.

Prefetch based on Hidden Markov Model (HMM)

In previous sections we have shown how LLC misses show very complex repetitive patterns. To

deal with this complexity we define the term group as a set of addresses that share a pattern

that may be recognized with linear regression models. An analysis of several simultaneous

address groups is carried out for each core. This task must be performed using virtual

addresses (VA) instead of physical addresses (PA). The reason is that VA addresses contain infor-

mation of the working set as they reflect the virtual address spaces currently in use. Instead PA

suffers a previous translation phase that allows for an efficient physical memory management

but hides some of the information related to the current working set. The memory architecture

we propose is shown in Fig 5, in which all the cache hierarchy is based on virtual addresses

and, accordingly, the prefetch analysis is performed using virtual addresses instead of physical

ones. This allows to get more precise information about different memory groups in the cur-

rent working set. Besides, when VA are used, the number of virtual to physical translations is

greatly reduced because it is done only for LLC misses. Another positive consequence of using

virtual memory hierarchy is that the critical translation overhead between the core and the L1

Fig 5. Schematic architecture. Proposed virtual address (VA) based architecture for off-chip prefetching. The use of VA

allows the prefetcher to exploit all the locality information at the cost of increase memory and energy use to store tags

and ASID information. The number of VA to PA translations is greatly reduced due to the positive effect of the cache

hierarchy in reducing off-chip accesses. Off-chip prefetchers move data/instructions in advance from NVM-RAM to DRAM

Cache.

https://doi.org/10.1371/journal.pone.0257047.g005
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is eliminated, but at the cost of increased tag memory size in cache hierarchy to store ASIDS.

This increase in memory overhead implies a growth in energy waste. An example of this kind

of virtual memory architecture is shown in [28].

On a certain time interval, each process simultaneously accesses to several different groups

in the working set. We use the sequence of LLC misses to identify each group and, once the

groups are identified, each miss is assigned to the nearby group. There are several types of pro-

posals in the literature that implement hardware prefetching based on different heuristics.

Temporal data prefetchers have data structures that efficiently identify the repetition of stream

misses; spatial data prefetchers rely on address correlations to identify future accesses, and spa-

tio-temporal data prefetchers mix both techniques [13, 14, 21, 22, 27, 29–31]. Their main limi-

tation is its lack of ability to identify high complex miss data patterns relationships between

multiple simultaneous groups. This is very important in NVM architectures because its high

capacity allows for big data and other complex applications. The Hidden Markov Model

(HMM) provides the mechanism for grouping LLC misses related with complex address patterns.

Based on the assumption that misses can be characterized by groups, the next accessed lines

depend directly upon its group. Hence, once the sequence of values depending on the hidden

states are known, the hidden sequence can be estimated, as it can be seen Fig 6. This model

assumes the change of groups is based on a certain probability and the memory line depends

upon the group. This means that once the line is observed we can estimate the hidden state, i.e.

the group. We believe this is a very natural way to deal with the hardware prefetch problems in

high complexity environments like an off-chip cache in a NVM-RAM memory architecture.

As an example, in Fig 7(a) we show the address line numbers that miss on LLC on a certain

time interval for astar benchmark. To isolate the different groups of misses, we remove the

upper side and represent only the lower values in Fig 7(b) which shows new miss lines that

were hidden in the previous figure. In this figure it is easier to identify several different groups

of lines. In Fig 7(c) all the identified groups are represented with different colors (color black

represents misses not grouped). The identified groups are broken down in Fig 8 in which four

different groups are identified and represented. Fig 9, shows the prediction interval of a linear

model over time for the identified groups. In the next subsection we explain how HMM per-

forms this group identification.

Hidden Markov Model for VA clustering

Suppose Y(t), t = 1, . . ., T are the lines of memory accessed by LLC misses, and S(t), t = 1, . . ., T
is the group of each of the lines. We define Hidden Markov Model as a quadruple (Q,V,A,B)

where:

• Q = {q1, . . ., qN} is the set of states with unknown N.

Fig 6. Symbolic representation of Hidden Markov Model (HMM).

https://doi.org/10.1371/journal.pone.0257047.g006
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• V = {v1, . . ., vM} is the set of observable values, that is, the memory lines. Each line is 64-B

long so V� {0x000000000000, . . ., 0xFFFFFFFFFFC0}.

• A = {aij: qi, qj 2 Q}, where aij = P(S(t) = qj|S(t − 1) = qi) is the transition probability from qi to

qj. They are unknown but based on Markov’s property which states that only the immediate

past matters.

• B = {bj(vk): qj 2 Q, vk2V}, where bj(vk) = P(Y(t) = vk|S(t) = qj). We suppose that YðtÞjSðtÞ ¼
qk � N ðmkðtÞ; s2

kðtÞÞ in order to compute the estimations, as described later in this section.

Fig 7. Example of astar spatial locality. Algorithmic complexity in astar with multiple simultaneous groups that are isolated and identified by our HMM proposal. In (c)

the different groups are represented by colors.

https://doi.org/10.1371/journal.pone.0257047.g007

Fig 8. Main areas of spatial locality in astar. Example of four groups identified in astar by HMM. This information is feeded to the prefetcher to get intervals of addresses

with high probability of future use.

https://doi.org/10.1371/journal.pone.0257047.g008
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This is a particular definition of the well known Hidden Markov Model with the only differ-

ence that we do not need the initial probabilities because we assign the lines in order to conse-

cutive groups.

The procedure is based on the estimation of the sequence S(t), t = 1, . . ., T using the infor-

mation in Y(t), t = 1, . . ., T. Although there are solutions for this problem in the bibliography

like the Baum-Welch algorithm [32], one of the contributions of our work is an specific solu-

tion which has a temporal complexity O(n) using an iterative and greedy algorithm.

The iterative step main operation is the search of the most probable state of a new line,

using the information provided by the previous lines. Be Qc(t) the set of known states in instant

t, that is, all the previously visited states. Ideally, it is possible to keep the whole history for

Qc(t), but in practice memory available is limited. Be At+1 the event get a value for Y(t + 1) as

or more extreme than y(t + 1). We search for the state that maximizes the probability,

arg max qk2QcðtÞ
PðSðt þ 1Þ ¼ qk j Atþ1Þ. Using Bayes Theorem we get that

PðSðt þ 1Þ ¼ qk j Atþ1Þ / PðSðt þ 1Þ ¼ qkÞ � PðAtþ1jSðt þ 1Þ ¼ qkÞ ð1Þ

where symbol/ allows the elimination of all constants not depending on k. As long as we

don’t know in advance the structure of states, it seems reasonable to suppose that all are equally

likely and P Sðt þ 1Þ ¼ qkð Þ ¼ 1

N. But, on the other side, we can estimate P(At+1|S(t+1) = qk)
because we are assuming a normal distribution for memory lines. Finally, we can simplify the

expression:

P Sðt þ 1Þ ¼ qk j Atþ1

� �
/ F �

jyðt þ 1Þ � mkðt þ 1Þj

skðt þ 1Þ

� �

ð2Þ

So

qmpðt þ 1Þ ¼ arg max
qk2QcðtÞ

P Sðt þ 1Þ ¼ qk j Atþ1

� �
¼ arg max

qk2QcðtÞ
F �

jyðt þ 1Þ � mkðt þ 1Þj

skðt þ 1Þ

� �

ð3Þ

is the most probable state among visited, where μk(t + 1) and σk(t + 1) are the mean and stan-

dard deviation for group k in time t + 1 and whose estimation is described later in this section.

Fig 9. Main areas of spatial locality in astar with recognized intervals. Based on the group identification, HMM gets address intervals with high probability of use,

which are shown in this figure between the red lines.

https://doi.org/10.1371/journal.pone.0257047.g009
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We still have to consider the possibility that the line comes from a new state not seen before.

For this we stablish a maximum threshold (pmin) for the probability of belonging to qmp(t + 1).

If pmax(t + 1) = P(S(t + 1) = qmp(t + 1) | At+1), we assign the state using these rules

dSðt þ 1Þ ¼

( qmpðt þ 1Þ if pmaxðt þ 1Þ � pmin

new state qn;with qn=2QcðtÞ if pmaxðt þ 1Þ < pmin

ð4Þ

By experimentation we checked that pmin = 0.000025 is reasonably good for most cases.

In order to find qmp(t + 1) according to expression 3, it is necessary to estimate μk(t + 1)

and σk(t + 1), 8qk 2 Qc(t). Those estimations depend upon nk(t), which is the number of mem-

ory lines assigned to qk in t. Be yk,1, . . ., yk,nk(t) the memory lines assigned to qk in t. The esti-

mation for μk(t + 1) and σk(t + 1) is updated each time a new address is assigned to qk or when

a new group is created. This procedure depends upon nk(t):

• If a new group is created, nk(t) = 1, then the nearest group in terms of the mean is selected,

that is, qk0 ¼ arg min qi2QcðtÞ
jyk;1 � miðtÞj. For a correct estimation of σk, as long as there is

only one observation, its behavior is assumed to be similar than the behavior of the nearest

group, but probably with larger variance. The reason is that the larger the variance is, the

higher is the probability that the group grows, and that is why we multiply it by a factor of

10. The line is used for μk estimation.

dmkðt0Þ ¼ yk;1; dskðt0Þ ¼ minð10sk0 ðtÞ; smaxÞ; t0 � t ð5Þ

we use σmax = 200 to prevent the value from growing excessively. In order to avoid that

the new distribution overlap with other near distributions, it is recommended that

dskðtÞ �
jcmkðtÞ� dmk0 ðtÞj

2
. Otherwise, bsk is divided by 2 until the previous condition accomplishes.

• 1< nk(t)� 5 means that the state has been previously created but currently their size is

small. Because of this, estimation for σk(t) doesn’t change. μk(t0) is estimated as described,

dmkðt0Þ ¼
1

nkðtÞ

XnkðtÞ

i¼1

yk;i; t0 � t ð6Þ

• If nk(t)>5 then it is presumed that the size is enough for a linear regression model.

Yk;i ¼ b0 þ b1 � iþ �k;i i ¼ 1; . . . ; nkðtÞ ð7Þ

assuming �k;i � N ð0; s2
kÞ. The Least Squares Method used here is widely known. This

method applied to our particular problem directly allows for the following parameters esti-

mation

bb0 ¼
1

nkðtÞ�ðnkðtÞ� 1Þ

PnkðtÞ
i¼1

2 nkðtÞ þ 1ð Þ � 6ið Þyk;i

bb1 ¼
1

nkðtÞ�ðnkðtÞ� 1Þ

PnkðtÞ
i¼1
� 6þ 12i

nkðtÞ þ 1

� �
yk;i

ð8Þ
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Following again the Least Squares Method, σk estimation satisfy that:

bsk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

nkðtÞ � 2

XnkðtÞ

i¼1

ðYk;i � cmk;iÞ
2

v
u
u
t cmk;i ¼

bb0 þ
bb1 � i; i ¼ 1; . . . ; nkðtÞ ð9Þ

Finally,

dmkðt0Þ ¼ bb0 þ
bb1 � ðnkðtÞ þ 1Þ dskðt0Þ ¼

1 si bsk � 1

bsk si 1 < bsk < smax

smax si bsk � smax

8
>>><

>>>:

t0 > t ð10Þ

In practice it is better to just use the last observations because the adaptation to state changes

is quicker and, also, less memory is needed.

The first step of this method is to identify the initial group. It is extremely important for

the initial group identification to be correct, because all the described procedure is based on it.

Consequently, as criteria must be restricted, all the observations are comparable. There are sev-

eral possible heuristics that can be applied:

• Waiting in order to get several requests to consecutive lines. This is an strict requirement.

• Non-supervised clustering techniques. This is a softer requirement based on considering

that a set of accesses belongs to the same group as long as the resulting dendogram built with

a hierarchical method (like Ward Procedure [33]) does not show significant evidences of

more than one group. For example, if h1, . . ., hn are the sorted dendogram heights, then the

requirement could be
hi

hi� 1
< uini; i ¼ 2; . . . ; n with uini based on experimentation.

Once the first sequence of length n starting at t = i, Y(i), . . ., Y(i + n), has been chosen, then

we discard the old lines and calculate μ and σ:

dSðjÞ ¼ ;; j ¼ 1; . . . ; i � 1

dSðjÞ ¼ q1; j ¼ i; . . . ; iþ n

dm1ðt0Þ ¼
1

nþ 1

Xn

j¼0
Yðiþ jÞ; t0 � i

ds1ðt0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

j¼0
ðYðiþ jÞ � m1ðiþ jÞÞ2

r

; t0 � i

ð11Þ

Using the group classification provided by the Hidden Markov Model and the statistic

models developed for each group, it is possible to easily extend this methodology into a pre-

fetch technique. Suppose that in time t a request to line Y(t) is performed and assigned to

group dSðtÞ. The group defines the trend and behavior of its lines, so if there are enough obser-

vations to account the group as stable (usually nk(t) = 20,50 or 100) then prefetches can be

triggered.

We will presume that in the model defined in 7 the parameters have been previously esti-

mated. Then, the prefetch predicted for the next observation assigned to the same group is

mk;nkðtÞþ1 ¼
bb0 þ

bb1ðnkðtÞ þ 1Þ. This prediction represents a single line so the probability of

PLOS ONE Off-chip prefetching based on Hidden Markov Model for non-volatile memory architectures

PLOS ONE | https://doi.org/10.1371/journal.pone.0257047 September 14, 2021 13 / 23

https://doi.org/10.1371/journal.pone.0257047


success is small. Instead, the prefetch mechanism proposed is based on a prediction interval

with confidence (1 − α). This prediction interval when assuming a normal distribution with

unknown variance uses the t-Student probability distribution, and applied to our particular

case results in,

dYk;nkðtÞþ1 � tnkðtÞ� 2;1� a
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bsk
2 1þ

2ð2nkðtÞ þ 1Þ

nkðtÞðnkðtÞ � 1Þ

� �s

ð12Þ

The probability of success when all the lines in the interval 12 are prefetched is 1 − α. Pre-

fetch mechanism triggers one request for each prefetched line to the NVM-RAM to store in the

DRAM Cache.

Prefetcher implementation

The diagram in Fig 10 shows an schematic on-chip implementation of HMM described in sec-

tion. On each LLC miss, the virtual address (VA) along with the PID (ASID) is sent to this circuit.

The heuristic of this circuit is that the address may be linked to a group which is identified by

one specific entry in the Group Table (GT) or, otherwise, a new group is created. If the address

can be linked to a group, then the prefetch interval can be accurately generated. Two tables are

needed with the same number of entries representing the maximum number of groups that

can be simultaneously detected:

• Group Table (GT). Stores the parameters μi and σi along with the LRU bits. Parameters μi and

σi characterize each group and allow, along with the last accesses on the group, to accurately

generate the prefetch interval.

• History Table (HT). Stores the last memory accesses on each group, along with two fields

used to maintain it as a circular list.

Let q be the memory adress on a LLC miss. The circuit in Fig 10 performs two steps:

1. Group identification and group creation. LLC miss is compared with each entry in GT, calcu-

lating the entry (i) with qmp ¼ arg max iF
jq� mi j
si

� �
and the entry nearest to the current

access (j) (min|μj − q|). If qmp� Probmin then the current LLC miss is succesfully linked to a

group (i) and the prefetch interval can be calculated. Otherwise, a new group is created

based on the closest group identified by j.

2. Prefetch interval calculation. Once the group is identified, q is inserted in HT and then the

entry (i) is read into a buffer which is used to calculate a new pair μi and σi which is then

stored in the same entry in GT. Using those new values, μi and σi, the prefetch interval is

generated.

Complexity of the Prefetcher in Fig 10 depends on the maximum number of identifiable

groups (ng) and the number of requests stored on each HT entry (nh). If tags are 6-Bytes (VA

+ASID) long, then memory overhead is 6 � ng � nh + 8 � ng + 6 � nh − Bytes. For typical values of

ng = 100 (10-core processor with 10 groups identifiable on each thread) and nh = 20, memory

overhead is 12.6-KBytes. Computation complexity is O(ng + nh), therefore it is O(n) complex-

ity. Implementation price of our HMM proposal has two main sources, the use of VA addresses

in the on-chip hierarchy and the implementation of the prefetch circuit. The circuit implemen-

tation in the example requires 12.6-KBytes of memory to which should be added the logical

circuits to read/write the tables and perform simple calculations. Transistor count in today
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Fig 10. Prefetch circuit. Schematic description of the prefetcher on-chip implementation. LLC miss address (q) is used to identify a group and generate

the prefetch address interval, or to create a new group based on the nearest current group. This implementation of HMM allows for precise identification

of the simultanenous off-chip memory groups accessed by the different processes running in a multicore chip.

https://doi.org/10.1371/journal.pone.0257047.g010
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chips are over 10-billion so the circuit implementation cost can be considered negligible. The

use of VA addresses increases 15% approximately the size of the tag area (about 1.4% increase

in total cache size) with the corresponding increase in energy consumption. This is the main

modification and the main source of price increase. Because this circuit is activated with low

frequency (only LLC misses) and is not in the critical path, we consider that its implementation

is feasible and with great potential advantages.

Evaluation

In this section we describe the evaluation environment, the simulation configuration, bench-

mark description and the results obtained in our proposed prefetcher compared with similar

hardware prefetchers in single-core, multicore (9 and 16 cores) and multiprogrammed multi-

core (4 cores with 4 benchmarks each) architectures.

Evaluation setup

We evaluate our proposed HMM prefetch technique using Pin Tool [34] with an in-house trace-

driven model of the memory hierarchy. The memory and prefetchers evaluation parameters

are shown in Table 1 and a basic description of the 20 benchmarks used for evaluation appears

in Table 2.

The evaluation of HMM prefetch has been done in two steps, on-chip and off-chip evalua-

tion. In the first step the on-chip cache has been evaluated to get the off-chip memory access

pattern of the benchmarks. We have evaluated a memory hierarchy with four on-chip LLC con-

figurations as appears in Table 1-Memory. The results of this evaluation have been presented

in the section Off-chip Memory Accesses. We show in this section the main characteristics of

spatial, temporal and algorithmic off-chip locality and perform a detailed analysis. Our main

conclusion is that off-chip access patterns are very different and much more complex than on-

chip accesses so specific hardware prefetch solutions can be applied.

In the second step we use the best LLC configuration (size 32MB, associativity 8) to evaluate

HMM and to compare it with similar proposals, analyzing its impact on a DRAM Cache over a

backup NVM-RAM memory. The size and associativity of DRAM Cache has been chosen to prevent

the working set of the applications from fitting. The reason to do this is that it is difficult to

perform an evaluation with realistic gigabit-size workloads, so we have opted for reducing the

size of external DRAM Cache to reproduce the behavior of a bigger working set size with a bigger

cache memory size. See memory simulation configuration on Table 1-Memory.

Table 1. Evaluation parameters.

Memory

L1 Cache Instruction: size 32KB, Line 32B, Assoc. 32, private

Data: size 32KB, Line 32B, Assoc. 32, private

L2 Cache Size 2MB, Line 64B, Assoc. 1, private

LLC Cache Size 16MB/32MB, Line 64B, Assoc. 1/8, shared

Off-chip Cache Size 16MB, Line 64B, Assoc. 4, shared

Prefetchers

HMM History size (nh) 20, number of groups (ng) 180, size 22,6KB

G/DC GHB size 512, history length 4, prefetch degree 4, size 8KB

G/AC GHB size 512, history length 4, prefetch degree 4, size 8KB

Memory hierarchy geometry used in the evaluation and parametrization of prefetchers.

https://doi.org/10.1371/journal.pone.0257047.t001
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Seventeen out of the twenty applications we use for evaluation came from SPEC CPU2006 [35]

and the remaining three are specially selected applications to get different memory patterns

(see Table 2). We used the full SPEC CPU2006 benchmark suite, except for those applications

coded in Fortran and perlbench where we encountered compilation issues. Specific applications

are a web browser, a text processing tool and a C++ compilator. What we look for are both reg-

ular and irregular memory patterns. For each execution we take 20-50M memory access

requests on the steady phase. Software prefetches from the compiler are included in the work-

ing set as regular LLC misses. We decided to keep software prefetches because our hardware

prefetcher could take advantage of the hints from the more complex heuristics implemented

by software.

We compare our proposal with two prefetchers which have very good performance in con-

ventional memory hierarchies: the Global Delta-Correlation (G/DC) and the Global Address-

Correlation (G/AC), flavors of the Global History Buffer (GHB) proposal [22]. G/AC is an imple-

mentation of the Markov Predictors [20] based on miss address sequences, while G/DC is a dis-

tance prefetching method based on difference between miss addresses. Table 1 shows the values

used for the different sizes of the data structures needed for HMM proposal, and, also, the size of

the tables of the two high performance prefetchers used to compare. For HMM the number of

groups (NG) is 180, which apply for a 9-core processor detecting 20 groups on average per appli-

cation. The size of the chain used for group identification (NH) is 20. For G/DC and G/AC we use a

Global History Buffer (GHB) of 512 entries and an Index Table (IT) of the same size.

Latency and bandwidth in backup memories (NVM-RAM) are very dependent on hit ratio in

the corresponding caches. That is why in this section we evaluate hit ratio of off-chip DRAM

Cache with our HMM prefetch technique and compare it against BASE (no prefetch), G/DC and G/AC

proposals. We also evaluate the prefetch accuracy defined as the fraction between the number of

useful prefetch requests (requests providing data that is used in the near future) and the number

of total prefetch requests. In the figures we represent accuracy using overhead, that is, the per-

centage of unnecessary requests triggered by the prefetcher, which involves a waste of bandwidth

and energy.

Single-core results

In this section we evaluate hit ratio and accuracy for each one of the applications running in a

one-core processor. A simulation is performed for each application to check the adaptability of

Table 2. Benchmarks.

Integer Floating Point

bzip2 Compression milc Quantum Chromodyn

gcc C Compiler namd Molecular Dynamics

mcf Combinatorial Optimiz. povray Ray Tracing

hmmer Search Gene Sequenc. lbm Fluid Dynamics

sjeng Chess sphinx3 Speech Recognition

libquantum Quantum Computing Other

h264ref Video Compression Firefox Web Browser

omnetpp Discrete Event g++ C++ Compiler

astar Path Finding Openoffice Text Processing

xalan XML Processing

gobmk Artificial Inteligence

specrand Random Generator

https://doi.org/10.1371/journal.pone.0257047.t002
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our proposal to the data complexity of each application. Fig 11 shows the results for the 20

applications with single-core evaluation. The last plot represents the geometrical mean of the

20 applications. BASE hit ratio is represented with a horizontal line that cannot be seen on most

of the applications because it is very low (0-6.3%), i.e. the cache without any prefetching is very

inefficient which confirms our study in section Off-chip Memory Accesses. This is explained by

the fact that most of the spatial and temporal locality has been filtered in on-chip caches. The

same explanation can be applied to G/AC proposal in which the use of memory addresses can-

not capture the complexity of multiple simultaneous data patterns, and hence its hit ratio is

near zero for most of the applications.

Results with HMM and G/DC show a significant increase of hit ratio, to the range 60-99%.

This shows the success of these prefetchers to detect most of the memory accesses, and thus

the relevance of prefetch techniques in off-chip memory devices. Applications with regular

data access patterns have good hit ratio with any of the two prefetch techniques, HMM and G/DC.

Applications with multiple simultaneous memory areas and complex access patterns, like

Fig 11. Hit ratio and overhead of BASE, HMM, G/DC and G/AC in a single core architecture. The hit ratio for the BASE experiment is represented by a horizontal line (0-6.3%

for all benchmarks). The last plot is the geometric mean of all benchmarks.

https://doi.org/10.1371/journal.pone.0257047.g011
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astar, bzip2 and mcf, show a better hit ratio with our proposal HMM. The biggest difference

appears in mcf which is an implementation of Network Simplex Algorithm. This implementa-

tion requires a vector of simplex multipliers to be maintained on each feasible solution, that is,

on each step. This increases the amount and complexity of data structures, and also the com-

plexity of data access patterns. HMM adapts well to this complexity and to the multiple simulta-

neous memory areas involved at the same time on each iteration. astar implements path-

finding algorithms which travel along graphs that map regions with neighborhood relation-

ships, so data access pattern is complex and HMM adapts better than its competitors to it. On

average, the efficiency of HMM and G/DC is very similar, being G/DC slightly superior.

Fig 11 also shows the prefetch overhead for each application. Overall, HMM has better results

for most of the benchmarks. This can be observed specially in mcf, hmmer, libquantum and

firefox. Average overhead of G/DC is 12.5% while HMM overhead is 6.5%, which represents a 48%

improvement. The single-core results show that HMM adapts very well to complex applications.

DRAM Cache hit ratio is very similar to G/DC but overhead is significantly reduced. It is important

to check if this trend is maintained when complexity increases.

Multicore results

Real off-chip memory systems must handle the joint complexity of all the cores in the chip, so

in this section we evaluate a multicore architecture to get complete data of how our HMM pro-

posal deals with the increased data access patterns complexity. In the first set of multicore

experiments we use a 9-core architecture running one application each. The evaluated pre-

fetchers receive a set of LLC misses from the simultaneous running of 9 different benchmarks,

each of which has a complex spatial, temporal and algorithmic complexity.

Fig 12(a) represents hit ratio and overhead for our multicore processor running four differ-

ent application mixes. The application mixes have been chosen to create a balanced merge of

complex and simple data pattern applications. As shown in the figure, HMM hit ratio is better

Fig 12. Hit ratio and overhead of BASE, HMM, G/DC and G/AC in a 9 core architecture. The hit ratio of the base experiment is shown in the box. Each mix consists of

nine benchmarks.

https://doi.org/10.1371/journal.pone.0257047.g012

PLOS ONE Off-chip prefetching based on Hidden Markov Model for non-volatile memory architectures

PLOS ONE | https://doi.org/10.1371/journal.pone.0257047 September 14, 2021 19 / 23

https://doi.org/10.1371/journal.pone.0257047.g012
https://doi.org/10.1371/journal.pone.0257047


than G/DC for all the application mixes. On average, see Fig 12(b), HMM hit ratio is 94% versus

88% of G/DC (7.2% improvement). Accuracy is much better in HMM, with a 10.8% average over-
head, versus 30.5% of G/DC, leaving HMM with a 64% improvement over G/DC. As well as in sin-

gle core simulations, BASE and G/AC behave poorly in multicore simulations with a hit ratio of

’ 0.05%.

For the second set of experiments the goal is to check the behavior of HMM and G/DC when

the complexity of the cache miss address patterns is greatly enlarged. For this reason we run 16

benchmarks on a 16-core system and we keep the table size for HMM and G/DC and, also, the

DRAM Cache size and associativity. This way we can simulate a drastic increase in memory pres-

sure in the off-chip memory system. The results for a new mix of 16 benchmarks are shown in

Fig 13(a). As in the 9-core experiment, hit ratio for the BASE experiment is very low (’0.04%),

it is much better for G/DC (55%) and it is very good for HMM (97%). This means that, while both

G/DC and HMM are successfull prefetch proposals for an off-chip cache, HMM is the one that best

identifies the accesed memory lines, with a 76% improvement over G/DC. Overhead is 9% for

HMM and 54% for G/DC (83% improvement) which means that our proposal is more precise

than G/DC identifying the multiple groups of addresses so the generated prefetches are useful

with much greater frequency in HMM than in G/DC. Multicore experiments show how HMM

adapts well when data patterns complexity increases, getting better hit ratio and overhead than

similar proposals.

Multiprogrammed multicore results

The next set of experiments aims to check how our proposal deals with a more realistic and

complex run environment with more processes than cores in which the operating system

introduces changes in address patterns. We have designed an experiment with a multicore

(four core) architecture in which each of the cores executes four benchmarks using a round

robin multiprogramming algorithm. OS generated addresses are not included in the experi-

ments. The memory access patterns will abruptly and radically change when a trap occurs

because the core switches to a different process. Thanks to this experiment, it can be analyzed

the complexity induced by the operating system when several benchmarks share the same

core. Results of this experiment are shown in Fig 13(b). Hit ratio is’0.3% in the BASE experi-

ment, 87% in G/DC, and 92% in HMM while overhead is 27% in G/DC and 13% in HMM. These

results are similar to those obtained in the multicore experiment, confirming the conclusions

Fig 13. Hit ratio and overhead of BASE, HMM and G/DC in a 16 core architecture and in a multiprogrammed 4 core

architecture. The hit ratio of the base experiment is shown in the box.

https://doi.org/10.1371/journal.pone.0257047.g013
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previously expressed in which our proposal identifies a greater number of effectively accesed

lines and a smaller number of unused lines than G/DC.

The main conclusion that can be drawn from the evaluation of our technique is that it

adapts very well to the complexity of off-chip accesses, converting an ineffective cache into a

cache with very good hit ratio. HMM also gets better results than similar proposals, improving

hit ratio up to 76% and overhead up to 83% over G/DC.

Conclusions

Current on-chip cache hierarchies are very efficient capturing spatial and temporal locality

but, as an unintended consequence, off-chip accesses become very complex and difficult to

predict. This is an important problem when using a DRAM Cache to hide the latency of a high

capacity, high density and low energy NVM-RAM, because the efficiency of the external DRAM

Cache degrades greatly.

This paper presents a specific prefetch mechanism for off-chip memory accesses. The first

contribution of this study is the characterization of external memory access patterns to extract

the main properties that guide the development of our contribution, which is a novel prefetch

technique. This prefetch technique, based on a Hidden Markov Model, allows for the simulta-

neous identificacion and tracing of multiple groups of access patterns directly related to algo-

rithmic locality. HMM enables the management of very complex off-chip memory access

patterns, triggering the prefetch operations on each group independently so it improves the hit

ratio of external DRAM Cache. We have modelled and evaluated our prefetch proposal using

traces from real benchmarks executions.

The results show that HMM behaves better when complexity increases, thus, running better

in multicore than in single core simulations. HMM hit ratio improves up to 76% in multicore

simulations when compared with conventional prefetch techniques. Accuracy of prefetches is

very important because it reduces undesired and useless off-chip data traffic (overhead). HMM

reduces overhead over existing current prefetchers by a 48% in single core simulations and up

to 83% in multicore simulations. Therefore our proposal improves external DRAM Cache hit

ratio while reducing mistaken prefetch requests, optimizing the critical off-chip memory

traffic.
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