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Clifford elements in Lie algebras

Jose Brox, Antonio Fernandez Lépez and Miguel Gomez Lozano

Abstract. Let L be a Lie algebra over a field F of characteristic zero or
p>3. An element ¢ € L is called Clifford if ad® = 0 and its associated Jordan
algebra L. is the Jordan algebra F @ X defined by a symmetric bilinear form on
a vector space X over . In this paper we prove the following result: Let R be
a centrally closed prime ring R of characteristic zero or p > 3 with involution
x and let ¢ € Skew(R, ) be such that ¢ =0, ¢ # 0 and c*kec = ckc? for all
k € Skew(R,*). Then c¢ is a Clifford element of the Lie algebra Skew(R, ).
Mathematics Subject Classification 2000: 17B60, 17C50, 16N60.
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1. Introduction

Let L be a Lie algebra over a field F of characteristic not 2 or 3. An element
a € L is called a Jordan element if ad’L = 0. In [10], a Jordan algebra was
attached to any Jordan element a € L. This Jordan algebra, denoted by L,,
inherits most of the properties of the Lie algebra L and in addition the nature of
the Jordan element in question is reflected in the structure of the attached Jordan
algebra. For instance, if L is nondegenerate (ad?L = 0 = 2 = 0) so is the Jordan
algebra L, and, in this case, L, is unital if and only if a is von Neumann regular
(a € adzL). Jordan techniques have proved to be very useful in some questions of
Lie theory. Examples of the use of the Jordan-Lie connection can be found in the
papers [3], [7], [11], [12] and [13].

By a Clifford element of L we mean a Jordan element ¢ € L such that L.
is the Jordan algebra J := F@® X defined by a symmetric bilinear form on a vector
space X over IF (we do not discard the case X =0, i.e., J =TF). Suppose now that
L is nondegenerate, char(F) =0 or p > 5 and c is a Clifford element of L. Since
L. is then unital, ¢ is von Neumann regular, and hence, by the Jacobson-Morozov
Lemma (see [6, Proposition 1.18]), L has a 5-grading L = L_o®L_1® Lo®L1® Lo
such that the Jordan pair V := (L_s, Ly) is isomorphic to the Clifford Jordan pair
defined by the Jordan algebra L., whose Tits-Kantor-Koecher algebra TK K (V)
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is a finitary orthogonal Lie algebra (see [8, 5.11]), that is, TK K (V') = Skew(R, %),
where R is a simple ring coinciding with its socle containing at least three nonzero
orthogonal idempotents, and * is an involution of orthogonal type, i.e., the adjoint
involution associated to a nondegenerate symmetric bilinear form. Thus every
Clifford element ¢ actually lives in a ring, and in this associative context verifies
=0 and ¢* # 0 (see [9, Lemma 3.7(ii)]). In this paper we prove the following
converse of the above result:

Let R be a centrally closed prime ring of characteristic not 2 or 3, let x
be an involution of R and let ¢ be a Jordan element of the Lie algebra K =
Skew(R, %) such that ¢ =0 and ¢ # 0. Then R has nonzero socle and contains
at least three orthogonal idempotents, * is of orthogonal type and c is a Clifford
element of K.

The proof is rather constructive. We start by showing some elementary
associative properties of the Clifford element ¢ and its square ¢?. In particular,
c? is von Neumann regular and can be paired with an element d that shares its
properties; moreover, c¢ is also von Neumann regular and can be paired with the
element V/d := ed + de, which is also Clifford and will play the role of identity
element in the Jordan algebra K.. The element d helps to build a 3-grading of
K in which ¢ € K_;. We show that this component is actually independent of
the choice of d, since it can be expressed just in terms of ¢ in different ways, all
important for our purposes. We also prove that ¢?Rc?> = Cc? and cKc = Cc (with
C being the extended centroid of R), facts that serve to build a linear form and
a bilinear symmetric form over K, which in turn help to prove the main result

about the structure of K..

2. Preliminaries

Throughout this section ® will denote a ring of scalars, i.e., a commutative ring
with 1, and F will stand for a field. An algebra over ® (in short, a ®-algebra) is a
$-module A endowed with a product (bilinear operation). Thus no associativity
condition is assumed; neither it is supposed the existence of a unit element in A.
According to this definition, a ring is an associative Z-algebra.

Jordan algebras and Lie algebras.

Suppose that 2 is invertible in ®. A (linear) Jordan algebra is a -
algebra J whose product, denoted by e, is commutative and satisfies the identity
e (yex)=(z>ey)ex for all x,y € J, where 2% := z e x. For each x € J, the
U-operator U, : J — J defined by U,y := 2z e (z ey) — 2> ey, y € J, satisfies
the identity Uy, = U,U,U, for all x,y € J. A Jordan algebra is said to be
nondegenerate if U, = 0 implies x = 0.

Suppose that 2 is invertible in ® and A is an associative ®-algebra, whose
product is denoted by juxtaposition. In the ®-module A we define a new product
by z oy := xy + yr. The resulting algebra is a Jordan algebra denoted by A™,
with U,y = 4xyx. Note that A is semiprime if and only if A" is nondegenerate.
A Jordan algebra J is called special if it is isomorphic to a subalgebra of A" for
some associative algebra A. As usual, we denote by A~ the Lie algebra defined
in the ®-module A by the product [z,y] = zy — yx.



Let F be a field of characteristic not 2 and let X be an [F-vector space with
a symmetric bilinear form (,). Then the vector space F & X is endowed with a
structure of Jordan algebra by defining

(a,z) @ (B,y) := (af + (2,y), Br + ay)

for a, € F and z,y € X. This Jordan algebra is unital, with (1,0) as unit
element, and special; in fact, it is isomorphic to a Jordan subalgebra of the Clifford
(associative) algebra defined by (,) (see [14, I1.3]). For this reason, F & X is
sometimes called a Clifford Jordan algebra.

Let L be a Lie ®-algebra, with [z,y] denoting the product and ad, the
adjoint map determined by x. Sometimes we will use capital letters instead, i.e., X
for ad,. An inner ideal of L is a ®-submodule B of L such that [[B, L], B] C B.
An abelian inner ideal is an inner ideal B which is also an abelian subalgebra, i.e.,
such that [B, B] = 0. For example, if L = @ L; is a finite Z-grading, then

—n<i<n
L_, and L, are easily checked to be abelian inner ideals of L. An element a € L
is said to be a Jordan element whenever ad>L = 0. Every element in an abelian
inner ideal is easily shown to be a Jordan element, and conversely, if L is 3-torsion
free and a € L is Jordan, then ®a + ad?L is an abelian inner ideal of L (see [2,
Lemma 1.8]).

The following identities (see [2, Lemma 1.7]) will be used in what follows.
Let L be a 3-torsion free Lie algebra and let a,z € L with a being a Jordan
element. Then

(JE1) A2XA = AXA?
(JE2) ad?., = A2X2A2

where according to our notational convention A denotes the adjoint map ad, and
similarly X stands for ad,.

Suppose that 2 and 3 are invertible in ®. Let L be a Lie ®-algebra and
let a € L be a Jordan element. In the ®-module L a new product is defined
by = ey := [[r,a],y], z,y € L. Denote by L@ the resulting algebra. Then
Ker(a) := {x € L : ad?z = 0} is an ideal of L® and the quotient algebra
L, := LW /Ker(a) is a Jordan algebra (with product Z e § := [[z,a],y], where T
stands for the coset of = for any = € L), called the Jordan algebra of L at a (see
[10, Theorem 2.4]).

Definition 2.1.  If a is von Neumann reqular, i.e., if a is Jordan and a € adiL,
then (1) L, is unital with b as unit element for any b € L such that a = [[a, b],d].
In this case, (2) L, is isomorphic to the Jordan algebra .J(a,b) defined in the
d-module ad2L by the product x ey := [[x,b],y]] for all z,y € ad>L. We provide
here a proof of these results under conditions less restrictive than those required
in [10].

Proof. (1) a = [[a,b],a] implies A = ad[je),q = [[4, B], A] = 2ABA — A’B —
BA?. Multiplying both members of this equation on the left by A and using (JE1)



we get A% = 2A°BA — ABA® = A’BA (since A® = 0), which proves that L, is
unital with b as unit element.

(2) The map ¢ : L, — J(a,b) defined by (z) := —A2?z is an algebra
isomorphism. Clearly ¢ is a linear isomorphism, and since both algebras are
commutative and 1 € ®, it suffices to check that ¢(z)? = ¢(z?):

p(7)* = [[A%2, ], A%2] = —ad%e,b = —A’X2A% = A’X?%a = — A’X Az = (7%,
where we have used (JE2), A%b = [a, [a,b]] = —ABa = —a and XAz = —X?a. =

Involutions.

If R is a ring, an involution on R is an additive map * : R — R such that
x?2 = Idg and (ab)* = b*a* for all a,b € R. If A is an algebra over a ring of
scalars with involution (®,7), then an involution * on A is an involution on the
underlying ring of A which in addition satisfies (Aa)* = Aa* for every A € ® and
a € A. If ~is trivial (i.e., if it is the identity map) then x is just an involution of
A as a ring which is also a linear map.

Let A be an algebra with involution * over (®,7). Denote by I" the centroid
of A as a ring. Denote by H (respectively by K ) the set of the symmetric
(respectively, skew-symmetric) elements of A, i.e., H := Sym(A,*) = {z € A :
r=21"} and K := Skew(A,*) ={z € A: x = —2*}. Then K is a subalgebra of
the Lie algebra A~ restricted to Sym(®,”) and, if % e I', then H is a subalgebra
of the Jordan algebra A* restricted to Sym(®,”) (so it is a special Jordan algebra)
and A= H®K. Set k(z) :=x—2* € K for every z € A. Note that the mapping
x +— k(x) is linear and satisfies k(aza*) = ar(z)a* for all a,x € A. Note also that
for h € H, k € K we have

holk = hk+ kh = hk — (hk)* = r(hk) € K,

a simple identity that will show up frequently.

If % € ® and M is a ¢-submodule of A which is *-invariant, i.e., such that
M* = M, then k(M) = Skew(M, ), since if k € Skew (M, *) then k = 1(k+k) =
t(k—k*) = ik(k) and k(z) =z — 2* € M N K = Skew(M, *) for every z € M.
In particular K(A) = K. If M is not x-invariant, then x(M) = k(M™*) implies
that k(M) = k(M) + k(M*) = k(M + M*) = (M + M*) N K.

Let R be a ring with involution %. If ¢ € R is von Neumann regular, i.e,
if a = axa for some x € R, then by replacing = by b := xaxr we obtain a = aba
and b = bab. If a is also symmetric and % € I' then b can be chosen symmetric

by replacing x by %(w + x*). The following lemma is a further step in the choice
of b.

Lemma 2.2. Let R be a ring and let ¢ € R be a von Neumann regular element
such that ¢ = 0. Then there exists d € R such that ¢ = cdc, d = ded and d* = 0.
Moreover, if R has involution, % eI and c is symmetric (skew-symmetric), then
d can be chosen to be symmetric (respectively, skew-symmetric).

Proof. Let ¢ be a von Neumann regular element of R. By the argument above,
there exists b € R such that cbc = ¢ and b = beb. We claim that d := b — b%c
satisfies ¢ = cdc, d = ded and d? = 0. Indeed,



d? = (b—b%c)(b—b*c) = b> —bPc—b(bcb) + b(beb)be = b —bPc—b? —b3c = 0,
cde = c(b — b*c)c = cbec = ¢, and
ded = (b — b?c)c(b — bc) = be(b — b2c) = beb — (beb)be = b — bPe = d.

Suppose now that ¢ is symmetric. Since % € I' we can take b € H such
that cbc = b and b = beb. We claim that

— Lo o 4o L3
d:=b 2(cb +bc)+4cbc

satisfies the required properties. It is clear that d* = d. Moreover, we have:

1 1 1 1 1
2 _ (g Loa2 g2 13 TRy a3\ g2 1L
d* = (b 2(cb +0b c)+4cb c) (b 2(cb +0b c)+4cb c) b 2(bcb)b

1, 1, ., 1., 1 1,1 , 1
2b c—i—4(bcb)bc 201) +4cb(bcb)b+4cbc 8cb(bcb)bc 2b(bcb)

1 1 1 1 1 1 1
+ Z—lb(bcb)bc + Zcb2(bcb) - §0b2(bcb)bc =b* — ~b* — ibgc + ~b*c — ~cb®

2 4 2

1 1 1 1 1 1 1
+ ZCbS + ZCb4C — écb4c — §b2 + Zb?’c + Zlcb3 — gcb4c =0,

cde = ¢(b — 3(cb* 4 b*c))c = cbe = ¢, and

1 1 1 1
ded = (b — 5(cb2 + b%)) c <b — 5(cb2 + b%)) (b — 5cbZ)c(b — 5ch)

B 1 1 1 B 1L, 1., 1.,
= beb 2(bcb)bc 20b(bcb)+4cb(bcb)bc-bcb 2b c 20b +4cb c=d.

If ¢ is skew-symmetric, then the same d works taking b € K. ]

Prime rings.

Let R be a prime ring. The extended centroid C of R (see ([1, Section
2.3]) is a field containing the centroid I', and the central closure CR of R is a
prime associative algebra over the field C. A prime ring R is centrally closed if
it coincides with its central closure. The following lemma (see [4, Theorem A.7])
plays a fundamental role in our work.

Lemma 2.3 (Martindale). Let R be a prime ring with extended centroid C.
Let a;,b; € R with by # 0 be such that Y, a;xb; = 0 for every x € R. Then

ar €yt ,Ca;.

Let R be a centrally closed prime ring with involution *. Then % naturally
extends to an involution of the extended centroid C of R, also denoted by *, so
that R is an algebra with involution over (C, ). If % acts trivially on C then it is
called of the first kind. In this case K can be regarded as a Lie algebra over C.



3. Clifford elements of a prime ring with involution

Throughout this section R will denote a centrally closed prime ring of charac-
teristic not 2 or 3 which is endowed with an involution *. Then K, the set of
skew-symmetric elements of R, is a Lie algebra over the field Sym(C, *). It follows
from [5, Propostion 6.2] (here characteristic greater than 5 is required) that if K
is not abelian and * is of the first kind, then for any Jordan element a € K we
have a® = 0. This leads us to the following:

Definition 3.1. By a Clifford element of R we mean an element ¢ € K
such that ¢ = 0,c¢® # 0 and ¢ is a Jordan element of the Lie algebra K:
ad’k = Ak — 3c2ke + 3ckc? — ke* =0 for all k € K.

The square of a Clifford element

Proposition 3.2.  Let ¢ € K be a Clifford element of R. Then:

~

. ke = ckc® forall k € K.
K =0.
(xc®)* = 2a*c® = Pac® forall v € R.

AR =Cc2.

The involution * s of the first kind.

6. R has nonzero socle with division ring isomorphic to C and * s of orthogonal
type.

Proof. (1) Since ¢ is a Jordan element of K, for every k € K we have
0 = ad’k = A3k — 3c%ke + 3ckc® — ke® = —3(c*ke — ckc?). Since char(R) # 3
this implies that ckc® = c?ke.

(2) By (1), ?kc® = c(ckc®) = c(cPke) = Pke = 0.

(3) Since x —x* € K we have c*(x —2*)c? = 0 and hence cxc® = ca*c? =
(Exc®)*.

(4) Let z,y € R. Since ¢? is symmetric it follows from (3) that

crc’yc? = (xcy) = (Fy*P)r? = Fy(Pa*c?) = Fyctac’.

Thus, fixed z, for every y € R we get (2xc?®)y(c?) —()y(cPxc?) = 0, with ¢® # 0.
Then, by Martindale’s Lemma (2.3), for each x € R there is a A, € C such that
c2xc? = N\,c?. Since ¢ # 0 and R is prime, ¢?Rc? # 0 and hence c?Rc? = Cc?,
since C is a field.

(5) By (4), given « € C there exists a € R such that ac® = c*ac?. Then,
by (3), a*c? = c?a*c® = cac® = ac?, so a* = «, proving that * is of the first kind.

(6) By (4), ¢® = c*ac? for some a € R and hence ¢*R = eR, where e = c’a
is an idempotent of R. Then eRe = c*Rc*a = Cc?a = Ce, which proves ([,



Proposition 4.3.3]) that eR is a minimal right ideal of R, so R has nonzero socle
with associated division ring isomorphic to the field C ([1, Theorem 4.3.7]). Now
it follows from Kaplansky’s Theorem ([1, Theorem 4.6.8]) that the involution * of
R is either of transpose type or of symplectic type; but the latter cannot occur
because ¢? is a symmetric rank-one element, so * is of transpose type. [

Let ¢ € K be a Clifford element of R. Since ¢ is a symmetric zero-square
element which is also von Neumann regular (see 3.2(4)), we have by 2.2 that there
exists d € R such that

d*=d, d®> =0, Zd* =& and d = dc*d.

Such an element d will be called a twin of ¢2. Then e := dc? is a *-orthogonal
idempotent, i.e., e = e and ee* = e*e = 0.

Proposition 3.3.  Let c € K be a Clifford element of R, let d be a twin of c?
and put e := dc*. Then:

1. dKd=0.

2. dRd =Cd.

3. eRe =Ce, e*Re = Cc?, eRe* = Cd and eKe* = e*Ke = 0.
4. ec=ce* =0, e =c’e=c® and de* =ed = d.

5. [K,K]#0.

6. e+ e*# 1 in the unital hull R=Cl1+R of R.

Proof. Note that, by the proof of 3.2(4), ¢2Mc? = Cc? for any C-subspace M
of R such that ¢?Mc? # 0, a fact that will be used in what follows without further
mention.

(1) dKd = dc*(dKd)c*d = 0, where we have used 3.2(2) and the fact that
dkd is skew-symmetric for every k € K.

(2) dRd = (dc*d)R(dc*d) = dc*(dRd)c*d = dCc*d = Cdc*d = Cd, since
dc*d = d and c*dc® = ¢* imply that ¢?(dRd)c* # 0.

(3) eRe = dc*(Rd)c* = dCc* = Ce, since ¢* = *(dc*d)c* € *(Rd)c* and
therefore the latter is not zero. In a similar way it is proved that e*Re = Cc? and
eRe* = Cd. Now eKe* = d(c*Kc?)d = 0 by 3.2(2), and e*Ke = 0 is obtained in
a similar way:.

(4) The identities of this item follow straightforwardly from the very
definition of e.

(5) By (4), [c,e—e€*] = ce+e*c = cdc®+c*de # 0. Otherwise cdc® = —c?*dc
would lead to the contradiction ¢® = c*dc* = —c3de = 0. Since [c,e—e¢*] € [K, K],
[K, K] #0.

(6) It follows from (3) and (4) that (e+e*)c(e+¢e*) =0,s0 e+e*#1. m



Remark 3.4. Twin d of ¢® are not unique. In fact, for any twin d of ¢ and
any X € C, exp(Aad,)d is a twin of ¢?.

As we have seen in the proposition above, any Clifford element ¢ of R gives
rise to two orthogonal elements e and e*, associated to a twin d of ¢®. Moreover,
the idempotent e+ e* is not complete (see 3.3(6)), i.e., the symmetric idempotent
g :=1—¢— ¢ of the unital hull R = C1 + R of R is not zero. We prove next
that the complete system {e, e*, g} induces a 3-grading in the Lie algebra K .

Proposition 3.5. Let ¢ € K be a Clifford element of R, e := dc®> and g =
1 —e—e*, where d is a twin of ¢*. Then K = K_1 ® Ky ® K, is a 3-grading of
K, with K1 = k((1 —e)Ke) = k((1 —e)Re) = k(gRe), Ky = k(eRe) ®gKg and
K, =k(eK(1—e)) =kr(eR(1 —e)) = k(eRyg).

Proof.  Consider the complete system {eg := €*,e; := g, es := e} of orthogonal
idempotents of R and put R; := @ emRe,, —2 <1 < 2. Then (see [15, p.174]
for instance), R = @ R; is an (associative) 5-grading of R. Explicitly,

—2<i<2

R=¢"Re® (¢"Rg @ gRe) @ (e"Re* @ gRg @ eRe) @ (gRe* @ eRg) @ eRe™.

Since all the components R; are x-invariant subspaces, K = @ K;, where
—2<i<2

K; := R;N K = Skew(R;, %) for each index ¢ and [K;, K] C [R;, Rj] N [K, K] C
Ry N K = K;j. Thus K = @ K; is (a priori) a 5-grading of the Lie
—2<i<2
algebra K. But K_y = k(e*Re) = e*k(R)e = ¢*Ke = 0 by 3.3(3) and similarly
Ky = e*Ke = 0. Moreover, the i-th homogeneous component k; of any k£ € K
coincides with @ k(emken), so k € K_; if and only if
gke+ekg=(1—e—eke+e'k(l—e—e€")=(1—e)ke+e'k(l —¢*) =
(1 —e)ke— ((1 —e)ke)" = k((1 —e)ke)

since e*Ke = 0 by 3.3(3), which proves that K_; = k(gRe) = k((1 — e)Ke).
Similarly, K; = k(eRg) = k(eK (1 — e)). Therefore

K =k((1—e)Ke) @ (k(eRe) ® gKg) ® k(eK(1 —e))
is a 3-grading of K. Now, for any = € R,
k(gre) = k((1 — e)ze) — k(e*xe) = K((1 — e)ze) — e*k(x)e = K((1 — e)xe)

since e*k(z)e € e*Ke = 0, which proves that K_; = k((1 — e)Re). Similarly we
obtain that K = k(eR(1 —e)). [

Although the 3-grading of K has been defined by choosing a twin d of ¢?,
it will be seen now that the component K_; only depends on the Clifford element
c.



Proposition 3.6.  Let ¢ € K be a Clifford element of R, let e := dc® where d
is a a twin of ¢ and let B := k((1 —e)Ke). Then B is an abelian inner ideal of
K and we have:

1. If b€ B then eb =0 and b = e*b+ be = k((1 — e)be).
2. B=c*oK.

3. ¢ =e*c+ ce = Ade + cdc?.

4. c€B.

5. cKc=~Cc.

Proof. By Proposition 3.5, B is an extreme of a finite Z-grading of K and
hence an abelian inner ideal of K.
(1) Let b = (1—e)ke+e*k(1—e*) € B. Then eb = e((1—e)ke+e*k(1—e*)) =
0 and e*b = e*k(1 — €*), since e*e =0 and e*Ke = 0. We also have that be* =0
and be = (1 — e)ke. Hence b = e*b+ be = e*b(1 — €*) + (1 — e)be = k((1 — e)be).
(2) ok = k(kc?) = r(ke*c® — (eke*)c?) = k((1 — e)k(e*c?)) = w((1 —
e)k(c?e)) € k((1—e)Re) = k((1 —e)Ke) = B by 3.5. Conversely, let b € B. Then

b=e*b+be = (d)b+ b(dc?) = *(dob) + (dob)c* =c*o(dob) € oK,

since e* = ?d, * = e and ?b = (c®e)b = *(eb) = 0.

(3) Set z :=c¢— c*dc — cdc*. We must prove that z = 0. For any k € K
we have

kz = ke — (kc?)dc — (Pke)dc® = ckc® — ck(cPdc?) = cke® — che? =0

since c?kc = ckc® and *kc¢® = 0 by 3.2, and d is a twin of ¢® (see 3). We
also have zkc*> = (c*kz)* = 0, and hence c*rz = c*z*z and zxc® = zx*c?
for every # € R. Let xz,y € R. Then ¢ /f(xzy) = 0 since ?Kc? = 0.
Thus 0 = A(zzy + y*za*)® = chzyc + Aytzat® = Cazyc® + Ayzac® =
(zz)y(c?) + (*)y(zzc?) = 0, with ¢ # 0. By Martindale’s Lemma (2.3), for
every € R there is A\, € C such that c®zz = \,c%. But

2(l—e)=(c—ec—ce)(l—€e)=c—ce—e'c+ece—ce+ce=c—ce—e'c=z

since e*ce € e*Ke = 0. Hence c*zz = 2rz(1—e€) = \,*(1—¢) =0, s0 *Rz = 0.
Since R is prime and ¢? # 0 this implies that z = 0. Thus ¢ = e*c+ce = c*dc+cdc?
as required.

(4) By (3), ¢ = cdc+cdc® = *(dc+cd) + (de+cd)c® € o K = B by (2).

(
(5) Note that cd+dc = k(cd) € K and c(cd+dc)c = c2dc+cdc® = ¢ by (3).
Hence Cc C c¢Kc. Conversely, for any k € K we have ckc = (e*c+ce)k(e*c+ce) =

e*cke*c + cekce, since eKe* = 0 by 3.3(3) and cke € K. Now, again by 3.3(3),
e(kc)e = e for some A € C, and hence e*(ck)e* = (ekce)* = (Xe)* = Ae*, since
the involution * is of the first kind by 3.2(5). Then ckc = Ae*c+ Ace = Ac, which
completes the proof. ]
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The square root of d
Given a Clifford element ¢ of R and a twin d of ¢, we put v/d := ed + de.
As will be seen now, the square-root notation is absolutely justified.

Proposition 3.7.  Let ¢ € K be a Clifford element of R and let d be a twin of
c?. Then:

1. Vd € Ky in the 3-grading of 3.5. In particular \/d is a Jordan element.
2. (Vd)?=d. 7. Povd=c.

3. (Vd)?=0. 8 doc=+4d.

4. VAK~\d =CVd. 9. [le,Vd],c] = c.

5. Vdevd =+/d. 10. [[Vd,c],vd) = Vd.

6. cvde=c. 11. [[e,/d],b] = b for every b € B.

Proof. (1) Since c€ K and d € H, v/d = cd + dc € K. We have

k(eVd(1 —e)) = e(cd + de)(1 — e) + (1 — e*)(dc + cd)e*
=edc(l —e) + (1 — €")ede” = ede — edce + cde® — e*cde”
= (d?d)c — e(ded)? + c(dPd) — A (ded)e = de+ cd = Vd

since ec = 0, e = dc?, dc®d = d and ded € dKd = 0. We have thus proved
(see 3.5) that v/d € k(eK(1 —e)) = K;. Now since K; is an abelian inner ideal
(because it is the extreme of a finite grading), v/d is a Jordan element of K.

(2) (Vd)? = (cd +dc)(cd + dc) = c(ded) + cd?c + dcd + (ded)e = dc*d = d.

(3) (Vd)? = (Vd)>Vd = d(cd + dc) = ded + d?c = 0.

(4) If follows from (1), (2) and (3) that v/d is a Clifford element of R.
Hence, by 3.6(5), VdKVd = CV4d.

(5) Vdevd = (cd + de)e(ed + de) = c(dc*d) + c(ded)e + dedd + (dEd)e =
cd + de = /d.

\_/\_/

(6) cVdc= c(cd + dec)e = Ede + cdc® = ¢ by 3.6(3).

(7) od=c*(cd+ de) + (cd + dc)c® = Ede + cdc® = c.

(8) doc=dc+cd=+/d.

9) [[e,Vd], ] = 2¢Vde — ¢ o v/d = 2c — c = ¢ by (6) and (7).

(10) [V, ], V) = 2v/dev/d — (Va)2oc = 2v/d—d = /d by (2), (5) and

(8).
(11) [[e,Vd],b] = [[e, ed + dc],b] = [2d — dc?,b] = [e* —e,b] = e*b+be = b
by 3.6(1). -

4. Jordan algebra at a Clifford element

As in the previous section, R will denote a centrally closed prime ring of charac-
teristic not 2 or 3 with involution x. We prove here that if ¢ is a Clifford element
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of R, then the abelian inner ideal ¢?o K = k((1—e)Ke) (see 3.6) can be endowed
with a Jordan algebra structure of Clifford type (see 2), which happens to be iso-
morphic to K.. We begin by defining a linear form and a symmetric bilinear form
on the C-vector space K (recall that * is of the first kind by 3.2(5)).

Remark 4.1. By 3.6(5) there exists a linear map tr : K — C, called the trace,
such that
tr(k)c = cke

for every k € K. Note that
1. tr(v/d) = 1 since ¢v/de = ¢ by 3.7(6), and hence
2. K =CvVd o Ker(tr).

Remark 4.2. Since ¢?Rc? = Cc? (3.2(4)) with 2kikac? = Ekokic? for all
ki, ke € K (3.2(2)), we have a symmetric bilinear form (,) : K x K — C defined
by

<l{31, /{32>02 = CQI{?II{?QCQ

for all ki, ks € K.

Remark 4.3. The trace can be realized from the bilinear form and vice versa.
Let k, k' € K:

L. (Vd k) = &Vdke = Aed + de)k® = Adk + Fdcke® = Adcke® =
Ad(cke)e = tr(k)c*dc®* = tr(k)c?, since ¢ = 0 and c*dc*> = ¢*. Thus

tr(k) = (k, V).

2. tr(k(ckk'))c? = (ck(ckk')c)e = kK + ck'ke® = kK ? = (k,K')c*. Thus
(k, k') = tr(k(ckk)).

Proposition 4.4. Let ¢ € K be a Clifford element of R and B = ¢* o K.
Then:

1. B=Cc® X, where X :={c?ok: ke Ker(tr)}.
2. B=ad’K.
Proof. (1) By 4.1(2), K = Ker(tr) ® Cv/d. Hence
B=coK = oKer(tr) + Cc® o Vd = ¢® o Ker(tr) + Ce
since ¢® o v/d = ¢ by 3.7(7). But this sum is direct since ¢® o ky = ac, with

tr(ko) = 0 and a € C, implies ac® = ¢(c*kg + koc*) = (ckoc)c = tr(ko)c = 0, and
hence o = 0 since ¢® # 0 by the very definition of Clifford element.

(2) For any k € K we have

ad’k = Pk—2cketke® = PFok—2tr(k)e = Pok—2tr(k)(PoVd) = Po(k—2tr(k)Vd) € B
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since ¢ = ¢® 0v/d by 3.7(7). Conversely, let ¢? o ko + ac € B, with kg € Ker(tr)
and o € C. Then ¢? o ko + ac = ad’ky — aad’v/d = ad? (ko — a/d) since ckoc =0
and ad*v/d = —c by 3.7(9). [

Lemma 4.5.  The symmetric C-bilinear form defined on X by
(ok,ok)y:=—(kK)
15 well defined.

Proof.  Suppose that c?ok; = ¢? o k}. By multiplying the two members of this
equality on the right by kyc? we obtain c2kikyc? = c?kkoc? since K c¢? = 0. This
proves that (,)q is well defined. ]

Remark 4.6. Consider the 3-grading K = K_; @ Ky @ K; due to e := dc?
(see 3.5), with K_1 = B, Ky = k(eKe) ® gKg and K, = k(eKyg).

1. Since the pair (d,v/d) plays a role symmetric to that played by (¢2,¢), we
also have that Ky =do K = {dok: k€ K,VdkVd =0} ®Cc = ad’ K.

2. X can be zero in 4.4 and therefore we can have B = Cc. Let V := H@®Fz be
the orthogonal sum of a hyperbolic plane H = Fx@®Fy and the line Fz = H+
with z being an anisotropic vector, and let R be the simple ring End(V)
with the adjoint as involution. For any u,v € V' let u® v be the linear map
defined by w(u ® v) = (w,u)v for all w € V. Then (u®v)* = v ®u and
hence ¢ :=x ® z — z ® x lies in the Lie algebra K = Skew(R, *). It is easy
to check that ¢ is a Clifford element of R such that ad’K = Fc.

Theorem 4.7.  Let R be a centrally closed ring with involution of characteristic
not 2 or 3 and let ¢ € K be a Clifford element of R. Then K. is a Clifford Jordan
algebra.

Proof.  Since ¢ = [[¢c,Vd],c] (3.7(9)) we have by 2.1 that K. 2 J(c,/d), the
Jordan algebra defined on the C-vector space adgK =c?oK =Cc® X (see 4.4)
by the product

(arc+ P oky) e (aac+ o ky) = [[are + ¢ 0 ky, V], ase + ¢ o k]

for all aq, a9 € C and k1, ky € K such that ckic = ckoc = 0. Endow the C-vector
space X with the symmetric bilinear form (), defined in 4.5 and consider the
Clifford Jordan algebra C & X defined by (,)o (see 2). We claim that the linear
isomorphism (ac + ¢® o k) — (a,c® o k) of J(¢,v/d) onto C ® X is actually an
isomorphism of Jordan algebras. Since % € &, it suffices to check the identity

e + P ok, Vd|,ac+ o k] = e+ (P ok, o k) + 20(c? o k).

The bilinearity of the Lie product reduces the check to three products: (i) scalar
by scalar, (ii) scalar by vector, and (iii) vector by vector.
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(1) [lac, Vd], ac] = a?[[e, Vd],c] = a’c by 3.7(9).

(i) [[ac, Vd],c? o k] = al[e, cd + dc], Pk + kc?] = a[c*d — dc?, Pk + kc?] =
a(c® o k), where we have used c?dc® = ¢?, ¢* =0 and c*kc? = *(dk + kd)* = 0,
the latter because c*Kc? = 0 and (dk + kd)* = —(kd + dk), since d* = d and
k= —k.

(iii) [[¢2 ok, Vd],? o k] =2( o k)Vd( o k) — (2o k)?oVd,
with
(ok)Vd(?ok) = (k+ k) (cd+de)(Pk+ke?) = (Gkde+ketde) (Pk+ke) = 0,
since ¢® =0 and ckc =0 (tr(k) =0), and

(2o k)?oVd=ck*(cd + de) + (cd + de)*k*c? =
Ak*Ade + cdc*k*c? = (k, k)(c*dc + cdc®) = (k, k)c

since ¢ = c*dc + cdc® by 3.6(1). Therefore (> o k) @ (2o k) = —(k,k)c =
(c? o k,c? o k)oc, which completes the proof. n

Remark 4.8.  Since v/d is a Clifford element of R (see 3.7), the theorem above
also proves that K s is a Clifford Jordan algebra. In fact, K 5= K..
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