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Abstract 

After years of huge research efforts, there is still not a basic understanding of the 

pathophysiological mechanisms of schizophrenia. The research findings to date have 

been often inconsistent, difficult to replicate, and not sensitive or specific enough to 

help with diagnosis. Different lines of evidence suggest that schizophrenia is likely a 

heterogeneous condition that encompasses different presentations and subtypes. The 

view of schizophrenia as a singular disease entity could have led to an inadequate 

study approach and thus, to the lack of replicability and inconsistency of the research 

findings in the field.  

The present doctoral thesis sought to address this heterogeneity considering two 

important facts. First, a change in the schizophrenia construct as a syndrome should be 

followed by a change in its research approach. Second, this change should also be 

accompanied by a change in the study focus, which has traditionally been far distant 

from the altered functions in this syndrome. Therefore, the general aims of this thesis 

were threefold: i) to explore de existence of patients subgroups within schizophrenia 

using a data-driven approach; ii) to follow-up the clinical and real-life outcomes of the 

identified subgroups in the medium term; and iii) to assess a neurobiological substrate 

closer to the psychological functions known to be altered in schizophrenia. 

This doctoral thesis includes four studies. The two first studies explored the existence 

of subgroups within the schizophrenia syndrome using a data-driven approach based 

on cognition and functional network properties of the electroencephalogram (EEG), 

respectively. The third study assessed the clinical and functional outcomes of the 

previously identified cognitive subgroups. Finally, the last study focused on exploring 



 

XI 
 

the association between the decreased task-related activity modulation observed in 

the first two subgroups studies and the inhibitory system function. The studies’ sample 

sizes ranged from 22 to 169 schizophrenia patients and 27 to 158 healthy controls. 

Moreover, the two first studies included also bipolar disorder patients due to the large 

evidence of shared genetics, cognitive alterations, and clinical features between both 

diagnoses. All patients were diagnosed according to the Statistical Manual of Mental 

Disorders 5th edition (DSM-V) criteria and their symptoms were assessed through the 

Positive and Negative Syndrome Scale (PANSS).  

Results from the first study showed a severely impaired and a moderately impaired 

subgroup of patients based on cognitive impairments. Moreover, the severely 

impaired group was associated with higher symptom scores and larger neurobiological 

alterations.  

In the second study, we were able to identify two subgroups of patients within the 

schizophrenia syndrome using EEG-based network parameters derived from graph 

theory and obtained during an auditory oddball task. One subgroup showed altered 

global properties of functional and structural connectivity. The other subgroup showed 

an EEG network pattern similar to healthy controls. Remarkably, both subgroups 

studies showed that all identified patients subgroups were associated to task-related 

modulation deficits compared to healthy controls.  

The third study gave additional external validity to the described subgroups based on 

cognition. Results showed that the subgroup with larger cognitive impairments and 

more severe biological alterations was associated with greater clinical severity and 

more difficulties in real-life functioning in the medium term.  
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Finally, the last study replicated the task-related cortical activity modulation deficit 

previously reported in schizophrenia patients. Moreover, results showed that patients 

with schizophrenia were associated with higher cortical reactivity following 

transcranial magnetic stimulation (TMS) single pulses over the dorsolateral prefrontal 

cortex compared to healthy controls. This finding is consistent with the decreased 

inhibitory function previously described in schizophrenia. Furthermore, we found a 

significant association between task-related activity modulation and the amplitude of 

the evoked response to TMS single pulses.  

In summary, the studies included in this doctoral thesis support the identification of 

different subgroups within the schizophrenia syndrome with different neurobiological 

underpinnings. Our findings highlight the fact that schizophrenia is likely not a single 

disorder entity but a collection of several distinct conditions with different substrates.  

In this line, data-driven methodologies seem to be a more suitable approach to 

encompass the large heterogeneity observed in schizophrenia. Moreover, three out of 

four of the articles included in this doctoral thesis replicated an EEG modulation deficit 

during cognitive activity in both schizophrenia and bipolar disorder patients. This 

deficit likely reflects an alteration in the synchronization of the neural assemblies that 

underlie cognitive activity and states this variable as a possible biomarker of the 

altered function in these disorders. Finally, our findings support the idea that a 

hypofunction of the inhibitory system could hamper the task-related modulation of 

EEG activity, since we were able to identify a dimensional association between the 

task-related EEG activity modulation and the amplitude of the evoked response to TMS 

single pulses in both healthy controls and patients.  
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Chapter 1  

Introduction 

The present doctoral thesis focuses on exploring the large heterogeneity observed in 

schizophrenia and assessing the neurobiological underpinnings of the potential 

subgroups existing within this syndrome. This research work has led to the publication 

of three scientific articles in Journal Citation Report (JCR) indexed journals between 

November 2020 and November 2022. Additionally, a fourth article has recently been 

submitted for publication (May 2023). This scientific production has enabled the 

writing of this thesis as a compendium of publications.  

In this introduction chapter, the thematic consistency of the doctoral thesis is firstly 

justified. Subsequently, the main characteristics and biological mechanisms described 

for schizophrenia are briefly summarized. The following subsections of this chapter 

focus on justifying the need to explore the heterogeneity and to shed light on the 

pathophysiology of the schizophrenia syndrome.   

1.1. Compendium of publications: Thematic consistency 

Decades of research have revealed a great heterogeneity in the etiopathology, 

symptomatology, course, and treatment response of patients with schizophrenia. The 

traditional view of schizophrenia as a singular disease entity may have been erroneous 

and could explain the lack of replicability and inconsistency of the research findings in 

the field. The deconstruction of the schizophrenia concept from a biotyping approach 

would allow a shift in its study focus, considering that it would encompass not just one 

but several disorders within that entity. In recent years, the need for a paradigm shift 
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in the study of schizophrenia has become evident (Faden & Citrome, 2023; Molina & 

Blanco, 2013; Tandon, Nasrallah, & Keshavan, 2009) with a growing body of studies 

using data-driven methodologies instead of comparing between healthy subjects and 

schizophrenia as a unity. Furthermore, this landscape has also questioned the 

predominant object of study up to this point, which has been traditionally focused on 

biological processes far distant from the psychological functions known to be altered in 

schizophrenia.  

Given this scenario, this doctoral thesis focuses on two main aspects. First, exploring 

the possibility of identifying meaningful subgroups within the schizophrenia syndrome. 

Second, assessing the neurophysiological substrates closer to the psychological 

function altered in schizophrenia, i.e., the mental function. Thus, the thematic 

consistency of this doctoral thesis is understood by the following structure. First, the 

existence of subgroups within the schizophrenia syndrome using a data-driven 

approach was explored in two studies, based on cognition and functional network 

properties of the electroencephalogram, respectively. These subgroups’ studies led to 

two research paths. One focused on assessing the clinical and functional outcomes of 

the identified cognitive subgroups. The other path focused on exploring the 

association between the inhibitory system function and the decreased task-related 

activity modulation observed in the subgroups identified in the first two studies. This 

latter study gives the title to this thesis.  

The present doctoral thesis is organized into 8 chapters. This introduction is followed 

by the aims and hypothesis, the four articles, a general discussion, and conclusions. 
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1.2. Schizophrenia 

Schizophrenia is considered one of the most severe psychiatric disorders in terms of 

human suffering and socio-economic burden. It encompasses a diverse set of signs and 

symptoms, including distortions of thinking and perception, cognitive impairments, 

motor abnormalities, avolition and apathy, difficulties in communication, and 

restricted affective expression (Tandon et al., 2009). Schizophrenia usually emerges 

between ages 18-25 and affects about one per cent of the world’s population (Insel, 

2010). However, this incidence varies greatly among places and migrant groups, as do 

symptoms, treatment response, and illness course across individuals (van Os & Kapur, 

2009). Although not universally present neither specific to schizophrenia, individuals 

who develop this disorder often tend to exhibit an array of cognitive, emotional, and 

social function impairments (Jauhar, Johnstone, & McKenna, 2022; Tandon et al., 

2009) before the psychosis onset, i.e., the so-called prodromal symptoms. Moreover, 

the lifespan of individuals diagnosed with schizophrenia is reduced by 13-15 years 

compared with general population, often related to comorbid medical disorders, poor 

dietary habits, overweight, suicide, or comorbid substance use (Hjorthøj, Stürup, 

McGrath, & Nordentoft, 2017).  

1.2.1. Signs and symptoms 

The diverse set of signs and symptoms that characterize schizophrenic disorders are 

usually classified into three main domains (Jauhar et al., 2022; Tandon et al., 2009; van 

Os & Kapur, 2009): i) positive symptoms, including delusions, hallucinations, and 

formal thought disorder; ii) negative symptoms, consisting of lack of volition, reduced 

speech output, anhedonia, apathy, and flattening of affect; and iii) cognitive deficits, 
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with patients commonly showing a broad-based cognitive impairment, specially 

affecting attention, processing speed, working and long-term memory, executive 

function, and social cognition (Fioravanti, Carlone, Vitale, Cinti, & Clare, 2005; van Os & 

Kapur, 2009).  

A dopaminergic mesolimbic hyperactivation seems to underlie positive symptoms, 

which could explain this kind of symptoms being the most attenuated ones in response 

to antipsychotic medication (Keshavan, Tandon, Boutros, & Nasrallah, 2008). On the 

other hand, the pathophysiology of negative symptoms is still poorly understood 

(Keshavan et al., 2008). Although positive symptoms are the most striking symptoms of 

schizophrenic disorders, negative symptoms appear to contribute importantly to the 

poor occupational and social functioning observed in these disorders (Foussias, Agid, 

Fervaha, & Remington, 2014). Furthermore, cognitive symptoms seem to have a 

profound impact on the difficulty to regain social function and vocation (Bowie et al., 

2008; Michael Foster Green, Kern, Braff, & Mintz, 2000). 

1.2.2. Etiology 

The etiology of schizophrenia remains unknown. Different hypotheses have been 

proposed to explain the causes of this psychiatric disorder. From a neurochemical 

view, alterations in dopaminergic, glutamatergic, and GABAergic neurotransmission 

systems have been related to schizophrenia.  

The dopamine hypothesis proposes that certain clinical manifestations of 

schizophrenia may reflect an underlying neurochemical imbalance of this 

neurotransmitter (Maia & Frank, 2017; Meltzer & Stahl, 1976). Specifically, a 

mesolimbic hyperdopaminergia would be causing positive schizophrenia symptoms. 

This hypothesis is based on three complementary findings: i) the effect of 
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antipsychotic drugs depends on their ability to block the dopamine D2 family of 

postsynaptic receptors, reducing dopamine function (Creese, Burt, & Snyder, 1976; 

Johnstone, Crow, Frith, Carney, & Price, 1978); ii) higher dopamine receptor 

concentration has been found in post-mortem schizophrenia studies (Maia & Frank, 

2017); and iii) the abuse of some drugs that stimulate dopamine release, such as 

amphetamine, usually leads to similar clinical states as schizophrenia (Connell, 1958). 

However, some studies question the basic postulate of the dopaminergic hypothesis. 

On the one hand, the hyperdopaminergia described in this hypothesis appears to be 

not present in all patients with schizophrenia. In this line, some studies differentiate 

between “hyperdopaminergic” and “normadopaminergic” patients (Howes & Kapur, 

2014) describing patients with elevated dopamine synthesis and release in the 

striatum or without dopamine alterations, respectively. On the other hand, there are 

other disorders such as bipolar disorder or autism in which an increased dopamine 

level has also been described (Pavǎl, 2017).  

The glutamatergic hypothesis proposes a hypofunction of the N-methyl-D-aspartate 

(NMDA) glutamate receptor in patients with schizophrenia (Javitt, Zukin, Heresco-Levy, 

& Umbricht, 2012; Kantrowitz & Javitt, 2010). Support for this hypothesis comes 

mainly from studies administrating a NMDA receptor antagonist such as ketamine, 

which results in increased positive and negative symptoms that resemble those 

described for schizophrenia (Beck et al., 2020; Pomarol-Clotet et al., 2006), as well as a 

similar profile of transient cognitive impairments (Gilmour et al., 2012). Furthermore, 

genetic, post-mortem, and animal studies lend further support to the NMDA 

hypothesis (Beck, Javitt, & Howes, 2016). However, this hypothesis is not free from 

questioning either. There is no clear evidence for alterations in NMDA receptor 
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numbers in schizophrenia post-mortem studies, with an exception in the dorsolateral 

prefrontal cortex (Catts, Lai, Weickert, Weickert, & Catts, 2016). Moreover, the 

therapeutic effects of drugs targeting the NMDA receptor are inconclusive (Beck et al., 

2016).  

Finally, within the neurochemical theories, the inhibitory neurotransmitter gamma-

aminobutyric acid (GABA) has also been proposed to play a role in schizophrenia. As 

will be seen in successive sections, this theory becomes particularly relevant in the 

context of this doctoral thesis. It is considered that an optimal balance between 

excitatory and inhibitory forces in the brain must take place for a correct brain 

electrical synchrony to occur. GABA inhibitory interneurons play a key role in this 

excitatory/inhibitory balance, by selectively attenuating the activity of excitatory 

neurons in the cortex, in a neurophysiological process known as cortical inhibition 

(Farzan et al., 2010). Thus, GABA inhibitory interneurons seem to prevent global 

indiscriminate brain hyperactivation and allow the adequate selection of synapsis 

assemblies (Buzsáki, 2006). The GABA inhibitory system has been consistently reported 

to be functionally altered in schizophrenia (Gonzalez-Burgos, Fish, & Lewis, 2011; 

Lewis, Fish, Arion, & Gonzalez-Burgos, 2011; Lewis, Hashimoto, & Volk, 2005). Again, 

these alterations do not seem to be specific to schizophrenia, as they are also present 

in other psychiatric disorders such as bipolar disorder (Benes & Berretta, 2001; 

Levinson, Young, Fitzgerald, & Daskalakis, 2007) and depression (Fee, Banasr, & Sibille, 

2017). 

Contemporary schizophrenia research consider that the causes of this mental disorder 

involve events in early life, including even prenatal or perinatal events (Insel, 2010; 

Jauhar et al., 2022), contemplating it as a neurodevelopmental disorder. This 
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neurodevelopmental model of schizophrenia is based on longitudinal studies showing 

the trajectory in children who develop the illness, including reduced elaboration of 

inhibitory pathways and excessive pruning of excitatory pathways during their 

development, which could lead to an altered excitatory/inhibitory balance (Insel, 

2010). However, none of these possible neurodevelopmental mechanisms has been 

proved to cause the syndrome.  

Genetics also play an important role in the vulnerability for schizophrenia. Although 

twin and family research studies demonstrate high heritability (Kety, 1987; McGuffin & 

Gottesman, 1999), the identification of specific genetic variations still appears to be a 

challenge. Schizophrenia can be considered a polygenic disorder, representing the 

cumulative effects of hundreds of genes, each with small effect sizes and dispersed 

widely across the genome (Jauhar et al., 2022). In addition, a small proportion of 

schizophrenia incidence could be explained by rare genetic variants (Bassett, Scherer, 

& Brzustowicz, 2010; International Schizophrenia Consortium, 2008; Pocklington et al., 

2015). However, these rare genomic variants often affect only one individual or family 

and thus cannot account for the whole genetic heritability of schizophrenia. It is also 

remarkable that genetics of schizophrenia overlap with the genetics of autism and 

other disorders (Guilmatre et al., 2009; Sebat et al., 2007). 

How can the same genetic variation lead to different neurodevelopmental syndromes? 

The key to answering this question appears to be the environmental factors and the 

gene-environmental interaction effects. Increased risk for schizophrenia has been 

associated with several environmental factors of small effect, including obstetric and 

perinatal complications, older paternal age, and prenatal infection and famine, among 

others (Brown, 2011; Byrne, Agerbo, Bennedsen, Eaton, & Mortensen, 2007; Cannon, 
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Jones, & Murray, 2002; Van Os, Kenis, & Rutten, 2010; Wohl & Gorwood, 2007). 

Moreover, a link between traumatic events in childhood, such as sexual, physical, and 

emotional abuse and later development of schizophrenia has been reported (Varese et 

al., 2012). Finally, cannabis consumption is strongly associated with increased risk of 

schizophrenia (Casadio, Fernandes, Murray, & Di Forti, 2011; Di Forti et al., 2019).  

1.2.3. Diagnosis, treatment, and outcome 

To date, the most widely used system for diagnosing schizophrenia is based on the 

fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) 

(American Psychiatric Association, 2013). According to DSM-V criteria, a person 

receives a diagnosis of schizophrenia if he/she experiences two or more of the 

following symptoms for a significant portion of time during a 1-month period: 

delusions, hallucinations, disorganized speech, grossly disorganized or catatonic 

behaviour, or negative symptoms. At least one of them must be one of the first three. 

Moreover, the level of the person’s functioning in one or more major areas (i.e., work, 

interpersonal relations, or self-care) must be markedly below the level achieved prior 

to the onset. These disturbances must have persisted for six months or longer and may 

include periods of prodromal or residual symptoms. Finally, some differential 

diagnoses such as schizoaffective disorder, depressive disorder, bipolar disorder with 

psychotic features, substance abuse effects, or other recognizable organic etiological 

explanation for psychotic symptomatology, must be discarded. 

It is important that the diagnosis is made based on a combination of individual self-

reported experiences and clinical observations by psychiatrists. Despite years of 

significant efforts to find objective and reliable biological measures for the diagnosis of 

schizophrenia, the findings to date have been inconsistent and not sensitive and 
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specific enough to help with diagnosis. As stated before, the diagnosis relies on 

confirmation of the key symptoms and ruling out the most likely differential diagnoses. 

It is easy to imagine the wide variety of people with different profiles of 

symptomatology that can fall under this same diagnostic label, giving rise to the great 

heterogeneity observed in these patients (Palaniyappan, 2023). Moreover, the core 

symptoms described above are largely shared with other mental disorders.  

Once the diagnosis is made, antipsychotic drugs, which work by blocking the D2 family 

of postsynaptic dopamine receptors, are the main treatment of psychosis. First-

generation antipsychotics (e.g., chlorpromazine and haloperidol) were followed by 

second-generation antipsychotics (e.g., risperidone and olanzapine). These latter 

antipsychotic drugs, which are based on blocking not only dopaminergic but also 

serotonergic receptors (Stępnicki, Kondej, & Kaczor, 2018; Yang & Tsai, 2017), 

emerged with the aim of reducing the extrapyramidal side effects caused by the earlier 

ones. However, except for clozapine, second-generation antipsychotics do not seem to 

provide additional efficacy compared to first-generation antipsychotics (Tandon, 

Nasrallah, & Keshavan, 2010). 

Antipsychotic drugs suffer severe limitations which include (Stępnicki et al., 2018): i) 

They are effective in relieving positive symptoms but most of them lack effectiveness 

in controlling negative and cognitive symptoms, which contribute to the difficulty to 

enhance functional recovery; ii) they might result in a wide range of side effects such 

as extrapyramidal, sedative, and metabolic effects; and iii) between 20% and 30% of 

patients do not show symptom improvements, i.e., the so-called treatment resistant 

patients. It is still unknown what makes the difference between responsive and 

unresponsive patients (Stępnicki et al., 2018). Clozapine is the antipsychotic drug of 
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choice for treatment resistant patients, and it has shown to reduce symptoms in 

approximately 30% of them (Kane, Honigfeld, Singer, & Meltzer, 1988).      

The response to antipsychotics varies largely among patients and even along the 

course of a single patient (Molina & Blanco, 2013), and the choice of the specific drug 

to use is based on a trial-and-error strategy, which often leads to long periods of time 

until reaching the optimal treatment. The heterogeneity in treatment response to 

antipsychotic drugs seems to argue for a diversity in the biological mechanisms 

underlying the diagnostic of schizophrenia, likely encompassing different disease 

entities within it. It is thus unlikely that all symptoms can be treated with a single drug. 

A deeper understanding of the pathomechanisms and causes of this syndrome is 

needed to define more specific treatment targets.   

A multimodal intervention including psychosocial therapies in combination with 

antipsychotic medication seems to be necessary to help alleviate symptoms and to 

improve social functioning, treatment adherence, and quality of life (Kern, Glynn, 

Horan, & Marder, 2009; Patterson & Leeuwenkamp, 2008). These psychotherapeutic 

interventions include techniques such as psychoeducation, Cognitive Behavior Therapy 

(CBT), cognitive remediation, and community-case management, among others 

(Tandon et al., 2010; van Os & Kapur, 2009). The therapeutic effects of these 

multimodal interventions have often yielded inconsistent results, perhaps due to 

methodological variations (Tandon et al., 2010).  

The outcome of schizophrenia is highly variable, with a large variation in the illness 

progression across patients. In general, over the long-term course of the illness, 

positive symptoms tend to become less severe while negative ones tend to become 

more prominent (Tandon et al., 2009). A significant proportion of patients show no 
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complete remission of symptoms and spend large periods in psychiatric wards 

(Harrison et al., 2001; Jobe & Harrow, 2005). However, several studies suggest that 

most people diagnosed as having schizophrenia do not experience progressive 

deterioration but instead improve or recover (Murray, Bora, Modinos, & Vernon, 

2022). In this line, some meta-analyses have reported favorable outcomes in 

approximately 40% of patients diagnosed with schizophrenia (Menezes, Arenovich, & 

Zipursky, 2006). Predictors of good prognosis include acute onset of illness, presence 

of affective symptoms, rapid response to treatment, less negative symptom severity, 

better premorbid function, superior cognition function, and female gender, among 

others (Flyckt, Mattsson, Edman, Carlsson, & Cullberg, 2006; Valencia et al., 2015). 

 

1.2.4. Brain pathophysiology 

Schizophrenia has been associated with altered brain structure and function. 

Neuroimaging studies have shown brain volume reduction, particularly affecting 

frontal lobe and hippocampus grey matter, lateral ventricular enlargement, and focal 

alteration of white matter tracts (Ellison-Wright & Bullmore, 2009; Glahn et al., 2008; 

Haijma et al., 2013). Follow-up studies show that some of these brain alterations, such 

as decreased grey matter volume (Cahn, Pol, Lems, van Haren, Schnack, van der 

Linden, Schothorst, van Engeland, & Kahn, 2002; Vita, De Peri, Deste, & Sacchetti, 

2012) or thalamic connectivity abnormalities (Chan et al., 2022), may be progressive, 

being already present in an early stage of the illness and related to the disease process 

and antipsychotic medication. On the other hand, most neurochemical studies have 

shown increased dopamine synthesis and release, and increased resting-state 

dopamine concentrations (Guillin, Abi-Dargham, & Laruelle, 2007; McCutcheon, Beck, 
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Jauhar, & Howes, 2018). These findings, coupled with the fact that the main treatment 

of schizophrenia is based on the use of antipsychotic drugs which block dopamine D2 

receptors (Kapur, Agid, Mizrahi, & Li, 2006), support the well-known dopamine 

hypothesis of schizophrenia. Finally, functional magnetic resonance imaging (fMRI) 

studies have shown alterations in brain during rest and in response to cognitive tasks. 

In this way, schizophrenia has been associated with mixed results of both 

hypofrontality and hyperfrontality (Callicott et al., 2003; Hill et al., 2004; Minzenberg, 

Laird, Thelen, Carter, & Glahn, 2009) (i.e., reduced and increased frontal activity, 

respectively). Moreover, other studies have shown a failure of deactivation in the 

medial frontal cortex during cognitive tasks (Pomarol-Clotet et al., 2008; Salgado-

Pineda et al., 2011), considered a key region of the default mode network. 

While some of these brain alterations have been widely replicated, they are not 

sensitive nor specific enough to be of diagnostic usefulness (Allen, Griss, Folley, 

Hawkins, & Pearlson, 2009; Palaniyappan, 2017). Moreover, there seems to be a great 

gap between these biological alterations and the symptoms reported by patients. 

Finally, it is also worth noting that some evidence exits about the fact that 

antipsychotic treatment, among other factors, potentially contributes to the wide 

range of brain structural alterations in psychosis (Navari & Dazzan, 2009). This should 

be considered in the interpretation of neuroimaging findings.  

 

1.3. The need for a paradigm shift 

As addressed in previous sections, there is a great heterogeneity within what is now 

known as schizophrenia. This heterogeneity encompasses a wide range of clinical 

aspects, including symptomatology, etiology factors, illness course, and treatment 
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response, among others. Moreover, after years of research, there is still not a basic 

understanding of the pathophysiological underpinnings of schizophrenia. One reason 

behind this landscape could be that the study of schizophrenia has traditionally been 

inadequately approached. In the last decades, there have been solid proposals for a 

change in how psychotic disorders are approached, from both a clinical and research 

perspective. Among these proposals, it is worth highlighting those which defend the 

view that psychosis should no longer be regarded as an all-or-none entity but rather as 

a continuum or quantitative trait distributed across the population (Johns & Van Os, 

2001; Kendell, 1991). According to this view, the distribution of psychotic traits in the 

general population would follow a half-normal distribution, with the majority 

proportion of population having very low values and a small proportion having non-

zero values (Johns & Van Os, 2001). A more recent proposal is the Research Domain 

Criteria Project (RDoC) proposed by the US National Institute of Mental Health 

(Cuthbert & Insel, 2010). This proposal argues that research should cut across 

traditional disorder boundaries, in order to focus on the marked heterogeneity 

between and within psychotic disorders (Cuthbert & Insel, 2010). Moreover, it stands 

out that one of the greatest challenges in the research of psychotic disorders is to 

understand how the structural and functional brain alterations reported in 

schizophrenia translate into the symptoms of the disorder. Also in this line, some 

authors propose that behind the heterogeneity observed in schizophrenia could be the 

fact that this disorder is probably neither a single disease entity and nor is it a 

circumscribed syndrome (Tandon et al., 2009). It seems reasonable to think that 

schizophrenia is an “umbrella” concept with several different neurobiological causes, 

and what we consider to be schizophrenia might be several distinct conditions (Faden 
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& Citrome, 2023). Despite these proposals, the fundamental systems in which 

psychotic disorders have been addressed in recent years have been slightly or not 

updated. Thus, the following question arises: How can these proposals be translated 

into new research approaches? 

This doctoral thesis addresses this question by considering two important facts. First, 

the current formulation of the schizophrenia construct might be hampering the 

research process concerning the biological substrates of this syndrome (Molina & 

Blanco, 2013). Thus, a new research approach in line with this alternative 

understanding of the schizophrenia construct as a syndrome seems to be necessary. 

Second, probably due to the great heterogeneity and the poor understanding of the 

pathophysiological mechanisms of schizophrenia, the research has traditionally 

focused on biological processes far distant form the psychological functions altered in 

the syndrome. In this line, a shift in the focus of study seems to be required to bridge 

the gap between biological alterations and the symptoms reported by patients.  

1.3.1. An alternative study approach: biotyping 

The traditional view of schizophrenia as a unitary entity has led to a great body of 

research based on the comparison between healthy controls and patients diagnosed 

with schizophrenia. This research framework has assumed that the patients samples 

included in the studies are sufficiently homogeneous to allow the description, 

replication, and generalization of abnormalities to the ensemble of schizophrenia 

patients (Molina & Blanco, 2013). As reviewed before, there are numerous reasons to 

consider that schizophrenia encompasses a conglomeration of disease entities due its 

heterogeneity (Faden & Citrome, 2023; Molina & Blanco, 2013; Tandon et al., 2009). 

From such a deconstruction of the schizophrenia concept, this traditional research 
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approach may have hampered the identification of the biological underpinnings of this 

syndrome.  

Some alternative research approaches appear to be more suitable for addressing the 

great heterogeneity observed in schizophrenia syndrome. Data-driven methodologies 

are based on the clustering of patients based on their common alterations, regardless 

of clinical diagnosis. Among the advantages of these methodologies, the following can 

be highlighted: i) they enable the reconceptualization of schizophrenia as a syndrome 

that may have different subgroups with different substrates within it; ii) they allow the 

validation of the identified subgroups assessing their relationship with other clinical 

and biological measures than the ones used for the clustering; iii) they enable a more 

refined and specific clinical and functional outcome monitoring over time of the 

potentially identified subgroups; and iv) they could facilitate the development of new 

therapeutic targets based on the specific neurobiological alterations and clinical 

manifestations of the identified subgroups.  

Recent studies support the identification of different patients subgroups within 

schizophrenia applying this research approach on brain structural data (Holton, Chan, 

Brockmeier, Öngür, & Hall, 2023; Lubeiro et al., 2016; Planchuelo-Gómez, Lubeiro, 

Núñez, et al., 2020), functional outcomes related to network connectivity (Chan et al., 

2021), eeg-based neurophysiologic profiles (Hall et al., 2012; Qu et al., 2020), positive 

and negative symptoms (Hall, Holton, Öngür, Montrose, & Keshavan, 2019), and 

cognitive performance (Carruthers, Van Rheenen, Gurvich, Sumner, & Rossell, 2019; 

Clementz et al., 2016; Green, Girshkin, Kremerskothen, Watkeys, & Quidé, 2019; Van 

Rheenen et al., 2017; Weinberg et al., 2016). Taken together, these findings seem to 

point towards a more productive framework in the study of the schizophrenia 
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syndrome and therefore, this doctoral thesis aims to contribute to this line of biotyping 

research.  

1.3.2. Searching for a substrate closer to the altered function: the EEG and 

the inhibitory function 

As stated before, it seems to be a great gap between some of the most replicated 

brain alterations in schizophrenia, such as brain volume reduction or lateral ventricular 

enlargement, and the predominant altered function in this disorder (i.e., the mental 

function). This doctoral thesis proposes the study of some neurophysiological 

substrates closely related to that altered function, which are briefly revised in the 

following paragraphs.  

Complex mental contents, such as those altered in many individuals with 

schizophrenia, imply the coordinated work of different brain areas (Dehaene & 

Changeux, 2011; Varela, Lachaux, Rodriguez, & Martinerie, 2001), involving the 

synthesis and evolution of synchronized synaptic assemblies. These synaptic 

assemblies encompass the coordinated and reentrant activity of most cortical regions 

(Buzsáki & Draguhn, 2004; Varela et al., 2001), characterized by the synchronous (i.e., 

phase-locked) neuronal firing during a brief time. The synthesis and cancellation of the 

synaptic assemblies is only possible with an adequate inhibitory function, based on 

GABA interneurons (Buzsáki, 2006). As mentioned before in this introduction chapter, 

the GABA inhibitory system has been consistently reported to be functionally altered 

in schizophrenia (Gonzalez-Burgos et al., 2011; Lewis, Curley, Glausier, & Volk, 2012; 

Lewis et al., 2005). Moreover, it has been postulated that schizophrenia might be a 

disconnection disorder, with an impaired functional integration between neurons and 

brain areas as its central problem (Friston, 1998). Thus, it is reasonable to argue that 
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the synaptic assemblies’ synthesis and cancellation underlying complex mental 

processes might be hampered in schizophrenia patients, or at least in a significant 

group of them, due to an excitatory/inhibitory imbalance. Translating this perspective 

into the research field of schizophrenia would involve the assessment of both synaptic 

assemblies’ synthesis and the inhibitory function. The following paragraphs contain a 

brief description of how-to assess these parameters. 

The electroencephalogram is a good starting point to evaluate the underlying 

processes of mental contents, since it allows the assessment in vivo of the electrical 

oscillations originating from groups of synchronously firing pyramidal neurons. Among 

the many measures that can be derived from the electroencephalogram, two are 

particularly relevant within the framework of this doctoral thesis: Shannon Entropy 

(SE) and functional network parameters derived from graph theory. 

Shannon Entropy is a useful global index for quantifying the degree of disorder 

contained in an EEG signal. From its original definition as the average amount of 

information of a probability distribution (Shannon, 1948) it was extended to the EEG 

field in terms of power spectral density (PSD) (Inouye et al., 1991). It consists of an 

estimation of the EEG signal spectral content flatness (Scheeringa et al., 2011), with 

lower SE values reflecting a spectrum with a narrow frequency range (i.e., a more 

regular signal) and higher SE values reflecting a broader spectral content (i.e., a more 

irregular signal). These EEG frequency bands have been proposed to play a key role in 

the coordinated activity of different cortical regions (Kopell, Ermentrout, Whittington, 

& Traub, 2000; Von Stein, Chiang, & König, 2000; Womelsdorf et al., 2007). Thus, SE 

allows the evaluation of the underlying mechanisms of cognitive processing through 

the analysis of the average signal variability across different conditions and between 
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different groups. Using this parameter, previous studies have shown that the EEG 

signal becomes more regular (i.e., SE levels are reduced) during task performance but 

only in healthy controls, with schizophrenia patients showing a decreased task-related 

modulation (Bachiller et al., 2014; Gomez-Pilar, de Luis-García, Lubeiro, de Uribe, et al., 

2018; Molina et al., 2018). This decreased task-related modulation was associated with 

a basal hypersynchrony (Cea-Cañas et al., 2020; Gomez-Pilar, de Luis-García, Lubeiro, 

de Uribe, et al., 2018), and with an increased density of theta spectral power at 

baseline (Iglesias-Tejedor et al., 2022). It is worth noting that these alterations were 

unrelated to pharmacological treatment (Molina et al., 2020).  

Graph theory is a useful tool to assess the functional properties of the brain, which is a 

complex interconnected system (Bullmore & Sporns, 2009; Friston, 2011; Sporns, 

2009, 2018). Under this theory, the brain is regarded as a set of nodes interconnected 

by a set of edges (Bullmore & Bassett, 2011). Applying this to an EEG signal, nodes are 

represented by sensors while edges are the neural coupling (in terms of synchrony) of 

the signal recorded in these sensors. This neural coupling can be computed as means 

of phase-locking value (PLV) (Lachaux, Rodriguez, Martinerie, & Varela, 1999). Some 

useful parameters derived from graph theory have been proposed for the study of 

brain network connectivity patterns (Farahani, Karwowski, & Lighthall, 2019; Finotelli 

& Dulio, 2015; Sporns, 2018; Stam & Reijneveld, 2007). Among them (Gomez-Pilar, de 

Luis-García, Lubeiro, de la Red, et al., 2018; Rubinov & Sporns, 2010): i) network 

segregation by means of clustering coefficient, as it quantifies the ratio between the 

number of triangles in which a given node participates and the maximum possible 

number of triangles including that node; ii) network integration using path length, 

defined as the average of shortest distances for all possible pairs of nodes; and iii) 
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global synchrony of the network by means of connectivity strength, also known as 

density. Furthermore, it has been proposed that the brain networks have a small-world 

(SW) organization (Sporns, 2011; Yu, Huang, Singer, & Nikolić, 2008), characterized by 

a balanced integration (long-distance communication) and segregation (local areas 

communication) which could facilitate parallel information transmission (Finotelli & 

Dulio, 2015). In this framework, previous studies have reported a hyperactive 

functional connectivity of the brain network during the pre-stimulus window in a 

cognitive task in patients with schizophrenia compared to healthy controls (Bachiller et 

al., 2014; Cea-Cañas et al., 2020; Gomez-Pilar, de Luis-García, Lubeiro, de Uribe, et al., 

2018). This finding was associated with smaller SE modulation (Gomez-Pilar, de Luis-

García, Lubeiro, de Uribe, et al., 2018) and higher positive symptoms (Gomez-Pilar, de 

Luis-García, Lubeiro, de la Red, et al., 2018). Moreover, SW organization has also been 

found to be altered in patients with schizophrenia (Gomez-Pilar et al., 2017; Shim, Kim, 

Lee, & Im, 2014).  

Finally, as stated before, an adequate inhibitory function seems necessary in order to 

keep an excitatory/inhibitory balance that makes the coordinated activity between 

different regions possible. The inhibitory status of the cortex can be assessed in vivo 

using a combination of transcranial magnetic stimulation and EEG. Concurrent TMS-

EEG has emerged in recent years as a powerful tool to study neural mechanisms which 

are not readily accessible with other neuroimaging techniques (Farzan & Bortoletto, 

2022). TMS technique is based on the Faraday’s law of induction of electric current by 

means of a time-varying magnetic field (Hallett, 2000). When a TMS pulse is applied to 

the scalp, an electrical current runs through the TMS coil inducing a time-varying 

magnetic field perpendicular to the coil which in turn induces an electrical field parallel 
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to the coil in the brain tissue stimulated. Thus, time-locked depolarization of the 

underlying neurons is obtained, and this activity can be recorded by means of EEG 

electrodes placed on the scalp (Tremblay et al., 2019). By manipulating the number, 

frequency, and interval between TMS pulses different brain physiological mechanisms 

can be proved (Mehta, Naik, Thanki, & Thirthalli, 2019). Recent systematic reviews of 

TMS-EEG studies reveal deficits in both excitatory and inhibitory functions, neural 

oscillations, connectivity, and motor cortical plasticity in schizophrenia patients 

compared to healthy controls (Di Hou, Santoro, Biondi, Shergill, & Premoli, 2021; Li et 

al., 2021; Vittala, Murphy, Maheshwari, & Krishnan, 2020). More specifically, the 

inhibitory function of the cortex has been assessed using both single- (Du et al., 2018; 

Ferrarelli, Riedner, Peterson, & Tononi, 2015; Fitzgerald et al., 2003) and paired-pulses 

(Farzan et al., 2010, 2009) paradigms. In this line, an altered GABAergic-mediated 

neurotransmission in the dorsolateral prefrontal cortex (DLPFC) has been reported in 

schizophrenia patients compared to healthy controls (Farzan et al., 2010, 2009; Noda 

et al., 2017; Radhu et al., 2015).  

In the present doctoral thesis, a cross-diagnostic research approach using data-driven 

methodologies and combining the above-described measures with other relevant 

variables revised in this introduction chapter is proposed as a more constructive and 

hopeful framework for studying the underlying mechanisms and new therapeutic 

targets for potential subgroups within the schizophrenia syndrome. 
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Chapter 2  

Aims and Hypotheses 

2.1. Aims 

General Aims 

The general aims of this thesis were threefold: 

1. To explore the existence of patients subgroups within schizophrenia, 

characterizing these potentially resulting subgroups with demographic, clinical, and 

biological data. 

2. To follow-up outcomes of the identified patients subgroups in the medium 

term, to give them additional external validity. 

3. To assess the association between task-related cortical activity modulation and 

the inhibitory system function in vivo in schizophrenia patients and healthy controls.  

Specific Aims 

The following specific aims were derived from the general ones:  

1. To explore the existence of patients subgroups based on i) cognitive data and ii) 

the global functional network properties of the electroencephalogram and their 

modulation during cognitive activity using a statistical data-driven approach. 

2. To validate the resulting subgroups of patients using demographic (i.e., sex 

distribution, age, and education level), clinical (i.e., illness duration, lifetime 

hospitalizations, medication dosage, and symptoms), and biological (i.e., eeg functional 

network properties, frontal connectivity, cortical thickness, and subcortical volumes) 

data.  
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3. To assess the clinical and real-life outcomes in two different time points after 

patient’s inclusion in the cognitive subgroups study, assessing the following data: job 

tenure, treatment compliance, number of readmissions in psychiatric wards, alcohol or 

other drug abuse, clozapine prescriptions, presence of satisfactory interpersonal 

relations, and clinical monitoring. 

4. To replicate the task-related cortical activity modulation deficit previously 

reported in schizophrenia patients. 

5. To assess the inhibitory system function in schizophrenia patients and healthy 

controls using a combination of TMS-EEG.  

2.2. Hypotheses 

1. Different patients subgroups will be identified using a data-driven approach 

based on cognitive and functional EEG network properties data. 

2. The identified subgroups of patients will show differences in the clinical and 

biological variables described before.  

3. Subgroups characterized by different cognitive profiles will differ in the medium 

term in their clinical and real-life outcomes. 

4. Our results will replicate the task-related activity modulation deficit previously 

reported in schizophrenia patients. 

5. The replicated decreased task-related activity modulation will be related to a 

hypofunction of the inhibitory system in schizophrenia. 

6. The association between EEG modulation and the inhibitory system function 

will differ dimensionally rather than categorically between patients with schizophrenia 

and healthy controls.  
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Chapter 7 

Discussion 

This doctoral thesis has focused on the large heterogeneity observed after decades of 

research among schizophrenia patients. Taken together, the findings of the studies 

included here support the utility of using data-driven approaches for addressing this 

large heterogeneity. It demonstrates the possibility of identifying meaningful 

subgroups within the schizophrenia syndrome, classifying patients based on their 

common alterations regardless their clinical diagnosis. Moreover, the present doctoral 

thesis contributes to bridge the gap between biological alterations and the symptoms 

reported by patients, by focusing on the study of underlying mechanisms closer to the 

altered function described in the schizophrenia syndrome. As a whole, these findings 

may contribute to shed light into the lack of consistent research findings replication in 

the field and emphasize the need of change in the traditional way in which the 

psychiatric disorders’ classification has been approached. 

In the first study, we were able to identify two subgroups of patients within the 

schizophrenia syndrome based on cognitive performance. Results revealed a group 

with severe cognitive impairment and another group with moderate cognitive 

impairment with different biological underpinnings. The severely impaired group was 

characterized by lower thalamus and hippocampus volume, prefrontal connectivity 

alterations assessed with DTI, a hypersynchronic basal EEG state, and higher illness 

duration and symptom scores. Going beyond these distinctive characteristics, both 



 

28 
 

patients subgroups showed lower cortical thickness and task-related modulation 

deficits compared to healthy controls.  

In the second article, using EEG-based network parameters derived from graph theory 

obtained during an auditory oddball task, we could identify two subgroups of patients 

within the schizophrenia syndrome. One subgroup showed an EEG network pattern 

similar to healthy controls. The other subgroup was associated with altered global 

properties of functional and structural connectivity. As in the first study, both 

subgroups of patients showed regionally decreased cortical thickness and modulation 

deficits of their EEG activity during a cognitive task.  

Considering together both studies, it can be highlighted that data-driven approaches 

seem to be a more suitable approach to encompass the large heterogeneity among 

patients within the schizophrenia syndrome. Thus, it is important to note that a study 

of the clinical, cognitive, and neurobiological underpinnings of these patients from a 

more classical approach (i.e., pooling them as a homogeneous group and comparing 

them with healthy controls) would have led to incorrect and inconclusive findings. 

Moreover, both studies have followed some important recommendations from 

classical proposals for changing the way in which psychotic disorders have been 

traditionally approached. First, both have incorporated additional validity to 

subgroups’ identification by characterizing them with other clinical and biological 

measures than the ones used for clustering. Second, using a cross-diagnostic approach, 

both studies have contributed to cut across traditional psychotic disorders’ boundaries 

to better understand the great heterogeneity between and within them. In this line, 

both studies have included not only patients with schizophrenia but also patients with 

bipolar disorder. These latter patients were included due to the strong evidence of 
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shared genetics (Cardno & Owen, 2014; Van Den Bogaert, Del-Favero, & Van 

Broeckhoven, 2006), clinical features (Tamminga et al., 2013), and cognitive deficits 

(Hill et al., 2013) between schizophrenia and bipolar disorder patients. Thus, it seems 

reasonable to include both diagnoses within a global psychosis spectrum. Remarkably, 

results of both studies showed that patients did not group themselves based in 

diagnostic categories, with each diagnosis being represented in all the identified 

subgroups. In this line, certain anatomical and functional brain abnormalities seem to 

occur in patients within different diagnostic categories. Furthermore, patients within 

the same diagnostic category can differ in their clinical and neurobiological underlying 

mechanisms. Finally, from the biotyping research framework it has been suggested the 

need for following-up the identified subgroups in terms of clinical and functional 

outcomes in order to assess their external validity.  

Regarding the last point, the third article included in this doctoral thesis aimed to 

assess the clinical and functional outcomes of the subgroups identified in the first 

study. Results revealed that the subgroup with larger cognitive deficits and more 

severe biological alterations was associated with more difficulties in real-life 

functioning and greater clinical severity in the medium term. Specifically, patients 

included in that subgroup showed a decreased capacity for job tenure, more 

admissions to psychiatric wards, and higher likelihood for quitting psychiatric follow 

up. 

Finally, the fourth study explored the underpinnings of the decreased task-related 

activity EEG modulation observed in the subgroups identified in the first two studies. 

The results showed that schizophrenia patients showed higher cortical reactivity 

following transcranial magnetic stimulation single pulses over the left dorsolateral 
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prefrontal cortex compared to healthy controls. Moreover, this study highlights a 

potential relationship between EEG signal modulation during a cognitive task and the 

amplitude of the evoked response to TMS single pulses in both healthy controls and 

patients. In other words, the higher amplitude of the evoked response to TMS 

stimulation was related to a decreased task-related modulatory capacity of the EEG.  

In the following sections, the findings of the studies included in this doctoral thesis are 

discussed and integrated in light of previous literature in the field.  

7.1. Cognitive subtypes across schizophrenia syndrome 

A broad-based cognitive impairment has previously described in schizophrenia, 

especially affecting attention, processing speed, working and long-term memory, 

executive function, and social cognition (Fioravanti et al., 2005; van Os & Kapur, 2009). 

However, this cognitive domain is not free from heterogeneity either, varying to 

different degrees among patients with schizophrenia (Keefe, Eesley, & Poe, 2005; 

Saykin et al., 2005). Some of these alterations are also shared with other psychotic 

disorders such as bipolar disorder (Hill et al., 2013). Considering this heterogeneity, the 

use of cognitive features as the target of subtyping within the psychosis spectrum is 

promising. Furthermore, it seems a good starting point for further revealing the 

neurobiological underpinnings of the potential resulting subgroups, since the average 

sizes for cognitive alterations are about twice as large as those obtained for brain 

alterations (Dickinson, Ramsey, & Gold, 2007; Keshavan et al., 2008; Reichenberg & 

Harvey, 2007). Thus, in the last decades, a growing number of studies have used this 

approach to delineate genetic (Green et al., 2013; Hall et al., 2012; Hallmayer et al., 

2005) and brain alterations (Shepherd et al., 2015; Van Rheenen et al., 2018) common 
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to schizophrenia patients within subgroups defined by cognitive impairments. The first 

article included in this doctoral thesis adds to this research line. 

There is no clear consensus regarding the number of cognitive subtypes existing in the 

schizophrenia syndrome. Attending to cognitive subtyping studies including only 

patients with schizophrenia, the most common finding is a 3-cluster solution, including 

a relatively intact, intermediate, and severely impaired group (Bechi et al., 2019; 

Carruthers et al., 2019; Gilbert et al., 2014; Van Rheenen et al., 2017; Wells et al., 

2015). Nevertheless, there are several other studies revealing a 4-cluster (Gambini, 

Campana, Garghentini, & Scarone, 2003; Hill, Ragland, Gur, & Gur, 2002; Rangel et al., 

2015; Weinberg et al., 2016) or even a 5-cluster solution (Dawes, Jeste, & Palmer, 

2011). However, the study with the largest sample yielded a two cognitive cluster 

solution (Green et al., 2013), as in our study. Cross-diagnostic cluster studies do not 

seem to solve this inconsistency of results, with most finding a 4-cluster solution (Bora, 

Veznedaroğlu, & Vahip, 2016; Lewandowski, Sperry, Cohen, & Öngür, 2014;  

Lewandowski, Baker, McCarthy, Norris, & Öngür, 2017; Reser, Allott, Killackey, Farhall, 

& Cotton, 2015) but being very few to draw solid conclusions. 

A recent systematic review highlighted this disagreement regarding the findings of 

cognitive subtyping studies in schizophrenia (Green, Girshkin, Kremerskothen, 

Watkeys, & Quidé, 2020). The main reason behind this inconsistency is likely due to 

the large range of sample sizes and different statistical approaches used for clustering 

procedures. Despite this, a severely impaired subtype with larger cognitive 

impairments is common to all cluster solutions (Green et al., 2020), as the one 

identified in our study. 
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Consistent with previous findings of cross-diagnostic studies mixing schizophrenia and 

bipolar disorder patients (Bora et al., 2016; Lewandowski et al., 2014; Lewandowski et 

al., 2017; Reser et al., 2015; Van Rheenen et al., 2017), our results revealed a greater 

proportion of bipolar disorder patients being allocated to the cognitively moderately 

impaired subgroup. Moreover, our severely impaired subgroup was associated with 

lower educational attainment and more severe symptoms, which is also in agreement 

with previous findings in the field (Bora et al., 2016; Lewandowski et al., 2014; 

Lewandowski et al., 2017). 

In the framework of subtyping studies it is important to rule out that results are driven 

by chronicity or treatment. In our study, the sample included first episodes of 

schizophrenia to control for chronicity as a major contribution to the solution. 

Although patients in the severely impaired group were associated with higher illness 

duration due to a larger representation of chronic patients in this group, first episode 

patients were represented in both subgroups, suggesting that chronicity is not likely 

driving our results as a major factor. Furthermore, our results are in line with other 

studies in the field revealing similar impaired cognitive profiles in first episode patients 

and chronic patients (Sauvé et al., 2018). Finally, the effect of treatment could be ruled 

out since our analysis revealed that both cognitive subgroups did not differ in 

treatment dosage, nor were the correlations between antipsychotic doses and 

cognitive scores significant.  

The neurobiological underpinnings of cognitive subtypes in schizophrenia have 

received little attention to date. Our study not only adds to the subtyping research 

field but also seeks to enrich it by providing a wider range of variables for the biological 

characterization of the resulting cognitive subgroups. We observed that patients 
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within the severely impaired group were associated with more prominent brain 

structural and functional abnormalities. This pattern of findings is consistent with 

previous studies also reporting decreased grey matter volumes, specially affecting the 

hippocampus, thalamus, and frontal and temporal lobes in the more deteriorated 

cognitive subgroups (Clementz et al., 2016; Shepherd et al., 2015; Van Rheenen et al., 

2018; Weinberg et al., 2016; Woodward & Heckers, 2015). Regarding 

neuroanatomical-based biotyping studies, our findings are also in line with previous 

reports of subgroups of patients showing higher cortical curvature and lower cortical 

thickness (Lubeiro et al., 2016) and global cortical thinning associated to cognitive 

deficit (Planchuelo-Gómez, Lubeiro, Núñez-Novo, et al., 2020). Taken together, these 

studies give support to the idea that not all schizophrenia patients but some cases 

within the syndrome may be characterized by biological substrates traditionally 

attributed to schizophrenia as a whole, such as hippocampal or thalamic volume 

reductions. Thus, these kinds of studies may contribute to a better understanding of 

the heterogeneity within psychosis and their neurobiological underpinnings. They 

could also raise the possibility of defining new biomarkers and developing new and 

personalized treatments.  

7.2. Functional network EEG subtypes across schizophrenia syndrome 

As stated before, higher mental functions depend on global cerebral functional 

coordination (Dehaene & Changeux, 2011; Varela et al., 2001). EEG and graph-theory 

measurements are a useful tool for assessing functional and structural characteristics 

of the bioelectrical signal underlying mental functions (Bullmore & Sporns, 2009). Since 

mental activity is altered in patients with schizophrenia, we decided to explore the 

possible existence of groups of patients based on EEG-based network parameters 
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derived from graph-theory and obtained during a cognitive task. As far as we now, 

there are no previous studies exploring the existence of different subgroups within the 

psychosis spectrum based on the global network properties of the EEG during a 

cognitive task.  

Applying graph-theory to EEG data recorded during the same odd-ball task used in this 

thesis, our research group has found several baseline alterations in schizophrenia 

patients as a whole. We described higher CLC values at the pre-stimulus window (i.e., a 

hyper-segregated network) and a decreased modulation of the functional connectivity 

during cognition in patients with schizophrenia (Gomez-Pilar et al., 2017). Besides, we 

also reported higher CS values at the pre-stimulus window (i.e., a hypersynchronic 

basal state) in schizophrenia patients compared to healthy controls (Gomez-Pilar, de 

Luis-García, Lubeiro, de la Red, et al., 2018; Gomez-Pilar, de Luis-García, Lubeiro, de 

Uribe, et al., 2018) and bipolar disorder patients (Cea-Cañas et al., 2020). Later on, we 

were able to refine these results through the first article included in this doctoral 

thesis, showing that the higher CS previously described in schizophrenia patients as a 

whole was only characteristic of the cognitively severely impaired subgroup 

(Fernández-Linsenbarth et al., 2021). In agreement with these results, a previous 

report showed that patients with schizophrenia showing impaired working memory 

capacity were associated with decreased functional connectivity between DLPFC and 

other areas compared to healthy controls and the remaining patients (Wu et al., 2017). 

Considering these findings and the heterogeneity previously described in 

schizophrenia, it was reasonable to think that functional network alterations could be 

more severe in a subgroup of patients, which encouraged us to study the possible 

existence of subgroups based on these EEG parameters. 
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Our results confirmed this hypothesis, showing a subgroup of patients with a pattern 

of functional EEG network properties similar to healthy controls and other subgroup of 

patients with a global impaired functional EEG network (i.e., higher prestimulus CS, 

CLC, PL, and lower SW index compared to healthy controls). Although cortical thickness 

was regionally decreased in both subgroups, this decrease was more widespread in the 

subgroup with altered global functional connectivity properties. As in our first study, 

the effect of treatment and chronicity could be ruled out since no significant 

differences in antipsychotic dosages nor illness duration were found between 

subgroups.  

Contrary to our hypothesis, subgroups based on functional network characteristics did 

not differ in their symptoms scores or cognitive performance. As stated in the article, 

depending on the clustering criteria the resulting subgroups’ correlates may differ 

slightly, which leads to opening the debate about whether there are variables that may 

be more suitable for biotyping studies. Nonetheless, the results of our study suggest 

that both normal and altered EEG network characteristics may be associated with 

similar degrees of cognitive alteration and symptoms manifestations. In fact, this 

pattern of results is consistent with the biological heterogeneity of schizophrenia 

substrates (Arnedo et al., 2015; Molina & Blanco, 2013; Volk et al., 2012). In this line, 

similar clinical manifestations and cognitive impairments might have different 

underlying brain substrates. Our results suggest that one of such substrates may relate 

to an alteration of the functional network but only in a subgroup of patients within the 

schizophrenia syndrome. Perhaps the clinical and cognitive manifestations of other 

potential subgroups, such as the other identified in our study, may have different 

underlying substrates that cannot be reflected in the analysis of the functional 
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architecture of the EEG. One of such possible alternative underlying substrates could 

be a biochemical disbalance based in inhibitory function alterations. This idea 

encouraged us to design the fourth article included in this doctoral thesis, in which 

both the properties of the EEG and the GABAergic inhibitory function were studied as a 

possible substrate of the altered function in schizophrenia patients.   

7.3. Clinical outcome and real-life adaptation of cognitive subtypes 

Cognitive impairments in schizophrenia constitute one of the main obstacles to clinical 

and functional recovery (Harvey et al., 2022). Some previous reports propose 

neurocognition as a predictor of everyday functioning in patients with schizophrenia, 

independently of positive and negative symptoms (Galderisi et al., 2014; Mucci et al., 

2021; Stirling et al., 2003). Previous reports support a relation between cognitive 

performance and functional outcome in schizophrenia patients (Gold, Goldberg, 

McNary, Dixon, & Anthony Lehman, 2002; Green, Horan, & Lee, 2019; Green et al., 

2000). Specifically, different aspects of neurocognition have been related to subjective 

quality of life (Kurtz & Tolman, 2011), work skills (Mucci et al., 2021; Oomen et al., 

2021), job tenure (Gold et al., 2002), real-world social functioning (Deste et al., 2020), 

satisfaction with family and social contacts (Fujii et al., 2004; Milev et al., 2005), and 

with adherence to antipsychotic treatment (García et al., 2016) in schizophrenia 

patients.  

As stated in the introduction chapter, current pharmacological options have limited 

effects on cognition, with some side-effects even aggravating some of these deficits 

(Kaar, Natesan, McCutcheon, & Howes, 2020). It’s worth noting that despite patients 

with greater cognitive impairments are associated with more psychiatric follow-up and 

treatment compliance than patients with milder cognitive impairments, their 
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functional outcome is worse. Perhaps it would be interesting to consider a treatment 

design more focused on functional rehabilitation (such as cognitive remediation) and 

not so much on psychiatric follow-up in those patients with more cognitive 

impairment. Although cognitive remediation programs show significant benefits on 

cognition, there is a high inter-individual variability among patients in the 

improvement degree and generalization to daily functioning (Deste et al., 2020; 

Kharawala et al., 2022). Furthermore, there are other studies that do not support the 

proposed association between cognitive performance and functional outcome 

(Reichenberg et al., 2014). This scenario is consistent with growing evidence suggesting 

the existence of different subgroups within the psychosis spectrum based on cognitive 

performance (Bora et al., 2016; Lewandowski et al., 2014; Lewandowski et al., 2017; 

Reser et al., 2015; Shepherd et al., 2015; Van Rheenen et al., 2018) and also with the 

idea that those potential cognitive subgroups may differ in their clinical outcomes and 

social functioning. In fact, one of the proposed future research lines in the article of 

cognitive subtypes was to better clarify the resulting subgroups in terms of disease 

outcome profiles, treatment response, and stability over the time. This led us to carry 

out the third article included in this doctoral thesis, exploring the real-life outcomes of 

the cognitive subgroups identified in that first article. Taken together, the results of 

the third article included in this doctoral thesis confirmed our hypothesis, revealing 

more difficulties in real-life functioning and greater clinical severity in the subgroup of 

patients with more severe cognitive deficits. 

As stated in the introduction section, among the advantages of data-driven 

methodologies is the fact that they allow the validation of the resulting subgroups by 

assessing their relationship with other biological and clinical variables than the ones 
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used for the clustering. To the best of our knowledge, no previous studies have 

explored the functional and clinical outcomes of cognitive subgroups within the 

psychosis spectrum. Thus, a conclusion that can be derived from the third article 

included in this doctoral thesis is that comparing real-life adjustment variables among 

the identified cognitive subgroups can be considered as an additional source of validity 

together with biological variables within biotyping studies.  

7.4. Changing the study focus: closer underlying mechanisms 

In previous reports of our research group, we have replicated in three different 

samples a deficit in EEG activity modulation during a cognitive task in schizophrenia 

patients compared to healthy controls (Bachiller et al., 2014; Gomez-Pilar, de Luis-

García, Lubeiro, de Uribe, et al., 2018; Molina et al., 2018). In other words, spectral 

entropy levels are reduced (i.e., EEG signal becomes more regular) during task 

performance, but only in healthy controls. This lower modulation has been associated 

with higher pre-stimulus connectivity strength (Cea-Cañas et al., 2020; Gomez-Pilar, de 

Luis-García, Lubeiro, de Uribe, et al., 2018), and with an increased density of theta 

spectral power at baseline (Iglesias-Tejedor et al., 2022). The task-related modulation 

deficit has been shown to be unrelated to psychopharmacological treatment or 

structural connectivity (Molina, Lubeiro, de Luis-García, & Gómez-Pilar, 2020). 

Moreover, spectral entropy modulation with task performance was found to be 

decreased not only in patients with schizophrenia but also in patients with bipolar 

disorder, leading to propose it as a biomarker for the altered function in these 

disorders (Molina et al., 2020). This task-related EEG modulation deficit might reflect 

alterations in the synchronization of the neural assemblies that underlie cognitive 

activity. Consistent with these previous findings, three out of the four articles included 
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in this doctoral thesis replicate this EEG modulation deficit during cognitive activity. 

Thus, the two subgroup studies demonstrate that, regardless the clustering criteria, all 

the identified clusters were associated with a spectral entropy modulation deficit 

during a cognitive task, and the last article replicates this result once again in a 

completely new sample. Taken together, the results of these articles provide 

robustness to the previous findings.  

A possible neurophysiological substrate of these findings may be related to a 

decreased inhibitory function previously described in schizophrenia. Several post-

mortem studies have shown GABAergic deficits in patients with schizophrenia, in 

terms of decreased GABA concentrations (Perry, Kish et al., 1979), reduced GABAB 

receptors expression (Mizukami, Ishikawa et al., 2002; Mizukami, Sasaki et al., 2000), 

and decreased interneurons density (Benes, 1991). Moreover, several EEG-based 

studies have identified alterations in gamma frequency oscillations in patients with 

schizophrenia (Hunt, Kopell, Traub, & Whittington, 2017). This gamma frequency 

oscillations are produced by the firing patterns of parvalbumin-expressing fast-spiking 

inhibitory interneurons (Vittala et al., 2020), playing a key role in the 

excitatory/inhibitory balance of the brain.  

Recent studies using TMS-EEG have made a great contribution in understanding the 

pathophysiological bases of schizophrenia (Di Hou et al., 2021; Li et al., 2021; Vittala et 

al., 2020). Specifically, previous studies have reported decreased short-interval and 

long-interval cortical inhibition (SICI and LICI, respectively) in the DLPFC of patients 

with schizophrenia, suggesting GABAA and GABAB receptor-mediated dysfunctions in 

this region (Farzan et al., 2010, 2009; Noda et al., 2017; Radhu et al., 2015). 

Furthermore, reduced connectivity between the premotor cortex and prefrontal 
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cortex (Ferrarelli et al., 2015) and reduced TMS-induced gamma oscillations in fronto-

central regions (Ferrarelli et al., 2008) have been found in patients with schizophrenia. 

In line with these results, another study reported increased cortical inhibition in 

clozapine treated schizophrenia patients (Daskalakis, Farzan, Radhu, & Fitzgerald, 

2012). Our finding of higher cortical reactivity following TMS single pulses over the 

DLPFC in patients with schizophrenia is consistent with the inhibitory function 

alterations described in previous TMS-EEG studies stated above. They are also in 

agreement with the inverse correlation between cortical reactivity after TMS 

stimulation and EEG modulation that we found both in patients and healthy controls in 

our last article.  

Although the last article included in this doctoral thesis is a pilot study and its sample 

size is not large enough to allow a data-driven approach, it makes an important 

contribution in changing the focus of the traditional biological processes studied in the 

schizophrenia field, which are far distant from the psychological functions known to be 

altered. The EEG modulation during a cognitive task as a proxy of the synaptic 

assemblies’ synthesis and dissolution, and the GABAergic inhibitory function as a 

mechanism that allows proper neural assemblies evolution, seem to constitute 

underlying biological mechanisms closely related to the altered function of psychiatric 

disorders such as schizophrenia, i.e., the mental contents. 

7.5. Limitations of the study 

This doctoral thesis has some limitations that should be noted: 

First, all patients included were under antipsychotic medication. This lack of untreated 

patients makes not possible to completely discard an effect of treatment on the 

measured variables. However, this effect was controlled by using correlation analysis 
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between antipsychotic dosages and relevant variables. Moreover, the inclusion of first 

episodes of schizophrenia and bipolar disorder patients aimed to discard possible 

treatment effects on the studied variables.  

Second, larger sample sizes would have been desirable. Also, some biological variables 

were not available in all subjects. Moreover, we experienced a high dropout’s rate in 

the third article. Nonetheless, it is important to note that the first article included in 

this thesis has the largest sample size and is the most relevant in terms of subgroups 

identification. Larger sample sizes would enhance the statistical power of the results, 

especially in the last article. It is important to note that sample collection from this last 

article started from zero, which was reflected in the small simple size.  

Third, subgroups of patients identified in the two firsts articles were compared with 

controls, considering the latter as a homogeneous population. However, as mentioned 

in the introduction section, some proposals argue for a dimensional approach on 

psychotic traits distribution across the population, including healthy controls. 

Fourth, concerning the first article included in this doctoral thesis, we did not replicate 

our findings in an independent sample to assure the generalization of the subgroups 

solution. Remarkably, we were able to do this replication analysis in our second article, 

including a main and a replication dataset.  

Fifth, in the subgroups studies we selected one data-driven method for subgroups’ 

identification (i.e., K-means cluster analysis). Results may slightly vary depending on 

the chosen data-driven method and the selected grouping variables. However, we 

tried to solve this employing different clustering methods to compare their 

classification results and we obtained similar findings, which gives robustness to our 

results. 
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Sixth, regarding the article studying real-life outcomes of the cognitive subtypes, our 

follow-up period was relatively short, and the different illness duration of the 

participants included is a potentially confounding factor when interpreting the results. 

Seventh, in relation to our last article included in this doctoral thesis, we did not use 

neuronavigation to localize the left DLPFC. However, following previous studies in the 

field, the coil was placed in a position that provides the most accurate estimation of 

this brain region. Besides, our study design cannot fully disentangle the contribution of 

excitatory vs. inhibitory mechanisms to the cortical reactivity following TMS pulses and 

thus to the EEG activity modulation during a cognitive task.  

In eighth place, EEG is not completely free of volume conduction. Although these 

effects were minimized by using a reference average approach and by comparing two 

experimental contrasts (i.e., pre-stimulus and response conditions), EEG results should 

be cautiously interpreted. However, it is important to note that these effects hamper 

mostly source localization analyses, and our network studies instead consider the 

global properties of cortical activity. 

Ninth, the thesis title is primarily restricted to the last article included in this doctoral 

thesis, not capturing the overall aims of the work.   

Finally, correlational analysis as the ones used in the included studies describe 

association but not causality.  



 

43 
 

Chapter 8 

Conclusions 

8.1. Main conclusions of the study 

Different subgroups with distinct neurobiological underpinnings could be identified 

within the psychosis spectrum. On one hand, using a data-driven approach we could 

segregate two subgroups of patients based on neurocognitive performance, including 

a severely impaired and a moderately impaired group. The severely impaired group 

was associated with more severe clinical manifestations and larger neurobiological 

alterations than the moderately impaired group. Furthermore, a medium-term follow-

up of the patients included in the cognition-based subgroup study gave additional 

validity to the identified subgroups. Results revealed that the subgroup with larger 

cognitive deficits and more severe biological alterations was associated with greater 

clinical severity and more difficulties in real-life functioning in the medium-term. On 

the other hand, also using a data-driven approach two different subgroups of patients 

could be identified within the psychosis spectrum based on the functional network 

properties of the EEG during a cognitive task. The results support the existence of a 

subgroup of patients with altered global properties of functional and structural 

connectivity. Taken together, these findings shed light on the significant heterogeneity 

and lack of replicability of results in the field of schizophrenia substrates. Likewise, 

they support the idea that schizophrenia is likely not a single disorder entity but a 

collection of several distinct conditions with different neurobiological underpinnings.  
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Additionally, in three out of four of the articles included in this doctoral thesis we 

replicated an EEG modulation deficit during cognitive activity in both schizophrenia 

and bipolar disorder patients. This deficit could reflect an alteration in the 

synchronization of the neural assemblies that underlie cognitive activity and states this 

variable as a possible biomarker of the altered function in these disorders. Our results 

are also in agreement with previous reports of a hypersynchronic basal state and 

inhibitory function alterations in patients with schizophrenia, revealing higher cortical 

reactivity following TMS single pulses applied over the left DLPFC. Finally, we were able 

to identify a dimensional association between the task-related EEG activity modulation 

and the amplitude of the evoked response to TMS single pulses in both healthy 

controls and patients, supporting the idea that a hypofunction of the inhibitory system 

could hamper the task-related modulation of EEG activity. These results shed light to 

physiological mechanisms closely related to the altered function in patients with 

schizophrenia.  

8.2. Future research lines 

• To continue exploring the utility of data-driven approaches. 

• To characterize the identified subgroups more deeply by using other types of 

variables such as childhood trauma, genetic, and/or functional spectroscopy 

data. 

• To include a treatment-naïve group of patients to completely discard the effect 

of treatment.  

• To perform longitudinal data-driven studies ideally focusing on the initial stages 

of the illness to better clarify potential subgroups in terms of disease outcome 

profiles, response to treatment, and stability over the time. 



 

45 
 

• To replicate the finding of an association between SE modulation and cortical 

reactivity following TMS single pulses in a larger sample. 

• To explore the possibility of identifying different subgroups of patients based 

on their cortical reactivity following TMS single pulses over the DLPFC. The 

identification of a potential subgroup with greater inhibitory deficits could aid 

in the development of more specific therapeutic targets. 

• To explore possible associations between the inhibitory system function 

assessed through TMS-EEG and other variables such as cognitive performance 

or symptom severity.  

• To study a possible change in cortical reactivity following TMS-EEG single pulses 

over the DLPFC in treatment resistant patients with schizophrenia before and 

after receiving clozapine.  

• To explore the association between the inhibitory function assessed through 

TMS-EEG and other neurophysiological parameters different from the auditory 

oddball paradigm, such as P50 elicited by sensory gating paradigm or the 

auditory-steady state response, which have been closer related to inhibitory 

mechanisms. 

• To enrich the design of our TMS-EEG study to be able to disentangle the 

contribution of excitatory vs. inhibitory mechanisms to the association between 

task-related EEG activity modulation and cortical reactivity following TMS single 

pulses. For example, through the use of paired-pulse paradigms such as LICI 

and SICI or by including measures of functional spectroscopy of GABA levels.  
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