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Background
There is increasing evidence for shared genetic susceptibility
between schizophrenia and bipolar disorder. Although genetic
variants only convey subtle increases in risk individually, their
combination into a polygenic risk score constitutes a strong
disease predictor.

Aims
To investigate whether schizophrenia and bipolar disorder
polygenic risk scores can distinguish people with broadly defined
psychosis and their unaffected relatives from controls.

Method
Using the latest Psychiatric Genomics Consortium data, we cal-
culated schizophrenia and bipolar disorder polygenic risk scores
for 1168 people with psychosis, 552 unaffected relatives and
1472 controls.

Results
Patients with broadly defined psychosis had dramatic increases
in schizophrenia and bipolar polygenic risk scores, as did their
relatives, albeit to a lesser degree. However, the accuracy of
predictive models was modest.

Conclusions
Although polygenic risk scores are not ready for clinical
use, it is hoped that as they are refined they could help
towards risk reduction advice and early interventions for
psychosis.
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Psychotic disorders affect approximately 4% of the general popula-
tion.1 Epidemiological and genetic studies show that they have high
heritability.2,3 A Psychiatric Genomics Consortium mega-analysis
of genome-wide association studies (GWAS) for schizophrenia
identified more than a hundred common single nucleotide
polymorphisms (SNPs) with small individual effects conferring sus-
ceptibility to the disorder.4 A similar mega-analysis for bipolar dis-
order, albeit with a more modest sample size, identified common
risk variants specific to bipolar disorder and some shared with
schizophrenia.5 Genetic epidemiology studies have shown that
when compared with controls, first-degree relatives of people with
schizophrenia have increased risk for bipolar disorder and first-
degree relatives of people with bipolar disorder have increased
risk for schizophrenia.6 GWAS have now provided molecular
evidence for this common genetic architecture between schizo-
phrenia and bipolar disorder.5,7–11 Psychotic disorders are highly
polygenic with thousands of contributing common genetic var-
iants.12,13 Although each individual variant has a very low predictive
power, their combination into a polygenic risk score (PRS)

represents a stronger predictor of disease.8,14–20 Our primary aim
was to evaluate whether PRSs specific for schizophrenia or bipolar
disorder, could discriminate case–control status in our sample of
patients with broadly defined psychosis. Our secondary aim was
to investigate whether PRSs were different in the unaffected relatives
of patients with broadly defined psychotic disorder compared with
controls.

Method

Sample description

Samples were collected at research centres across Europe and
Australia. Our study included patients with a range of psychotic
disorders (1168), unaffected relatives of patients (552) and healthy
controls with no personal or family history of psychosis (1472)
(Table 1). The sample presented here was included in previous
GWAS seeking to identify loci for schizophrenia or psychosis.
Details of sample overlap are provided in the supplement
(Supplementary Data 1; available at https://doi.org/10.1192/bjp.
2018.89).4,9,21 In order to avoid any inflation of the PRS effect size,
in each analysis we included only participants that were unrelated.
This was achieved by random exclusion of related participants.

* Authors who are members of the PEIC and GROUP consortia are
listed in the author box, with their affiliations in Supplementary
Appendix 1. Collaborators who are members of WTCCC2 are listed in
Supplementary Appendix 2.
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All participants provided written informed consent, and the
study was approved by the respective ethical committees at each
one of the participating centres.

Of the 1168 case participants in this study, 733 met criteria for
schizophrenia (62.8%), 59 for schizoaffective disorder (5.1%), 104
for psychotic disorder not otherwise specified (8.9%), 94 for schizo-
phreniform disorder (8%), 43 for brief psychotic disorder (3.7%), 19
for delusional disorder (1.6%), 7 for substance-induced psychosis
(0.6%) and 109 for bipolar disorder with psychotic features (9.3%)
(Table 1). Additional details are provided in Supplementary
Tables 1 and 2 available at https://doi.org/10.1192/bjp.2018.89.

DNA preparation, genotyping and imputation

Genomic DNA obtained from blood was sent to the Wellcome
Trust Sanger Institute (Cambridge, UK). Samples were genotyped
with the Genome-wide Human SNP Array 6.0 at Affymetrix
Services Laboratory as part of the Wellcome Trust Case Control
Consortium round 2 project (https://www.wtccc.org.uk/). Thereafter
the data quality control, imputation and statistical analyses were
conducted by K.L., J.T., S.C. and E.B. at University College London.
DNA preparation, genotyping and imputation are described in
more details in the supplement (Supplementary Data 2) and in
Bramon et al.9

Phenotype definition

Participants were excluded from the study if they had either a
history of neurological disease or head injury resulting in loss of
consciousness lasting more than 5 min. DSM-IV22 diagnosis was
ascertained using a structured clinical interview with one of the
following three instruments: the Schedule for Affective Disorders
and Schizophrenia, the Structured Clinical Interview for
DSM Disorders or the Schedules for Clinical Assessment in
Neuropsychiatry.23–25

Population structure analysis

To investigate the genetic structure in the data, we performed prin-
cipal component analysis using EIGENSOFT version 3.0 on a
pruned set of SNPs.26 We applied the following SNP pruning
filters on 695 193 SNPs, which remained after quality control: a
10% minor allele frequency, 10−3 Hardy–Weinberg equilibrium
deviation threshold and all SNPs within a 1500 SNP window had
to have r2 below 0.2 (window shift of 150 used). Thus, a subset of
71 677 SNPs was selected for principal component analysis26,27

and three ancestry covariate vectors were obtained.9 Plots can be
found in Supplementary Fig.1.

PRSs calculation

We calculated the PRSs separately for schizophrenia and for bipolar
disorder in all our study participants following established method-
ology.8,28,29 Odds ratios (ORs) of allelic association tests were
obtained from the most recent Psychiatric Genomics Consortium
mega-analysis of GWAS for schizophrenia4 and for bipolar dis-
order,5 excluding all samples overlapping with the current study.
For schizophrenia, the used discovery sample included 31 658
case participants and 42 022 controls, and for bipolar disorder, it
included 7481 case participants and 9250 controls.4,5 In each discov-
ery samples, SNPs were selected at ten significance thresholds
(PT<5 × 10–08, 1 × 10−06, 1 × 10−04, 1 × 10−03, 0.01, 0.05, 0.1, 0.2,
0.5, 1). Linkage disequilibrium pruning was used to identify SNPs
in linkage equilibrium with each other. The number of SNPs
included at each P-value threshold is shown in Supplementary
Table 4. In order to obtain PRSs in each individual, for each SNP
the number of risk alleles carried by the individual (0, 1, 2) was
multiplied by the log of the OR of the allelic association test. The
PRS was then calculated adding up the values obtained for each
SNP.

Statistical analysis

We used logistic regression, with the first three population structure
principal components and the centre of ascertainment of the
samples as covariates to test whether the PRSs were predictive of
case–control or relative–control status in our study. The proportion
of the variance explained by the PRS was calculated as Nagelkerke’s
pseudo-R2, by comparing a full model (PRS plus covariates) to a ref-
erence model (covariates only). The R package pROC30 was used to
calculate the area under the receiver operator characteristic curve
(AUC) in both the full and reference models.

In the primary analysis, the schizophrenia PRSs and the bipolar
disorder PRSs were compared between 1168 case participants and
1472 controls. In the secondary analysis, we split the 1168 case par-
ticipants with broadly defined psychosis into three subcategories,
depending on the DSM diagnosis: schizophrenia/schizoaffective
disorder, bipolar disorder and all other psychotic disorders. We
then compared both schizophrenia and bipolar disorder PRSs
between 552 unaffected relatives and healthy controls. See
Supplementary Table 5 for a breakdown of these secondary analysis
subgroups. In order to divide case participants and controls into
decile categories, we calculated Z-standardised PRSs, using the
mean and s.d. of controls in each centre.

Results

Analysis of PRSs in psychotic disorders

We calculated PRSs for schizophrenia and bipolar disorder in 1472
controls and 1168 people diagnosed with a range of psychotic dis-
orders. Density plots of schizophrenia and bipolar disorder PRSs
are shown in the Supplementary Fig. 2).

Using logistic regression, we found highly significant differ-
ences for both schizophrenia and bipolar disorder PRSs between
case participants with psychosis and controls (Table 2 and
Supplementary Table 6). The difference was greater for increasingly
liberal P-value thresholds (Table 2 and Supplementary Table 6).
Compared with the bipolar disorder PRSs, the schizophrenia PRSs
had a better ability to discriminate between case participants and
controls.

The proportion of the variance in psychosis risk explained
by the schizophrenia PRS increased with progressively more inclu-
sive P-value thresholds, reaching a plateau of 9% variance explai-
ned at the 0.05 P-value threshold (Nagelkerke’s pseudo-R2 = 9%;

Table 1 Demographics in the case participants, relatives and controls

Case
participants Relatives Controls

Age, years: mean(s.d.) 33.8 (10.2) 44.8 (15.5) 40.2 (14.3)
Gender, female: n (%) 386 (33) 343 (62) 763 (52)
Case participants,

subdiagnosis groups, n (%)
Schizophrenia 733 (62.8)
Schizoaffective 59 (5.1)
Bipolar disorder 109 (9.3)
Brief psychotic disorder 43 (3.7)
Delusional disorder 19 (1.6)
Drug-induced psychosis 7 (0.6)
Schizophreniform disorder 94 (8)
Psychotic disorder not

otherwise specified
104 (8.9)

Total n 1168 552 1472
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P = 7.6 × 10−40) (Table 2, Supplementary Table 6 and Fig. 1). At the
same P-value threshold the variance explained by the bipolar dis-
order PRS was only 1.7% (PT = 0.05, Nagelkerke’s pseudo-R2 =
1.7%) (Table 2, Supplementary Table 6 and Fig. 1). Results for all
the P-value thresholds used are reported in Fig. 1 and in the
Supplementary Table 6.

Given that 68% of our case participants had a diagnosis of
schizophrenia/schizoaffective disorder, to rule out the possibility
that the results obtained were driven by this subgroup, we tested
whether the schizophrenia and bipolar disorder PRSs were able
to discriminate between case participants and controls in each of
the three diagnostic subcategories included in our study (schizo-
phrenia/schizoaffective disorder combined, bipolar disorder or
other psychotic disorders). We demonstrated that even if the
discriminative ability of the schizophrenia PRS was highest in
the schizophrenia/schizoaffective disorder subcategory, it was
also able to discriminate case participants with either bipolar dis-
order or other psychotic disorders from controls with highly

significant group differences. At PT = 0.05 the variance in case–
control status explained by the schizophrenia PRS (Nagelkerke’s
pseudo-R2) in the bipolar disorder and other psychotic disorders
subcategory was 3.4%, providing evidence that our results were
not only driven by schizophrenia/schizoaffective disorder subcat-
egory (Table 3 and Supplementary Table 7).

To evaluate the accuracy of the schizophrenia and bipolar dis-
order PRSs in the detection of broadly defined psychotic disorders,
we calculated the AUC. For the model containing only covariates
(cohort and three population structure principal components) the
AUC was 0.63. Adding the schizophrenia PRS to the model
increased the AUC to 0.7, whereas adding the bipolar PRS increased
it to 0.65 (Supplementary Fig. 3).

We then divided our sample into deciles based on schizophrenia
and bipolar disorder PRSs and calculated the ORs for affected
status for each decile using as reference the central risk deciles
(fifth and sixth). As expected, we observed an increase in the
case-to-control ratio in progressively higher decile categories

Table 2 Comparison of schizophrenia and bipolar disorder polygenic risk scores between patients with psychotic disorders and controlsa

Polygenic risk score Polygenic risk score P-value thresholds

5 × 10−08 1 × 10−04 0.05 1

Schizophrenia
P-value 1.3 × 10−06 6.8 × 10−21 7.6 × 10−40 5.7 × 10−40

Variance explained, % 1.1 4.4 9 9
Bipolar disorder

P-value 0.6 0.25 2.8 × 10−09 5.7 × 10−11

Variance explained, % <0.1 <0.1 1.7 2.1

a. Schizophrenia polygenic risk scores and bipolar disorder polygenic risk scores were calculated using as reference, respectively, the outcome of the schizophrenia and bipolar disorder
mega-analyses conducted by the Psychiatric Genomics Consortium. We then compared the scores between 1168 case participants and 1472 controls using standard logistic regression at
ten different P-value thresholds (PT 5 × 10−08, 1 × 10−06, 1 × 10−04, 1 × 10−03, 0.01, 0.05, 0.1, 0.2, 0.5, 1). Regression models included the first three ancestry-based principal components and a
cohort indicator as covariates. For clarity, here we report P-values and the variance explained in disease risk asmeasured by Nagelkerke’s pseudo-R2 at four P-value thresholds (PT 5 × 10−08,
1 × 10−04, 0.05, 1). Results at each one of the ten different thresholds are available in Supplementary Table 6.
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Fig. 1 Percentage of the variance in disease risk explained by the schizophrenia and the bipolar disorder polygenic risk scores (PRSs). The
proportion of variance explained (calculated as Nagelkerke’s pseudo-R2) was computed by comparison of the full model (either schizophrenia-
based or bipolar disorder-based PRS plus covariates) to the reducedmodel (covariates only). As per standard procedures,4 (ten different P-value
thresholds (PT) were used to select risk alleles used in the computation of PRSs. The variance explained at each P-value threshold (5 × 10−08,
1 × 10−06, 1 × 10−04, 1 × 10−03, 0.01, 0.05, 0.1, 0.2, 0.5 and 1) is shown. Significance testing results are available in Supplementary Table S6.
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(Fig. 2 and Supplementary Table 8). Similarly, the odds of having
broadly defined psychosis increased progressively across PRS
deciles. Compared with individuals in the central deciles (fifth
and sixth), those at the tenth and highest decile had an OR for
psychosis of 3.53 (95% CI 2.53–4.97) for schizophrenia PRS
(Fig. 3 and Supplementary Table 9). For the bipolar PRS no differ-
ence was found between central and highest deciles (OR = 1, 95% CI
0.73–1.35) (Fig. 3 and Supplementary Table 9).

Analysis of PRSs in the unaffected relatives of people
with psychosis

Given the established heritability of psychotic disorders, we
evaluated whether schizophrenia and bipolar disorder PRSs could
discriminate between unaffected relatives, who had never
experienced any psychotic symptoms and healthy controls
(Supplementary Fig. 4). Compared with controls, unaffected rela-
tives had significantly higher PRSs both for schizophrenia (P =

1.2 × 10−4) and bipolar disorder (P = 2.1 × 10−2). Analyses at the
P-value threshold of 0.05 are shown in Table 3 and full details are
in Supplementary Table 7.

Discussion

In this study, we have shown that PRSs specific for schizophrenia or
for bipolar disorder obtained from a large international cohort are
also associated with broadly defined psychosis in an independent
sample. Compared with controls, patients with a range of psychotic
disorders have significantly higher PRSs for both schizophrenia and
for bipolar disorder. The schizophrenia and bipolar disorder PRSs
explained, respectively, 9 and 2% of the variance in psychosis risk,
which is substantial for a single variable.

The PRS for schizophrenia had a much better performance
than the PRS for bipolar disorder and this could be because of
several factors. First, the schizophrenia PRS contains a more

Table 3 Schizophrenia and bipolar disorder polygenic risk scores (PRSs) in the three diagnostic subgroups and in unaffected relatives v. controlsa

Clinical subgroups Schizophrenia PRS Bipolar disorder PRS

PT = 0.05 PT = 0.05

Schizophrenia/schizoaffective (n = 792) v. controls (n = 1472)
P-value 6.1 × 10−39 9.2 × 10−08

Variance explained, % 10.3 1.6
Bipolar disorder (n = 109) v. controls (n = 1058)

P-value 6.2 × 10−06 6.5 × 10−03

Variance explained 3.4 1.2
Other psychotic disorders (n = 267) v. controls (n = 1429)

P-value 1.2 × 10−08 1.2 × 10−03

Variance explained, % 3.3 1.0
Relatives (n = 552) v. controls (n = 1221)

P-value 1.2 × 10−04 2.1 × 10−02

a. Significance of the case–control PRS difference was analysed by standard logistic regression using different P-value thresholds (PT 5 × 10−08, 1 × 10−04, 0.05 and 1). Here, P-values and
Nagelkerke’s R2 obtained at PT = 0.05 are reported. Results at each one of the four different P-value thresholds (PT) are available in Supplementary Table 7. Logistic regression included the
first three ancestry-based principal components and a cohort indicator as covariates. We report the proportion of the phenotypic variance explained by the risk polygenic score asmeasured
by Nagelkerke’s pseudo-R2.
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accurate measure of genetic susceptibility, as it is derived from a
much larger discovery sample than the bipolar PRS.4,5 The last
Psychiatric Genomics Consortium schizophrenia meta-analysis
provided evidence that increasing the size of discovery
samples leads to a significant increase in the variance explained
by PRS.4,8, Second, our case participants with a range of psychotic
disorders included a majority of patients with schizophrenia and
schizoaffective disorder (68%), which drives these performance
results. However, our secondary analyses subdividing in three diag-
nostic categories, also showed a better performance for the schizo-
phrenia PRS in discriminating case participants with bipolar
disorder and other psychotic disorders from controls. Therefore,
the use of larger discovery sample sizes appears to be the best way
forward to further enhance the accuracy of PRS.8

GWAS have provided evidence for genetic overlap between
schizophrenia and bipolar disorder.5,7–11,14 Our findings add evi-
dence to the hypothesis of shared genetic architecture across the
psychosis spectrum, supporting a continuum model for the aeti-
ology of these disorders.31,32 The patients with bipolar disorder
included in this study had type I bipolar disorder with a history
of psychotic symptoms at some point in their illness. Therefore,
in our sample it was not possible to make any comparison of
schizophrenia and bipolar PRSs in patients with bipolar disorder
with and without psychotic features. A study just published
showed the existence of a gradient of schizophrenia PRSs across
bipolar disorder subtypes (bipolar disorder type I with psychosis
> bipolar disorder type I without psychosis > bipolar disorder
type II).33

Given the heritability and familial aggregation patterns in
schizophrenia and bipolar disorder, we expected unaffected relatives
to have higher PRSs than the general population.34–36 In a recent
study, Bigdeli et al showed that 217 healthy first-degree relatives
of patients with schizophrenia and healthy controls could be distin-
guished by schizophrenia PRSs.36 We replicated their findings using
an independent sample with 552 unaffected relatives of patients

diagnosed with a wide range of psychotic disorders. Furthermore,
we showed that the bipolar disorder PRS is significantly higher
among healthy relatives compared with controls.

Strengths and limitations of PRSs

Even if the schizophrenia and bipolar PRSs can discriminate case
participants from controls, their accuracy is currently modest, as
indicated by the AUC of 0.7 and 0.65 for schizophrenia and
bipolar disorder, respectively. The AUC is an estimate of diagnostic
accuracy which equals to 0.5 when a diagnostic test is no better than
chance and reaches 1 if the test could discriminate patients from
controls to perfection.37,38 Typically an AUC of 0.7 is considered
to have moderate discriminatory power and only when reaching
0.9 it is deemed to have high discriminatory power.39,40 For
example, the models used in general practice to estimate cardiovas-
cular disease risk and to offer preventative interventions have
reached AUCs in the range of 0.74–0.85.41,42 In the case of psychotic
disorders, currently the moderate accuracy precludes the use of
schizophrenia and bipolar PRSs as a diagnostic or prognostic tool
in clinical practice.

Current genetic findings explain only about a third of the
genetic variance of these disorders. The so-called ‘missing heritabil-
ity’may reside in further common variants yet to be identified, rare
mutations, copy number variants and gene–gene interactions.12 As
larger samples are being collected through international efforts,
additional common and rare genetic variants will be identified
and the performance of PRSs is expected to improve.17,43

In the future PRSs may also incorporate socioenvironmental
factors as well as gene–gene and gene–environment interactions,
thus eventually enabling their use in clinical practice for risk re-
duction advice as it is happening in cardiovascular disease.44–52

There is growing interest in the potential of PRSs in public health
campaigns to reduce environmental risks and to facilitate access
to early treatment for psychosis.53 Finally, PRSs constitute a
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powerful research tool, that combined with large epidemiological
studies of environmental risks are advancing our understanding
of the aetiology of psychotic disorders.
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