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Schizophrenia and bipolar disorder include patients with different characteristics, whichmay hamper the defini-
tion of biomarkers. One of the dimensions with greater heterogeneity among these patients is cognition. Recent
studies support the identification of different patients' subgroups along the cognitive domain using cluster anal-
ysis. Our aim was to validate clusters defined on the basis of patients' cognitive status and to assess its relation
with demographic, clinical and biological measurements. We hypothesized that subgroups characterized by dif-
ferent cognitive profiles would show differences in an array of biological data. Cognitive data from 198 patients
(127 with chronic schizophrenia, 42 first episodes of schizophrenia and 29 bipolar patients) were analyzed by a
K-means cluster approach and were compared on several clinical and biological variables. We also included 155
healthy controls for further comparisons. A two-cluster solution was selected, including a severely impaired
group and amoderately impairedgroup. The severely impaired groupwas associatedwith higher illness duration
and symptoms scores, lower thalamus and hippocampus volume, lower frontal connectivity and basal
hypersynchrony in comparison to controls and the moderately impaired group. Moreover, both patients' groups
showed lower cortical thickness and smaller functional connectivity modulation than healthy controls. This
study supports the existence of different cognitive subgroupswithin thepsychoseswith different neurobiological
underpinnings.

© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Schizophrenia is likely biologically heterogeneous (Brugger and
Howes, 2017; Clementz et al., 2016; Lubeiro et al., 2016),whichmay ex-
plain the lack of a consistent replication of cerebral findings in this dis-
order. Such heterogeneity may also relate to the fact that schizophrenia
can be considered as a syndrome, i.e., a cluster of symptoms and signs
that may have different substrates, as it is the case in other branches
ol of Medicine, University of
of Medicine. The identification of clusters within it may help in defining
biomarkers and personalizing treatments.

One avenue to this aim is the study of the biological and clinical cor-
relates of subgroups defined based on cognitive performance. According
to a recent systematic review, schizophrenia spectrum disorders may
include three cognitive clusters: relatively intact, intermediate and
severely impaired (Carruthers et al., 2019). When attending to studies
of mixed diagnostic groups (schizophrenia and mood disorders), an-
other review revealed a 4-cluster solution, differentiating two separate
groups with intermediate impairment (Green et al., 2019). However,
the studywith the largest sample (to our knowledge) yielded a two cog-
nitive clusters solution (Green et al., 2013). Although cognitive
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performance has a dimensional structure in thepopulation, thepossibil-
ity supported by those results of defining groups with severely and
mildly handicapped cognition within schizophrenia may help in ad-
vancing to the definition of biologically relevant subgroups in this syn-
drome. Very low values in general cognitive performance, such as IQ,
are indeed accepted as categorically different in spite of their continuity
with normal performance.

Regions harboring genes with neurodevelopmental roles and
genome-wide association to schizophrenia and related to neurocognitive
putative endophenotypes have been reported (Greenwood et al., 2019).
Furthermore, metabolic and structural brain heterogeneity across
subgroups of schizophrenia patients has been described. In particular, a
recent meta-analysis revealed a widespread higher regional heterogene-
ity of brain structure in schizophrenia compared with healthy controls
(Brugger and Howes, 2017). Such heterogeneity is coherent with the de-
scription of subgroups characterized bydifferent structural profiles in this
syndrome. Lubeiro et al. (2016) revealed the existence of a biologically
distinct group within the schizophrenia syndrome characterized by in-
creased mean cortical curvature values, low cortical thickness, reduced
thalamic and cingulate metabolism and linked to persistent negative
symptoms. Based onwhitematter abnormalities infirst-episode patients,
two schizophrenia subgroups were revealed, with more severe negative
symptoms in the group with larger abnormalities (Sun et al., 2015).
Also in this line, a recent study aimed to identify MRI-based psychosis
subtypes revealed the existence of two clusters, one anatomically spared
and another with significant anatomical alterations linked to decreased
cortical thickness and area values, lower subcortical volumes and higher
cortical curvature in some regions (Planchuelo-Gómez et al., 2020). These
studies give support to the existence of diverse biologically based clusters
within the schizophrenia syndrome. However, the neurobiological un-
derpinnings of cognitive subtypes in schizophrenia have received little at-
tention to date. Woodward and Heckers (2015) compared brain
structure between neuropsychologically normal and impaired psychotic
patients. The impaired group showed smaller total brain volume, less
gray matter (GM) volume in frontal, temporal, and subcortical regions,
and widespread white matter volume loss. Clementz et al. (2016) used
cognitive, neuroanatomical and neurophysiological variables to define
biotypes and reported three subgroups. The first, with a larger schizo-
phrenia proportion, showed worse cognition and widespread GM defi-
cits. Weinberg et al. (2016) compared brain volumes between cognitive
clusters of schizophrenia patients and found widespread volumetric re-
ductions in the cognitively more deteriorated group.

These studies suggest that cognitive subtypes may help in defining
biotypeswith differential biological characteristics in the psychotic syn-
drome. To this end, it is of interest to assess the relation of these putative
subgroups with measurements known to be altered in schizophrenia
and related to the global brain function, since higher cerebral functions
likely involve widespread patterns of cerebral activity (Varela et al.,
2001). Based on previous literature, we considered of particular interest
structural connectivity based on diffusion magnetic resonance (Zhou
et al., 2015) and the modulation of electroencephalogram (EEG) with
cognitive activity (Molina et al., 2020). Our hypothesis was that sub-
groups characterized by different cognitive profiles would show differ-
ences in those biological data.

2. Materials and methods

In order to define patients' subgroups our sample included 198 pa-
tients, 127 with chronic schizophrenia, 42 with first episodes (FE) of
schizophrenia and 29 with type I bipolar disorder (BD; of them 20
with psychotic features). Patients were diagnosed by one of the experi-
enced psychiatrists in the group (OMS, JSF and VM) according to the
criteria of the Diagnostic and Statistical Manual of Mental Disorders
5th edition, taking into account current mental state, clinical records
and relatives' information. We also included 155 healthy controls (HC)
to compare the cognitive and biological characteristics of the resulting
103
subgroups. Of them, EEGdatawere available in 114patients and 68 con-
trols, and magnetic resonance data (including structural and fractional
anisotropy (FA) data) in 81 patients and 32 controls. Finally, social cog-
nition data were available in 85 patients and 32 controls.

This sample overlaps in part (89 patients and 34 HC) with those in a
previous report where we looked for MRI-based clusters in schizophre-
nia and BD (Planchuelo-Gómez et al., 2020).

Exclusion criteria were a) intelligence quotient under 70; b) present
or past substance dependence (excluding caffeine and nicotine);
c) head traumawith loss of consciousness; d) neurological ormental di-
agnosis different to schizophrenia or bipolar disorder (patients); e) any
current neurological or psychiatric diagnosis (controls); f) any other
treatment affecting central nervous system. All participants provided
written informed consent after full written information. The local ethics
committee endorsed the study. This work complies with the ethical
standards of the Helsinki Declaration of 1975, as revised in 2008.

2.1. Symptoms assessment

Positive and negative symptoms were scored by using the Positive
and Negative Syndrome Scale (PANSS) (Kay et al., 1987) and the Brief
Negative Symptoms Scale (BNSS) (Kirkpatrick et al., 2011).

2.2. Cognitive assessment

Cognitionwas assessed using the Spanish version of the Brief Assess-
ment of Cognition in Schizophrenia (BACS) (Segarra et al., 2011), in-
cluding performance in verbal memory (list learning), working
memory (digit span), motor speed (token motor task), verbal fluency
(categories), attention and processing speed (symbol coding) and exec-
utive function and problem solving (Tower of London), and theWiscon-
sin Card Sorting Test (Chelune and Baer, 1986) (WCST; percentage of
perseverative errors). Global Intelligence Quotient (IQ) was evaluated
with theWechsler Adult Intelligence Scale III (Fuentes Durá et al., 2010).

2.3. Social cognition assessment

We assessed social cognition using the Mayer-Salovey-Caruso emo-
tional intelligence test (MSCEIT) (Mayer et al., 2003) and the Spanish
Group for Schizophrenia Treatment Optimization test (Grupo Español
para la Optimización del Tratamiento de la Esquizofrenia, GEOPTE)
(Sanjuan et al., 2003) tools. The MSCEIT scale is a widely used measure
of four dimensions of emotional intelligence and the GEOPTE scale eval-
uates relational and behavioral aspects of social cognition, including
scores from a relative.

2.4. Structural data

2.4.1. MRI acquisition
High resolution 3D T1-weighted and diffusion-weighted MRI data

were acquired using a Philips Achieva 3 T MRI unit (Philips Healthcare,
Best, The Netherlands) with a 32-channel head. For the anatomical T1-
weighted images, acquisition parameters were: Turbo Field Echo (TFE)
sequence, repetition time (TR) = 8.1 ms, echo time (TE) = 3.7 ms,
flip angle = 8°, 256 × 256 matrix size, 1 × 1 × 1 mm3 of spatial resolu-
tion and 160 slices covering thewhole brain. Diffusion-weighted images
(DWI) were acquired using the next parameters: TR = 9000 ms, TE =
86 ms, flip angle = 90°, 61 gradient directions, one baseline volume,
b-value= 1000 s/mm2, 128 × 128matrix size, 2 × 2 × 2mm3 of spatial
resolution and 66 axial slices covering thewhole brain. T1 and diffusion-
weighted scans were acquired during the same session, starting with
the T1 scan followed by the diffusion-weighted scan.

2.4.2. MRI processing
From the T1 images, automatic cortical parcellation was performed

using FreeSurfer (http://surfer.nmr.mgh.harvard.edu) version 6.0.0
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(Dale et al., 1999). From the parcellation, average cortical thickness and
subcortical GM volume were extracted, according to the Desikan-
Killiany atlas (Desikan et al., 2006). We restricted our analysis to 14 bi-
lateral cortical regions, thalamus, caudate, putamen and pallidum, as in
our previous work (Lubeiro et al., 2016). The cortical regions were the
caudal anterior cingulate gyrus, caudal middle frontal gyrus, cuneus, in-
ferior parietal cortex, medial orbito-frontal cortex, para hippocampal
gyrus, pars orbitalis, pars triangularis, precentral gyrus, rostral anterior
cingulate gyrus, rostral middle frontal gyrus, superior frontal cortex, su-
perior temporal cortex, hippocampus and insula.

2.4.3. Diffusion Tensor Imaging (DTI) data
FA in connections between pairs of regions was obtained from the

diffusion MRI data. The processing pipeline is fully described elsewhere
(Lubeiro et al., 2017). Briefly, an anatomically-constrained tractography
was performed using the MRtrix software after obtaining five-tissue
type images from each T1-weighted volume (Smith et al., 2012), a
mask from the diffusion-weighted volumes, and the orientation distri-
bution function from the diffusion data. The FA was calculated from
the estimated diffusion tensor. The FA value is considered as an index
of fiber myelination in the corresponding white matter tract, thus
higher FA values in the tracts linking cerebral regions would imply bet-
ter structural connectivity between the regions connected by those
tracts. The analyzed connections were focused on regions from the pre-
frontal cortex (rostral middle frontal and superior frontal gyri) and the
limbic system (entorhinal cortex, parahippocampal gyrus and hippo-
campus). Connections in which null values were found in a third (or
more) of the subjects were discarded. A total of 46 homolateral connec-
tions were analyzed.

2.5. EEG data

EEG data were recorded from 32 sensors during an auditory oddball
task following the international 10-10 system. In previous studies we
identified a deficit of brain activitymodulationwith cognition in schizo-
phrenia patients during a P300 task using the Spectral Entropy (SE) pa-
rameter (Bachiller et al., 2014; Gomez-Pilar et al., 2018a; Molina et al.,
2018). The concept of entropy originally comes from the field of ther-
modynamics and involves the uncertainty of information in terms of
disorder, diversity and discrepancy (Bachiller et al., 2014). In this partic-
ular context, SE is a measure of the entropy applied over the EEG power
spectrum: it is an estimation of the flatness of the spectral content
(Scheeringa et al., 2011). Thus, SE can be considered an index of signal
irregularity, since it measures how its spectral components are distrib-
uted (Gomez-Pilar et al., 2018a). For example, a signal with a large
range of spectral components, e.g. white noise, has a flat power spectral
density and, therefore, high values of SE. On the contrary, a signal with
few spectral components, e.g. a pure sinusoidal wave, yields minimum
SE values. In the present study, the SE was computed from the normal-
ized continuous wavelet transform (CWT), which is a form of time-
frequency representation of a signal that is conceptually related to the
short-term Fourier transform (Núñez et al., 2017). The CWT allows for
better detection of dynamic ERP components due to its balance between
frequency and time resolution (Núñez et al., 2017). The time-dependent
wavelet-based SE can be defined as follows:

SE tð Þ ¼ −
1

log Mð Þ ∙∑fWS t, fð Þ∙ log WS t, fð Þ½ �

where SE is the spectral entropy (as a function of time) and WS is the
normalized wavelet scalogram. The SE was computed in two windows:
baseline (300 ms before stimulus to stimulus onset) and response (150
ms to 450ms from the stimulus onset, centered around the P300 peak).
Afterwards, it was averaged in each of the two windows.

Further details of thewell-validated oddball task can be found in our
previous studies (Gomez-Pilar et al., 2018b). In addition, in order to
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illustrate the behaviour of the SE, a simulation using a synthetic signal
was performed (see Fig. S1 in Supplementary material).

SEmodulationwas computed as the SE difference between response
and pre-stimulus windows (Gomez-Pilar et al., 2018b), providing a
measure of the degree of the signal regularity change across time.
Since a decrease on SE in the response window has been robustly ob-
served as normal behaviour in normal controls, negative SE modulation
values are expected in these subjects (Bachiller et al., 2014; Gomez-Pilar
et al., 2018a; Molina et al., 2018). EEG data also allowed us to calculate
three graph-theory parameters to characterize global connectivity
properties of the brain network: network segregation using clustering
coefficient (CLC), network integration by means of path length (PL)
and connectivity strength bymeans of network density (D), as in previ-
ous work (Gomez-Pilar et al., 2018a). Complete details of its calculation
are found in the Supplementary material.

2.6. Data analyses

For descriptive purposes, we performed a Principal Component
Analysis (PCA) on the cognitive variables described above to summarize
their information, excluding the global IQ. We computed the least-
squares fitted linear model, using the first two PCA scores as the re-
sponse variable and the patient groups as the predictor variable. The
model residuals were displayed together for a descriptive analysis in
Fig. S2.

For the clustering, we employed the K-means cluster algorithm
using the original cognitive variables, i.e., the PCA scores were not
used in this process. The silhouette method was used to obtain the op-
timal number of clusters (Rousseeuw, 1987), comparing the silhouette
width for a number of clusters between 1 and 10 (both included). To as-
sure the number of clusters, we employed the values from 25 additional
indices available on the NbClust package (Charrad et al., 2014). For a
specific number of clusters, K-means was performed using 50 initial
random centroids and the centroid with the best silhouette profile
was chosen. To verify the clusters obtained with the silhouette method,
we also employed the hierarchical clustering technique. This clustering
process was implemented in R statistical software, version 3.5.2.
Clusters (using K-means results) characterization on demographic and
clinical variables was determined using analysis of variance (ANOVA),
or t-test when applicable or chi squared for categorical comparisons.
Cognitive and biological variables were analyzed using analysis of co-
variance (ANCOVA) adjusting the results by age, considering the possi-
ble impact of age in cognition, especially in patients. Post-hoc tests with
Bonferroni adjustment were conducted in order to compare Clusters of
patients with HC. In the ANCOVA analyses, to consider the effect of age
on two-by-two comparisons, Tukey-Kramer post-hoc tests were per-
formed. Since cortical thickness, SE modulation and frontal connectivity
included many different variables potentially colineal, these variables
were reduced to principal components using PCA. The number of factors
retained was determined by scree plot examination. These data analy-
ses were performed using SPSS statistical software, version 23 for Win-
dows (IBM). A database with the main data supporting the present
results is available (Mendeley Data doi:10.17632/bmxs325v88.1).

3. Results

3.1. Cluster solutions

The analysis yielded two groups based on their neurocognitive pro-
file, i.e. severely impaired (Cluster 1 from here on) and moderately im-
paired (Cluster 2), integrated of 93 and 105 patients respectively.
According to the majority rule, the optimal number of clusters was
also two, being this number of clusters obtained in 11 out of 26 indices,
including the silhouette index. Regarding the second clusteringmethod,
the hierarchical clustering, 92.93% (184/198) of the subjects were
equally classified with respect to the silhouette technique. Each

http://dx.doi.org/10.17632/bmxs325v88.1


Table 1
Demographic and clinical characteristics by Clusters.

Control Cluster 1 Cluster 2 Test statistic p value

Age, years 37.84 (9.41) 41.31 (11.44) 36.91 (10.95) F(2,339) = 4.622 0.010⁎,a,b,d

Sex, M/F 86/69 56/37 67/38 χ2 = 1.850 (2) 0.397
Education level, years 17.31 (5.27) 11.52 (3.69) 14.23 (4.20) F(2,237) = 32.021 <0.0001⁎,a,b,c,d

Illness duration, months – 175.30 (144.114) 128.77 (124.558) t = 2.019 0.045⁎,d

Diagnoses S/FE/BD – 74/17/7 58/25/22 χ2 = 9.543 (2) 0.008⁎,d

Lifetime hospitalizations – 3.89 (5.65) 3.29 (6.68) t = 0.501 0.617
CPZ equivalents – 618.17 370.33 t = 1.866 0.064
PANSS positive – 13.61 (5.44) 11.60 (4.72) t = 2.393 0.018⁎,d

PANSS negative – 19.56 (8.60) 14.04 (6.42) t = 4.450 <0.0001⁎,d

PANSS total – 64.24 (22.93) 49.21 (19.31) t = 4.289 <0.0001⁎,d

BNSS total – 31.13 (16.29) 19.07 (16.48) t = 3.278 0.002⁎,d

Data are given as mean (standard deviation).
S, chronic schizophrenia.
⁎ p < 0.05.
a Significant post hoc Bonferroni-adjusted test results.
b Healthy controls significantly different from Cluster 1.
c Healthy controls significantly different from Cluster 2.
d Significant differences between both patients' Clusters.
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diagnosis was represented in both Clusters, although not evenly distrib-
uted (see Table 1). The comparison of the optimal number of clusters
with diverse indices is shown in Fig. S3. The complete cluster classifica-
tion comparing the silhouette and the hierarchical clustering techniques
is shown in Table S1. The average silhouette width for diverse number
of clusters and the clusters silhouette plot for two clusters can be seen
in Figs. S4–5. In Fig. 1 the residuals plot with the first two PCA scores
(summary of the cognitive variables employed in the analysis) and the
identified Clusters are shown.

3.2. Demographic comparison by Clusters

There were no significant differences between patients and HC in
sex distribution. Groups differed significantly on age. Cluster 1 patients
were significantly older than Cluster 2 patients (adjusted p = 0.012)
and HC (adjusted p = 0.042). Patients in Cluster 2 did not differ in
terms of age with HC. Cluster 1 patients had lower educational attain-
ment than HC and Cluster 2 patients. Cluster 2 had also lower educa-
tional attainment than HC (Table 1).

3.3. Clinical characteristics by Clusters

Cluster 1 patients showed longer illness duration. Both Clusters did
not differ in number of lifetime hospitalizations nor in daily chlorprom-
azine equivalent dose (Table 1), neither in the use of benzodiazepines
(χ2 = 1.299, df = 1, p = 0.254), anticonvulsant drugs (χ2 = 0.704, df
= 1, p = 0.401), lithium (χ2 = 0.417, df = 1, p = 0.471) nor
Fig. 1. Scatter plot of the distribution of the values of the two first principal components (PC) fo
(Cl1) and triangles patients from Cluster 2 (Cl2). The big circle and triangle represent the cent
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antidepressants (χ2 = 0.030, df = 1, p = 0.863). Cluster 1 showed sig-
nificantly higher positive, negative and total PANSS and BNSS scores.

3.4. Cognitive characteristics by Clusters

All cognitive scores showed significant differences between patients
Clusters and HC (Table 2 and Fig. 2). Cluster 1 performed significantly
worse on all cognitive domains than Cluster 2 and HC (all adjusted ps
< 0.0001). Furthermore, Cluster 2 performed significantly worse on all
cognitive domains than HC except motor speed and problem solving.

Correlations between antipsychotic doses with BACS scores were
non-significant (−0.151 < r < 0.140, p = n.s.), and marginally signifi-
cant with percent of perseverative errors (r = −0,227, p = 0.057).

3.5. Social cognition

When compared with healthy controls, both patients' subgroups
showed significantly worse social cognition without differences be-
tween them (Table 2).

3.6. EEG modulation by Clusters

The first principal component for SE modulation accounted for 55%
of variance (eigenvalue 15.95). All sensors positively correlated with
this factor (Table S2). Thus, higher factor scores represent lesser de-
crease in SE frompre-stimulus to responsewindows, i.e., lessermodula-
tion. Both Clusters showed significantly smaller SEmodulation than HC,
r the cognitive variables in the identified clusters. Circles represent patients from Cluster 1
roids for each Cluster. The ellipsoids have a radius of one standard deviation.

Image of Fig. 1


Table 2
Cognitive characteristics by Clusters.

Control Cluster 1 Cluster 2 Test statistic p value

Verbal memory 52.25 (8.67) 30.31 (9.25) 41.51 (9.28) F (2,338) = 173.55 <0.0001⁎,a,b,c,d

Working memory 22.55 (4.28) 13.95 (5.05) 18.46 (3.93) F (2,338) = 106.432 <0.0001⁎,a,b,c,d

Motor speed 74.01 (14.77) 42.12 (13.14) 70.84 (12.19) F (2,338) = 158.964 <0.0001⁎,a,b,d

Verbal fluency 27.29 (5.70) 16.65 (4.54) 21.99 (5.54) F (2,338) = 109.094 <0.0001⁎,a,b,c,d

Processing speed 62.83 (12.15) 30.03 (10.43) 48.78 (10.56) F (2,338) = 252.10 <0.0001⁎,a,b,c,d

Problem solving 17.65 (3.29) 12.66 (5.25) 17.26 (2.87) F (2,338) = 53.23 <0.0001⁎,a,b,d

Executive function (WCST %pe) 10.65 (6.15) 21.02 (10.57) 15.92 (9.81) F (2,338) = 41.15 <0.0001⁎,a,b,c,d

Total IQ 115.84 (11.48) 84.94 (13.38) 97.46 (13.26) F (2,165) = 82.64 <0.0001⁎,a,b,c,d

MSCEIT total 122.59 (11.93) 91.86 (24.21) 101.92 (20.54) F (2,112) = 18.37 <0.0001⁎,a,b,c

GEOPTE total 19.99 (2.57) 34.31 (7.89) 30.71 (10.66) F (2,81) = 16.615 <0.0001⁎,a,b,c

Data are given as mean (standard deviation).
WCST % pe, percentage of perseverative errors in the Wisconsin Card Sorting Test.
⁎ p < 0.0001.
a Significant post hoc Tukey-Kramer test results.
b Healthy controls significantly different from Cluster 1.
c Healthy controls significantly different from Cluster 2.
d Significant differences between both patients Clusters.
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without differences between them (Fig. S6). Table 3 summarizes
biological data.

3.7. MRI parameters by Clusters

The first principal component of cortical thickness accounted for
49.25% of variance (eigenvalue 13.79), with all regions directly related
to this factor except for caudal anterior cingulate cortex and
parahippocampal cortex (Table S3). Thus, higher values in this factor
represent larger global cortical thickness. Both Clusters showed signifi-
cantly lower thickness than HC, without differences between them
(Table 3 and Fig. S7). Regarding to frontal structural connectivity, the
PCA yielded two principal components which accounted for 36.08%
and 8.12% of variance (eigenvalues 10.82 and 2.44), respectively. The
first component reflected the FA of white matter tracts connecting me-
dial frontal cortex with caudate, insula and anterior cingulate cortex.
The second was contributed by FA of tracts connecting superior frontal
cortex with hippocampus, thalamus, caudate and insula (Table S4).
Cluster 1 showed significant lower values of the first component than
Cluster 2 and HC (i.e., lower FA values in the corresponding tracts).
Fig. 2. Cognitive profiles for HC, Cl
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This was also found in Cluster 2 patients when compared with HC
(Table 3 and Fig. S8).

3.8. Functional connectivity

We found significantly higher pre-stimulus connectivity strength
(CS) in Cluster 1 compared to both Cluster 2 and HC, thus a
hypersynchronic state. We also found a higher increase from pre-
stimulus (i.e., a higher CS task-related increase) in HC compared to
both patients' subgroups (Table 3 and Fig. S9A and B).

3.9. Subcortical volumes

Cluster 1 patients showed bilaterally lower thalamus volumes com-
pared to Cluster 2 patients andHC. Therewere no significant differences
between the latter. Additionally, Cluster 2 showed higher left caudate
volume than Cluster 1 and HC, and higher right caudate volume than
Cluster 1. Finally, Cluster 2 showed higher bilateral putamen volume
than Cluster 1 (Table 3 and Fig. S10).
uster 1 and Cluster 2 patients.

Image of Fig. 2


Table 3
Biological characteristics by Clusters.

Control Cluster 1 Cluster 2 Test statistic p value

EEG modulation −0.39 (1.35) 0.26 (0.59) 0.22 (0.63) F (2,177) = 8.682 0.0002⁎,a,b,c

Cortical thickness 0.55 (0.83) −0.40 (0.97) −0.10 (0.98) F (2,109) = 11.76 <0.0001⁎,a,b,c

Fractional anisotropy
PC1 0.603 (0.859) −0.631 (0.983) 0.041 (0.861) F (2,106) = 16.51 <0.0001⁎,a,b,c,d

PC2 0.035 (1.033) −0.169 (1.034) 0.085 (0.966) F (2,106) = 0.691 0.503
PC3 0.133 (1.173) −0.069 (0.850) −0.034 (0.990) F (2,106) = 0.360 0.699

Pre-stimulus
Clustering coefficient 1.0071 (0.0042) 1.0095 (0.0077) 1.0072 (0.0045) F (2,177) = 2.755 0.066
Path length 1.1017 (0.0262) 1.1084 (0.0453) 1.1002 (0.0223) F (2,177) = 0.781 0.460
Density 0.3524 (0.0357) 0.3772 (0.0486) 0.3571 (0.0363) F (2,177) = 5.157 0.007⁎,a,b,d

Modulation
Clustering coefficient 0.0050 (0.0060) 0.0015 (0.0043) 0.0012 (0.0039) F (2,177) = 12.114 <0.0001⁎,a,b,c

Path length 0.0178 (0.0315) 0.0034 (0.0243) 0.0070 (0.0190) F (2,177) = 5.049 0.007⁎,a,b,c

Density 0.0639 (0.0451) 0.0119 (0.0273) 0.0187 (0.0236) F (2,177) = 41.637 <0.0001⁎,a,b,c

Subcortical volumes
L thalamus 7702.72 (820.55) 6741.42 (813.75) 7398.57 (879.59) F (2,109) = 13.16 <0.0001⁎,a,b,d

R thalamus 7233.56 (730.39) 6472.23 (662.94) 7027.81 (832.49) F (2,109) = 10.14 <0.0001⁎,a,b,d

L hippocampus 4110.22 (477.01) 3692.98 (404.71) 4109.92 (432.67) F (2,109) = 11.29 <0.0001⁎,a,b,d

R hippocampus 4240.73 (436.51) 3831.05 (463.05) 4216.48 (405.86) F (2,109) = 10.30 <0.0001⁎,a,b,d

L caudate 3309.05 (443.34) 3303.95 (522.95) 3575.12 (635.35) F (2,109) = 4.57 0.012⁎,a,c,d

R caudate 3423.02 (454.94) 3413.16 (463.53) 3673.26 (643.71) F (2,109) = 4.156 0.018⁎,a,d

L putamen 4823.74 (631.94) 4625.43 (617.29) 5059.27 (703.50) F (2,109) = 5.928 0.004⁎,a,d

R putamen 4806.52 (648.56) 4609.96 (609.79) 5002.35 (695.47) F (2,109) = 4.821 0.010⁎,a,d

Data are given as mean (standard deviation).
EEG Modulation and Cortical Thickness are expressed as first principal component values. Volumes are expressed in mm3.
PC1, PC2, PC3, first, second and third principal components respectively; L/R, left, right, respectively.
⁎ p < 0.05.
a Significant post hoc Tukey-Kramer test results.
b Healthy controls significantly different from Cluster 1.
c Healthy controls significantly different from Cluster 2.
d Significant differences between both patients Clusters.
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Cluster 1 patients also showed bilaterally lower hippocampal vol-
umes that HC and Cluster 2 patients. This mentioned here because the
FreeSurfer tool groups it with subcortical structure despite being
allocortical.

For a summary of post-hoc comparison results in all variables see
Table S5.

4. Discussion

Our cluster analysis of cognitive data revealed a severely impaired
and a moderately impaired patients group, supporting the possibility
of defining subgroups within the psychotic syndrome (including
schizophrenia and bipolar disorder, at least) whichmight have some bi-
ological validity. The existence of these groups could help explaining the
co-occurrence of functional and anatomical cerebral abnormalities in
schizophrenia and BDand its lack of sensitivity and specificity to charac-
terize these diagnoses. The higher heterogeneity of many structural
findings in schizophrenia as compared to HC (Brugger and Howes,
2017) is coherent with the coexistence of several biotypes within this
syndrome, as suggested by our findings.

Our results are coherent with previous studies. Woodward and
Heckers (2015) classified 101 schizophrenia or schizoaffective and 30
BD patients according to predefined criteria into neuropsychologically
normal or impaired (divided into compromised and deteriorated ac-
cording to premorbid IQ estimations), and assessed its structural differ-
ences. Interestingly, impaired patients showed GM decreases in
hippocampus, thalamus and frontal and temporal lobes, similarly to
our Cluster 1. In this line, Weinberg et al. (2016) carried out a study in
order to identify cognitive subtypes of schizophrenia and subsequently
compared brain volumes among subtypes, also finding reduced hippo-
campal and gray matter volumes in the patients who made up the cog-
nitive severely deteriorated cluster.

Our data are also in line with the inverse relation between
Brodmann's area 9 GM volume and performance on the WCST and
part B of the Trail Making Test (Bonilha et al., 2008), as well as with
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the relations in FE of schizophrenia between deficits in hippocampal
volume and working memory and orbitofrontal volume and executive
functions (Guo et al., 2014). Verbal memory was associated in schizo-
phrenia but not in healthy controls to hippocampal volume, according
to a recent meta-analysis (Antoniades et al., 2018). In the context of
our data and others (Woodward and Heckers, 2015), these results
might be coherent with the coexistence of groups within the schizo-
phrenia syndrome with high and low cognitive deficits respectively as-
sociated to large and small anatomical alterations. Moreover, our
findings suggest these alterations could already be present in some FE
patients, since the severely impaired group included a proportion of
them. This is in linewith other studies revealing similar impaired cogni-
tive profiles in FE and multiple-episode patients (Sauvé et al., 2018).

One potential limitation of data-drivenmethods to classify cognitive
subgroups in psychosis is the use of different neurocognitive measures
between studies. For example, using the MATRICS Consensus Cognitive
Battery (Kern et al., 2008) a 3-cluster solution was reported in a large
sample (Van Rheenen et al., 2017). The differencewith our 2-cluster so-
lutionmay relate to the inclusion of social cognition and visual learning
in theMATRICS but not in the BACS. However, other authors have used a
partially similar approach to ours by including BACS scores and other
cognitive and neurophysiological measurements in cluster definition
on a large sample of affective and non-affective psychoses (Clementz
et al., 2016). They reported three biotypes, twowith a significant cogni-
tive impairment and one cognitively spared. Remarkably, the two first
biotypes showed a higher proportion of non-affective psychoses and
prominent graymatter reductions in cortex, basal ganglia and thalamus,
similar to our findings.

Whilemost groups aiming to identify neuropsychological subgroups
reported a 3-groups solution, including a cognitively preserved cluster,
our solution only reveals one moderately and one severely impaired
Cluster. Data inspection suggests that a proportion of our patients
have a cognitive performance like that of HC. Therefore, a 3-cluster so-
lution might arise with a higher sample size. This however does not in-
validate the identification of a Cluster with large cognitive deficit and
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associated biological characteristics. According to our data some of
these traits reported in schizophrenia, such as hippocampal or thalamic
volume deficits (Haukvik et al., 2018; Okada et al., 2016; Penadés et al.,
2019; Van Erp et al., 2016) or increased global functional connectivity
(Cea-Cañas et al., 2020) may instead be found only in cognitively im-
paired patients.

Higher functional connectivity strength in Cluster 1 is coherent with
an increased cortical excitation, which would translate in an increased
average synchrony of EEG signal. This may be in turn consistent with a
deficit of inhibitory activity as described for schizophrenia in the cortex
and proposed to underlie cognitive deficits in this syndrome (Gonzalez-
Burgos and Lewis, 2012; Lewis et al., 2012). Again, our datamay suggest
that this deficit might be characteristic of a patient's subpopulation. The
higher synchrony during task performance (i.e., higher CS) in Cluster 1
patients is coherentwith the finding of an increased hippocampal activ-
ity during successful encoding in a memory task in schizophrenia pa-
tients (Pirnia et al., 2015). Both Clusters showed a similar deficit in
EEG activity modulation during a cognitive task. This is a replicated
trait in different schizophrenia populations (Bachiller et al., 2014;
Molina et al., 2020, 2018), and its presence in both Clusters suggests
that different cerebral mechanisms may contribute.

Our datamay also be coherentwith the genetic evidence supporting
an association between cognitive phenotypes and genetic variants. Ge-
netic risk factors in schizophrenia and BD are multiple (Horwitz et al.,
2019). Considering our data in the context of the association described
between cognitive phenotypes and genetic variation in risk genes
(Greenwood et al., 2019), genetic variation might underpin patients'
Clusters.

In a previous study in a completely different population, we used
neuroanatomical data to generate patients' clusters in schizophrenia
andBD (Lubeiro et al., 2016). Although cognitive datawere not available
there, some similarities with the present results could be mentioned. A
group with higher cortical curvature and lower cortical thickness, as
well as with smaller thalamic volume and activity was identified.
Since cortical curvature seems associated to cortico-cortical FA
(Lubeiro et al., 2017), this subgroup may overlap with the cognitively
impaired cluster in the present study. Similarly, in a completely differ-
ent sample overlapping in part with the present one, we described
that a cluster could be found in schizophrenia and BD primary charac-
terized by global cortical thinning associated to cognitive deficit
(Planchuelo-Gómez et al., 2020).

Although not statistically significant, Cluster 1 patients received
higher antipsychotic doses than Cluster 2 patients, likely an effect of
the higher positive symptoms scores in the former. However, this is
not likely to be the cause driving patients' classification, since correla-
tions between cognitive performance and antipsychotic dose were
non-significant. Moreover, antipsychotics, at least in this range, are un-
likely to affect cognitive performance (MacKenzie et al., 2018).

The present study has several limitations. First, a larger sample
would be of great interest in order to reveal further valid clusters. In ad-
dition to a larger sample size, we did not replicate our findings in an in-
dependent sample to assure the generalization of the two clusters that
we identified. Anyway, we obtained similar classification results
employing two different clustering methods, which supports our re-
sults. Additionally, MRI and EEG data were available only for a subset
of cases. Although it would have been desirable to have these data avail-
able in all subjects, the consistency of our results with previous studies
examining cerebral differences in cognitive subtypes of psychotic pa-
tients (Weinberg et al., 2016; Woodward and Heckers, 2015) suggests
that a larger sample would not have lead into different results.

5. Conclusions

In conclusion, our study supports segregating at least two groups
within the schizophrenia syndrome based on cognitive performance
and with different biological underpinnings. This would mean that not
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all schizophrenia patients but some cases within them may be charac-
terized by biological substrates previously ascribed to this syndrome,
such as hippocampal volume reductions or, perhaps, inhibitory dys-
function. It would be important to better clarify cognitive subgroups
in terms of disease outcomeprofiles, response to treatment and stability
over the time, purposes for which longitudinal studies would be appro-
priate. Further studies are necessary to replicate and refine these
findings.
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