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Abstract: This study aimed at investigating the feasibility of using a highly specialized bacterial
inoculum harboring lactic acid bacteria (LAB) and lactate-oxidizing, hydrogen-producing bacte-
ria (LO-HPB) to produce either lactate or biohydrogen and butyrate from several agro-industrial
resources via dual-phase dark fermentation. The feedstocks were fruit–vegetable waste, cheese
whey, coffee wastewater, tequila vinasse, and maize processing wastewater, and were tested in both
mono- and co-fermentation. The results obtained indicated that the biocatalyst used was able to
perform a dual-phase lactate fermentation, producing high lactate (13.1–36.4 g/L), biohydrogen
(0.2–7.5 NL H2/Lfeedstock, equivalent to 0.3–1.7 mol H2/mol hexose), and butyrate (3.3–13.9 g/L)
with all the tested feedstocks. A series of self-fermentation tests were also performed with crude
cheese whey and fruit–vegetable waste for comparison purposes. Compared to inoculum-aided
fermentations, the self-fermentation exhibited a reduced bioconversion efficiency. Short-length 16S
rRNA gene sequencing analysis showed that LO-HPB was the dominant microbial group (86.0%) in
the biocatalyst, followed by acetic acid bacteria (5.8%) and LAB (5.7%). As expected, the molecular
analysis also showed significant differences in the microbial community structure of the biocatalyst
and those that evolved from self-fermentation. Besides lactate fermentation and oxidation, the biocat-
alyst also assisted the bi-phasic lactate fermentation via oxygen consumption, and apparently, via
substrate hydrolysis. Overall, this study can lay the foundation for robust inoculum development,
which is of special significance in the field of dark fermentation, and proposes an innovative biopro-
cess for agro-industrial valorization through a trade-off approach, tailoring the metabolic pathway to
the target product(s).

Keywords: biohydrogen; biorefinery; dark fermentation; inoculum development; organic acids;
organic waste

1. Introduction

Dark fermentation (DF) is a promising platform to produce biogenic renewable hy-
drogen and organic acids within a biorefinery approach. Hydrogen can be used either
as feedstock in diverse industrial processes or as an energy carrier due to its high energy
content (141.9 MJ/kg), while organic acids are value-added products that can be further
utilized as building blocks [1–3]. Metabolically, DF involves the hydrolysis and acidogene-
sis of fermentable organics, leading to the production of hydrogen and organic acids by
the action of hydrolytic and acidogenic bacteria under anoxic and dark conditions. The
DF process can be driven using a bacterial inoculum or by the microorganisms already
present in a given feedstock, the so-called self-fermentation or natural fermentation. DF
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is seen as the most advantageous way to produce biogenic hydrogen today, as it does not
need light energy, can be fed with several organic wastes/wastewaters, and can sustain
higher hydrogen production rates than biophotolysis, photofermentation, and microbial
electrolysis cells [4]. Under DF conditions, approximately one-third of the total energy
available in the fermentable organic content of biomass can be theoretically recovered as
hydrogen, but in practice, hydrogen yields are typically lower [1]. Bacteria belonging to the
genera Clostridium, Bacillus, Enterobacter, Citrobacter, and Klebsiella are some fermentative
hydrogen producers [5]. Reactor design, biomass pretreatment, microbial immobilization,
additives supply, metabolic engineering, bioaugmentation, and microbial enrichment have
been some strategies used to enhance the performance of the DF process [6]. However, the
major bottlenecks of DF still include low hydrogen yield, process instability, the production
of inhibitory by-products, the presence of hydrogen-consuming bacteria, and substrate
complexity [6]. Furthermore, there is currently a lack of industrial, robust biocatalysts,
which are a keystone for the development and deployment of the envisioned large-scale
dark fermentative systems [7]. The ideal inoculum must be robust enough not only against
non-sterile conditions and unforeseen operational problems (e.g., sudden acidification,
organic overloading, famine conditions, etc.) but also against the presence of undesirable
microorganisms including the latent invasion of indigenous microflora present in the feed-
stock, which may compete for the substrate and/or consume the hydrogen produced [1,6,7].
Additionally, ideal DF biocatalysts must also possess a flexible and diverse metabolic ma-
chinery that allows one to efficiently produce hydrogen and organic acids as by-products
from complex substrates such as agro-industrial residues [8]. In this regard, because they
are frequently highly biodegradable, abundant, and cheap, agro-industrial residues are
rather potential renewable resources for DF-based valorization processes [9].

Typically, hydrogen production via DF occurs through the fermentation of carbo-
hydrates via acetic-type and butyric-type pathways. However, over the last years, the
production of hydrogen through syntrophic interactions between lactic acid bacteria (LAB)
and lactate-oxidizing, hydrogen-producing bacteria (LO-HPB) has gained increasing scien-
tific attention [8,10,11]. Several hydrogen-producing biocatalysts have been characterized
to be accompanied by LAB [10]. The effect of LAB in DF is still ambiguous, as they are
often reported to lead to high hydrogen production, but in other cases, they are related to a
poor one due to substrate competition, the excretion of bacteriocins, and the acidification
of the broth [10,11]. The root reason why sometimes LAB act as helpers for hydrogen
production whereas on other occasions they act as antagonist remains poorly understood.
When LAB play a positive role in DF, they coexist with LO-HPB by performing, in sim-
ple terms, two-step lactate fermentation. In this vein, LAB can perform the first lactate
fermentation transforming fermentable carbohydrates into lactate or lactate and acetate,
while LO-HPB can assimilate such lactate together with acetate to produce hydrogen and
butyrate [12,13]. The use of LAB in DF systems is still minimized despite their different
auxiliary activities, which include pH regulation, substrate hydrolysis, biomass retention,
oxygen depletion, and hydrogen production [10]. Besides these advantages, exploiting
the syntrophic associations between LAB and LO-HPB via dual-phase fermentation not
only allows the production of hydrogen and butyrate but it can also produce lactate in
an acidogenic trade-off approach [14]. Butyrate can be used as an animal and human
food additive, solvent, flavoring agent, chemical intermediate, and other applications,
while lactate is a commodity that can be employed in the food, pharmaceutical, textile,
detergent, leather, and plastic industries [15,16]. The importance of promoting a robust
biocatalyst performing lactate-driven DF becomes evident when one takes into account that
a number of agro-industrial residues are suitable to support the growth of LAB, including
tequila vinasse (TV) and maize processing wastewater (MPW) [17], fruit and vegetable
waste (FVW) and cheese whey (CCW) [18], brewery wastewater [19], ethanol fermenta-
tion residues [20], ensiled wastes [21], and food waste [22], among others. Moreover, it
should be noted that in DF systems, it is quite challenging to wash out LAB either via
pretreatment of the feedstock/inoculum due to economic restrictions, or via the modula-
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tion of process/environmental conditions (e.g., temperature, pH, hydraulic retention time,
and organic loading rate) due to LAB can generally growth well under those conditions
conducive for DF.

Hence, this study proposes for the first time the use of a highly specialized biocatalyst,
which is mainly composed of LAB and LO-HPB to produce valuable lactate or hydrogen
and butyrate from several agro-industrial resources (i.e., TV, CCW, FVW, MPW, and coffee
wastewater (CWW)) in both mono- and co-fermentation approaches. The capacity of the
biocatalyst to provide a suitable reducing environment by removing residual oxygen was
also assessed. Additionally, self-fermentation tests were also run for the sake of comparison.
Finally, the microbial community structure of the biocatalyst and the indigenous microflora
that evolved during the self-fermentation of FVW and CCW was analyzed. The significance
and originality of this study are that it proposes a biotechnological process based on a
dual-phase lactate fermentation for the valorization of agro-industrial wastes and provides
evidence that it is possible to tailor DF by using a suitable biocatalyst with an improved
potential metabolic activity.

2. Materials and Methods
2.1. Inoculum

The source of the biocatalyst utilized was digestate obtained from an anaerobic digester
treating food waste, which was pretreated by applying alternating cycles of transient and
moderate microaeration and heat shock (90 ◦C for 20 min). The inoculum was grown on
glucose for 2 months to enrich LAB and LO-HPB [14]. After such a step, it was preserved
under refrigeration (4 ◦C) until use [23]. To activate the dormant bacteria, a pre-fermentation
step was carried out in a 1-L gas-tight glass bottle with a working volume of 0.5 L for 24 h
using glucose (10 g/L) as the sole carbon source and a mineral salt medium containing
(in g/L) NH4Cl, 2.4; K2HPO4, 2.4; MgSO4·7H2O, 1.5; KH2PO4, 0.6; CaCl2, 0.11; and
FeSO4·7H2O, 0.05 [14,24].

2.2. Feedstocks

Different agro-industrial resources were tested in mono-and co-fermentation sys-
tems. FVW, CCW, CWW, and TV were examined through a mono-fermentation approach,
whereas blends of TV and MPW (80/20 w/w), CCW and FVW (66/34 w/w), and TV and
CCW (80/20 w/w) were tested through a co-fermentation one. Overripe fruit and vegeta-
bles, i.e., banana, papaya, mango, watermelon, pineapple, tomato, potato, and carrot, were
collected from a local market. FVW was prepared by processing a mixture consisting of
900 g of each fruit/vegetable, including the peel and the pulp. The mixture was blended
with 800 mL of tap water and sieved through a 4-mm stainless steel mesh. Likewise, CCW
was collected from a local cheese manufacturing plant using cow milk. CCW was passed
through a filter with a pore diameter of 8 µm to remove lipids and suspended solids. CWW
was kindly provided by a coffee processing factory located in Veracruz, Mexico. CWW
was composed of wastewater derived from the fermentation (20% v/v) and demucilization
(80% v/v) steps of Arabica coffee beans. The wastewater from demucilization was filtered
through a 1-mm stainless steel mesh before use. MPW was provided by a local maize pro-
cessing industry making tortillas. Finally, TV was collected from a tequila factory located
in Tequila, Jalisco, Mexico. All the feedstocks used were stored in plastic containers at 4 ◦C.
Their physicochemical features are given in Table 1.
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Table 1. Physicochemical characterization of feedstocks.

Parameter TV FVW CWW CCW TV-MPW FVW-CCW TV-CCW

Total COD (g/L) 72.3 ± 0.1 100.2 ± 0.3 42.6 ± 0.6 89.4 ± 0.3 66.5 ± 0.1 110.3 ± 0.4 72.6 ± 3.2
Soluble COD (g/L) 58.6 ± 0.3 70.7 ± 0.1 26.9 ± 0.1 61.6 ± 0.0 42.9 ± 0.3 65.7 ± 0.1 56.9 ± 1.2
BOD (g/L) 32.1 ± 1.0 62.9 ± 1.7 17.1 ± 1.2 55.5 ± 0.4 32.9 ± 1.2 61.9 ± 5.6 39.1 ± 4.5
TOC (g/L) 21.7 ± 0.1 24.5 ± 0.2 11.0 ± 0.1 20.5 ± 0.1 21.7 ± 0.1 28.7 ± 0.1 22.2 ± 0.5
Total nitrogen (mg/L) 201.0 ± 1.4 850.0 ± 0.0 26.5 ± 0.7 1405.0 ± 7.1 225.0 ± 7.1 870.0 ± 14.1 515.0 ± 7.1
Total phosphorous (mg/L) 465.0 ± 2.8 490.5 ± 5.0 169.5 ± 0.7 573.5 ± 3.5 354.5 ± 3.5 599.5 ± 0.7 467.5 ± 24.8
TS (g/L) 52.2 ± 1.1 102.2 ± 0.2 19.9 ± 0.2 66.3 ± 2.1 44.0 ± 0.1 78.5 ± 3.2 52.6 ± 0.8
TVS (g/L) 48.5 ± 1.0 97.6 ± 0.5 18.5 ± 0.3 61.1 ± 2.1 40.1 ± 0.2 73.3 ± 3.0 48.5 ± 0.6
TDS (g/L) 27.5 ± 3.0 69.4 ± 3.1 9.7 ± 0.9 50.9 ± 2.2 23.1 ± 4.6 51.9 ± 9.0 24.8 ± 2.8
TSS (g/L) 24.7 ± 2.3 32.7 ± 3.3 10.5 ± 0.8 15.4 ± 0.2 20.9 ± 4.5 26.6 ± 6.4 27.8 ± 2.1
pH 3.6 ± 0.0 4.2 ± 0.1 3.7 ± 0.0 4.2 ± 0.1 3.9 ± 0.0 4.2 ± 0.0 3.8 ± 0.1
Total alkalinity (mg CaCO3 eq./L) - - - - 670.0 ± 1.3 - -
Total acidity (g CaCO3 eq./L) 4.9 ± 0.0 1.7 ± 0.0 2.4 ± 0.0 2.3 ± 0.0 3.6 ± 0.3 2.6 ± 0.0 5.4 ± 0.2
Reducing sugars (g/L) 12.7 ± 0.4 35.3 ± 0.5 2.9 ± 0.0 34.4 ± 0.0 11.6 ± 0.9 31.3 ± 0.2 16.5 ± 0.1
Total carbohydrates (g/L) 25.2 ± 3.2 63.0 ± 0.7 2.9 ± 0.4 44.8 ± 0.4 19.3 ± 1.2 44.0 ± 2.2 24.5 ± 0.6
Sulphate (g/L) 1.0 ± 0.0 0.1 ± 0.0 1.0 ± 0.0 0.7 ± 0.0 0.8 ± 0.0 0.4 ± 0.0 0.9 ± 0.0
Total phenols (g GAE/L) 0.4 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.4 ± 0.0 0.1 ± 0.0 0.3 ± 0.0

Notes: COD: Chemical oxygen demand, BOD: Biochemical oxygen demand, TOC: Total organic carbon, TS:
Total solids, TVS: Total volatile solids, TDS: Total dissolved solids, TSS: Total dissolved solids, GAE: Gallic acid
equivalent, TV: Tequila vinasse, FVW: Fruit–vegetable waste, CWW: Coffee wastewater, CCW: Crude cheese
whey, TV-MPW: Tequila vinasse and maize processing wastewater, FVW-CCW: Fruit–vegetable waste and crude
cheese whey, and TV-CCW: Tequila vinasse and crude cheese whey.

2.3. Experimental Setup and DF Conditions

Batch fermentations were carried out in a 5-L completely mixed reactor with a working
volume of 3 L. As shown in Figure 1, the reactor was instrumented for the on-line monitor-
ing and control of pH, mixing and temperature. The mixing rate was set at 100 rpm, while
operational pH and temperature were kept constant at 5.5 ± 0.05 and 35 ± 1 ◦C, respec-
tively. pH control was performed by automatically adding NaOH (10 M) or H2SO4 (1.8 M)
solutions by means of a peristaltic pump. To start fermentation, the feedstock was initially
fed to the reactor and supplemented (if any) according to the experimental condition (see
Table 2). Then, the initial pH was adjusted to 5.5. After, the reactor was inoculated with
300 mL of activated inoculum (10% v/v); the pH was re-adjusted to 5.5 if needed. It is worth
mentioning that no flushing was performed to deplete the initial residual oxygen, thus
anaerobic conditions were achieved naturally by the action of facultative bacteria. Finally,
a leak-proof test was subsequently conducted to ensure no gas loss during fermentation.
During the operation, liquid samples were sampled throughout the fermentation with a
15-mL plastic hypodermic syringe and immediately stored in Eppendorf tubes at −20 ◦C
until being analyzed for organic acids. Gas samples from the headspace were also collected
periodically by using a 500-µL sample-lock syringe to determine the composition of the
acidogenic off-gas (i.e., H2, CH4, and CO2). The volume of off-gas that evolved was mea-
sured with a digital gas flow meter (Bioprocess control, Lund, Sweden). The cumulative
hydrogen production was modelled with the modified Gompertz model (Equation (1)).
Diauxic hydrogen production was, when observed, modelled by a two consecutive step
approach according to Equation (2) [25] where H is the cumulative hydrogen production
(NmL), λ is the lag-phase time (h), t is the culture time (h), P is the hydrogen production
potential (NmL), Rm is the maximum hydrogen production rate (NmL/h), and e is Euler’s
number (≈2.7182). In Equation (2), the subscripts 1 and 2 denote the first and second
hydrogen production steps. The volume of acidogenic off-gas was standardized at 0 ◦C
and 1 atm, which are standard temperature and pressure conditions. All the fermentations
were conducted in triplicate, giving the average and standard deviation values.

H = P exp
{
−exp

[
Rm e

P
(λ− t) + 1

]}
(1)

H = P1 exp
{
−exp

[
Rm1 e

P1
(λ1 − t) + 1

]}
+ P2 exp

{
−exp

[
Rm2 e

P2
(λ2 − t) + 1

]}
(2)
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Figure 1. Photograph of the setup utilized for dark fermentations and schematic view of the reac-
tor’s cover. Adapted from [26]. Copyright 2019, with permission from Elsevier (License number:
5614750431682).

Table 2. Summary of nutrient supplementation applied in the feedstocks.

Feedstock Nutrient Supplementation (g/L) Fed Volume (L)

FVW NH4Cl, 2.4; K2HPO4, 2.4; MgSO4·7H2O, 1.5;
KH2PO4, 0.6; CaCl2, 0.11; FeSO4·7H2O, 0.05 1.2 a

CCW Without nutrient supplementation 2.7
CWW NH4Cl, 2.4 and FeSO4·7H2O, 0.05 2.7
TV NH4Cl, 2.4 and FeSO4·7H2O, 0.05 2.7
TV–MPW Without nutrient supplementation 2.7
TV–CCW FeSO4·7H2O, 0.05 2.7
CCW–FVW Without nutrient supplementation 2.7

Note: a 1.5 L of distilled water was supplied to achieve a suitable fermentation broth to be mixed properly.

2.4. Oxygen Depletion Test

The ability of the biocatalyst to help the process in achieving a suitable reducing
environment was indirectly tested by tracking the concentration of dissolved oxygen (DO)
in the broth over time. Two oxygen depletion tests were performed, one during the pre-
fermentation step (which is the step aimed at activating dormant bacteria) and the other
one during the inoculation step. Both tests were carried out in the same 3-L instrumented
reactor equipped with a DO sensor (Part No. z010023525; Applikon Biosciences, Schiedam,
The Netherlands). The DO concentration was measured and recorded using the BioXpert
Lite software (version 1.13). The calibration of the sensor was performed according to the
manufacturer’s guide. The pre-fermentation step was conducted using the mineral growth
medium previously described in Section 2.1 but under oxygen saturation conditions. The
pre-fermentation step used TV as feedstock for demonstration purposes. For both steps, the
temperature, pH, and mixing rate conditions were maintained constant as those previously
specified in Section 2.3. An abiotic control (without inoculum) was also performed.

2.5. Self-Fermentation Test

For comparison purposes and in order to validate the inoculum’s bioactivity (func-
tionality of the biocatalyst), two self-fermentation experiments consisting of the dark
mono-digestion of CCW and FVW were carried out under the same conditions and us-
ing the setup described previously in Section 2.3 but without the addition of inoculum.
Both CCW and food waste have been reported to support self-fermentation [25,27]. The
microbial community that evolved during self-fermentation was explored and qualitatively
compared with that of the biocatalyst. Microbial sampling was performed during the
maximum hydrogen production rate.

2.6. Analytical Methods

The chemical oxygen demand (COD), biochemical oxygen demand (BOD), pH, alka-
linity, acidity, total nitrogen, total phosphorus, sulfate, and solids were analyzed according
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to standard methods [28]. Total organic carbon, total carbohydrates, total reducing sug-
ars (TRS), phenolic compounds, and the acidogenic off-gas composition were measured
as previously reported by [17]. The soluble metabolite products, namely, acetate, pro-
pionate, butyrate, iso-butyrate, and lactate, were measured by high-performance liquid
chromatography (HPLC) using a Varian ProStar™ HPLC system model 230 (Varian An-
alytical Instruments, Palo Alto, CA, USA), which was equipped with Varian 325 UV-VIS
detector and a column Aminex HPX-87H (300 mm × 7.8 mm id, 9 µm; Bio-Rad, Hercules,
CA, USA). The column temperature was maintained at 55 ◦C. The mobile phase was a
solution of sulfuric acid (5 mM) at a flow rate of 0.5 mL/min. The organic acids were
measured using a wavelength of 210 nm.

The microbial community structure of the biocatalyst and of the self-fermentation
of CCW and FVW was analyzed by short-length 16S rRNA gene sequencing (Illumina,
San Diego, CA, USA). Genomic DNA was isolated using the MoBio PowerSoil® DNA
Extraction Kit (Mo Bio Laboratories Inc., Carlsbad, CA, USA) according to the manu-
facturer’s instructions. The amount and quality of the extracted DNA were determined
using the NanoDrop-2000 Spectrophotometer (Thermo Fisher Scientific, Wilmington, DE,
USA). The isolated DNA was stored at −80 ◦C until DNA samples were sent to the Re-
search and Testing Laboratory (RTL, Austin, TX, USA) for sequencing. The primer set 28F
(GAGTTTGATCNTGGCTCAG) and 388R (TGCTGCCTCCCGTAGGAGT) and the Illumina
MiSeq platform were utilized. Bioinformatic analysis was conducted according to the RTL
protocol previously described elsewhere [29].

3. Results and Discussion
3.1. Hydrogen Production Performance

In the inoculum-aided DF, the highest and lowest cumulative hydrogen production
values were observed with CCW (19.1 NL H2, corresponding to 7.1 NL H2/Lfeedstock or
1.65 mol H2/mol hexose) and CWW (0.5 NL H2, corresponding to 0.2 NL H2/Lfeedstock
or 0.51 mol H2/mol hexose), respectively (Figure 2a). The second highest hydrogen
production was recorded when fermenting FVW, averaging 9.1 NL H2, which was equiva-
lent to 7.5 NL H2/Lfeedstock or 1.72 mol H2/mol hexose. TV yielded 1.3 NL H2/Lfeedstock
(0.82 mol H2/mol hexose). Compared to the literature, the hydrogen yield from CCW, on
a fresh feedstock basis, was found to be higher than the 5.3 NL H2/Lfeedstock reported
by Asunis et al. (2022) from sheep CCW or the 3.7 NL H2/Lfeedstock recently reported
by Aranda-Jaramillo et al. (2023) from delipidated acid CCW from cow’s milk [30,31].
The hydrogen production from TV was 3.7 times lower than that obtained previously in
batch mode by García-Depraect and León-Becerril (2018) [24], likely due to the differences
existing in the operational pH (here fixed pH of 5.5 versus a two-stage pH control starting
at 6.5 and switched to 5.8 at the beginning of the accelerated hydrogen production phase).
Regarding FVW, Martínez-Mendoza et al. (2023) achieved up to 9.4 NL H2/Lfeedstock in a
continuously stirred tank reactor (CSTR) operated at 9 h hydraulic retention time (HRT) and
37 ◦C; such a hydrogen conversion yield is 25% higher than that obtained in batch mode in
the present study [32]. In another study, Martínez-Mendoza et al. (2022) achieved hydrogen
yields between 3.7 and 6.6 NL H2/Lfeedstock using a mixture of FVW in lactate-driven DF
tests conducted under batchwise mesophilic conditions at different operational pH (5.5,
6.0, 6.5, and 7.0), initial total solids (5 and 7%), and initial cell biomass concentrations (18,
180, and 1800 mg volatile suspended solids/L) [12]. Finally, the hydrogen production yield
achieved from CWW was comparatively similar to that previously reported for this type of
feedstock [33]. Montoya et al. (2019) investigated the hydrogen production via DF from
CWW in combination with coffee pulp and husk, recording a maximum hydrogen potential
of 328 NmL H2/L of feedstock (2 g/L pulp and husk + 30 g COD/L CWW + 2 g/L yeast
extract) at 30 ◦C and initial pH 7.0 (5.9 final pH) [33]. One of the reasons for the relatively
low hydrogen yield herein obtained from CWW is the low concentration of carbohydrates,
which are the primary source of hydrogen. Indeed, the carbohydrate content of CWW was
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determined to be approximately 20, 15, and 8.5 times lower than that of FVW, CCW, and
TV, respectively (Table 1).
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Regarding the dark co-fermentation tests (Figure 2b), the mixture of 80% TV and
20% MPW resulted in a comparable hydrogen production yield (1.2 NL H2/Lfeedstock
or 0.83 mol H2/mol hexose) to the dark mono-fermentation of TV but without needing
nutrient supplementation. Such a co-feedstock ratio (80/20 w/w) has been claimed as
the optimal one, which resulted in a better balance of nitrogen, iron, magnesium, and
phosphorus, as well as improved alkalinity due to the calcium carbonate-rich MPW [17].
However, in the present study, a synergy in nutrients was not highly evident from the
physicochemical characterization performed. On the other hand, the co-fermentation of
TV and CCW resulted in 1.9 NL H2/Lfeedstock (0.34 mol H2/mol hexose); however, such a
hydrogen yield was 30% lower than the theoretical one estimated from the corresponding
dark mono-fermentation test. One explanation for that observation could be that TV and
CCW were not compatible with each other. Finally, the co-fermentation of CCW and FVW
enabled the production of 6.8 NL H2/Lfeedstock or 1.75 mol H2/mol hexose, which was 7%
higher than the theoretical value, indicating some synergistic effect. Gómez-Romero and
co-workers investigated the dark co-fermentation of CCW and FVW at five different C/N
ratios (7, 17, 21, 31, and 46) in a 2-L completely mixed batch reactor at 5.5 pH and 37 ◦C [18].
The authors found the highest hydrogen production of 5.7 NL H2/Lfeedstock at a C/N ratio
of 21, as that ratio provided a better buffering capacity and an improved nutrient balance.

In general, the biocatalyst used in the DF enabled high hydrogen production outcomes
depending on the feedstock used. In addition, it is highly probable that the hydrogen
production activity is further improved when applying optimum operational conditions
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in a continuous feeding mode. As shown in Table 3, the hydrogen production kinetic
behavior in all the conditions tested was well described by the modified Gompertz model.
Here it is worth mentioning that the DF of FVW showed a diauxic hydrogen production
pattern, likely due to a temporal availability in different fermentable organics with specific
metabolization rates. Such a two-step hydrogen production pattern has also been found in
dark fermenters running on CCW at pH values ranging from 5.5 to 7.5 [25]. In inoculum-
aided fermentations, the length of lag phase varied from 7.7 to 95.5 h depending on
the feedstock type. FVW showed the shortest adaptation period due to its high content
in rapidly available fermentable carbohydrates. Regarding the maximum volumetric
hydrogen production rate (VHPRmax), the highest value (393 NmL H2/L-h) was observed
with FVW, particularly at the second step of the diauxic hydrogen curve. The second fastest
VHPRmax (343 NmL H2/L-h) was observed in the dark co-fermentation of FVW-CCW.
Approximately 200 NmL H2/L-h was recorded with CCW, while TV sustained a VHPRmax
of 152 NmL H2/L-h. The lowest VHPRmax of 24 NmL H2/L-h was achieved with the use
of CWW, as discussed above, most likely due to its low fermentable organics content.

Table 3. Hydrogen production kinetic behavior of the different feedstocks and dark fermentation
(DF) conditions assessed.

DF Type Feedstock P, NmL VHPRmax
c, NmL H2/L-h λ, h R2

Inoculum-aided
mono-fermentation

FVW 4556.0 a,
9157.7 b

84.8 a,
393.3 b

7.7 a,
31.4 b 0.9885

CCW 19,673.0 199.8 18.8 0.9991
TV 3537.3 151.8 63.5 0.9984
CWW 534.2 24.2 22.0 0.9899

Inoculum-aided co-fermentation
TV-MPW 3281.7 94.7 95.5 0.9991
TV-CCW 5163.9 138.5 71.6 0.9947
FVW-CCW 19,066.1 342.6 21.7 0.9975

Self-fermentation
CCW 1257.0 a,

5263.5 b
32.9 a,
92.7 b

23.6 a,
53.46 b 0.9982

FVW 59.3 a,
188.7 b

2.2 a,
1.8 b

9.9 a,
37.9 b 0.9964

Note: Some conditions tested, namely the type of DF and feedstock led to a diauxic hydrogen production pattern
over time; superscripts a and b denote the kinetic parameter estimated during the first and second hydrogen
production steps. c VHPRmax (maximum volumetric hydrogen production rate) is Rm (maximum hydrogen
production rate) divided by working volume.

As for the profile of organic acids during DF, a two-step lactate-type fermentation was
observed in all the inoculum-aided fermentation tests regardless of the DF type (i.e., mono-
or co-fermentation), except when feeding CWW (Figure 3a–g). The dual-phase lactate fer-
mentation was characterized by the first fermentation of carbohydrates (Equations (3) and
(4)) mainly into lactate (which explains the stepped-up amounts of lactate observed during
the early fermentation stage), followed by the second fermentation of lactate (Equation
(5)) which produces hydrogen, butyrate, and carbon dioxide (which explains the sudden
decrease observed in the broth lactate concentration, which indeed matched well with the
hydrogen and butyrate co-production). Dual-phase lactate fermentation has been well
documented with the use of TV [14,17], simulated CW [34], food waste [13], FVW [12],
and CCW [35], among others. It is noteworthy that lactate can be produced and oxidized
simultaneously by fashioned syntrophic interactions between LAB and LO-HPB [10,31], as
will be discussed in Section 3.4. As descriptive data, peaked lactate titers were in the range
of 13.1 to 36.4 g/L. The co-fermentation of FVW and CCW showed the highest lactate titer,
which averaged 36.4 g/L. It was assumed that the high titer was mainly derived from CCW
rather than from FVW, as the former co-feedstock resulted in up to 33.3 g lactate/L while
the latter one only enabled a peak lactate concentration slightly above 12 g/L. The use of
TV, FVW, TV-MPW, and TV-CCW led to similar lactate titers (c.a. 13–15 g/L). In contrast,
CWW only showed an average initial lactate concentration of 5.5 g/L, but afterward, it
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declined over the fermentation period down to 0.1 g/L. Regarding butyrate, its maximum
titer ranged from 3.3 to 13.9 g/L, the lowest and highest value was recorded with CWW
and CCW-FVW, respectively, yet CCW alone showed a quite similar concentration that
its co-fermentation counterpart with FVW. It is not surprising that a positive correlation
between hydrogen production and butyrate accumulation was observed, as butyrate is
the main soluble by-product produced from the most common lactate-driven DF pathway
(Equation (5)) [10]. It is also important to note that besides lactate and butyrate, other
organic acids were detected throughout fermentation, such as acetate and propionate
(Figure 3). The concentration of acetate remained at lower levels, below approximately
3 g/L. Notably, in some runs (i.e., TV, TV-PMW, and TV-CCW), acetate suddenly decreased
in parallel with the depletion of lactate. It is known that acetate acts as an acceptor electron
during the oxidation of lactate [10], thus explaining the low levels of acetate and its pro-
nounced decrease during the second lactate-type fermentation. At the late fermentation
stage, we also observed a slight accumulation of propionate, which agreed with previ-
ous works [12,13,26,36]. Propionate formation is not desirable because it is a hydrogen
sink; indeed, it is metabolically possible to produce propionate from fermentable carbohy-
drates (Equation (6)) and from lactate (Equation (7)), both compounds can be hydrogen
precursors (Equations (5), (8) and (9)) [29,37]. Although different complex feedstocks were
assessed, the consistency observed in the metabolic pathways involved in the dual-lactate
DF fermentation is a finding of great significance for the ongoing development of DF.

Glucose→ 2 Lactate (3)

Glucose→ Lactate + Acetate + CO2 (4)

Lactate + 0.5 Acetate→ 0.75 Butyrate + 0.5 H2 + CO2 + 0.5 H2O (5)

Glucose + 2 H2 → 2 Propionate + 2 H2O (6)

3 Lactate→ 2 Propionate + Acetate (7)

Glucose + 2 H2O→ 2 Acetate + 4 H2 + 2 CO2 (8)

Glucose→ Butyrate + 2 H2 + 2 CO2 (9)

3.2. Oxygen Depletion during Activation and Inoculation Steps

The oxygen depletion capacity of the biocatalyst utilized was investigated during
the pre-fermentation and inoculation steps. In the pre-fermentation step, we observed a
complete oxygen consumption within the first 2–3 h of incubation despite the fact that the
mineral growth medium was previously saturated with oxygen to 6.84 mg O2/L (Figure 4).
The DO in the abiotic control remained stable (between 95.5 and 100%) throughout the
experiment, pointing out the good capacity of the inoculum to achieve anoxic conditions.
During the pre-fermentation stage, the initial pH of 6.2 remained constant within the first
3.5 h culture, but it markedly dropped down to 4.1 after 10 h, then it slowly decreased after-
ward to a final value of 3.7 (Figure 4). It is noteworthy that the biocatalyst used exhibited a
high tolerance against acid pH, indicating that it can withstand unforeseen acidification
disturbances, which might occur in DF systems [38,39]. As shown in Figure 4, the oxygen
concentration suddenly increased to 2.74 mg O2/L (40 ± 2.4%) during inoculation, but
it was rapidly depleted within the 5 min culture. Interestingly, high variability in the
oxygen consumption rate was recorded during the pre-fermentation step as compared to
that obtained during the inoculation one, likely due to more active facultative anaerobes.
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It can be hypothesized that bacteria present in the inoculation step were metabolically
more active than dormant bacteria, thereby depleting immediately the residual oxygen.
To sum up, the results obtained confirmed that the biocatalyst used was able to create an
anoxic environment, which is of great significance to allow the growth of obligate anaerobes
producing hydrogen such as Clostridium spp. [40].
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The ability to deplete residual oxygen either during the start-up or just after un-
intentional oxygen supply is highly desirable, as hydrogen production via DF is quite
sensitive to oxygen [8,40]. Facultative anaerobes are oxygen-consuming species; however,
their presence in dark fermenters is often limited because of the application of severe
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pretreatments (e.g., heat shock) to the substrate and/or inoculum [8,41,42]. Perhaps this
reasoning may explain why anoxic conditions achieved naturally (by the action of the
microflora) have seldom been reported [17,43,44]. In this study, we detected the presence
of facultative bacteria such as Klebsiella sp. Enterobacter sp., and Lactobacillus spp., among
others, as will be presented and discussed in more detail in Section 3.4. The pretreatment
applied herein resulted in a highly specialized inoculum composed of both facultative and
strictly anaerobic bacteria [14,23,24]. From a practical point of view, the exploitation of this
biocatalyst (and others with similar functionality) can decrease operating costs by avoiding
the implementation of any artificial method devoted to achieving anoxic conditions, such
as the flushing of inert gasses or the addition of chemical-reducing agents.

3.3. Testing the Dark Self-Fermentation of Crude Cheese Whey and Fruit–Vegetable Waste

The DF driven by the indigenous microorganisms present in the substrate is known
as self-fermentation. This study assessed the dark self-fermentation of CCW and FVW
and compared both the hydrogen production performance and the profile of organic
acids (metabolic pathways) involved with those observed in the inoculum-assisted DF.
As shown in Figure 2c, the hydrogen production potential was 5202.5 NmL (1926.9 NmL
H2/Lfeedstock or 0.45 mol H2/mol hexose) and 177.9 NmL (148.3 NmL H2/Lfeedstock or
0.03 mol H2/mol hexose) for CCW and FVW, respectively. Such amounts represented
only 27.2 and 2.0% of the total amount of hydrogen produced in the inoculum-aided DF
of CCW and FVW, respectively. Like the DF runs performed with inoculation, methane
was not detected during the whole self-fermentation period, likely because of the high
initial substrate-to-microorganism ratio, which favors the development of HPB with a
rapid growth rate over methanogens with slower growth rates [20,44]. The findings herein
observed reinforce the idea that FVW and CCW not only serve as substrates but also
as sources of HPB [44,45]. As for hydrogen modelling, the experimental data were well
represented by the model used, obtaining good correlation values (Table 3). Significant
differences in the hydrogen production kinetics attained with and without inoculation
were also found (Table 3). For instance, compared to fermentations with inoculation, the
VHPRmax of FVW and CCW decreased from 393.3 to 2.2 NmL H2/L-h and from 199.83
to 92.7 NmL H2/L-h, respectively. The lag phase was estimated as 9.9 h for FVW and
23.6 h for CCW, both slightly longer than its inoculum-aided DF counterpart. Interestingly,
diauxic hydrogen production was also observed for the self-fermentation of FVW. In
contrast, for CCW, a diauxic hydrogen production profile was only observed in the DF
without inoculation, which could be attributed to reduced hydrolytic activity of indigenous
microflora. In contrast, the inoculum-aided DF of FVW showed, by visual inspection,
a marked change in the rheology/appearance of the broth. In the beginning, the broth
presented particulate organics, which were later not appreciated. Apparently, the broth
was less viscous as incubation time proceeded, pointing out the high hydrolytic activity of
the inoculum used.

Figure 3h,i depicts the organic acids measured during the self-fermentation of CCW
and FVW. In general, the hydrogen production from CCW followed the lactate-driven DF
metabolic pathway (via dual-phase lactate fermentation). Interestingly, in the case of FVW,
at the end of fermentation, the major organic acid was acetate (2972.5 mg/L) with small
amounts of lactate (100 mg/L), propionate (288.9 mg/L), iso-butyrate (52.9 mg/L), and
butyrate (537.5 mg/L), pointing out strong differences in the diversion of electron flux when
compared to DF with inoculation. Particularly, the initial lactate concentration of 1800 mg/L
remained stable during the first 8 h culture, but then it was decreased to approximately
300 mg/L after 20 h culture and remained nearly constant thereafter. It was therefore
suggested that lactate consumption was implicated in the first hydrogen production stage.
On the other hand, the initial acetate concentration of 864.7 mg/L rose on average to
1624.4 mg/L after 20 h of fermentation and remained virtually constant after 44 h culture,
but then it increased again up to approximately 2970 mg/L. The high acetate/butyrate
ratio (3.25 on a COD basis), as well as the diauxic generation of acetate, indicated that acetic
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acid-type fermentation (Equation (8)) was involved in the second hydrogen production
stage. The high levels of acetate along with the low amounts of hydrogen that evolved
also suggested the presence of homoacetogenesis, an undesirable metabolic pathway in
DF that implies the consumption of 4 mol hydrogen and 2 mol of carbon dioxide to form
1 mol of acetate (Equation (10)) [46]. In contrast, as previously discussed, acetate had a
different behavior in the inoculated DF runs, since it mostly tended to decrease along with
lactate. Altogether, the autochthonous microflora and the inoculum used showed quite
different process performances from each other. The biocatalyst employed enabled us to
tailor the metabolic flux during the fermentation of several agro-industrial resources, not
only leading to lactate but also to hydrogen and butyrate through a fashion dual-phase
lactate fermentation.

2 CO2 + 4 H2 → Acetate + 2 H2O (10)

3.4. Microbial Community Structure

Gaining an in-depth understanding of the microbial community structure of hydrogen-
producing inocula is a keystone in biocatalyst management, as well as improving DF
efficiency since the microbial composition greatly impacts the process. The present work
explored the inoculum’s microbial structure but also the microbiology that evolved during
self-fermentation. As shown in Figure 5, the inoculum showed a high level of organizational
structure since more than 90% of microbial abundance was represented by 20% of the
species detected. This microbial distribution was consistent with the Pareto principle stating
that roughly 20% of the species are covered by 80% of the total community abundance [47].
Based on the metabolic capacity, the bacteria were divided into three groups, namely, HPB,
LAB and acetic acid bacteria (AAB). The relative abundance was 85.9, 5.7 and 5.8% for
HPB, LAB, and AAB, respectively [14]. Note that the group of LAB was left out from the
HPB one; however, some LAB have been reported to be able to produce hydrogen [48–50].
Also, it should be noted that the microbial analysis was performed at a species level for
the first analysis, but the final species taxonomy should be determined by means other
than molecular analysis like long-read sequencing. The microbial structure of the initial
inoculum generally changes throughout the fermentation time, being impacted by the type
of substrate and operational conditions. In this work, the “guild” is mainly composed of
HPB, LAB, and AAB (Figure 5). These microbial groups have been previously identified as
the principal core group enabling the production of hydrogen from lactate and acetate via
cross-feeding interactions (Figure 6) [17,31]. Clostridium and LAB have been reported to be
dominant in DF and important to driving the hydrogen production process forward, even
after a long time [23].

Among HPB, Clostridium beijerinckii (36.0%), Actinomyces sp. (21.6%), and Enterobacter
sp. (17.8%) comprised more than 75% of the total reads. Moreover, Clostridium sp., Klebsiella
pneumoniae, C. butyricum, and Citrobacter sp. represented 6.1, 3.1, 3.0, and 2.2%, respectively.
As for LAB, Lactobacillus casei and L. harbinensis were the most abundant species, accounting
for 58.8 and 31% of the total reads belonging to LAB, respectively. Other less abundant
species such as Streptococcus sp. (8.7%) and L. parabuchneri (0.8%) were also found. Regard-
ing AAB, a less-diverse microbial group represented by the genus Acetobacter was observed,
including Acetobacter lovaniensis (81.2%) and other unknown species (18.8%). Low hydrogen
production can be produced by the presence of homoacetogens according to Equation (10).
However, here no acetate accumulation was observed. Conversely, acetate consumption
was correlated to hydrogen production. The little or lack of presence of carbon dioxide
during the first lactate-type fermentation suggested that AAB could be considered helpers
since they can generate the acetate necessary to support the reaction described in Equation
(5), where 0.4–0.53 mol of acetate is necessary for each mol of lactate oxidized to form
0.47–0.62 mol of hydrogen and 0.66–0.83 mol of butyrate [10]. This observation corresponds
with that of Tao et al. (2016), who reported the addition of exogenous acetate favored lactate
consumption and butyrate formation when using a LO-HPB, i.e., Clostridium sp. BPY5 [19].
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Therefore, the stimulant effect of AAB involved in the production of hydrogen from lactate
seemed to exceed the antagonistic impact associated with the homoacetogenic pathway.
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Regarding the microbial community of self-fermentations, approximately two-thirds
of the total reads were covered by LAB when using CCW (Figure 7). Bacteria belonging
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to HPB had a share of 20.4%. In the case of FVW, 77.2% of total reads were closely
affiliated with HPB, while L. harbinensis (1.4%) was the only representative of the LAB
group. Interestingly, the AAB group was not identified either with CCW or with FVW.
L. casei (the dominant bacteria identified in the biocatalyst) was not found in both self-
fermentations tested. Instead, CCW had L. helveticus (50.1%), L. delbrueckii (16.0%), L.
lactis (7.7%), and L. fermentum (1.7%). Another interesting finding observed is that, like
the biocatalyst used, CCW also harbored C. butyricum (1.1%) and C. beijerinckii (4.8%),
two well-known LO-HPB. Such LO-HPB endorsed the lactate-driven DF observed in the
self-fermentation of CCW. Thus, CCW can be considered a good source not only of LAB
but also of LO-HPB. Enterobacter and Actinomyces genera were also absent in the dark self-
fermentation of CCW, highlighting the differences existing between the biocatalyst used and
the endogenous microflora that evolved. Blautia genus, recognized as homoacetogen [29],
was detected in FVW, which can explain the high acetate concentrations recorded in the
dark self-fermentation of FVW along with the poor hydrogen production outcome. From
our findings, it can be concluded that the microbial community structure of the inoculant
used was of utmost importance to steer the fermentation towards a dual-phase lactate
fermentation, even using different complex agro-industrial resources, each containing
several different endogenous bacteria.
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4. Conclusions

The use of a highly specialized biocatalyst was successfully tested to steer the dark
mono- and co-fermentation of different agro-industrial resources towards dual-phase
lactate fermentation. The target products derived from the tailored two-step lactate fermen-
tation were lactate and hydrogen and butyrate. Hydrogen and butyrate were co-produced
efficiently but had a trade-off against lactate. The biocatalyst used was not only able to
achieve anoxic conditions by removing residual oxygen but also to hydrolyze particulate or-
ganics. Among the different feedstocks tested, CCW and FVW, alone or in co-fermentation,
stand out as the most suitable ones to be subjected to DF. A totally different process perfor-
mance, in terms of the metabolic pathway and the target product peak titer, was observed
when comparing inoculum-aided fermentations and self-fermentations. Significant higher
product titers were attained in inoculated DF tests, leading to lactate and butyrate peak
concentrations between 13.1 and 36.4 g/L and between 3.3 and 13.9 g/L, respectively.
Hydrogen yields were in the range of 0.2 to 7.5 NL H2/Lfeedstock (0.3–1.7 mol H2/mol
hexose), depending on the feedstock type. From process characterization and microbial
analysis, it can be concluded that the microbial community structure was key in dictat-
ing the fermentation performance. Although the microbial community structure of the
self-fermentation and biocatalyst used herein shared some bacteria, the biocatalyst had
its own microbial organizational structure. Bacteria belonging to the LAB, LO-HPB, and
AAB groups were keystones in the biocatalyst. The significance of this work lies in the
fact that the biocatalyst assessed can be employed as a workhorse for the valorization of
agro-industrial resources via DF. The findings of the present study and their discussion
constitute a step further in DF inoculum management.
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