
Vol.:(0123456789)

Multimedia Tools and Applications
https://doi.org/10.1007/s11042-023-17435-x

1 3

Simplifying YOLOv5 for deployment in a real crop monitoring 
setting

Emmanuel C. Nnadozie1,2,3   · Pablo Casaseca‑de‑la‑Higuera1 · 
Ogechukwu Iloanusi2 · Ozoemena Ani3 · Carlos Alberola‑López1

Received: 3 August 2022 / Revised: 25 September 2023 / Accepted: 3 October 2023 
© The Author(s) 2023

Abstract
Deep learning-based object detection models have become a preferred choice for crop 
detection tasks in crop monitoring activities due to their high accuracy and generalization 
capabilities. However, their high computational demand and large memory footprint pose a 
challenge for use on mobile embedded devices deployed in crop monitoring settings. Vari-
ous approaches have been taken to minimize the computational cost and reduce the size of 
object detection models such as channel and layer pruning, detection head searching, back-
bone optimization, etc. In this work, we approached computational lightening, model com-
pression, and speed improvement by discarding one or more of the three detection scales 
of the YOLOv5 object detection model. Thus, we derived up to five separate fast and light 
models, each with only one or two detection scales. To evaluate the new models for a real 
crop monitoring use case, the models were deployed on NVIDIA Jetson nano and NVIDIA 
Jetson Orin devices. The new models achieved up to 21.4% reduction in giga floating-point 
operations per second (GFLOPS), 31.9% reduction in number of parameters, 30.8% reduc-
tion in model size, 28.1% increase in inference speed, with only a small average accuracy 
drop of 3.6%. These new models are suitable for crop detection tasks since the crops are 
usually of similar sizes due to the high likelihood of being in the same growth stage, thus, 
making it sufficient to detect the crops with just one or two detection scales.

Keywords  Object detection · Model simplification · Crop monitoring · YOLOv5 · Deep 
learning

1  Introduction

1.1 � Background

Plant identification is an integral step in crop monitoring and management tasks such as 
crop yield estimation, weed and pest control, disease prevention and control, etc. The 
tedious and error-prone manual approach to crop identification has given rise to the need 
for autonomous techniques for crop identification. Computer vision models have been 

Extended author information available on the last page of the article

http://orcid.org/0000-0002-0965-0937
http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-023-17435-x&domain=pdf


	 Multimedia Tools and Applications

1 3

deployed on embedded devices and fitted to different types of farm vehicles—including 
ground and airborne – to realize autonomous crop detection. Traditional image processing 
techniques were first used for crop detection [1], however the rapidly changing field condi-
tions such as natural lighting, crop density, leaf occlusions, etc. undermine the accuracy 
and robustness of those models [2, 3]. Recently, deep learning models are fast becoming 
the preferred choice for object detection tasks such as crop detection [4, 5]. This grow-
ing popularity of deep learning architectures is due to their superior accuracy and abil-
ity to generalize to previously unseen data. They are also capable of end-to-end learning 
of hierarchical features of the images, thus jettisoning the laborious task of manual fea-
ture engineering [6, 7]. Despite the shiny attractiveness of deep learning-based computer 
vision models, they are notoriously resource-greedy. Computational cost and memory 
footprint are usually high for deep learning models, thus requiring high-end graphics pro-
cessing units (GPU) and large storage capacity. This computational and memory costs pre-
sent a challenge when deploying deep learning-based crop detection models on embedded 
devices with constrained resource availability. Minimizing the resource-demand for deep 
learning models is currently an active research area to which we intend to contribute.

1.2 � Model simplification

In time-critical applications such as self-driving cars, UAV-based crop detection and spray-
ing, etc., real-time fast detection and high performance are important issues. Devices such 
as single board computers and mobile devices, on which real-time detection models are 
deployed are often resource constrained [8]. Conventional deep learning-based detection 
models are often very large if they must have high accuracy, thus requiring more com-
putational power from the processors. On the other hand, small object detection models 
that exhibit less computational complexity and fast detection speed often trade accuracy for 
computational complexity. For real-time object detection, the ideal model performance will 
entail capacity for fast detections and high accuracy, with minimal computational power 
[9].

Model simplification and compression methods have been proposed to reduce the 
computational requirement of deep learning object detection models and increase detec-
tion speed, while maintaining high detection accuracy. Available model simplification and 
compression techniques include tensor decomposition [10–13], network pruning [14–19], 
knowledge distillation [20–23], and neural architecture search (NAS) [24–27]. Tensor 
decomposition techniques such as low-rank matrix decomposition and tensorized decom-
position simplify complex models by reducing a weight matrix or high-dimensional ten-
sor to multiple low-rank matrices or low-dimensional tensors respectively [28]. While 
tensor decomposition may reduce the memory and computational requirement, it does not 
increase the detection speed. Moreover, the introduction of many layers as a result of the 
multiplied low-dimensional tensors makes parallel processing difficult [29].

Network pruning can be divided into unstructured and structured pruning. Unstructured 
pruning removes filter weights individually, thus requiring a separate software library or 
special hardware so as not to carry out operations on the weights that have been previously 
removed [30]. Since this approach does not change the feature map pre- and post-pruning, 
little model compression is achieved. Structured pruning on the other hand prunes at the 
layer or channel level, and requires no special software or hardware. Since this approach 
prunes all the weights in the layer or channel, it often leads to performance reduction [29].



Multimedia Tools and Applications	

1 3

Knowledge distillation trains a simplified model (student network) to achieve an output 
similar to that of a more complex model (teacher network). This similar output is achieved 
by means of different loss functions including the conventional knowledge distillation 
loss [29, 31], Kulback-Leibler divergence[32], and angular distillation loss [31]. Whereas 
knowledge distillation realizes a lightweight model, the generation of an effective student 
model which is compatible with the teacher model is still a challenge. Moreover, account-
ing for the effect of different layers of the teacher on the student model is difficult [30].

Neural architecture search generates a simplified model by repeatedly searching the 
predefined space and evaluating the architecture until an optimal model is realized [30]. 
The large searching space makes this iterative procedure time-consuming [33]. NAS is cur-
rently faced with the three-pronged challenge of proper search space definition, quickly 
finding the optimal architecture, and the best way to evaluate the candidate network [29].

The above-mentioned model simplification methods are generic approaches as opposed 
to model-specific. High-performing state-of-the-art detection models owe their improved 
performance to the introduction of new techniques during model development. For 
instance, the introduction of different detection scales in YOLO deep learning detection 
models, improved the ability of the models to better detect objects of all sizes [34]. As pro-
posed in this work, such model-specific peculiarities can be explored to realize simplified 
models.

1.3 � Related work

Deep learning-based object detection models are broadly classed into two-stage and one-
stage detection models. Two-stage detection models such as Fast-RCNN [35], Faster-
RCNN [36], Mask-RCNN [37], etc., propose regions of interest as a first stage, followed 
by pooling of features for classification and localization of objects. While two-stage detec-
tors are known for very high accuracy, they are often too slow and unsuitable for real-time 
applications. In contrast to two-stage detectors, one-stage detectors like the YOLO series 
[34, 38–40] single-shot detector (SSD) [41], classify and localize images in one single step, 
utilizing grid boxes and anchors, and without the need for region proposals. One-stage 
detectors often fall behind two-stage detectors in accuracy, but are much faster and lighter; 
thus, making them preferable for real-time applications. In particular, the YOLO series has 
gained popularity for its speed and accuracy. After the first introduction of the first YOLO 
object detection model by Redmon et al. [42], attempts have been made by researchers to 
improve the speed, accuracy, and model size with each evolution of the model [34, 38–40]. 
Many YOLO models have been released with different improvement strategies. The under-
lying focus for all YOLO models is to optimise the trade-off between accuracy and speed, 
thus making YOLO models highly suitable for real-time applications. Table 1 below sum-
marizes the major existing YOLO models and their unique advantages.

The simple architecture and efficiency of YOLO models have made them a focus of 
optimization efforts for deployment in crop monitoring activities. The potential for model 
optimization using model pruning was demonstrated by Wang and He [52]. Using channel 
pruning, the authors reduced the size of YOLOv5s model by 9.5% of the original model 
size. The fine-tuned model, which was developed for apple fruitlet detection, also achieved 
9.5% reduction in the number of parameters and 9.8% decrease in latency. The same tech-
nique was applied by Wu et al. [53] to reduce the number of parameters of YOLOv4 by 
96.74% which yielded 39.47% increase in inference speed for apple flower detection. In 
the work by Wang et al. [54], another pruning method, layer pruning, was combined with 



	 Multimedia Tools and Applications

1 3

Ta
bl

e 
1  

A
 c

hr
on

ol
og

y 
of

 Y
O

LO
 v

er
si

on
s s

ho
w

in
g 

fe
at

ur
es

/im
pr

ov
em

en
ts

 a
nd

 p
er

fo
rm

an
ce

 b
as

ed
 o

n 
A

ve
ra

ge
 P

re
ci

si
on

 (A
P)

 a
nd

 F
ra

m
es

 P
er

 S
ec

on
d 

(F
PS

)

M
od

el
Ye

ar
Fe

at
ur

es
/Im

pr
ov

em
en

ts
Pe

rfo
rm

an
ce

Y
O

LO
v1

 [4
2]

20
16

Si
ng

le
 st

ag
e 

de
te

ct
io

n,
 si

m
pl

e 
ar

ch
ite

ct
ur

e,
 fa

st 
de

te
ct

io
n

63
.4

 A
P 

on
 P

as
ch

al
 V

O
C

20
07

Y
O

LO
v2

 [3
9]

20
17

H
ig

h-
re

so
lu

tio
n 

cl
as

si
fie

r, 
an

ch
or

 b
ox

-b
as

ed
 to

 p
re

di
ct

io
n,

 d
im

en
si

on
 

cl
us

te
rs

, d
ire

ct
 lo

ca
tio

n 
pr

ed
ic

tio
n,

 fi
nn

er
-g

ra
in

ed
 fe

at
ur

es
, m

ul
ti-

sc
al

e 
tra

in
in

g

78
.6

 A
P 

on
 P

as
ch

al
 V

O
C

20
07

Y
O

LO
v3

 [3
4]

20
18

cl
as

s P
re

di
ct

io
n,

 n
ew

 b
ac

kb
on

e,
 m

od
ifi

ed
 sp

at
ia

l p
yr

am
id

 p
oo

lin
g 

(S
PP

), 
m

ul
ti-

sc
al

e 
pr

ed
ic

tio
ns

,
36

.2
 A

P 
an

d 
60

.6
 A

P5
0 

of
 a

t 2
0 

FP
S 

on
 M

S 
CO

CO
 d

at
as

et

Y
O

LO
v4

 [4
0]

20
20

En
ha

nc
ed

 a
rc

hi
te

ct
ur

e,
 b

ag
 o

f f
re

eb
ie

s (
B

oF
) a

nd
 b

ag
 o

f s
pe

ci
al

s (
B

oS
) 

in
te

gr
at

io
n,

 se
lf-

ad
ve

rs
ar

ia
l t

ra
in

in
g 

(S
A

T)
, h

yp
er

pa
ra

m
et

er
 o

pt
im

is
at

io
n 

w
ith

 G
en

et
ic

 A
lg

or
ith

m

43
.5

 A
P 

an
d 

65
.7

 A
P5

0 
on

 M
S 

CO
CO

 d
at

as
et

 2
01

7 
at

 m
or

e 
th

an
 5

0
FP

S 
on

 N
V

ID
IA

 V
10

0

Y
O

LO
v5

 [3
8]

20
20

M
od

ifi
ed

 C
SP

D
ar

kn
et

53
 b

ac
kb

on
e,

 a
ut

oa
nc

ho
rs

, d
ev

el
op

ed
 in

 P
yt

or
ch

 
fr

am
ew

or
k

50
.7

 A
P 

on
 M

S 
CO

CO
 d

at
as

et
 2

01
7 

at
 2

00
 F

PS
 o

n 
N

V
ID

IA
 V

10
0

Sc
al

ed
-Y

O
LO

v4
 [4

3]
20

21
Py

to
rc

h 
fr

am
ew

or
k,

 sc
al

in
g 

up
 a

nd
 sc

al
in

g 
do

w
n 

te
ch

ni
qu

es
U

p 
to

 5
6 

A
P 

on
 M

S 
CO

CO
 d

at
as

et
Y

O
LO

X
 [4

4]
20

21
M

ul
ti-

ta
sk

 le
ar

ni
ng

55
.4

%
 A

P 
an

d 
73

.3
%

 A
P5

0 
on

 M
S 

CO
CO

 a
t 3

0 
FP

S 
on

 a
n

N
V

ID
IA

 V
10

0
Y

O
LO

R
 [4

5]
20

21
A

nc
ho

r-f
re

e 
ar

ch
ite

ct
ur

e,
 m

ul
tip

le
 p

os
iti

ve
s, 

de
co

up
le

d 
he

ad
, a

dv
an

ce
d 

la
be

l a
ss

ig
nm

en
t, 

str
on

g 
au

gm
en

ta
tio

ns
50

.1
%

 A
P 

at
 6

8.
9 

FP
S 

on
 T

es
la

 V
10

0

PP
-Y

O
LO

E 
[4

6]
20

22
A

nc
ho

r-f
re

e,
 n

ew
 b

ac
kb

on
e 

an
d 

ne
ck

, T
as

k 
A

lig
nm

en
t L

ea
rn

in
g 

(T
A

L)
, 

Effi
ci

en
t T

as
k-

al
ig

ne
d 

H
ea

d 
(E

T-
he

ad
), 

Va
rif

oc
al

 (V
FL

) a
nd

 D
ist

rib
ut

io
n 

fo
ca

l l
os

s (
D

FL
)

51
.4

%
 A

P 
at

 7
8.

1 
FP

S 
on

 N
V

ID
IA

 V
10

0

Y
O

LO
v6

 [4
7]

20
22

A
 n

ew
 b

ac
kb

on
e 

ba
se

d 
on

 R
ep

V
G

G
, l

ab
el

 a
ss

ig
nm

en
t u

si
ng

 th
e 

Ta
sk

 
al

ig
nm

en
t l

ea
rn

in
g,

 n
ew

 c
la

ss
ifi

ca
tio

n 
an

d 
re

gr
es

si
on

 lo
ss

es
, s

el
f-

di
sti

lla
-

tio
n,

 q
ua

nt
iz

at
io

n 
sc

he
m

e

57
.2

%
 A

P 
at

 a
ro

un
d 

29
 F

PS
 o

n 
N

V
ID

IA
 T

es
la

 T
4

Y
O

LO
v7

 [4
8]

20
22

Ex
te

nd
ed

 e
ffi

ci
en

t l
ay

er
 a

gg
re

ga
tio

n 
ne

tw
or

k 
(E

-E
LA

N
), 

M
od

el
 sc

al
in

g 
fo

r 
co

nc
at

en
at

io
n-

ba
se

d 
m

od
el

s, 
B

ag
 o

f F
re

eb
ie

s
55

.9
%

 A
P 

an
d 

73
.5

%
 A

P5
0 

on
 M

S 
CO

CO
 d

at
as

et
 a

t 5
0 

FP
S 

on
 N

V
ID

IA
 

V
10

0
D

A
M

O
-Y

O
LO

 [4
9]

20
22

N
eu

ra
l a

rc
hi

te
ct

ur
e 

se
ar

ch
 (N

A
S)

, l
ar

ge
 n

ec
k,

 sm
al

l h
ea

d,
 A

lig
ne

dO
TA

 
la

be
l a

ss
ig

nm
en

t, 
kn

ow
le

dg
e 

di
sti

lla
tio

n
50

.0
%

 A
P 

at
 2

33
 F

PS
 o

n 
N

V
ID

IA
 V

10
0

Y
O

LO
v8

 [5
0]

20
23

M
ul

tip
le

 v
is

io
n 

ta
sk

s, 
an

ch
or

-f
re

e,
 d

ec
ou

pl
ed

 h
ea

d,
 m

od
ifi

ed
 b

ac
kb

on
e

53
.9

%
 A

P 
at

 2
80

 F
PS

 o
n 

an
 N

V
ID

IA
 A

10
0

Y
O

LO
-N

A
S 

[5
1]

20
23

Q
ua

nt
iz

at
io

n 
aw

ar
e 

m
od

ul
es

, a
ut

om
at

ic
 a

rc
hi

te
ct

ur
e 

de
si

gn
, h

yb
rid

 q
ua

nt
i-

za
tio

n,
 se

lf-
di

sti
lla

tio
n

52
.2

%
 A

P 
on

 M
S 

CO
CO



Multimedia Tools and Applications	

1 3

channel pruning and detection head searching to optimize YOLOv5 for real-time apple 
stem/calyx recognition. After optimization, the authors reported up to 71% reduction in 
model weight, and inference speed of about 25 frames per second (fps), at the cost of 
1.6% decrease in mean average precision. Yin et al. [55] replaced the Darknet53 backbone 
in YOLOv3 network with a joint network of deep random kernel convolutional extreme 
learning machine (DRKCELM) and a double hidden layer extreme learning machine auto-
encoder (DLELM-AE) to realize a simplified feature extraction backbone. The approach 
resulted in reduced training time, improved detection speed over the YOLOv3 model, with 
a slight reduction in mean average precision. YOLO models are deep learning networks 
generally consisting of a backbone for feature extraction, a neck for aggregating and fusing 
features and a “head” with three scales of detection for image classification and bound-
ing box predictions. While the referenced works on YOLO models optimization for crop 
monitoring achieved acceptable improvements in speed and model weight reduction, we 
hypothesise that dropping one or more detection scales of the network can lead to reduc-
tion in computational cost and model weight as well as to acceleration of inference. Often, 
for many crop detection applications, the objects of interest are of similar size, as the crops 
would normally be at the same growth stage. Thus, all three detection scales would not be 
in principle necessary for crop detection—only one or two detection scales would be suffi-
cient to detect the crops in the images. Performance evaluation of the optimised models on 
the type of embedded devices similar to those deployed in the field is also lacking.

At the time of first writing, YOLOv5 was the current state-of-the-art detection model, 
which informed the choice of YOLOv5 for optimization. At the time of manuscript revi-
sion, the authors compared YOLOv5’s performance on the custom dataset using with the 
latest YOLO models, YOLOv6, YOLOv8, and YOLO-NAS. Interestingly, the comparison 
showed (see Sections 3.1 and 4.1) similar accuracies for YOLOv5, YOLOv8, and YOLO-
NAS, but a much lower accuracy for YOLOv6. In addition, YOLOv5 showed faster detec-
tion speed than YOLOv8 and YOLO-NAS. Thereafter, YOLOv5 was retained as the candi-
date model for optimisation based on the obtained results.

1.4 � Contributions and paper structure

This work is driven by the pressing need for accurate yet lightweight models deployable in 
real-time object detection scenarios, particularly in fields like crop monitoring employing 
unmanned aerial vehicles (UAVs). While model development has progressed over time, 
resulting in increasingly lighter and more precise models, the incorporation of algorithm-
specific acceleration methods has demonstrated remarkable advancements. In this paper, 
we introduce an acceleration technique that enables the creation of swift and lightweight 
standalone models, adaptable to various monitoring scenarios. The main contributions of 
this work are summarised as follows:

•	 Design of an acceleration methodology for the well-established YOLOv5 object detec-
tor, centered around a systematic approach involving the selective exclusion of various 
detection scales. This methodology balances performance and efficiency by not only 
enhancing inference speed but also ensuring that detection accuracy remains consist-
ently high.

•	 Implementation and testing of the acceleration technique at algorithm level on different 
machine learning platforms.



	 Multimedia Tools and Applications

1 3

•	 Deployment of the derived models on close-to-device hardware such as NVIDIA Jetson 
nano and NVIDIA Jetson Orin and evaluation of their performance for real crop moni-
toring settings using unmanned aerial vehicles UAV.

A comparison with pruned versions of YOLOv5 is provided to show how our model-
specific strategy compares with currently existing high-performing generic simplification 
approaches. We also show that YOLOv5, which is a purely detector procedure, compares 
favourably with later Yolo versions in terms of accuracy.

The paper is structured as follows: in Section  2 we present the methodology of the 
research, which includes a detailed overview of the YOLOv5 object detection model and 
its comparison with other recent YOLO models; here we also present our network sim-
plification approach, our custom dataset, model deployment platforms, and comparison 
of our approach with network pruning. We present the research results in Section 3 and 
detailed discussion of the results in Section 4. Section 5 concludes the paper and provides 
our future plans for the research.

2 � Methodology

2.1 � YOLOv5

YOLOv5 is an improvement over the YOLOv3 network having better accuracy, speed, and 
size [38, 56]. As shown in Fig. 1, the backbone of YOLOv5 consists of a focus module, 
CBS (Convolution, Batch Normalization, SiLU activation) modules, C3_n (CBS, Bottle-
neckCSP1, Concatenation) modules (n is the residual units), and a Spatial Pyramid Pooling 
(SPP) module.

The focus module preserves all the input image information for better feature extraction. 
Figure 2 shows the layers that make up the focus module, including the sizes of the kernel 
(k), strides (s), padding (p), and channels (c).

The CBS, is a basic block merely consisting of a convolutional layer that uses batch nor-
malisation and SiLU activation to extract image features.

The C3 module is designed to enhance the learning abilities of the network. YOLOv5 
is largely composed of repeated stacking of C3 blocks. Figure 3 shows the configuration of 
the C3 module.

YOLOv5 has one type of Cross-stage Partial Network configuration in the backbone 
referred to as BottleneckCSP1, which improves the learning ability of the CNN. The CSP 
at the neck, BottleneckCSP2, uses a skip connection to better integrate features. Figure 4 
shows the configurations of BottleneckCSP1 and BottleneckCSP2.

The SPP module, which consists of maximum pooling, CBS, and concatenation layers, 
helps to fuse multiscale features. Figure 5 highlights more details of the SPP configuration.

The neck of YOLOv5 utilizes the Path Aggregation Network (PANet) to fuse 
extracted features. The PANet is a configuration of CBS, upsampling, concatenation, 
and C3 layers. The neck of YOLOv5 outputs three feature scales which are used for pre-
diction at the head. Finally, the Non-maximum suppression (NMS) is used to select the 
best bounding box predictions in the event that multiple predictions exist for one target. 
The YOLOv5 currently has five versions, the extra-large (YOLOv5x), large (YOLOv5l), 
medium (YOLOv5m), small (YOLOv5s), and nano (YOLOv5n). Their differences lie 



Multimedia Tools and Applications	

1 3

in the depth and width of the networks, with decreasing order of depth and width from 
YOLOv5x to YOLOv5n. The accuracy, complexity, and size of the models increase with 
increase in the width and depth, whereas the speeds of the different versions decrease 
as the depth and width increase. The YOLOv5n was selected for this work because 
the detection speed is suitable for real-time applications and the accuracy is accept-
able. Moreover, the same techniques developed in this work are applicable to the other 
YOLOv5 versions [57].

2.2 � YOLOv5 vs YOLOv6 vs YOLOv8 vs YOLO‑NAS

The latest models of the YOLO series, YOLOv6, YOLOv8, and YOLO-NAS, were com-
pared with YOLOv5 on the custom dataset presented in this work. The smallest versions of 
the three models which are YOLOv5n, YOLOv6n, YOLOv8n, and YOLO-NASs were cho-
sen as they are most suited for real-time detection. The compared metrics included mAP, 
detection speed, size of the weights file, and training. Results are presented in Section 3.

2.3 � Model design

Prediction in YOLOv5 takes place at the YOLOv5 head. Here, features from the YOLOv5 
neck are used to make anchor-based predictions at three granularity levels. Thus, the 
YOLOv5 head consists of three output layers. The first granularity layer predicts small 
objects using grid size of 80 × 80. The second granularity layer predicts medium-sized 
objects with 40 × 40 grid size. The third layer predicts large objects using 20 × 20 grids. 
Basically, the head for YOLOv3, YOLOv4, and YOLOv5 follow a very similar structure; 
details of this structure are explained by Martinez-Alpiste et al. [58].

Figure 6 shows how the YOLOv5 architecture was modified to output only the detec-
tion scale for the small objects. The details of the backbone are omitted for conciseness. 

Fig. 1   Overview of YOLOv5 architecture



	 Multimedia Tools and Applications

1 3

The faded layers indicate the layers that were discarded from the YOLOv5 head. Here, the 
medium and big scales were dropped.

Similarly, Fig. 7 describes how the YOLOv5 architecture was modified to drop the 
small and big scales and output only the medium detection scale.

In Fig.  8, we see how only the detection scale for big objects was outputted while 
discarding the small and medium detection scales.

To output more than one detection scale, but not all three scales, the appropriate 
scale was dropped. For instance, to output the small and medium scales, the detection 
scale for big objects was dropped.

Table 2 summarizes the resulting models after scales were systematically dropped.

Fig. 2   Composition of the Focus module of YOLOv5

Fig. 3   Configuration of the YOLOv5 C3 block



Multimedia Tools and Applications	

1 3

We would henceforth refer to the modified models by the outputted scale. Thus, for the 
model where all but the small scale is dropped, we will call it the “s” model; and the same 
goes for the other models.

2.4 � Dataset

The object detection task adopted for this work was cassava crop detection under real-life 
field conditions. The training, validation, and inference dataset consisted of RGB images 
captured from an experimental farm at Nsukka, Nigeria. The images were captured using 
a custom-made UAV and a GoPro Hero 7 camera under variations in field conditions like 

Fig. 4   Configuration of YOLOv5 BottleneckCSP 1 and BottleneckCSP 2

Fig. 5   Configuration of the YOLOv5 SPP module



	 Multimedia Tools and Applications

1 3

lighting, weed density, crop growth stages, etc. Figure 9 contains sample images from the 
dataset showing various field conditions including illumination, shadows, weed density, 
leaf occlusions, and crop growth stages. The captured images had an original resolution of 
4000 × 3000 pixels. However, we resized the images to 960 × 720 pixels while maintaining 
the original aspect ratio and ensuring the new image height and width were multiples of 32 
as recommended for YOLO models. The images were annotated using the python-based 
LabelImg [59] annotation tool.

The training and validation images containing 1788 and 475 cassava objects respec-
tively, were used for training and validation respectively. As for the latter, we measured 
mean average precision (mAP) for the customary value of intersection over union equal to 
0.5 [60]. This will jointly be denoted as mAP@0.5.

To measure the detection speed of the models for real-time scenarios, we created an 
inference set. Inferences were run on the inference set to simulate real-time field deploy-
ment and monitor the detection speed of the models. The inference set contained up to 246 
cassava objects.

2.5 � Model training, accuracy assessment and inference

The six derived models and the base model were each trained on a workstation powered 
by NVIDIA GeForce RTX 3060, 12 GB RAM GPU. The deep learning framework used 
was Pytorch. A uniform epoch size and batch size of 400 and 8 were respectively used. 
The learning rate was set to 0.01 and momentum was 0.937. The Generalised Intersection 
over Union (GIoU) loss function was used for training the models, and the optimiser used 
was Stochastic Gradient Descent (SGD) [61]. To improve the model accuracy given the 
relatively small size of our custom dataset, transfer learning was employed using pretrained 
weights of the YOLOv5n model trained on the Microsoft COCO dataset.

Fig. 6   Modified YOLOv5 architecture for small scale detection. Faded blocks means discarded blocks



Multimedia Tools and Applications	

1 3

For performance comparison and analysis, we calculated training time on the training 
set and mAP@0.5 on the validation set. To understand the complexity reduction in the 
models, the number of layers, number of parameters, and GFLOPS were documented. The 
sizes of the weight files were also noted to highlight the improvements in the memory foot-
prints of the models.

The latency (the inverse of which is frames per second, FPS) across all the models was 
compared, using the inference set.

Fig. 7   Modified YOLOv5 architecture for medium scale detection

Fig. 8   Modified YOLOv5 architecture for big scale detection



	 Multimedia Tools and Applications

1 3

2.6 � Model deployment on Jetson devices

Many real-life applications of object detection are resource-constrained. This is 
especially true for drone applications such as real-time plant detections using UAVs, 
where the payload capacity may not accommodate very high-computing devices like 
the GPUs installed on workstations. To evaluate the performance of the simplified 
models for such applications, the models were deployed on the NVIDIA Jetson nano 
4  Gb RAM running Ubuntu 18.04 LTS. The Jetson nano is a small GPU-powered 
computer manufactured by NVIDIA and suitable for running deep learning applica-
tions for tasks such as image classification, image segmentation, object detection, 
etc. Neural network models can be deployed to Jetson nano, which in turn can be 
mounted on mobile platforms like UAVs and self-driving vehicles for different com-
puter vision tasks.

The models were also deployed on NVIDIA Jetson Orin 32 GB RAM. The Jetson Orin 
packs more computing power and provides an option for realizing detection speeds over 6 
times faster than the Jetson nano. As a result, it is much heavier than the Jetson nano. Jet-
son nano runs on Ubuntu 20.04.6 LTS.

2.6.1 � Technical specifications of the NVIDIA Jetson nano and Jetson AGX Orin

Jetson embedded devices such as the Jetson Orin and Jetson Nano are modular devices 
developed by NVIDIA for mobile applications. Equipped with CUDA cores, the Jetson is 
able to run deep learning models seamlessly to allow real-time computer vision tasks such 
as object detection and image segmentation on mobile platforms.

The technical specifications of the Jetson nano and Orin are given in Table 3.

2.6.2 � Jetson setup and package installation

The NVIDIA® Jetson Nano™ Developer Kit consisted of the Jetson nano module and the 
reference carrier board with required accessories. The YOLOv5 package and the attendant 
requirements were installed on the Jetson nano. To get the best model inference speed and 
size on the Jetson nano, three target formats for model deployment suitable for embed-
ded systems were initially considered, which included the native Pytorch format of the 
YOLOv5, the TensorRT developed by NVIDIA®, and the ONNX developed for mobile 
applications. Preliminary results showed that the performance of the ONNX format of the 

Table 2   Summary of the 
models showing which scales 
were dropped and which were 
retained, where “s”, “m”, and “b” 
represent the small, medium, and 
big scales respectively

Model alias Dropped scale(s) Retained scale(s) Comment

YOLOv5n_s m, b s
YOLOv5n_m s, b m
YOLOv5n_b s, m b
YOLOv5n_s + m b s, m
YOLOv5n_s + b m s, b
YOLOv5n_m + b s m, b
YOLOv5n_all None s, m, b Base model



Multimedia Tools and Applications	

1 3

models on the Jetson was not acceptable and the format was consequently dropped. Thus, 
inferences on the Jetson were only conducted and compared for the Pytorch and TensorRT 
formats of the models. The Pytorch framework, TensorRT, and all dependent packages 
were installed on the Jetson.

For the Pytorch inferences on the Jetson, it was not required to convert the models 
trained on the workstation since they were already in the native Pytorch format. But for the 
TensorRT format, it was necessary to convert the models to TensorRT engine for inference 
on the Jetson nano. The conversion of the detection models to TensorRT was done using 
the code provided by the authors of the YOLOv5 model.

The setup and installation procedures for the NVIDIA Jetson Orin were similar to those 
of the Jetson Nano. However, for the Jetson Orin, the models were only deployed in the 
Pytorch format.

2.6.3 � Inference on Jetson devices

For each model and for both the Pytorch and TensorRT formats, 20 inference runs were 
carried out. The speed improvements of the derived models over the base model were high-
lighted. The results of the two deployment formats—Pytorch and TensorRT—were also 
compared. Similarly, 20 inference runs were performed on the Jetson Orin for each model. 
The results are presented in Section 3.

Fig. 9   Sample images from the dataset showing various field conditions including illumination, shadows, 
weed density, leaf occlusion, and crop growth stages



	 Multimedia Tools and Applications

1 3

2.7 � Our approach vs network pruning

The YOLOv5 base model was pruned to a sparsity of 0.2 and 0.3 and compared with our 
optimised models. The pruned models were tested on Google Colab, running on a Tesla 
T4 GPU with 16  GB RAM. Consequently, additional inferences were conducted for all 
optimised models on Google Colab for fair comparison. The results are presented and com-
pared in Section 3.

3 � Results

3.1 � YOLOv5 vs YOLOv6 vs YOLOv8 vs YOLO‑NAS

To ensure a fair comparison of YOLOv5, YOLOv6, YOLOv8, and YOLO-NAS on our 
dataset, the same platform for training and inference was necessary. The chosen platform 
was Google Colab, using Tesla T4 GPUs with 16  GB RAM. Figure  10 shows how the 
models perform in terms of accuracy and inference speed. Training time and memory foot-
print of the models are presented in Table 4.

3.2 � Model properties

In Table  5, the attributes of the new and base models including the GFLOPS, number 
of parameters, model size, and number of layers are presented. We note that for the ‘b’ 
model, the training was stopped at 102 epochs after seeing no improvements in the last 100 
epochs. Therefore, there are no results for the ‘b’ model. The possible reasons for this out-
come are discussed in Section 4.

The percentage improvements in the attributes of the derived models are presented 
in Table 6.

Figure  11 shows how reduction in the number of model parameters affects the 
model size.

The weight sizes of all six models are given in megabytes (mb).

3.3 � Performance comparison and analysis

The results documented during training and validation included training time, performance 
metrics –mean average precision, precision, recall, – and GFLOPS. Given that the mean 
average precision (mAP) has become the preferred performance metric in object detection 
research, this paper will present and discuss the mAP results from the model training. The 
training results are presented in Table 7.

Figure 12 highlights the models’ accuracy through the training epochs. The regions at 
which the models achieve maximal performance can also be observed.

Figure 13 shows a plot of Training time vs GFLOPs to highlight how the improvements 
in GFLOPS affects training time of the models.



Multimedia Tools and Applications	

1 3

Ta
bl

e 
3  

T
ec

hn
ic

al
 sp

ec
ifi

ca
tio

ns
 o

f N
V

ID
IA

 Je
ts

on
 n

an
o 

an
d 

Je
ts

on
 O

rin

Sp
ec

ifi
ca

tio
n

Je
ts

on
 n

an
o

Je
ts

on
 A

G
X

 O
rin

G
PU

12
8-

co
re

 M
ax

w
el

l
17

92
-c

or
e 

N
V

ID
IA

 A
m

pe
re

 a
rc

hi
te

ct
ur

e 
G

PU
 w

ith
 5

6 
Te

ns
or

 C
or

es
C

PU
Q

ua
d-

co
re

 A
R

M
 A

57
 @

 1
.4

3 
G

H
z

8-
co

re
 A

rm
®

 C
or

te
x®

-A
78

A
E 

v8
.2

 6
4-

bi
t C

PU
 2

 M
B

 L
2 +

 4 
M

B
 L

3
M

em
or

y
4 

G
B

 6
4-

bi
t L

PD
D

R
4 

25
.6

 G
B

/s
32

 G
B

 2
56

-b
it 

LP
D

D
R

5,
 2

04
.8

 G
B

/s
St

or
ag

e
m

ic
ro

SD
 (n

ot
 in

cl
ud

ed
)

64
 G

B
 e

M
M

C
 5

.1
C

am
er

a
2 ×

 M
IP

I C
SI

-2
 D

PH
Y

 la
ne

s
U

p 
to

 6
 c

am
er

as
 (1

6 
vi

a 
vi

rtu
al

 c
ha

nn
el

s)
16

 la
ne

s M
IP

I C
SI

-2
D

-P
H

Y
 2

.1
 (u

p 
to

 4
0G

bp
s)

 | 
C

-P
H

Y
 2

.0
 (u

p 
to

 1
64

G
bp

s)
N

et
w

or
k

G
ig

ab
it 

Et
he

rn
et

 (G
bE

), 
M

.2
 K

ey
 E

1 ×
 G

bE
1 ×

 10
G

bE
M

ec
ha

ni
ca

l
69

 m
m

 ×
 45

 m
m

, 2
60

-p
in

 e
dg

e 
co

nn
ec

to
r

10
0 

m
m

 x
 8

7 
m

m
, 6

99
-p

in
 M

ol
ex

 M
irr

or
 M

ez
z 

C
on

ne
ct

or
, I

nt
eg

ra
te

d 
Th

er
-

m
al

 T
ra

ns
fe

r P
la

te
O

th
er

G
PI

O
, I

2C
, I

2S
, S

PI
, U

A
RT

​
4 ×

 U
A

RT
, 3

 ×
 S

PI
, 4

 ×
 I2

S,
 8

 ×
 I2

C
, 2

 ×
 C

A
N

, P
W

M
, D

M
IC

 &
 D

SP
K

, G
PI

O
s



	 Multimedia Tools and Applications

1 3

3.4 � Inference

The inference results are in two parts – the inference results on the workstation GPU, and 
the inference results on the Jetson devices. The inference on the Jetson is further divided 
into inference runs for the Pytorch models and for the TensorRT models. The inference 
results are presented in Table 8. The inference latency (in milliseconds) and its inverse, the 
inference speed (in frames per second, fps), are given for all inferences.

In Table 9, we present the percentage improvements in the inference latency and speed 
of the models. Only the latency improvements on the workstation GPU are shown, since 
we can make our analysis with the speed improvements alone.

In Table 10, we present, side by side, the inference results of the Pytorch and TensorRT 
implementation on the Jetson nano for the purpose of highlighting the advantages of the 
versions over each other.

3.5 � Our approach vs pruning

Table 11 shows how our optimisation approach compares with network pruning.

Fig. 10   Inference speed vs Accuracy of YOLOv5, YOLOv6, YOLOv8, and YOLO-NAS

Table 4   Memory footprint 
and training time of YOLOv5, 
YOLOv6, YOLOv8, and YOLO-
NAS

Model Weight size (MB) Training 
time (hrs)

YOLOv5 4.0 1.207
YOLOv6 10.0 1.897
YOLOv8 6.3 0.651
YOLO-NAS 244.5 3.100



Multimedia Tools and Applications	

1 3

4 � Discussion

In this section the research results are analysed and discussed in the light of the degree to 
which the research objectives were achieved.

Table 5   A summary of the attributes of the modified and base models

Model All s m s + m s + b m + b

GFLOPS 4.2 3.4 3.3 3.8 3.8 3.8
No of parameters 1,760,518 1,199,266 1,243,618 1,312,628 1,450,420 1,736,628
Size (MB) 3.9 2.8 2.7 3.1 3.7 3.7
No of layers 213 167 165 190 193 193

Table 6   Percentage improvements in the attributes of the modified models over the base model

Model All s m s + m s + b m + b

GFLOPS reduction (%) base 19.0 21.4 9.5 9.5 9.5
No of parameters reduction (%) base 31.9 29.4 25.4 17.6 1.4
Size reduction (%) base 28.2 30.8 20.5 5.1 5.1
No of layers reduction (%) base 21.6 22.5 10.8 9.4 9.4

Fig. 11   A plot of the model size vs the number of parameters showing that reduction in number of param-
eters yields reduction in model size



	 Multimedia Tools and Applications

1 3

4.1 � YOLOv5 as candidate model for optimization

From Fig.  10, despite the improvements in the YOLOv6, YOLOv8, and YOLO-NAS 
architectures, the accuracy of the four models were similar, with YOLOv5 showing only 
a slightly higher accuracy of 1.68% over YOLOv8 and 1.79% over YOLO-NAS, and up 
to 7.2% over YOLOv6. The lack of significant accuracy improvements obtained fromY-
OLOv8 and YOLO-NAS models compared to YOLOv5 could be due to the fact that the 
developers focused on optimising the models for multitask (classification, detection, and 
segmentation) learning. On the other hand, YOLOv5 is purely a detection model. Just like 
the accuracy metric, the detection speed followed a similar trend, with YOLOv5 showing 
a slightly faster detection than YOLOv8. YOLOv5 has the lowest weight size at 4.0 MB, 
whereas YOLOv6 and YOLOv8 has 10.0  MB and 6.3  MB respectively, while YOLO-
NAS’ size is 60 times that of YOLOv5 (see Table  4). YOLOv8 has the lowest training 
time. While training time might be a factor to be considered in deploying models for real-
time detection, it is not so important as accuracy and detection speed. YOLOv6 recorded 
the fastest inference time, but with the lowest accuracy of the four models. Thus, YOLOv5 
was retained as the candidate model for optimization in this work.

Table 7   Summary of the training 
results showing the training time 
and mean average precision of 
all the modified and base models 
and the percentage drop in mAP

Model All s m s + m s + b m + b

Training time (hrs) 0.433 0.323 0.319 0.377 0.363 0.367
mAP@0.5 0.951 0.940 0.821 0.947 0.948 0.926
mAP@0.5 drop (%) base 1.2 13.7 0.4 0.3 2.6

Fig. 12   A graph of the mAP of all models



Multimedia Tools and Applications	

1 3

4.2 � Resources demand reduction

The resource-demand of a detection model is an important consideration when evaluating 
models for the purpose of deployment for real-world applications. These resources include 
the computational cost and memory footprints of the models. A popular measure of the 
computational cost of neural networks is the FLOPS. FLOPS gives the number of floating-
point operations for one forward pass. Reduction in FLOPS implies less computations are 
required for a given model. Table 6 shows the improvements in GFLOPS of the derived 
models over the base model. The modified models show a minimum GFLOPS reduction of 
9.5%, while the models where more than one scale was discarded – s, m—boast of a reduc-
tion of about one-fifth of the GFLOPS of the base model. This implies that with the new 
models we cut down the computational cost for detecting objects by up to one-fifth. The 
benefit of these improvements is reflected in the training time for the models. In Fig. 13, 

Fig. 13   A plot of Training time vs GFLOPS showing how reduction in GFLOPS corresponds to decrease in 
training time of the models

Table 8   A summary of the inference results on the workstation GPU and Jetson nano showing the inference 
latency and speed

Platform Model All s m s + m s + b m + b

Workstation GPU Inference latency (ms) 32.7 25.6 25.5 27.0 28.7 27.2
Inference speed (fps) 30.6 39.0 39.2 37.0 34.8 36.8

Jetson nano Pytorch Inference latency (ms) 178.7 158.8 142.5 161.5 158.7 155.0
Inference speed (fps) 5.6 6.4 7.0 6.2 6.3 6.5

Jetson nano TensorRT Inference latency (ms) 123.9 108.1 96.2 117.1 110.9 118.3
Inference speed (fps) 8.1 9.3 10.5 8.7 9.1 8.5

Jetson Orin Inference latency (ms) 24.56 21.41 22.19 23.91 24.30 22.78
Inference speed (fps) 40.84 47.14 46.19 42.09 41.48 44.47



	 Multimedia Tools and Applications

1 3

a plot of training time vs GFLOPS indicates that reduction in GFLOPS corresponds to 
a reduction in training time required for the models. This becomes useful in applications 
where minimal training time is desired.

The reduction in computational cost is also reflected in the reduction of number of 
parameters the model must learn. The approach of discarding unwanted detection scales 
cuts the number of learnable parameters in the derived models by as much as 31%, as 
shown in Table 6.

Reduction in the number of parameters can result in a more compressed model. This is 
important in applications such as computer vision tasks with embedded systems on mobile 
platforms like UAVs where the memory footprint of the model is critical. Figure 11 shows 
a plot of the model size vs the number of parameters. Less number of parameters corre-
spond to a more compressed network. Furthermore, as indicated in Table 6 our simplified 
models show up to 30% model compression. Thus, we achieve models that are significantly 
smaller than the base model.

Table 9   Percentage reduction in latency of the new models over the base models

Platform Model All s m s + m s + b m + b

Workstation GPU Inference latency reduction (%) base 21.7 22.0 17.4 12.2 16.8
Inference speed increase (%) base 27.8 28.1 20.9 13.7 20.3

Jetson nano Pytorch Inference speed increase (%) base 13.2 25.5 10.7 12.5 15.2
Jetson nano TensorRT Inference speed Increase (%) base 14.5 29.0 6.8 11.7 4.9
Jetson Orin Inference speed increase (%) base 15.4 13.1 3.1 1.6 8.9

Table 10   Comparison of the speed and memory footprints of Pytorch and TensorRT implementations of the 
models

Model on Jetson nano All s m s + m s + b m + b

Pytorch inference speed (fps) 5.61 6.35 7.04 6.21 6.31 6.46
TensorRT inference speed (fps) 8.11 9.29 10.46 8.66 9.06 8.51
Pytorch model size (MB) 3.9 2.8 2.7 3.1 3.7 3.7
TensorRT model size (MB) 14.1 7.8 10.2 12.1 11.4 11.0

Table 11   Comparison of the 
performance of the optimised 
model with the performance of 
network pruning technique

Model Accuracy (mAP) Inference 
speed (fps)

YOLOv5_all (base) 0.908 59.50
Prune 0.3 0.824 76.92
Prune 0.2 0.885 86.20
s 0.881 101.01
m 0.776 111.11
s + m 0.895 62.89
s + b 0.899 63.29
m + b 0.563 72.99



Multimedia Tools and Applications	

1 3

Table 6 also shows that the derived models have less number of layers compared to the 
base model. We note that number of layers is not generally a dependable measure of the 
computational cost, especially when comparing different network architectures. However, 
given that our modified models were derived by discarding scales and layers from one base 
model, it is logical to conclude that a reduction in number of layers involves a reduction in 
the number of computations required in the new models when compared to the base model.

4.3 � Model accuracy

Model accuracy often comes at the expense of computational complexity and speed. 
Therefore, it is desired that improvements in speed and computational cost should come 
at a minimal drop in accuracy. Table 7 shows the percentage drop in accuracy of the 
models. The accuracy metric discussed in this paper is the mAP@0.5. All but one of the 
new models impressively show less than 3% drop in accuracy compared with the base 
model. The least accuracy drop is recorded by the models that retained the small detec-
tion scale – ‘s’, ‘s + m’, and ‘s + b’, whereas the models where the small scale was dis-
carded had the most drop in accuracy. This suggests that the dataset contains a high pro-
portion of small objects, and thus presents the models with very sufficient small objects 
to learn. This could also explain why we had no results for the ‘b’ model as there was 
likely insufficient number of big objects to learn, hence the lack of improvement in the 
model precision. Therefore, upgrading the dataset to have sufficient proportion of all 
object sizes could improve the accuracy of all the models. Nonetheless, we conclude 
that the reported mAP is good enough for many applications including our case study. 
We note that, as observed from Fig. 12, the accuracy of the models stopped increasing 
significantly after 350 epochs. Thus, the models could take a shorter time to train and 
still achieve good accuracy.

4.4 � Speed improvements

Next, we examine the speed improvements of the new models. The inference latency indi-
cates the amount of time taken for one detection starting from the pre-processing of the 
image to the actual inference and then the non-maximum suppression. Parameter fps shows 
how many image frames can be inferenced on in one second.

4.4.1 � Inference on workstation GPU

From Table  9, we see that the technique of discarding detection scales according to 
need leads in significant reduction in latency. A minimum of 12.2% latency reduction 
is recorded, and as much as 22% latency reduction is achieved, which corresponds to 
13.7% and 28.1% speed improvements respectively. It is particularly observed that the 
models with only one detection scale – ‘s’ and ‘m’ – recorded the best latency and 
speed improvements. This is explained by the fact that in these models, more scales 
were dropped, leading to more reduction in computational and memory requirements, 
and thus making them faster. This observation supports the approach of discarding 
detection scales to increase model speed – the more scales are dropped, the more the 
potential for a faster network.



	 Multimedia Tools and Applications

1 3

4.4.2 � Inference on the Jetson nano

Table 9 also shows the speed improvements of the new models over the base model for the 
Pytorch implementation. Similar improvements in speed are recorded with up to 25.5% 
speed gain over the base model. The speed gains of the TensorRT implementation of the 
models are also given in Table 9. Speed gains of up to 29% are observed.

The speed of the models can be increased by dropping a few more layers from the neck 
of the network. However, this comes at the expense of accuracy. For applications where 
accuracy is not critical and speed is desired, specific convolutional layers may be dropped 
from the “neck” of any of the models to reduce the computational requirements, thereby 
increasing detection speed. To highlight this point, we dropped an extra upsampling layer, 
a CBS, and a C3 block from the neck of the “m + b” model. This resulted in 7.5% increase 
in speed for the TensorRT implementation, which is greater than the 4.9% earlier recorded 
for the “m + b” model. However, discarding the extra layers resulted in 38.4% drop in mAP.

4.4.3 � Inference on Jetson Orin

As expected, the speed improvements of the optimised models over the base model are 
similar to the results from the Jetson nano. However, detection speeds on the Orin are 
much higher than those on Jetson nano. The higher speed of the Orin is due to its higher 
computing capacity, but at the cost of a higher energy requirement. Thus, the Jetson 
Orin constitutes a preferable option for applications that can accommodate increased 
power requirements.

4.4.4 � Suitability of our models for real‑time use

Having established the gains of our models over the base model, even on the Jetson 
nano, we will go on to examine the suitability of our models for real-time applications. 
We already have a use-case of cassava detection from UAV images. We take a UAV 
altitude of 2.5 m, which is the average height at which the images in the dataset were 
captured; and which is a typical altitude for real-time crop detection and control actions 
such as selective pesticide or herbicide spraying. This altitude corresponds to a ground 
sampling distance (GSD) of 5.14  m by 3.86  m based on the properties of the GoPro 
Hero 7 camera which was used for image capturing in our case. For herbicide or pesti-
cide spraying using drones, the typical speed is a slow speed of about 5 m/s. Note that 
the GoPro camera captures images at 60 frames per second, thus, the UAV needs not 
stop at each point of image capture. If, during flight, the UAV must capture images such 
that there are no overlaps in the images given the above GSD, then the models must 
process the captured images and output the detection results at a minimum frames per 
second given by Eq. 1:

Given the minimum speed derived above, we see that even the slowest of our models 
would comfortably run inferences on the captured image while leaving sufficient time for 
the system to carry out other processes such as triggering a sprayer system. The advantage 

(1)Detection speed =
5ms−1

/

3.86m = 1.3fps



Multimedia Tools and Applications	

1 3

of our faster models in this scenario is that our models provide a wider margin for increas-
ing the speed of the UAV for faster completion of flight missions. This wider speed margin 
also implies that our models can better accommodate the processing time of other activities 
in the flight mission that are dependent on the detection results such as variable control of 
the herbicide sprayers.

4.4.5 � Pytorch vs TensorRT implementation

Here we highlight the advantages of the two Jetson nano implementations of our mod-
els over each other. Table 10 shows the comparison of the speed and memory footprints 
of the models. Note that the accuracy of the models is preserved during conversion from 
Pytorch to TensorRT. Clearly, the TensorRT versions show a better performance in terms 
of inference speed. However, the storage requirement for the Pytorch versions is less. The 
preferred implementation depends on the application requirements. For applications that 
prioritize detection speed over storage space, then the TensorRT versions of the models 
are recommended. However, if the storage requirements are more critical, then the Pytorch 
implementation is recommended.

4.5 � Comparison with pruning

Pruning is a generic model simplification technique that has shown significant per-
formance improvements in a number of applications. However, faster inference times 
often come at the cost of lower accuracies. The comparison of our approach with 
pruning showed (see Table 11), that just like our models, pruning slightly degrades 
model accuracy while increasing detection speed. As a matter of fact, the higher the 
pruning sparsity, the lower the accuracy and the higher the inference speed. When 
the base model was pruned to 0.2 sparsity, the resulting model accuracy surpassed 
three out of five of our optimised models. When pruned to 0.3 sparsity, the result-
ing model accuracy surpassed only two of our optimised models. In terms of speed, 
two of our models performed better that the pruned models by at least 17%. Higher 
detection speeds may be obtained with pruning, but that would further degrade 
model accuracy [18]. Overall, our model compares favourably with the existing high 
performing pruning approach.

4.6 � Limitations of the work

One limitation of the model simplification approach in this paper is that the mod-
els may have difficulty with accurate detection of objects sizes that fall within the 
range of the discarded detection scale. It is therefore important that when choos-
ing which variants of the optimised model to use, one should ensure that the size of 
the objects of interest do not fall within the range of the discarded scale. This can 
be easily accomplished by feeding the system back with the altitude from the UAV 
flight, which can provide the expected object size. Secondly, whereas the ideal situa-
tion would be to simplify the model without accuracy loss, our method records slight 
reductions in accuracy.



	 Multimedia Tools and Applications

1 3

5 � Conclusions

In this work, model simplification for object detection was achieved by exploiting algo-
rithm-specific optimisation, namely, identification of the scales that are useful for the prob-
lem to be solved and discarding the out-of-scale parts of the detector architecture. Faster 
models suitable for real-time applications were realized while maintaining model accuracy. 
Compared to the popular pruning technique, our approach showed similar model accu-
racy with some of the derived models recording better detection speeds. The suitability 
of the models for real-time applications was shown in the results from the deployment of 
the models on the NVIDIA Jetson nano and Jetson Orin embedded devices for crop detec-
tion. Limitations come up naturally from the design premise (out-of-scale objects) but 
some ideas have been identified to appropriately tune the detector with additional sensing 
information.

For future work, we will be deploying the Jetson devices with the models on a UAV 
for in-field experiments and validation of the models. We also look to further optimize the 
models by additionally implementing optimization techniques such as knowledge distilla-
tion or low-rank factorization. We also consider conducting experiments to determine the 
exact range of the object sizes for each of the three detection scales, thus we can train the 
modified models with only images containing objects of sizes within the range of the cho-
sen scales. This could save training time and improve accuracy.

Author contributions  Conceptualization, E.C.N., P.C.H., and C.A.L.; methodology, E.C.N., P.C.H., and 
C.A.L.; data curation, E.C.N.; writing—original draft preparation, E.C.N.; writing—review and editing, 
E.C.N., P.C.H., C.A.L., O.I., and O.A.; supervision, P.C.H., C.A.L., O.I., and O.A.; funding acquisition, 
E.C.N., O.I., O.A., C.A.L., and P.C.H.; All authors have read and agreed to the published version of the 
manuscript.

Funding  Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This 
research was funded by TETFUND NRF 2020 with grant number TETF/ES/DR&D-CE/NRF2020/SETI/88/
VOL.1, ERASMUS + KA107 (ICM) PhD Mobility Scholarship, and DAAD In-country/In-region PhD 
scholarship. Thanks are also given to Agencia Estatal de Investigación for grant PID2020-115339RB-I00 
and grant CPP2021-008880. The work was additionally supported in part by the EU Horizon 2020 Research 
and Innovation Programme under the Marie Sklodowska-Curie grant agreement No 101008297. This article 
reflects only the authors’ view. The European Union Commission is not responsible for any use that may be 
made of the information it contains.

Data availability  The cassava dataset is available from the authors upon reasonable request. The data is not 
publicly available since the dataset is still being expanded and is a part of an ongoing funded project and 
will be published after its completion.

Declarations 

Conflicts of interest  The authors declare no conflict of interest. The funders had no role in the design of the 
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision 
to publish the results.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/


Multimedia Tools and Applications	

1 3

References

	 1.	 Mustafa MM, Hussain A, Ghazali KH, Riyadi S (2007) Implementation of image processing technique 
in real time vision system for automatic weeding strategy. In: 2007 IEEE international symposium 
on signal processing and information technology.  IEEE, pp 632–635. https://​doi.​org/​10.​1109/​ISSPIT.​
2007.​44581​97

	 2.	 Romeo J, Pajares G, Montalvo M et al (2013) A new expert system for greenness identification in agri-
cultural images. Expert Syst Appl 40:2275–2286. https://​doi.​org/​10.​1016/j.​eswa.​2012.​10.​033

	 3.	 López-Granados F (2011) Weed detection for site-specific weed management: mapping and real-time 
approaches. Weed Res 51:1–11. https://​doi.​org/​10.​1111/j.​1365-​3180.​2010.​00829.x

	 4.	 Kamilaris A, Prenafeta-Boldú FX (2018) A review of the use of convolutional neural networks in agri-
culture. J Agric Sci 156:312–322. https://​doi.​org/​10.​1017/​S0021​85961​80004​36

	 5.	 Moazzam SI, Khan US, Tiwana MI, et al (2019) A review of application of deep learning for weeds 
and crops classification in agriculture. In: 2019 international conference on robotics and automation in 
industry (ICRAI) Rawalpindi, Pakistan, pp 1–6. https://​doi.​org/​10.​1109/​ICRAI​47710.​2019.​89673​50

	 6.	 Tang J, Wang D, Zhang Z et al (2017) Weed identification based on K-means feature learning com-
bined with convolutional neural network. Comput Electron Agric 135:63–70. https://​doi.​org/​10.​1016/j.​
compag.​2017.​01.​001

	 7.	 Czymmek V, Harders LO, Knoll FJ, Hussmann S (2019) Vision-based deep learning approach for real-
time detection of weeds in organic farming. In: 2019 IEEE international instrumentation and meas-
urement technology conference (I2MTC), Auckland, New Zealand, pp 1–5. https://​doi.​org/​10.​1109/​
I2MTC.​2019.​88269​21

	 8.	 Kirchhoffer H, Haase P, Samek W et al (2022) Overview of the neural network compression and repre-
sentation (NNR) standard. IEEE Trans Circuits Syst Video Technol 32:3203–3216. https://​doi.​org/​10.​
1109/​TCSVT.​2021.​30959​70

	 9.	 Mazumder AN, Meng J, Rashid H-A et  al (2021) A Survey on the optimization of neural network 
accelerators for micro-AI on-device inference. IEEE J Emerg Sel Top Circuits Syst 11:532–547. 
https://​doi.​org/​10.​1109/​JETCAS.​2021.​31294​15

	10.	 Sun W, Chen S, Huang L et al (2021) Deep convolutional neural network compression via coupled tensor 
decomposition. IEEE J Sel Top Signal Process 15:603–616. https://​doi.​org/​10.​1109/​JSTSP.​2020.​30382​27

	11.	 Oymak S, Soltanolkotabi M (2021) Learning a deep convolutional neural network via tensor decomposi-
tion. Inf Inference 10:1031–1071. https://​doi.​org/​10.​1093/​imaiai/​iaaa0​42

	12.	 Wu G, Wang S, Liu L (2021) Fast video summary generation based on low rank tensor decomposition. 
IEEE Access 9:127917–127926. https://​doi.​org/​10.​1109/​ACCESS.​2021.​31126​95

	13.	 Nekooei A, Safari S (2022) Compression of deep neural networks based on quantized tensor decomposi-
tion to implement on reconfigurable hardware platforms. Neural Netw 150:350–363. https://​doi.​org/​10.​
1016/j.​neunet.​2022.​02.​024

	14.	 Qi Q, Lu Y, Li J et al (2021) Learning low resource consumption cnn through pruning and quantization. 
IEEE Trans Emerg Top Comput 1–1. https://​doi.​org/​10.​1109/​TETC.​2021.​30507​70

	15.	 Camci E, Gupta M, Wu M, Lin J (2022) QLP: Deep Q-learning for pruning deep neural networks. IEEE 
Trans Circuits Syst Video Technol 32:6488–6501. https://​doi.​org/​10.​1109/​TCSVT.​2022.​31679​51

	16.	 Knight A, Lee BK (2020) Performance analysis of network pruning for deep learning based age-gender 
estimation. In: 2020 International conference on computational science and computational intelligence 
(CSCI), Las Vegas, NV, USA, pp. 1684–1687. https://​doi.​org/​10.​1109/​CSCI5​1800.​2020.​00310

	17.	 Lin Y, Tu Y, Dou Z (2020) An improved neural network pruning technology for automatic modulation 
classification in edge devices. IEEE Trans Veh Technol 69:5703–5706. https://​doi.​org/​10.​1109/​TVT.​2020.​
29831​43

	18.	 Hoefler T, Alistarh D, Ben-Nun T et al (2021) Sparsity in deep learning: pruning and growth for efficient 
inference and training in neural networks. J Mach Learn Res 22(241):1–124. http://​jmlr.​org/​papers/​v22/​
21-​0366.​html

	19.	 Boateng VA, Yang B (2023) A global modeling pruning ensemble stacking with deep learning and neural 
network meta-learner for passenger train delay prediction. IEEE Access 11:62605–62615. https://​doi.​org/​
10.​1109/​ACCESS.​2023.​32879​75

	20.	 Li J, Chen X, Zheng P et al (2023) Deep generative knowledge distillation by likelihood finetuning. IEEE 
Access 11:46441–46453. https://​doi.​org/​10.​1109/​ACCESS.​2023.​32739​52

	21.	 Feng Z, Lai J, Xie X (2021) Resolution-aware knowledge distillation for efficient inference. IEEE Trans 
Image Process 30:6985–6996. https://​doi.​org/​10.​1109/​TIP.​2021.​31011​58

	22.	 Tao Z, Xia Q, Cheng S, Li Q (2023) An efficient and robust cloud-based deep learning with knowledge 
distillation. IEEE Trans Cloud Comput 11:1733–1745. https://​doi.​org/​10.​1109/​TCC.​2022.​31601​29

https://doi.org/10.1109/ISSPIT.2007.4458197
https://doi.org/10.1109/ISSPIT.2007.4458197
https://doi.org/10.1016/j.eswa.2012.10.033
https://doi.org/10.1111/j.1365-3180.2010.00829.x
https://doi.org/10.1017/S0021859618000436
https://doi.org/10.1109/ICRAI47710.2019.8967350
https://doi.org/10.1016/j.compag.2017.01.001
https://doi.org/10.1016/j.compag.2017.01.001
https://doi.org/10.1109/I2MTC.2019.8826921
https://doi.org/10.1109/I2MTC.2019.8826921
https://doi.org/10.1109/TCSVT.2021.3095970
https://doi.org/10.1109/TCSVT.2021.3095970
https://doi.org/10.1109/JETCAS.2021.3129415
https://doi.org/10.1109/JSTSP.2020.3038227
https://doi.org/10.1093/imaiai/iaaa042
https://doi.org/10.1109/ACCESS.2021.3112695
https://doi.org/10.1016/j.neunet.2022.02.024
https://doi.org/10.1016/j.neunet.2022.02.024
https://doi.org/10.1109/TETC.2021.3050770
https://doi.org/10.1109/TCSVT.2022.3167951
https://doi.org/10.1109/CSCI51800.2020.00310
https://doi.org/10.1109/TVT.2020.2983143
https://doi.org/10.1109/TVT.2020.2983143
http://jmlr.org/papers/v22/21-0366.html
http://jmlr.org/papers/v22/21-0366.html
https://doi.org/10.1109/ACCESS.2023.3287975
https://doi.org/10.1109/ACCESS.2023.3287975
https://doi.org/10.1109/ACCESS.2023.3273952
https://doi.org/10.1109/TIP.2021.3101158
https://doi.org/10.1109/TCC.2022.3160129


	 Multimedia Tools and Applications

1 3

	23.	 Sepahvand M, Abdali-Mohammadi F, Taherkordi A (2023) An adaptive teacher–student learning algo-
rithm with decomposed knowledge distillation for on-edge intelligence. Eng Appl Artif Intell 117:105560. 
https://​doi.​org/​10.​1016/j.​engap​pai.​2022.​105560

	24.	 Zoph B, Le QV (2017) Neural architecture search with reinforcement learning. https://​doi.​org/​10.​48550/​
arXiv.​1611.​01578

	25.	 Chitty-Venkata KT, Emani M, Vishwanath V, Somani AK (2023) Neural architecture search benchmarks: 
insights and survey. IEEE Access 11:25217–25236. https://​doi.​org/​10.​1109/​ACCESS.​2023.​32538​18

	26.	 Thomas JB, Shihabudheen KV (2023) Neural architecture search algorithm to optimize deep Transformer 
model for fault detection in electrical power distribution systems. Eng Appl Artif Intell 120:105890. 
https://​doi.​org/​10.​1016/j.​engap​pai.​2023.​105890

	27.	 Khan S, Rizwan A, Khan AN et al (2023) A multi-perspective revisit to the optimization methods of Neu-
ral Architecture Search and Hyper-parameter optimization for non-federated and federated learning envi-
ronments. Comput Electr Eng 110:108867. https://​doi.​org/​10.​1016/j.​compe​leceng.​2023.​108867

	28.	 Ghimire D, Kil D, Kim S (2022) A survey on efficient convolutional neural networks and hardware accel-
eration. Electronics (Basel) 11:945. https://​doi.​org/​10.​3390/​elect​ronic​s1106​0945

	29.	 Choi K, Wi SM, Jung HG, Suhr JK (2023) Simplification of deep neural network-based object detector for 
real-time edge computing. Sensors 23:3777. https://​doi.​org/​10.​3390/​s2307​3777

	30.	 Neill JO (2020) An overview of neural network compression. https://​doi.​org/​10.​48550/​arXiv.​2006.​03669
	31.	 Jeon ES, Choi H, Shukla A, Turaga P (2023) Leveraging angular distributions for improved knowledge 

distillation. Neurocomputing 518:466–481. https://​doi.​org/​10.​1016/j.​neucom.​2022.​11.​029
	32.	 Kim T, Oh J, Kim N et al (2021) Comparing kullback-leibler divergence and mean squared error loss in 

knowledge distillation. In: Proceedings of the Thirtieth International Joint Conference on Artificial Intel-
ligence, Montreal, pp 2628–2635. https://​doi.​org/​10.​24963/​ijcai.​2021/​362

	33.	 Ding Z, Chen Y, Li N et al (2022) BNAS: efficient neural architecture search using broad scalable architec-
ture. IEEE Trans Neural Netw Learn Syst 33:5004–5018. https://​doi.​org/​10.​1109/​TNNLS.​2021.​30670​28

	34.	 Redmon J, Farhadi A (2018) YOLOv3: an incremental improvement. https://​doi.​org/​10.​48550/​arXiv.​1804.​
02767

	35.	 Girshick R (2015) Fast R-CNN. In: 2015 IEEE international conference on computer vision (ICCV), San-
tiago, pp 1440–1448. https://​doi.​org/​10.​1109/​ICCV.​2015.​169

	36.	 Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: towards real-time object detection with region 
proposal networks. IEEE Trans Pattern Anal Mach Intell 39:1137–1149. https://​doi.​org/​10.​1109/​TPAMI.​
2016.​25770​31

	37.	 He K, Gkioxari G, Dollár P, Girshick R (2020) Mask R-CNN. IEEE Trans Pattern Anal Mach Intell 
42:386–397. https://​doi.​org/​10.​1109/​TPAMI.​2018.​28441​75

	38.	 Jocher G, Stoken A, Borovec J et al (2020) YOLOv5. https://​doi.​org/​10.​5281/​ZENODO.​41543​70
	39.	 Redmon J, Farhadi A (2017) YOLO9000: better, faster, stronger. Proceedings - 30th IEEE Conference 

on computer vision and pattern recognition, CVPR 2017 2017-Janua: 6517–6525. https://​doi.​org/​10.​1109/​
CVPR.​2017.​690

	40.	 Bochkovskiy A, Wang C-Y, Liao H-YM (2020) YOLOv4: Optimal speed and accuracy of object detection. 
https://​doi.​org/​10.​48550/​arXiv.​2004.​10934

	41.	 Liu W, Anguelov D, Erhan D et al (2016) SSD: Single shot multibox detector. Lecture notes in computer 
science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) 
9905 LNCS:21–37. https://​doi.​org/​10.​1007/​978-3-​319-​46448-0_​2/​FIGUR​ES/5

	42.	 Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: Unified, real-time object detec-
tion. Proceedings of the IEEE computer society conference on computer vision and pattern recognition 
2016-Decem:779–788. https://​doi.​org/​10.​1109/​CVPR.​2016.​91

	43.	 Wang CY, Bochkovskiy A, Liao HYM (2021) Scaled-YOLOv4: scaling cross stage partial network. In: 
2021 IEEE/CVF conference on computer vision and pattern recognition (CVPR). IEEE, pp 13024–13033. 
https://​doi.​org/​10.​1109/​CVPR4​6437.​2021.​01283

	44.	 Ge Z, Liu S, Wang F et al (2021) YOLOX: exceeding YOLO series in 2021. arXiv. https://​doi.​org/​10.​
48550/​arXiv.​2107.​08430

	45.	 Wang CY, Yeh IH, Liao HYM (2021) You only learn one representation: unified network for multiple tasks. 
arXiv. https://​doi.​org/​10.​48550/​arXiv.​2105.​04206

	46.	 Xu S, Wang X, Lv W et al (2022) PP-YOLOE: An evolved version of YOLO. arXiv. https://​doi.​org/​10.​
48550/​arXiv.​2203.​16250

	47.	 Li C, Li L, Jiang H et al (2022) YOLOv6: a single-stage object detection framework for industrial applica-
tions. arXiv. https://​doi.​org/​10.​48550/​arXiv.​2209.​02976

	48.	 Wang CY, Bochkovskiy A, Liao HYM (2022) YOLOv7: trainable bag-of-freebies sets new state-of-the-
art for real-time object detectors. arXiv. https://​doi.​org/​10.​48550/​arXiv.​2207.​02696

https://doi.org/10.1016/j.engappai.2022.105560
https://doi.org/10.48550/arXiv.1611.01578
https://doi.org/10.48550/arXiv.1611.01578
https://doi.org/10.1109/ACCESS.2023.3253818
https://doi.org/10.1016/j.engappai.2023.105890
https://doi.org/10.1016/j.compeleceng.2023.108867
https://doi.org/10.3390/electronics11060945
https://doi.org/10.3390/s23073777
https://doi.org/10.48550/arXiv.2006.03669
https://doi.org/10.1016/j.neucom.2022.11.029
https://doi.org/10.24963/ijcai.2021/362
https://doi.org/10.1109/TNNLS.2021.3067028
https://doi.org/10.48550/arXiv.1804.02767
https://doi.org/10.48550/arXiv.1804.02767
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/TPAMI.2018.2844175
https://doi.org/10.5281/ZENODO.4154370
https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.48550/arXiv.2004.10934
https://doi.org/10.1007/978-3-319-46448-0_2/FIGURES/5
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR46437.2021.01283
https://doi.org/10.48550/arXiv.2107.08430
https://doi.org/10.48550/arXiv.2107.08430
https://doi.org/10.48550/arXiv.2105.04206
https://doi.org/10.48550/arXiv.2203.16250
https://doi.org/10.48550/arXiv.2203.16250
https://doi.org/10.48550/arXiv.2209.02976
https://doi.org/10.48550/arXiv.2207.02696


Multimedia Tools and Applications	

1 3

	49.	 Xu X, Jiang Y, Chen W et al (2022) DAMO-YOLO: a report on real-time object detection design. arXiv. 
https://​doi.​org/​10.​48550/​arXiv.​2211.​15444

	50.	 Jocher G, Chaurasia A, Qiu J (2023) YOLO by Ultralytics (Version 8.0.0). https://​github.​com/​ultra​lytics/​
ultra​lytics

	51.	 DECI AI (2023) YOLO-NAS. https://​github.​com/​Deci-​AI/​super-​gradi​ents/​blob/​master/​YOLON​AS.​md
	52.	 Wang D, He D (2021) Channel pruned YOLO V5s-based deep learning approach for rapid and accurate 

apple fruitlet detection before fruit thinning. Biosyst Eng 210:271–281. https://​doi.​org/​10.​1016/j.​biosy​
stems​eng.​2021.​08.​015

	53.	 Wu D, Lv S, Jiang M, Song H (2020) Using channel pruning-based YOLO v4 deep learning algorithm for 
the real-time and accurate detection of apple flowers in natural environments. Comput Electron Agric 178. 
https://​doi.​org/​10.​1016/J.​COMPAG.​2020.​105742

	54.	 Wang Z, Jin L, Wang S, Xu H (2022) Apple stem/calyx real-time recognition using YOLO-v5 algorithm 
for fruit automatic loading system. Postharvest Biol Technol 185:111808. https://​doi.​org/​10.​1016/j.​posth​
arvbio.​2021.​111808

	55.	 Yin Y, Li H, Fu W (2020) Faster-YOLO: an accurate and faster object detection method. Digit Sign Pro-
cess: Rev J 102. https://​doi.​org/​10.​1016/J.​DSP.​2020.​102756

	56.	 Thuan D (2021) Evolution of Yolo algorithm and Yolov5: the state-of-the-art object detection algorithm. 
Oulu University of Applied Sciences. https://​www.​these​us.​fi/​handle/​10024/​452552

	57.	 Sirisha U, Praveen SP, Srinivasu PN et al (2023) Statistical analysis of design aspects of various YOLO-
based deep learning models for object detection. Int J Comput Intell Syst 16:126. https://​doi.​org/​10.​1007/​
s44196-​023-​00302-w

	58.	 Martinez-Alpiste I, Golcarenarenji G, Wang Q, Alcaraz-Calero JM (2021) A dynamic discarding tech-
nique to increase speed and preserve accuracy for YOLOv3. Neural Comput Appl 33:9961–9973. https://​
doi.​org/​10.​1007/​s00521-​021-​05764-7

	59.	 Tzutalin (2015) LabelImg. Git code. https://​github.​com/​Human​Signal/​label​Img
	60.	 Zaidi SSA, Ansari MS, Aslam A et al (2022) A survey of modern deep learning based object detection 

models. Digit Signal Process 126:103514. https://​doi.​org/​10.​1016/J.​DSP.​2022.​103514
	61.	 Rezatofighi H, Tsoi N, Gwak J et al (2019) Generalized intersection over union: a metric and a loss for 

bounding box regression. In: 2019 IEEE/CVF conference on computer vision and pattern recognition 
(CVPR). IEEE, pp 658–666. https://​doi.​org/​10.​1109/​CVPR.​2019.​00075

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Authors and Affiliations

Emmanuel C. Nnadozie1,2,3   · Pablo Casaseca‑de‑la‑Higuera1 · 
Ogechukwu Iloanusi2 · Ozoemena Ani3 · Carlos Alberola‑López1

 *	 Emmanuel C. Nnadozie 
	 ennadozie@lpi.tel.uva.es

	 Pablo Casaseca‑de‑la‑Higuera 
	 jcasasec@tel.uva.es

	 Ogechukwu Iloanusi 
	 ogechukwu.iloanusi@unn.edu.ng

	 Ozoemena Ani 
	 ozoemena.ani@unn.edu.ng

	 Carlos Alberola‑López 
	 caralb@tel.uva.es

1	 Laboratorio de Procesado de Imagen, ETSI Telecomunicación, University of Valladolid, 
Valladolid, Spain

2	 Department of Electronic Engineering, University of Nigeria, Nsukka, Nigeria
3	 Department of Mechatronic Engineering, University of Nigeria, Enugu, Nigeria

https://doi.org/10.48550/arXiv.2211.15444
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://github.com/Deci-AI/super-gradients/blob/master/YOLONAS.md
https://doi.org/10.1016/j.biosystemseng.2021.08.015
https://doi.org/10.1016/j.biosystemseng.2021.08.015
https://doi.org/10.1016/J.COMPAG.2020.105742
https://doi.org/10.1016/j.postharvbio.2021.111808
https://doi.org/10.1016/j.postharvbio.2021.111808
https://doi.org/10.1016/J.DSP.2020.102756
https://www.theseus.fi/handle/10024/452552
https://doi.org/10.1007/s44196-023-00302-w
https://doi.org/10.1007/s44196-023-00302-w
https://doi.org/10.1007/s00521-021-05764-7
https://doi.org/10.1007/s00521-021-05764-7
https://github.com/HumanSignal/labelImg
https://doi.org/10.1016/J.DSP.2022.103514
https://doi.org/10.1109/CVPR.2019.00075
http://orcid.org/0000-0002-0965-0937

	Simplifying YOLOv5 for deployment in a real crop monitoring setting
	Abstract
	1 Introduction
	1.1 Background
	1.2 Model simplification
	1.3 Related work
	1.4 Contributions and paper structure

	2 Methodology
	2.1 YOLOv5
	2.2 YOLOv5 vs YOLOv6 vs YOLOv8 vs YOLO-NAS
	2.3 Model design
	2.4 Dataset
	2.5 Model training, accuracy assessment and inference
	2.6 Model deployment on Jetson devices
	2.6.1 Technical specifications of the NVIDIA Jetson nano and Jetson AGX Orin
	2.6.2 Jetson setup and package installation
	2.6.3 Inference on Jetson devices

	2.7 Our approach vs network pruning

	3 Results
	3.1 YOLOv5 vs YOLOv6 vs YOLOv8 vs YOLO-NAS
	3.2 Model properties
	3.3 Performance comparison and analysis
	3.4 Inference
	3.5 Our approach vs pruning

	4 Discussion
	4.1 YOLOv5 as candidate model for optimization
	4.2 Resources demand reduction
	4.3 Model accuracy
	4.4 Speed improvements
	4.4.1 Inference on workstation GPU
	4.4.2 Inference on the Jetson nano
	4.4.3 Inference on Jetson Orin
	4.4.4 Suitability of our models for real-time use
	4.4.5 Pytorch vs TensorRT implementation

	4.5 Comparison with pruning
	4.6 Limitations of the work

	5 Conclusions
	References


