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Abstract
Automated industrial welding processes depend on a large number of factors interacting with high complexity resulting in
some sporadic and random variability of the manufactured product that may affect its quality. It is therefore very important to
have an accurate and stable quality control. In this work, a deep learning (DL) model is developed for semantic segmentation
of weld seams using 3D stereo images of the seam. The objective is to correctly identify the shape and volume of the weld
seam as this is the basic problem of quality control. To achieve this, a model called UNetL++ has been developed, based on
the UNet and UNet++ architectures, with a more complex topology and a simple encoder to achieve a good adaptation to the
specific characteristics of the 3D data. The proposed model receives as input a voxelized 3D point cloud of the freshly welded
part where noise is abundantly visible, and generates as output another 3D voxel grid where each voxel is semantically labeled.
The experiments performed with parts built by a real weld line show a correct identification of the weld seams, obtaining
values between 0.935 and 0.941 for the Dice Similarity Coefficient (DSC). As far as the authors are aware, this is the first 3D
analysis proposal capable of generating shape and volume information of weld seams with almost perfect noise filtering.

Keywords Automated manufacturing · Deep learning · 3D convolutions · Semantic segmentation · Industry 4.0

Introduction

Industrial welding lines are currently highly developed pro-
cesses involving high mechanical, electronic and computer
technology and a high degree of optimization (Xia et al.,
2020). In recent years, automated welding lines have ben-
efited from the added value coming from new technologies
such as the Industrial Internet of Things (IIoT), cloud com-
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puting, big data or digital twins, among others, giving rise
to the concept of Intelligent Welding Systems (IWS) (Wang
et al., 2020a). Multiple works have been recently developed
targeting monitoring and adaptive controlling techniques to
optimize real time parameters and improve product quality
(Cheng et al., 2020; Lu et al., 2020; Chen et al., 2019; Wang
et al., 2020b; Cai et al., 2020; Tarng et al., 1999; Melakhsou
&Batton-Hubert, 2021; Cai et al., 2021; He&Li, 2016; Xiao
et al., 2022). However, there is a gap in research regarding
the possibilities that new technologies provide to integrate
the welding process in an intelligent manufacturing environ-
ment capable of providing high value-added services such as
an advanced quality control with strict safety requirements.

IWS frameworks are made up of two conceptual com-
ponents, the physical system and the data flow processing
(Wang et al., 2020a). The physical system of the welding
line includes the human operators, the controller, the power
source, the wire feeder, the robot, etc (see Fig. 1). The data
flow enables intelligent management of control, monitoring,
diagnosis, quality and maintenance systems (Bacioiu et al.,
2019; Liu et al., 2022b; Miao et al., 2022; Cai et al., 2021).
Within this data flow, data acquisition and processing are
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Fig. 1 Photograph of the mechanical component of the weld line used
in this work

integrated to generate a quality control subsystem. A strict,
robust and reliable quality control is a high priority require-
ment for the manufacture of certain types of parts, among
which are those involved in automotive safety. Quality con-
trol is a systematic and repetitive task, which must be carried
out objectively, i.e., isolated from the relative perception of a
human observer and based solely on the analysis of the data
collected by the sensing system. These characteristics make
quality control a very inappropriate task to be carried out by
human beings, fundamentally because its repetitive nature
generates tedium and favors subjective appreciation, giving
rise to errors that are very difficult to detect and avoid.

The operation of the physical component of IWS depends
on multiple variables that cannot always be controlled by the
sensing and control system. Therefore, unexpected errors of a
different nature may occur, such as problems with wire feed-
ing, part positioning errors, gas pressure problems, human
errors or other similar problems. For this reason, it may
happen that defectivefinal productsmaybeperiodicallyman-
ufactured with very low frequency, which makes them more
difficult to detect.

The development of reliable automated systems for qual-
ity control is one of the main challenges at IWS. Recent
advances in machine learning (ML) and, specifically, in deep
learning (DL) (Minaee et al., 2022), show that this line of
research is very promising due to its great flexibility, robust-
ness and scalability. Techniques based on 2D data from
welding images (Bacioiu et al., 2019; Cheng et al., 2020;
Singh & Desai, 2022) generate interesting results but are
limited in their ability to identify defects related to the vol-
ume ofmaterial applied in the weld, an important element for
achieving strict quality control. Recently, works have been
developed in which 3D data is used to control the welding
process (Miao et al., 2022; Liu et al., 2022b; Wang et al.,
2022), but are based on either time-dependent analysis or 2D
projections of the data collected.

In this work we propose to develop a complex data anal-
ysis model based on 3D data extracted from an existing gas
metal arc welding welding line with high safety require-
ments. By having access to an existing manufacturing line
we can use real data which generates additional added value
to our results. The use of 3D point clouds obtained from real
welding processes opens the door to the extraction of a new
set of features linked to volumetric analysis of theweldmate-
rial with great potential for improving strict quality control
processes. In addition, a study of the ability of our DL mod-
els to eliminate the noise inherent in 3D data capture devices
will be performed. The 3D data is processed using a UNet
(Ronneberger et al., 2015) type DL architecture. The main
advantage of using 3D data is the inclusion of new analyzable
features in the weld that allow for more comprehensive qual-
ity control. As far as we know, this work is the first proposal
for convolutional extraction of 3D information for analysis
of the volume of weld seams in the IWS field. The results
obtained validate this technique for quality control with strict
requirements.

The remaining of the paper is organized as follows. In
“Related work” section we describe similar works carried
out to date, in “Dataset” section we explain the acquisition,
processing and labeling of the data, in “Models and train-
ing” section we show the models used, the hyperparameter
selection and the training techniques, in “Results” section we
present and explain the results, in “Manufacturing applica-
tions” section we analyze the deployment of our solution in
a real environment and, finally, in “Conclusion” section we
summarize the conclusions of this work.

Related work

In recent years, several scientific papers have been published
on the use of DL technologies in various fields of indus-
trial processes. In general, research is being carried out very
actively in different areas of smart manufacturing such as
procurement supply chain optimizations (Liu et al., 2022c)
and complex data analysis for quality prediction in industrial
applications (Liu et al., 2022a).

There are also multiple recent research papers in the area
of control of the welding process and management of its
data flow. Bacioiu et al. (2019) uses video images of the
welding arc and processes them using a simple convolutional
neural network (CNN) model to perform a simple classifi-
cation process. It achieves more accurate results than those
obtained with traditional models, but more importantly, it is
more resilient and adaptable to variations in the input data.
The results achieved show the good adaptability of the DL
to this type of problems.

Work in Cheng et al. (2020) focuses on image composi-
tion to detect excessive weld penetration into the base plate,
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which compromises the quality of the welds but is directly
unobservable. CNN-based DL technology is used to analyze
the images and correlate with weld penetration. The results
show that DL is a promising technique in this problem even
though the study is done on a very specific characteristic and
it is difficult to generalize.

In Yang et al. (2020) the authors perform transfer learn-
ing (TL) of a CNN-basedDLmodel (VGGmodel) to classify
weld seams defects. Their results show that TL reduces train-
ing times and improves the accuracy of their data model. It
should be noted that the defect identification is performed
with a limited number of weld defects.

Thework inWang et al. (2020b)monitors growth and pen-
etration control in arcwelding processes on a digital twin. For
weld control, traditional image analysis methods are com-
pared against CNN. The CNNmodels estimate the geometry
parameters of the weld in progress, thus allowing the detec-
tion of the optimal welding point. In the results presented
the DL method is shown to be superior to traditional image
analysis techniques.

The research work in Dai et al. (2021) uses DL models
similar to YoloV3 (Redmon & Farhadi, 2017) to detect the
location and quality of spot weldings on the car body. Part
of their work involves creating a network with lower com-
putational requirements for use in a resource-constrained
industrial manufacturing environment. Their results show
substantial improvements over traditional techniques in the
exact location ofwelding spots, even inmodels that have been
lightened by reducing their number of parameters. However,
the quality analysis performed is limited in terms of the fea-
tures extracted from the weld data.

Very few works have been found about 3D visual data
analysis of industrial welding processes. Among them, the
work in Miao et al. (2022) presents a DL model to per-
form two-step welding control, a graphical analysis based
on wavelets of eddy currents together with an analysis of
welding images taken from a 3D sensor. In this second
dataset the convolutional analysis is performed in 2D so
no specific features of a volumetric analysis are generated.
Its results indicate great effectiveness although the possibil-
ity of extracting features is limited by the type of 3D data
processing performed. Finally in Liu et al. (2022b) a 3D
convolutional analysis is performed to extract features from
the spatiotemporal domain of the welding process in real
time. The data are obtained by acquiring images in rapid
sequence. Additionally, and to solve computational limita-
tions, the authors develop techniques to lighten the models.
The results are more accurate and robust compared to those
obtained with other traditional techniques.

In the present work we go an step further, exploring the
possibilities presented by the semantic segmentation of 3D
point clouds of a real industrial welding process. The objec-
tive is to extract a new set of features related to 3D data to

improve the levels of reliability, stability and accuracy of
IWS.

Dataset

The physical context of this work is an existing automated
welding line of metal parts (see Fig. 1), currently in produc-
tion status. Although it is a highly automated machine, it is
necessary to include a quality control system in the data flow,
because defective parts are sporadically generated due to
multi-source errors which are difficult to avoid, as explained
in “Introduction” section. For this purpose, a data acquisition
system is integrated, consisting of a 3D camera that generates
point clouds for each manufactured part. The parts man-
ufactured by our machine have strict quality requirements
because they are components of an automotive safety sub-
system. Each part consists of a metal base and a two-rods
handle that is joined to the base by four weld seams, see
Fig. 2.

We describe in this section how we generate the dataset
to perform the training of our DL models and how we label
this data to separate the weld seam from the part and from
the void and noise.

Fig. 2 Two 3D captures of the weld part. The first capture is viewed
from two angles (a, b) and also the second capture (c, d). The parts are
labeled and the weld seams are identified in green (Color figure online)
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Preprocessing

A 3D stereo image sensor is used to capture weld seam data
immediately after fabrication. This device is able to capture
the 3D point clouds but it is dependent on capture angles,
glitter and shadow areas, so it is necessary to adjust the cap-
ture positions. Capture angles should ensure good visibility
and the number of captures should ensure the mutual com-
pensation for all shaded areas. In this case, due to the shape
and geometry of the part, two different captures were neces-
sary for each one in order to have complete visibility of all
seams.

One of themain drawbacks of this type of imaging capture
devices is that they require complex techniques to minimize
the adverse effects of noise. The noise present in the point
clouds is due to two factors. The first one is the vapours
present while the weld seam is still incandescent. The struc-
tured light pattern emitted by the capture device bounces off
the vapour, causing it to appear in the point cloud. The second
one is the presence of specular surfaces on the steel of the
weld seam. This can cause, depending on the angle of inci-
dence of the light, reflections that distort the point cloud. The
combination of both situations causes the noise in the point
clouds to present very irregular patterns that are difficult to
filter out. Those noisy points are also called outliers.Multiple
works can be found in the literature devoted to the detection
of outliers in point clouds (see (Balta et al., 2018)) but in
this work it has been decided not to apply noise reduction
techniques in the capture phase, and instead to integrate this
function within the DLmodel developed. The aim is thus not
only to evaluate the ability of these DL models to correctly
identify the weld seams and their characteristics, but also to
isolate the noise.

Once the point cloud has been captured by the stereo 3D
image sensor, the first task is to center it in a coordinate sys-
tem, i.e. the midpoint of the cloud on each axis is located at
the middle point on each axis of the coordinate system. The
next step is voxelization, which consists on taking the 3D
point cloud and adapt it to a normalized cube which dimen-
sions are 230× 230× 230 voxels. These are the dimensions
of the tensors used by the neural network for both the depen-
dent and the independent variables. The values contained
in the dependent variable correspond to the voxel labels as
explained in “Dataset” section. The cube, or voxel grid, is
used as the input for the DL model. As we are using a reso-
lution of 4 voxels per millimeter, the cube captures a length
of 57.5 mm on each axis.

Labeling

Labeling in 3D semantic segmentation problems is the task
that classifies each point in the 3D cloud. In our problem,
we identify three classes, i.e. part, void and weld seams. To

Fig. 3 Number of void, part and seam voxels for each observation of
the training, validation and test sets

achieve the labeling, it is necessary to distinguish the points
that make up the part from those that make up the weld seam.
The remainder is assigned by default to the void class. For the
labeling purpose we use the Semantic Segmentation Editor
(Automotive & Laboratory, 2021).

It is expected that most of the information corresponds
to the area of the space without part, which we call void.
In our case, on average, 99.43% of the voxels correspond to
the void. Of the remaining voxels, 0.5% identify the part and
the remaining 0.07% identify the weld seams. The precise
distribution of the number of voxels representing the void,
the part and the weld seam for all captures is shown in Fig. 3.
As each part is represented by two captures from different
angles, it can be observed that for the void and part labels
there is a slight difference in the number of voxels of each of
the two captures, as seen in Fig. 3a and b. However, for the
seam plot there is no appreciable difference between the two
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Fig. 4 Schematic summary of the models used in this work. The basic UNet model is formed by the modules with a more vivid color. UNet++ is
distinguished by a more subdued color in its added modules. Finally, our UNetL++ proposal includes new links that appear in the figure marked
with thick strokes

captures (Fig. 3c) because the number of voxels that make up
the seam is approximately the same for both captures. The
most relevant aspect of Fig. 3 is that the voxel distribution
pattern remains stable between the training, validation and
test sets. Overall, the distribution is homogeneous between
the 3 types of labels aswell as between the training, validation
and test sets. As can be seen in Fig. 3, in order to achieve a
correct training of our models one of the main problems we
have to solve is the clear imbalance of the classes. We will
explain in the “Models and training” section how we have
tackled with this problem.

As previously explained, to minimize shadow areas two
data captures are taken for each part. Figure2 shows an exam-
ple of the two captures from a single part with two different
views of each one. In Fig. 2a appears the part captured from
one of the angles with two of the weld seams identified and
labeled and the other two seams in the shadow, so unidenti-
fied. Figure2c depicts the same part, captured from another
angle. The weld seams that previously appeared in shadow
are now identified and the seams that were previously iden-
tifiable now appear in shadow. Figure2b and d respectively
correspond to the same captures but are shown in different
angles in order to better perceive the noise and the distribu-
tion of material in the weld seams. In the part represented
by Fig. 2a, certain points on the left seam can be seen that
are apparently not part of the seam. But, when the angle of
vision is changed, see Fig. 2b, it is discovered that actually
these spots are noise that had coincided in the line of sight.
Analogously the same effect can be seen in Fig. 2c and d in
the left and right seams. In addition, in Fig. 2d can be clearly
appreciated the profile of the left seam in which is visible
an apparent lack of welding material in some areas. All this
information in 3D will be used by our models to efficiently
filter noise and identify the weld seam, as will be shown in
“Results” section.

Models and training

Models

The models we propose in this work are based on the
UNet (Ronneberger et al., 2015) and UNet++ (Zhou et al.,
2018) architectures which are deep neural networks based on
encoders/decoders used for image generation, see Fig. 4. The
encoder performs convolution and sub-sampling operations
in order to reduce the resolution of the inputs and extract their
most important spatial characteristics. The decoder operates
symmetrically to the encoder, increasing the dimensionality
of the data residing in the latent space in order to reconstruct
an image with the original resolution. Between the encoder
and the decoder there are several links which mitigate the
information leakage caused by the encoder and enhance the
reconstruction. These models have shown good results in the
literature for 2Ddata. The change to 3Ddata implies an expo-
nential increase in the amount of information to be processed
and it is therefore necessary to adapt the model to the new
requirements. In particular, 3D convolutions require extract-
ing features not only linked to each xy-plane but also to the
z-axis. In other words, the number of features to be managed
is greater whilemaintaining the same basic convolution oper-
ation.

The proposed model, UNetL++, where L stands for the
set of new links introduced, is an evolution of UNet and
UNet++ whose purpose is to adapt to 3D data processing
with a twofold objective:

• Mitigate the loss of information in the reconstruction and
increase the linkage paths between the contraction and
expansion phases due to the exponential increase in data.
For this purpose, the UNet++ model has been evolved
by increasing the connections between the encoder and
the decoder (see Fig. 4). This evolution is characterized
by an increase in the inner blocks reconstruction paths,
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wherewecall inner blocks to those that are not present in a
classicalUNet architecture. Transposed convolutions and
upsample operations are coupled in order to increase the
quality and richness of the reconstruction and to enhance
the transmission of information between the aforemen-
tioned stages.

• Limit the computational and storage complexity required
for training and inference. We hypothesize that the basic
convolutional operation is enough to extract the neces-
sary features in the 3D data and therefore to carry out
efficient training. In this way, the increase in resources
implicit in the increased complexity of the architecture
is offset by the reduction in resources by simplifying the
encoder. For this purpose, we propose to use a simple
CNN encoder which we call Basic-CNN.

Figure 4 shows the scheme of the proposed models previ-
ously explained. The main difference between UNet++ and
our proposal UNetL++ lies in the new internal propagation
paths added, see upsample links in Fig. 4. This means that
for each transposed convolution a new upsampling operation
is added. Therefore the amount of information obtained in
the voxel grid regeneration procedure is not only duplicated
but also contains different features, because convolution
and upsample operations generate information of different
characteristics. That is, our proposal UNetL + + increases
the connection paths between the encoder and the decoder,
enhancing the richness and quality of the information trans-
mitted andprocessed in the internal blocks of the architecture.

The encoders used in this design, Basic-CNN family, have
lower computational and storage requirements than state-
of-the-art encoders such as ResNet (He et al., 2015) and
DenseNet (Huang et al., 2017), with which a comparative
analysis is performed in “Results” section. It is observed,
compared to the UNet++ model, that our proposal includes
a more sophisticated link topology, duplicating inner block
reconstruction paths with a different reconstruction opera-
tion.

Training

The supervised training phase iteratively adjusts the param-
eters of the model to accurately achieve segmentation of
each of the weld seams that appear in the 3D point clouds.
The details of our labeled dataset have been described in
“Dataset” section. Labeling 3D point clouds is a complex and
time-consuming task because itmust be performedmanually.
It is therefore very expensive to get a large enough amount
of labeled data to guarantee the sufficient diversity needed
by the DL models for a correct learning. A total of 116 parts
were labeled, 20 of which were reserved to the test set and
of the remaining parts, 20% and 80% to the validation and
training set respectively. The test set is not used in the training

phase and therefore our models have never seen it, allowing
for an objective validation of our results.

The initial trainings showed excessive overfitting, pre-
cisely because of the insufficient number of available parts.
To solve the overfitting problem, two basic data augmenta-
tion operations, rotation and translation, were implemented.
Since we are dealing with 3D data, both operations can
be performed on any of the three axes. The choice of the
rotation or translation axis ismade randomly.Using an exper-
imental methodology, the operating parameters of the two
transformations were identified. Specifically, the translation
has random values between 10 and 40 voxels, depending on
the axis. Rotation is performed on random values of angles
ranging from π/20 to π/12 radians. The data augmentation
is implemented dynamically on the GPU during the train-
ing phase. Once the data is loaded into the GPU memory,
data augmentation is applied with random parameters within
the previously described range. Once the data has been aug-
mented, it is used for the training of the neural network in the
current epoch. This operation is carried out in each epoch so
its data is different from the data of the rest of the epochs.
The probability of data repetition is practically nil. The num-
ber of epochs used for training each model is 250, which
implies that approximately 250 different versions of the orig-
inal dataset have been used. This way, the low variability due
to the small number of available parts is mitigated.

The use of 3Dpoint clouds implies that the number of vox-
els representing empty space is much larger than the number
of voxels representing parts and this, in turn, is much larger
than the number of voxels identifying the weld seam. In par-
ticular, as described in “Dataset” section, more than 99%
of the dots correspond to the void. The problem is known
as class imbalance and causes results during training to be
biased by the majority class. This reduces the sensitivity of
our results, i.e., the ability to correctly identify the weld
seam spots. To solve this problem, we have used a variant
of the cross-entropy loss function which applies weights to
the different classes and allows their parameterization. Its
mathematical expression can be seen in the Eq. (1) where yc
is the true value of the label, xc is the predicted value and wc

is the weight which penalize the class c (Naceur et al., 2020).
The values ofwc are selected based on the average ratio of the
voxels belonging to the part relative to the voxels belonging
to the weld seam, which are 0.77 and 0.23 respectively. To
offset the imbalance between these two classes the inverse of
the above ratio is assigned, i.e., a value of 0.23 for the vox-
els belonging to the part (majority class) and a value of 0.77
to the voxels belonging to the weld seam (minority class).
A zero value is assigned to the voxels corresponding to the
void to prevent them from interfering with the loss function
since these voxels are easily identifiable at the network input
(value zero) and are directly copied to the output. Thus, the
network is forced to minimize its loss function by assigning

123



Journal of Intelligent Manufacturing

a greater weight to the voxels belonging to the weld seam
class. This makes the parameters resulting from the training
phase very sensitive to this minority class and therefore the
network is also sensitive to this class. This new loss function
prevents the model from directing its learning towards the
identification of the simplest and most common class, the
void.

WCE = −
C∑

c=1

wc · yc · log exp(xc)∑C
i=1 exp(xi )

(1)

The learning rate has been dynamically varied during
training using the plateau reduction technique. This algo-
rithm reduces the learning rate when a metric has stopped
improving, in our case theDice SimilarityCoefficient (DSC).
Learning rate is reduced by a factor of 2 if no improvement
is observed for 20 epochs. For the same purpose batch nor-
malization is used which leads to a significantly smoother
optimization and a more predictive and stable behavior of
the gradients during training (Ioffe & Szegedy, 2015; San-
turkar et al., 2018). To accelerate the learning of the network
we use the ReLU activation function and adaptive moment
estimation or ADAM as a function optimizer. Finally, early
stop training has been used to select the best model.

The time required for training the proposedmodel in Fig. 4
was, approximately, 10h on a single NVIDIA RTX A5000
GPU with 24-GB of memory which shows that the model
proposed in this work is lightweight and capable of evolving
to more complex datasets.

Results

In this section we show the results of our models when
applied to the test set, that is, 3D point clouds from parts
fabricated on an automated weld line currently in operation
whichhavenot beenused in the trainingphase.We startwith a
comparative analysis between our proposal and other equiva-
lent proposals in the state of the art. In particular, we evaluate
the ability of our encoder to generate results comparable to
more complex encoders. Next, we evaluate the sensitivity of
the model when varying its topological complexity in order
to propose a usable model that requires a minimum amount
of computational andmemory resources.We show the ability
of our model to replicate a human in the task of distinguish
the weld seam from the rest, i.e., the part, the noise, and the
void and, finally, we show a quantitative analysis of the noise
filtering capability of our model.

We use the DSC as an index to evaluate the results, see
Eq. (2), where TP or true positive refers to correctly identi-
fied weld seam voxels, FP or false positive refers to voxels
identified as weld seam when they are not, and FN or false

negative refers to unidentified weld seam voxels. The most
significant feature of the DSC index is that it measures the
ability of the model to identify the weld seam, regardless of
the size of the seam relative to the 3D cube representing the
part. As can be seen in Eq. (2), the TN or true negative voxels,
i.e. correctly classified voxels that are not weld seam, are not
taken into consideration thus avoiding the negative effects of
the class imbalance problem. The DSC index is equivalent
to the F1 score metric and is a harmonic mean between the
Precision, or quality of the identified weld seam voxels, and
the Recall, or the proportion of identified weld seam voxels.
The range of values of the DSC is [0,1] and the closer the
value is to one, the better the performance of the model.

DSC = 2T P

2T P + FP + FN
(2)

Encoder/decoder evaluation

The target of this subsection is to evaluate the feasibility of
our proposal and analyze its complexity. For this purpose we
evaluate three types of encoders, two of them complex and
high performance (ResNet and DenseNet) and the third our
proposed simplified encoder (Basic CNN), using a 3Dmodel
based on a 3 level UNet architecture (see Fig. 4). The input
of the model is a tensor of size 230 × 230 × 230 voxels
in which each voxel represents the void or the existence of
part/noise, and whose output is an identical tensor in which
each voxel houses the void, part/noise or weld seam. As can
be seen in Figs. 2 and 6 the data contain a large amount of
noise which was explained in “Dataset” section. No specific
noise suppression technique has been used since the correct
identification of the weld seam implicitly performs this task.
The DSC index used to identify the weld seam is an accurate
measure of the noise suppression capability of our model.

Table 1 shows the evaluation results for the encoders
ResNet and DenseNet as they are state-of-the-art proposals
that generate very good results in semantic image segmen-
tation. We also show the results of the encoder proposed in
this work (Basic CNN). The quality of the results is mea-
sured with the DSC index and the associated Precision and
Recall metrics. The complexity is assessed by two indicators:
the size complexity, measured by the number of parame-
ters, and the computational complexity, measured by the
total number of floating point operations to perform on each
inference. This value is expressed in Giga Floating-Point
Operations (GFLOP) where each fused multiply-accumulate
(MAC) operation is counted as 2 FLOP.

Table 1 shows the results of the Resnet-18, Resnet-34,
DenseNet-121, DenseNet-169 and DenseNet-201 models,
comparedwith themodels proposed in this work, Basic CNN
v.1 and v.2. For the state-of-the-art models (first five rows of
Table 1) a DSC between 0.894 and 0.939 can be observed,
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Table 1 DSC, Precision, Recall,
GFLOP and number of
Parameters of the encoders used
in the UNet model

Encoder DSC Precision Recall GFLOP Parameters

ResNet-18 0.9357 0.9252 0.9487 1922.4 66,188,041

ResNet-34 0.9362 0.9161 0.9597 2205.3 96,501,385

DenseNet-121 0.9350 0.9289 0.9441 1024.0 142,657,217

DenseNet-169 0.9394 0.9317 0.9493 1178.2 316,735,681

DenseNet-201 0.8935 0.9266 0.8656 1356.2 449,160,385

Basic CNN v.1 0.9351 0.9221 0.9504 45.1 10968

Basic CNN v.2 0.9411 0.9301 0.9541 119.12 34586

Fig. 5 Radar charts with min-max scaling showing scaled values of DSC, GFLOP and Parameters for each model in Table 1

i.e., values close to 1 that show a good trade-off between
Precision and Recall in the identification of the weld seam.
The same table shows the computational and storage com-
plexity of each encoder. In this work we propose the use of
a simpler encoder called Basic-CNN, which performs the
basic convolutional operations with lower requirements than
the ResNet and DenseNet encoders. We show results for two
variants of Basic-CNN in the last two rows of Table 1, differ-
ing only in that the second version performs a width scaling
by increasing the number of channels in the encoder layers,
with its subsequent impact on the remainder of the archi-
tecture. The last two rows of Table 1 show that our proposal
obtains similar results, even betters in some cases, withmuch
lower memory (0.01%) and computational complexity (5%
to 11%).

Figure 5 shows the radar charts comparing DSC, GFLOP
and the number of Parameters for the models in Table 1. It
can be seen that our proposals based on Basic-CNN achieve
similar or better results than state-of-the-art encoders, but at
a fraction of the size and computational cost.

Topology evaluation

In this subsectionwe evaluate the influence of the topological
complexity on the quality of our model. For this purpose, we
use the Basic-CNN encoder with the two versions described
in “Results” section, and incrementally vary the topology
and interconnections. We evaluate a UNet, a UNet++ and
our proposal UNetL++ described in “Models and training”
section. The results can be seen in Table 2. The iGFLOP
value represents the increase in computational complexity
with respect to the basic UNet model, i.e. the computation
derived from the insertion of the inner blocks, as described in
“Models and training” section. The increase in computational
complexity of our proposal is very slight compared to the
state-of-the-art encoders shown in Table 1. Both the number
of parameters and the GFLOP are similar in the three levels
of topological complexity.

Our proposal UNetL++ gets the best DSC result among
all the proposed topologies. However, this improvement is
marginal for the dataset used. As explained in “Models and
training” section, our proposal increases the internal con-
nections and also the information processing capacity in the
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Table 2 DSC, Precision, Recall,
GFLOP, iGFLOP and number of
Parameters of the proposed
models as they become
topologically more complex

Topology DSC Precision Recall GFLOP iGFLOP Parameters

Basic CNN v.1 0.9351 0.9221 0.9504 45.1 0 10968

Basic CNN ++ v.1 0.9412 0.9500 0.9344 38.6 11.28 9577

Basic CNN L++ v.1 0.9414 0.9333 0.9513 68.4 36.99 11513

Basic CNN v.2 0.9411 0.9301 0.9541 119.12 0 34586

Basic CNN ++ v.2 0.9415 0.9367 0.9481 100.0 34.61 29147

Basic CNN L++ v.2 0.9416 0.9360 0.9493 164.07 94.26 34033

The encoder Basic-CNN (v.1 and v.2) is used for all the topologies

intermediate layers, thus significantly reducing the amount of
information lost between the encoding and decoding stages.
So, our proposal increases the number and complexity of the
features extracted from the dataset. Since the weld seams of
the current dataset have a regular volume and few complex
morphological features, the results of our model do not differ
much from those of the state of the art. However, the abil-
ity to identify and process complex features is critical when
weld seams are more irregular. For this reason, we believe
that our proposal will significantly improve the results in new
welding lines in which more irregular parts are produced, as
will be shown later in this section.

Ability to replicate humanmodel

The results in this subsection correspond to the model
UNetL++ with Basic-CNN encoder v.2. Figure6 shows the
best and the worst inference of the test set, i.e., parts that
have not been used in the training phase. Incorrectly identi-
fied areas are represented in red tones and correspondmainly
to the weld seam boundary which is difficult to classify even
by a human. Dots in coral red represent regions erroneously
categorized as no weld seam. Dots in dark red depict regions
incorrectly classified asweld seam. The gaps seen in theweld
seam are not inference faults but noise appearing in the line
of sight. It can be seen graphically that the network identi-
fies accurately the weld seams, with a DSC range between
0.9093 and 0.9667. These numbers show that our proposal
filters the noise very efficiently. Although in Fig. 6 can be
seen multiple points of noise apparently in the weld seam, it
is just an effect of the viewing angle since almost the entire
weld seam volume is identified. That is, if the angle of view
were changed, the noise would disappear of the line of sight.

Using the same color scheme, Fig. 7 shows the perfor-
mance of the model UNet++ against our model UNetL++
using in both cases the same encoder (v.2). We have chosen
two parts from the test set in which differences between the
twomethods can be seen. Although the differences are small,
it can be seen that numerically the quality of the segmentation
of the weld seam is better for our model. This small improve-
ment can be important to provide a better quality control
system, since the weld seam isolationmay precede other pro-

Fig. 6 Best and worst inference in the test set. Green and red dots
show respectively correctly and incorrectly identified areas (Colorfigure
online)

Fig. 7 Inferences of the UNet++ (above) and the UNetL++ (below) for
two parts (a, b) of the test set (Color figure online)

cedures to study and measure more advanced characteristics
of the seam, as will be explained in “Manufacturing applica-
tions” section. In addition, as already argued, we expect that
the differences between models may increase when the weld
seam morphology becomes more complex.

Figure 8 represents each voxel as the probability of
belonging to the seam class which is obtained by inference
of a part from the test set. Cold colors represent higher prob-
ability and warm colors represent lower probability. This is
a representation of how confident the neural network is in
its inference results. The capture used in this example cor-
respond to the view of the left seam of each rod. It can be
seen that the left seams have a higher probability than right
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Fig. 8 Example of inference representing the probability of belonging
to the weld seam class

ones, i.e. the neural network is clearly more confident in its
inference.

Finally, an attempt has been made to compare our 3D
semantic segmentation proposal with similar proposals. As
far as we know, in the state of the art there is no equivalent
proposal of 3D semantic segmentation. For this reason we
have compared our model with a weld seam 2D semantic
segmentation work (Wang &Mei, 2022). First of all, it must
be clarified that it is a 2D convolutional system in which both
the application environment and the data acquisitionmethod-
ology are different. Our proposal generates a DSC of 0.942
while that of Wang and Mei (2022) is 0.989. These are good
results in both cases. The difference between both methods
can be explained by the greater complexity and amount of
information involved in 3D segmentation tasks, whichmakes
the segmentation process more challenging.

Noise filtering performance

In this subsection we demonstrate the ability of the proposed
model (UNetL++ with Basic-CNN encoder v.2) to filter the
noise. Table 3 shows, for each part of the test set, the number
of noise voxels in the point cloud in the second column, in
the third column how many of them have been assigned to
the part or void class, i.e. have not been classified as weld
seam, and in the fourth column the percentage. The propor-
tion of noise voxels that have not been identified as weld
seam, on average, is 99.23%. Such good results ensure that
our model is able to isolate weld seams even in situations
where reflections and smoke are present, which guaran-
tees good performance in welding cell-dominated industrial
plants deployments.

Generalization capacity

In this subsection we prove the better generalization capacity
of our model when applied to weld seams with more irreg-
ular and complex features. For this purpose, we build two
new datasets. The first one, D1, is made up of 112 pieces
with a T-joint weld seam (Fig. 9a, b). The second, D2, is

Table 3 Number of observed noise voxels, number of those voxels
predicted as part/void and noise filtering ratio for each of the 20 obser-
vations in the test set

Observation Observed Predicted Filtering
noise part/void ratio
voxels voxels (%)

1 1249 1235 98.88

2 1307 1307 100.0

3 1201 1196 99.58

4 1671 1622 97.07

5 921 920 99.89

6 1304 1293 99.16

7 1532 1532 100.0

8 1228 1221 99.43

9 1243 1243 100.0

10 1173 1168 99.57

11 945 944 99.89

12 1062 1033 97.27

13 1140 1103 96.75

14 845 845 100.0

15 1462 1457 99.66

16 998 984 98.60

17 744 738 99.19

18 1097 1097 100.0

19 1095 1095 100.0

20 1061 1057 99.62

Average 1163.90 1154.50 99.23

Fig. 9 Parts with T-joint weld seams (a, b) and parts with rectangular
overlap weld seams (c, d) (Color figure online)

composed of 22 pieces with a rectangular overlap type weld
seam (Fig. 9c, d). We make inferences on these datasets with
the models UNet, UNet++ and UNetL++, all of them with
the v.2 encoder. It is important to emphasize that no training
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Table 4 Average DSC,
Precision and Recall of the
models when applied to two
new datasets

Architecture D1: T-joint D2: rectangular overlap
DSC Precision Recall DSC Precision Recall

UNet 0.2055 0.1378 0.4605 0.2306 0.1602 0.4296

UNet++ 0.2724 0.2004 0.4682 0.2542 0.1969 0.3753

UNetL++ 0.3116 0.2226 0.5620 0.2654 0.1735 0.5877

Fig. 10 Inferences examples for
T-joint (a, b) and overlap (c, d)
weld seams with UNet (left),
UNet++ (middle) and UNetL++
(right) (Color figure online)

or fine tuning has been carried out. The inferences on the
new data are performed using the latent knowledge learned
with the original parts, causing the DSC values to be lower
than for the original dataset. The shape of the new parts and
the length and morphology of the new weld seams are com-
pletely different from the original ones, so the performance
of the models will be a useful measure of their ability to gen-
eralize when faced with completely different scenarios. The
results can be found in Table 4. It can be seen that, for the
two datasets, our model outperforms both the UNet and the
UNet++. Regarding datasetD1, UNetL++ improves theDSC
of UNet and UNet++ by 51.63 % and 14.39 % respectively.
In the case of dataset D2, the improvement is 15.09% and
4.41% respectively. In addition, the Recall of our model is
recurrently much better, indicating the ability of UNetL++

to find complex weld seams in completely different environ-
ments than those used to train it. The Precision does not differ
much from that of the UNet++ model, but since the Recall
is considerably higher this means that the proportion of vox-
els correctly identified as weld seam remains the same but
with a much higher area of the weld seam identified. Again,
using the same color coding as in the previous subsection,
Fig. 10 illustrates a significant example of the performance
of the three models. We have chosen two representative parts
from each dataset in which differences between the three
models can be seen. Numerically and graphically, it can be
noticed that UNetL++ offers a much more accurate segmen-
tation than the other models. For the parts of both datasets,
UNetL++ successfully identifies a larger area of the weld
seam (green dots) than the rest of the models, while the area

123



Journal of Intelligent Manufacturing

incorrectly classified as weld seam (dark red) is not signif-
icantly greater than in the rest of the cases. These results
demonstrate the ability of UNetL++ to generalize its knowl-
edge and offer better performance in novel situations where
more complex analysis is required.

Manufacturing applications

This section aims to show the value added of applying our
model in an industrial quality control inspection. The pro-
posed model in this work allows to obtain an accurate 3D
representation of the isolatedweld seam,which in turnmakes
it possible to calculate very useful information for diagnosing
the quality of the seam, such as its presence, length, width,
volume and location. Moreover, having the 3D isolated weld
seam allows for more complex analysis such as volumetric
measurements that traditionally have been almost impossi-
ble to calculate without the use of destructive macrographic
tests (Wang & Mei, 2022). In addition, our segmentation
model can be embedded in a processing pipeline where the
segmented seam is fed into other DL algorithms specialized
in other fine-grained defects such as porosity, projections
and irregularities. The quality of the segmentation obtained
through our proposal allows for a precise identification of
these defects.

The performance of our proposal could be a limiting factor
for its application in an automatic quality control of robotic
welding cells. The process from the capture of a raw point
cloud until the segmentation is done, involves several stages
including the centering of the point cloud, the voxelization,
the model inference, and the selection of the voxels catego-
rized asweld seam.Using the hardware described in “Models
and training” section and a high-performance compiler for
voxelization (the heaviest process), the complete process
can be performed at around 27 parts per second. Typically,
the time elapsed between robot movements and data cap-
ture is at least two seconds. Hence, a single computing unit
could simultaneously cater to multiple independent inspec-
tion stations without slowing down the cycle times of the
manufactured parts. Furthermore, resource usage by the sys-
tem hosting the solution increases linearly as the workload
increases, thus constituting a scalable system.

Conclusion

In this paper we propose a DL model that analyzes stereo
images using 3D convolutions for the semantic segmentation
of weld seams in a real intelligent welding system envi-
ronment. The DL model receives as input a voxelized 3D
point cloud of the part that has just been manufactured and
generates as output a 3D voxel grid in which each voxel
is labeled. The proposed model, UNetL++, is a topological

enhancement of UNet++ using a simple CNN encoder. This
model uses less than 0.01% of the number of parameters
and between 5 and 11% of the computational complexity of
comparable proposals, but achieves very high quality results
with DSC similar or superior to those systems. Specifically,
by applying UNetL++ to the test set, a Precision between
0.93 and 0.94, a Recall of around 0.95 and, therefore, a DSC
of around 0.94 are achieved. These values reflect that the
geometry and volume identification of theweld seams is very
accurate, which opens the door to the development of precise
defect detection systems. Nearly complete noise filtering is
also achieved, which is an important advance for the stability
of quality control systems. Additionally, a study of the ability
to generalize of our proposal when applied to more complex
and irregular pieces has been carried out. This study shows
that our UNetL++ proposal improves the architectures of the
state of the art.

To the author’s knowledge, this is the first proposal for
3D DL analysis of weld seams at the instant of fabrication
that achieves very high quality identification of their shape
and volume characteristics, as well as almost complete noise
elimination.
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