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Abstract

Pediatric obstructive sleep apnea (OSA) is a respiratory disease defined by
episodes of complete airflow cessation (apneas) or significant airflow reduction
(hypopneas). This disorder is highly prevalent among children, affecting 5.7% of
the pediatric population. If left untreated, it can lead to various adverse cardio-
vascular consequences, including hypertension, hypercholesterolemia, and ven-
tricular hypertrophy, as well as cognitive and developmental impairments. Given
the potential threat to the health of children, the early diagnosis and management
of OSA are of the utmost importance, however being an underdiagnosed disease.

Overnight polysomnography (PSG) is currently considered the gold standard
diagnostic technique for pediatric OSA. This procedure involves children spend-
ing an entire night in a sleep laboratory, where numerous sensors are attached to
their bodies to record up to 32 biomedical signals. Subsequently, medical experts
visually analyze and score apneic events based on these recordings. The number
of events of apneas and hypopneas per hour of sleep (e/h) is then calculated, re-
sulting in the apnea-hypopnea index (AHI), which is used for diagnosing and de-
termining the severity of OSA in children. Despite being the gold standard, PSG
has certain drawbacks. It is time-consuming, complex, expensive, and highly un-
comfortable for the pediatric population, leading to issues such as limited access
and long waiting lists. As a result, there has been growing interest in exploring
alternative techniques to simplify OSA diagnosis.

In recent years, various approaches have been proposed as alternatives to
PSG. One widely studied approach involves analyzing a reduced set of signals
recorded during PSG, with a primary focus on the continuous measurement of
blood oxygen saturation (SpO2), derived from photoplethysmography signal.
However, there is a noticeable gap in the literature regarding research that ex-
plores other biomedical signals, particularly cardiovascular signals, as potential
alternatives to PSG. To address this gap, the present Doctoral Thesis aims to com-
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II Abstract

prehensively examine the behavior of heart rate variability (HRV) in children,
seeking valuable insights into cardiac alterations associated with pediatric OSA
that could aid in its diagnosis. Specifically, during apneic events occurring due to
OSA, recurrent cardiac behavior, often in the form of bradycardia-tachycardia
patterns, has been documented. These alterations are regulated by the auto-
nomic nervous system (ANS), whose activity is typically analyzed through HRV.
However, existing HRV analyses in pediatric OSA have primarily relied on con-
ventional approaches designed to evaluate standard ANS behavior, ignoring the
specific alterations resulting from the disease. Therefore, in this Doctoral The-
sis, we hypothesize that characterizing overnight HRV using novel approaches
could uncover previously unknown information about ANS behavior in relation
to pediatric OSA, thereby aiding to simplify the diagnosis of the disease. Con-
sequently, the primary objective of this Doctoral Thesis is to conceive, develop,
and evaluate novel automated techniques for processing HRV signals, enabling a
comprehensive characterization of the alterations in overnight ANS functioning
caused by OSA and ultimately contributing to the diagnosis of the disease.

To reach this goal, a total of 2593 electrocardiogram (ECG) recordings from
two different databases were analyzed. These recordings were obtained from
children aged 0 to 13 years old who had clinical suspicion of OSA. The databases
used for this study were the Childhood Adenotonsillectomy Trial (CHAT, 1612
children), which is publicly available, and a private database from the University
of Chicago (UofC, 981 children). Prior to analysis, all recordings underwent auto-
mated pre-processing to ensure they met the specific requirements of each study,
thus following two main approaches: a whole-night analysis and a segment-level
analysis, the last aimed to evaluate the influence of sleep stages and the pres-
ence of apneic events. Following the pre-processing step, the feature-engineering
approach is the unifying methodology among the studies we performed, con-
ducted in three phases. First, in the feature-extraction phase, a variety of HRV
parameters specific to pediatric OSA, along with conventional HRV metrics, were
extracted using spectral, bispectral, and time domain approaches. The second
phase involved feature selection, aiming to identify subsets of features that con-
tained relevant and non-redundant information regarding pediatric OSA alter-
ations. This phase was applied within the bispectral approach, as it was the only
study where a large number of features were considered. The final phase of the
feature-engineering methodology involved evaluating the clinical utility of the
HRV characterization through pattern recognition techniques. This evaluation
included assessing the ability of the HRV characterization to diagnose pediatric
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OSA and classify sleep stages. To emphasize the importance of the HRV-derived
features for sleep staging and OSA detection, an explainable artificial intelligence
(XAI) analysis was conducted within the segment-level approach. Additionally,
the results obtained from the feature-extraction phase using HRV spectral anal-
ysis underwent causal mediation analysis (CMA) to assess their ability to reflect
OSA treatment effects.

Each of the HRV characterization approaches has provided valuable insights
into previously unknown behaviors of the ANS in the context of pediatric
OSA. Through HRV spectral analysis, we identified three OSA-specific frequency
bands: BW1 (0.001 – 0.005 Hz), BW2 (0.028 – 0.074 Hz), and BWRes (0.04 Hz
around an individual adaptive respiratory peak). The activity of these bands was
found to be related to the severity of pediatric OSA and its associated alterations.
Importantly, these OSA-specific bands outperformed the classic HRV spectral fre-
quency bands (very low frequency, VLF: 0 - 0.04 Hz; low frequency, LF: 0.04 - 0.15
Hz; and high frequency, HF: 0.15 - 0.4 Hz) in pediatric OSA diagnosis both in-
dividually and jointly. Furthermore, the spectral features obtained were used to
evaluate the effects of OSA treatment on HRV using CMA, revealing that OSA
treatment causally influences HRV activity in both the classic and OSA-specific
frequency ranges. Among these bands, BW2 was the only one that showed signif-
icant differences in HRV activity between children with and without OSA resolu-
tion. Regarding the bispectral analysis, this approach contemplated the inclusion
of up to 80 bispectral features. Accordingly, the fast correlation-based filter al-
gorithm allowed us to identify two optimal subsets of bispectral features. One
subset was derived from bispectral regions defined based on the classic HRV
frequency ranges, while the other was defined based on the HRV OSA-specific
frequency ranges. This analysis demonstrated that pediatric OSA leads to alter-
ations in the non-Gaussianity, nonlinearity, and irregularity of overnight HRV.
To end with HRV characterization, a segment-level analysis, which considered
both the influence of apneic events and sleep stages, revealed that the existent
basal sympathetic activation during the rapid-eye movement (REM) sleep stage
seems to mask the sympathetic excitation caused by apneic events. It resulted in
greater differentiation between apneic event segments during the non-rapid eye
movement (NREM) sleep stage compared to REM.

When assessing the clinical utility of this characterization for diagnosing pe-
diatric OSA at three different AHI severity cutoffs (1, 5, and 10 e/h), the multi-
layer perceptron models trained using bispectral features from the optimal sub-
sets achieved the highest overall diagnostic performance at the 5 and 10 e/h cut-
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offs. However, at the lowest cutoff (1 e/h), a least-square boost model trained
using segment-level HRV features exhibited the highest performance, making it
suitable for detecting pediatric OSA in its mildest form (sensitivity of 90.76% and
a positive predictive value of 86.26%). Furthermore, when comparing with state-
of-the-art studies using cardiovascular measures, our proposed methodologies
achieved similar or higher overall OSA diagnostic performance, especially to de-
tect OSA presence. Regarding the classification of sleep stages in the context of
pediatric OSA, the adaptive boosting model reached the highest overall perfor-
mance in NREM sleep stage segments, thus aligning with the increased differen-
tiation of HRV apneic segments observed during NREM. Furthermore, the use of
XAI techniques revealed that two of the novel OSA-specific HRV features devel-
oped in this Doctoral Thesis, BW2 and BWRes, reached the highest importance
for pediatric OSA diagnosis and sleep stage classification, respectively.

Based on the aforementioned considerations, the different approaches un-
dertaken in this Doctoral Thesis have proven to be valuable in characterizing
ANS behavior through HRV analysis in the context of pediatric OSA. These ap-
proaches have successfully uncovered specific information regarding the HRV
alterations associated with OSA, surpassing the capability of conventional HRV
analysis methods used so far to detect the presence and severity of pediatric OSA.
Consequently, it can be concluded that the HRV characterization utilizing the
novel pediatric OSA-specific HRV features enables the description of ANS alter-
ations resulting from OSA, thereby aiding in the simplification of pediatric OSA
diagnosis.



Acronyms

AASM American academy of sleep medicine
Acc Accuracy
ACME Averaged causal mediation effect
AdaBoost Adaptive boosting
ADE Averaged direct effect
AF Airflow
AHI Apnea-hypopnea index
AI Apnea index
ANN Artificial neural networks
ANS Autonomic nervous system
AT Adenotonsillectomy
AUC Area under the receiver-operating characteristics curve
BMI Body mass index
bpm Beats per minute
CHAT Childhood Adenotonsillectomy Trial
CMA Causal mediation analysis
ECG Electrocardiogram
EDR Electrocardiogram-derived respiration
EEG Electroencephalogram
EMG Electromyogram
EOG Electrooculogram
FCBF Fast correlation-based filter
FFT Fast Fourier transform
FN False negatives
FP False positives
HOS Higher-order spectra

V



VI Acronyms

HR Heart rate
HRV Heart rate variability
JCR Journal Citation Reports
LDA Linear discriminant analysis
LR+ Positive likelihood ratio
LR- Negative likelihood ratio
LSBoost Least-squares boosting
LZC Lempel-Ziv complexity
MLP Multi-layer perceptron
MSE Mean squared error
NPV Negative predictive value
NREM Non-rapid eye movement
OAHI Obstructive apnea-hypopnea index
OSA Obstructive sleep apnea
PNS Parasympathetic nervous system
PPG Photoplethysmography
PPV Positive predictive value
PRV Pulse rate variability
PSD Power spectral density
PSG Polysomnography
PTT Pulse transit time
REM Rapid eye movement
RMSSD Root mean square of the normal-to-normal successive differences
ROC Receiving-operating characteristics
RP Relative power
Se Sensitivity
SNS Sympathetic nervous system
Sp Specificity
SpO2 Blood oxygen saturation
SU Symmetrical uncertainty
TAI Total arousal index
TN True negatives
TP True positives
UofC University of Chicago
WASO Wake after sleep onset
WWSC Watchful waiting with supportive care
XAI Explainable artificial intelligence



Contents

Abstract I

Acronyms V

1 Introduction 1
1.1 Compendium of publications: thematic consistency . . . . . . . . . 2
1.2 Framework: biomedical engineering, biomedical signal process-

ing, and machine learning . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Pediatric Obstructive Sleep Apnea (OSA) . . . . . . . . . . . . . . . 11
1.4 Pediatric OSA diagnosis: Polysomnography (PSG) . . . . . . . . . . 12
1.5 Literature review: cardiovascular signal analysis in pediatric OSA

context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.1 Cardiovascular signal processing methods to characterize

pediatric OSA . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5.2 Pediatric OSA treatment effects in ANS . . . . . . . . . . . . 18
1.5.3 Automatic cardiovascular signal analysis to diagnose pedi-

atric OSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Hypotheses and objectives 21
2.1 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Subjects and signals under study 25
3.1 Childhood Adenotonsillectomy Trial (CHAT) database . . . . . . . 26

3.1.1 CHAT database eligibility criteria . . . . . . . . . . . . . . . 27
3.2 University of Chicago (UofC) database . . . . . . . . . . . . . . . . . 28

3.2.1 UofC database eligibility criteria . . . . . . . . . . . . . . . . 29

4 Methods 31
4.1 ECG pre-processing and HRV extraction . . . . . . . . . . . . . . . . 33

VII



VIII Contents

4.2 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Temporal domain . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.2 Frequency domain . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 Fast Correlation-Based Filter (FCBF) . . . . . . . . . . . . . . 45

4.4 Pattern recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.1 Binary classification . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.2 Multiclass classification: Adaptive Boosting . . . . . . . . . 48

4.4.3 Regression: Least-Squares Boosting . . . . . . . . . . . . . . 50

4.5 Explainable Artificial Intelligence (XAI) . . . . . . . . . . . . . . . . 51

4.6 Causal Mediation Analysis (CMA) . . . . . . . . . . . . . . . . . . . 52

4.7 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.7.1 Statistical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.7.2 Diagnostic performance metrics . . . . . . . . . . . . . . . . 58

4.7.3 Measures of agreement . . . . . . . . . . . . . . . . . . . . . 60

4.7.4 Validation approaches . . . . . . . . . . . . . . . . . . . . . . 61

5 Results 65
5.1 Spectral analysis: novel OSA-specific frequency bands . . . . . . . . 65

5.2 Bispectral analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Causal mediation analysis . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 HRV segments characterization . . . . . . . . . . . . . . . . . . . . . 77

6 Discussion 83
6.1 Characterization of nocturnal HRV in children . . . . . . . . . . . . 83

6.1.1 Spectral analysis: novel OSA-specific spectral bands . . . . . 84

6.1.2 Bispectral analysis . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1.3 Causal mediation analysis . . . . . . . . . . . . . . . . . . . . 87

6.1.4 HRV segments characterization . . . . . . . . . . . . . . . . . 88

6.2 Clinical utility of HRV characterization . . . . . . . . . . . . . . . . 90

6.2.1 Diagnostic performance . . . . . . . . . . . . . . . . . . . . . 90

6.2.2 Automatic classification of sleep stages . . . . . . . . . . . . 92

6.3 Comparison with previous research works . . . . . . . . . . . . . . 93

6.3.1 Characterization of HRV in pediatric OSA context . . . . . . 93

6.3.2 Evaluation of pediatric OSA treatment effects on HRV . . . 96

6.3.3 Comparison of machine-learning approaches . . . . . . . . . 98

6.4 Limitations of the study . . . . . . . . . . . . . . . . . . . . . . . . . 101



Contents IX

7 Conclusions 105
7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.3 Future research lines . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8 Papers included in the compendium of publications 111

A Scientific achievements 117
A.1 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.1.1 Papers indexed in the Journal Citation Reports (JCR) . . . . 117
A.1.2 International conferences . . . . . . . . . . . . . . . . . . . . 119
A.1.3 National conferences . . . . . . . . . . . . . . . . . . . . . . . 120

A.2 International internship . . . . . . . . . . . . . . . . . . . . . . . . . 122
A.3 National internship . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.4 Grants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
A.5 Awards and honors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

B Resumen en castellano 127
B.1 Introducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
B.2 Hipótesis y objetivos . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
B.3 Sujetos y señales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
B.4 Métodos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
B.5 Resultados y discusión . . . . . . . . . . . . . . . . . . . . . . . . . . 134
B.6 Conclusiones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Bibliography 141

Index 153





List of Figures

Figure 1.1 Overview of the key contributions made by the papers
included in the compendium of publications comprising
this Doctoral Thesis. . . . . . . . . . . . . . . . . . . . . . . 3

Figure 1.2 Examples of HRV from a OSA child in temporal and fre-
quency domain. . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 4.1 Scheme of the overall methodology performed through
the Doctoral Thesis. . . . . . . . . . . . . . . . . . . . . . . 32

Figure 4.2 Example of the pre-processing applied over an ECG and
the R-peaks detection. . . . . . . . . . . . . . . . . . . . . . 34

Figure 4.3 Methodology applied to the extraction of pediatric OSA-
specific frequency bands in the training set of Martín-
Montero et al. (2021b). . . . . . . . . . . . . . . . . . . . . . 38

Figure 4.4 Diagram illustrating the framework of the causal media-
tion analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 5.1 Bispectral matrix in the range 0-0.4 Hz averaged for each
severity group in the training set. . . . . . . . . . . . . . . 70

Figure 5.2 Results of the feature-selection stage applying FCBF algo-
rithm in the training set using 1000 bootstrap replicates. . 71

Figure 5.3 Boxplots representation of the features that were selected
in the optimum BISPClassic subset, along with the p-value
obtained from the corresponding Kruskal-Wallis test. . . . 71

Figure 5.4 Boxplots representation of the features that were selected
in the optimum BISPSpeci f ic subset, along with the p-
value obtained from the corresponding Kruskal-Wallis test. 72

Figure 5.5 Differences at follow-up between resolved and unre-
solved children when evaluating both resolution mediators. 76

XI



XII List of Figures

Figure 5.6 Boxplot distribution in the training set of the features in
the temporal domain for every type of segment considered. 77

Figure 5.7 Boxplot distribution in the training set of the features in
the frequency domain from the classic frequency bands
for every type of segment considered. . . . . . . . . . . . . 78

Figure 5.8 Boxplot distribution in the training set of the features in
the frequency domain from the OSA-specific frequency
bands for every type of segment considered. . . . . . . . . 78

Figure 5.9 Confusion matrices in the test set for the tasks performed
to assess the clinical applicability of the HRV segments
characterization. . . . . . . . . . . . . . . . . . . . . . . . . 81

Figure 5.10 Evaluation of the relative feature importance for the mod-
els applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



List of Tables

Table 3.1 Sociodemographic and clinical data from children of the
CHAT database. . . . . . . . . . . . . . . . . . . . . . . . . 27

Table 3.2 Sociodemographic and clinical data from children of the
UofC database. . . . . . . . . . . . . . . . . . . . . . . . . . 29

Table 5.1 Features for the four OSA severity groups in the train-
ing (UofC database) and test (nonrandomized group from
CHAT database) sets. . . . . . . . . . . . . . . . . . . . . . 66

Table 5.2 Evaluation of the partial correlations in the test set (non-
randomized group from CHAT database) between fea-
tures and the polysomnographic indices considered. . . . 67

Table 5.3 Diagnostic performance for each feature individually, as
well as for the LDA models in the test set (nonrandom-
ized group from CHAT database) from Martín-Montero
et al. (2021b). . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Table 5.4 Evaluation of the diagnostic performance for binary clas-
sification by each feature selected individually, as well as
each MLP optimized model in the test set (nonrandom-
ized group from CHAT database) from Martín-Montero
et al. (2021a). . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Table 5.5 Results from the CMA evaluating treatment effects on
variations in HRV features (follow-up - baseline) through
several mediators. . . . . . . . . . . . . . . . . . . . . . . . 75

Table 5.6 Cohen’s d values measuring the effect size linked to the
comparison of the differences performed in the training
set (subgroup from CHAT database) between each pair of
type of segments included in Martín-Montero et al. (2023). 80

XIII



XIV List of Tables

Table 5.7 Diagnostic yield achieved in the test set (subgroup from
CHAT database) by the optimized LSBoost model for bi-
nary classification using the three AHI thresholds (1, 5
and 10 events/hour) in Martín-Montero et al. (2023). . . . 82

Table 5.8 Diagnostic yield achieved in the test set (subgroup from
CHAT database) by the optimized AdaBoost model for
individual sleep stage classification in the three stages
considered (W, NREM and REM) in Martín-Montero et al.
(2023). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Table 6.1 Diagnostic yield achieved by the different machine-
learning models through the studies from the present
Doctoral Thesis in the three AHI severity thresholds. . . . 91

Table 6.2 Methodological summary of the state-of-the-art research
works focused on the characterization of HRV in pediatric
OSA context, along with their relevant findings. . . . . . . 95

Table 6.3 Methodological summary of the state-of-the-art research
works focused on the evaluation of the effects of pediatric
OSAS treatment on HRV, along with their relevant findings. 97

Table 6.4 Highest diagnostic performance achieved in the state-of-
the-art research works that have focused on the auto-
mated diagnosis of pediatric OSA using cardiovascular
signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Tabla B.1 Datos demográficos y clínicos de los niños en la base de
datos de CHAT. . . . . . . . . . . . . . . . . . . . . . . . . . 131

Tabla B.2 Datos demográficos y clínicos de los niños en la base de
datos UofC. . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Tabla B.3 Rendimiento diagnóstico alcanzado por los diferentes
modelos de machine-learning a través de los estudios de la
presente Tesis Doctoral en los tres umbrales de severidad
de IAH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



Chapter 1

Introduction

The present Doctoral Thesis is focused on the analysis of heart rate variability
(HRV) to characterize and help diagnose pediatric obstructive sleep apnea (OSA).
To this purpose, HRV signals have been analyzed through several approaches
that have allowed us to evaluate the alterations that take place in the autonomic
nervous system (ANS) in OSA presence. Thus, our methodologies have made
possible to unravel patterns from HRV signal caused by the disease and unknown
until date, being proposed as potential biomarkers of pediatric OSA. The out-
comes derived from this research work have been published in four journals in-
dexed in the Journal Citation Reports (JCR) from the Web of Science™. Therefore,
this Doctoral Thesis is presented as a compendium of publications.

Section 1.1 of this Doctoral Thesis offers an explanation of the thematic con-
sistency of the included articles. In Section 1.2, the general context of biomedical
engineering, biomedical signal processing, and machine learning are concisely
outlined. Section 1.3 presents a description of pediatric OSA, including the as-
sociated risks and adverse consequences. The limitations of the gold standard
for pediatric OSA diagnosis, polysomnography (PSG), are discussed in Section
1.4. Finally, Section 1.5 offers a comprehensive state-of-the-art review of previous
research on the simplification of pediatric OSA diagnosis using cardiovascular
signal analysis.

1
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1.1 Compendium of publications: thematic consis-

tency

Pediatric OSA is a respiratory sleep disorder characterized by periods of total air-
flow interruption (apnea) and/or significant airflow decrease (hypopnea) (Amer-
ican Thoracic Society, 1996). This disease is highly prevalent, affecting around 6%
of the general pediatric population (Marcus et al., 2012), and has been linked to in-
creased risk for cardiovascular problems, such as left and right ventricular hyper-
trophy, alterations in autonomic regulation, or changes in blood pressure (Marcus
et al., 2012). OSA has also been associated with adverse cognitive consequences,
such as learning deficits and reduced academic performance (Hunter et al., 2016),
making early detection and treatment essential for maintaining long-term cardio-
vascular health and academic potential in children. The accepted standard diag-
nostic test for pediatric OSA is overnight PSG. During this test, children spend
a night in a sleep laboratory, being time-consuming, complex and uncomfortable
for pediatric population (Tan et al., 2014). Therefore, the drawbacks linked to the
PSG have motivated the search for alternatives to diagnose pediatric OSA and
study its consequences (Alonso-Álvarez et al., 2015; Marcus et al., 2012; Tan et al.,
2014).

In this sense, the research work undertaken during the present Doctoral The-
sis has been directed to scrutinize the nature of overnight HRV signal to describe
pediatric OSA and help to simplify the diagnosis of the disease. Thus, as shown
in Figure 1.1, the analysis of HRV behavior in presence of the disease following
different feature-engineering methodologies is the link that connects the four ar-
ticles included in the compendium of publications.

Different techniques were used to describe HRV, enabling the extraction of
pertinent and valuable information from the particular changes induced by pedi-
atric OSA in the signal. In this regard, it was noticed that all the previous works
focused on HRV frequency analysis in pediatric OSA context analyzed the classic
frequency bands, defined initially based on the standard activity of the ANS (Ma-
lik et al., 1996): very low frequency (VLF, 0-0.04 Hz), low frequency (LF, 0.04-0.15
Hz), and high frequency (HF, 0.15-0.4 Hz). Therefore, the first article was in-
tended to define novel frequency bands that were specific of the disease (Martín-
Montero et al., 2021b). Following this approach, we were able to identify three fre-
quency ranges (BW1: 0.001-0.005 Hz; BW2: 0.028-0.074 Hz; and BWRes: 0.04 Hz
around the individual adaptive respiratory peak) that were associated with pe-
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Figure 1.1. Overview of the key contributions made by the papers included in the com-
pendium of publications comprising this Doctoral Thesis. CIBM: Computers in Biology
and Medicine, CMA: causal mediation analysis, PEDIATR RES: Pediatric Research, XAI:
explainable artificial intelligence.
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diatric OSA, and whose activity was found to surpass both individual and com-
bined diagnostic performance of the conventional HRV bands examined so far.
In the second article of the Doctoral Thesis (Martín-Montero et al., 2021a), both
classic and OSA-specific HRV frequency ranges were used to define regions in
the bispectral domain. Through this analysis, we were able to observe alterations
in the non-Gaussianity, nonlinearity and irregularity of overnight HRV due to
pediatric OSA. In the light of the promising results achieved with the new OSA-
specific frequency ranges to characterize OSA alterations, in the third article we
decided to carry out a causal mediation analysis (CMA) to evaluate changes in
HRV activity due to OSA treatment (Martín-Montero et al., 2022). This method-
ology showed that OSA treatment causally affects HRV activity in both classic
and OSA-specific spectral bands through changes in OSA severity and OSA reso-
lution. Finally, in the last paper of the compendium (Martín-Montero et al., 2023),
classic HRV features, as well as the new features developed, were computed in
a segment-level analysis to assess the joint influence of apneic events and sleep
stages presence. By following this methodology, we observed an increase in basal
sympathetic activity during rapid eye movement (REM) sleep stage, which might
mask the sympathetic excitation in response to apneic events, causing higher dif-
ferentiation between apneic segments during non-rapid eye movement (NREM)
sleep stage compared to REM.

Hence, the results of the four research works have shown the usefulness of the
novel HRV features evaluated in this Doctoral Thesis, to both help in pediatric
OSA diagnosis and classify sleep stages (Martín-Montero et al., 2023, 2021a,b), as
well as to assess OSA treatment effects (Martín-Montero et al., 2022), highlighting
the importance of considering those new OSA-specific features when evaluating
HRV in pediatric OSA context.

Below are the titles, authors, and abstracts of the articles included in the com-
pendium of publications for this Doctoral Thesis, as well as the journals in which
they were published. To ensure proper comprehension of this document, the ac-
cess information to the complete articles have been included in Chapter 8.
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Martín-Montero et al. (2021b): Heart rate variability spectrum characteristics
in children with sleep apnea.

Adrián Martín-Montero, Gonzalo C. Gutiérrez-Tobal, Leila Kheirandish-Gozal,
Jorge Jiménez-García, Daniel Álvarez, Félix del Campo, David Gozal, and
Roberto Hornero. Pediatric Research, vol. 89 (7), p. 1771-1779, 2021. Impact
factor in 2021: 3.953, Q1 in “PEDIATRICS” (JCR-WOS).

Abstract: Background: Classic spectral analysis of heart rate variability (HRV)
in pediatric sleep apnea-hypopnea syndrome (SAHS) traditionally evaluates the
very low frequency (VLF: 0-0.04 Hz), low frequency (LF: 0.04–0.15 Hz), and
high frequency (HF: 0.15–0.40 Hz) bands. However, specific SAHS-related fre-
quency bands have not been explored. Methods: One thousand seven hundred
and thirty-eight HRV overnight recordings from two pediatric databases (0–13
years) were evaluated. The first one (981 children) served as training set to de-
fine new HRV pediatric SAHS-related frequency bands. The associated relative
power (RP) were computed in the test set, the Childhood Adenotonsillectomy
Trial database (CHAT, 757 children). Their relationships with polysomnographic
variables and diagnostic ability were assessed. Results: Two new specific spec-
tral bands of pediatric SAHS within 0–0.15 Hz were related to duration of ap-
neic events, number of awakenings, and wakefulness after sleep onset (WASO),
while an adaptive individual-specific new band from HF was related to oxyhe-
moglobin desaturations, arousals, and WASO. Furthermore, these new spectral
bands showed improved diagnostic ability than classic HRV. Conclusions: Novel
spectral bands provide improved characterization of pediatric SAHS. These find-
ings may pioneer a better understanding of the effects of SAHS on cardiac func-
tion and potentially serve as detection biomarkers.
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Martín-Montero et al. (2021a): Bispectral Analysis of Heart Rate Variability to
Characterize and Help Diagnose Pediatric Sleep Apnea.

Adrián Martín-Montero, Gonzalo C. Gutiérrez-Tobal, David Gozal, Verónica
Barroso-García, Daniel Álvarez, Félix del Campo, Leila Kheirandish-Gozal, and
Roberto Hornero. Entropy, vol. 23 (8), p. 1016, 2021. Impact factor in 2021: 2.738,
Q2 in “PHYSICS, MULTIDISCIPLINARY” (JCR-WOS).

Abstract: Pediatric obstructive sleep apnea (OSA) is a breathing disorder that
alters heart rate variability (HRV) dynamics during sleep. HRV in children is
commonly assessed through conventional spectral analysis. However, bispectral
analysis provides both linearity and stationarity information and has not been
applied to the assessment of HRV in pediatric OSA. Here, this work aimed to
assess HRV using bispectral analysis in children with OSA for signal characteri-
zation and diagnostic purposes in two large pediatric databases (0–13 years). The
first database (training set) was composed of 981 overnight ECG recordings ob-
tained during polysomnography. The second database (test set) was a subset of
the Childhood Adenotonsillectomy Trial database (757 children). We character-
ized three bispectral regions based on the classic HRV frequency ranges (very low
frequency: 0–0.04 Hz; low frequency: 0.04–0.15 Hz; and high frequency: 0.15–0.40
Hz), as well as three OSA-specific frequency ranges obtained in recent studies
(BW1: 0.001–0.005 Hz; BW2: 0.028–0.074 Hz; BWRes: a subject-adaptive respira-
tory region). In each region, up to 14 bispectral features were computed. The fast
correlation-based filter was applied to the features obtained from the classic and
OSA-specific regions, showing complementary information regarding OSA alter-
ations in HRV. This information was then used to train multi-layer perceptron
(MLP) neural networks aimed at automatically detecting pediatric OSA using
three clinically defined severity classifiers. Both classic and OSA-specific MLP
models showed high and similar accuracy (Acc) and areas under the receiver op-
erating characteristic curve (AUCs) for moderate (classic regions: Acc = 81.0%,
AUC = 0.774; OSA-specific regions: Acc = 81.0%, AUC = 0.791) and severe (clas-
sic regions: Acc = 91.7%, AUC = 0.847; OSA-specific regions: Acc = 89.3%, AUC
= 0.841) OSA levels. Thus, the current findings highlight the usefulness of bispec-
tral analysis on HRV to characterize and diagnose pediatric OSA.
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Martín-Montero et al. (2022): Heart rate variability as a potential biomarker
of pediatric obstructive sleep apnea resolution.

Adrián Martín-Montero, Gonzalo C. Gutiérrez-Tobal, Leila Kheirandish-Gozal,
Fernando Vaquerizo-Villar, Daniel Álvarez, Félix del Campo, David Gozal, and
Roberto Hornero. SLEEP, vol. 45 (2), p. zsab214, 2022. Impact factor in 2022:
5.599, Q1 in “CLINICAL NEUROLOGY” (JCR-WOS).

Abstract: Study Objectives: Pediatric obstructive sleep apnea (OSA) affects
cardiac autonomic regulation, altering heart rate variability (HRV). Although
changes in classical HRV parameters occur after OSA treatment, they have not
been evaluated as reporters of OSA resolution. Specific frequency bands (named
BW1, BW2, and BWRes) have been recently identified in OSA. We hypothesized
that changes with treatment in these spectral bands can reliably identify changes
in OSA severity and reflect OSA resolution. Methods: Four hundred and four
OSA children (5–9.9 years) from the prospective Childhood Adenotonsillectomy
Trial were included; 206 underwent early adenotonsillectomy (eAT), while 198
underwent watchful waiting with supportive care (WWSC). HRV changes from
baseline to follow-up were computed for classical and OSA-related frequency
bands. Causal mediation analysis was conducted to evaluate how treatment in-
fluences HRV through mediators such as OSA resolution and changes in disease
severity. Disease resolution was initially assessed by considering only obstruc-
tive events, and was followed by adding central apneas to the analyses. Re-
sults: Treatment, regardless of eAT or WWSC, affects HRV activity, mainly in
the specific frequency band BW2 (0.028–0.074 Hz). Furthermore, only changes
in BW2 were specifically attributable to all OSA resolution mediators. HRV ac-
tivity in BW2 also showed statistically significant differences between resolved
and nonresolved OSA. Conclusions: OSA treatment affects HRV activity in terms
of change in severity and disease resolution, especially in OSA-related BW2 fre-
quency band. This band allowed to differentiate HRV activity between children
with and without resolution, so we propose BW2 as potential biomarker of pedi-
atric OSA resolution.
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Martín-Montero et al. (2023): Pediatric sleep apnea: Characterization of ap-
neic events and sleep stages using heart rate variability.

Adrián Martín-Montero, Pablo Armañac-Julián, Eduardo Gil, Leila
Kheirandish-Gozal, Daniel Álvarez, Jesús Lázaro, Raquel Bailón, David Gozal,
Pablo Laguna, Roberto Hornero and Gonzalo C. Gutiérrez-Tobal. Computers
in Biology and Medicine, vol. 154, p. 106549, 2023. Impact factor in 2022 (last
year available): 7.669, D1 in “MATHEMATICAL AND COMPUTATIONAL
BIOLOGY” (JCR-WOS).

Abstract: Heart rate variability (HRV) is modulated by sleep stages and apneic
events. Previous studies in children compared classical HRV parameters dur-
ing sleep stages between obstructive sleep apnea (OSA) and controls. How-
ever, HRV-based characterization incorporating both sleep stages and apneic
events has not been conducted. Furthermore, recently proposed novel HRV OSA-
specific parameters have not been evaluated. Therefore, the aim of this study was
to characterize and compare classic and pediatric OSA-specific HRV parameters
while including both sleep stages and apneic events. A total of 1,610 electrocar-
diograms from the Childhood Adenotonsillectomy Trial (CHAT) database were
split into 10-minute segments to extract HRV parameters. Segments were charac-
terized and grouped by sleep stage (wake, W; non-rapid eye movement, NREMS;
and REMS) and presence of apneic events (under 1 apneic event per segment,
e/s; 1-5 e/s; 5-10 e/s; and over 10 e/s). NREMS showed significant changes in
HRV parameters as apneic event frequency increased, which were less marked in
REMS. In both NREMS and REMS, power in BW2, a pediatric OSA-specific fre-
quency domain, allowed for the optimal differentiation among segments. More-
over, in the absence of apneic events, another defined band, BWRes, resulted
in best differentiation between sleep stages. The clinical usefulness of segment-
based HRV characterization was then confirmed by two ensemble-learning mod-
els aimed at estimating apnea-hypopnea index and classifying sleep stages, re-
spectively. We surmise that basal sympathetic activity during REMS may mask
apneic events-induced sympathetic excitation, thus highlighting the importance
of incorporating sleep stages as well as apneic events when evaluating HRV in
pediatric OSA.
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1.2 Framework: biomedical engineering, biomedical

signal processing, and machine learning

Biomedical Engineering is an interdisciplinary field that focuses on the applica-
tion of engineering principles to understand, control, or modify biological sys-
tems. It also involves the monitoring of physiological functioning, as well as aid-
ing in the diagnosis and treatment of patients (Bronzino and Peterson, 2014). The
scope of this field is broad and covers a wide range of activities such as design-
ing therapeutic and rehabilitation devices and procedures, processing biomedical
signals and medical images, creating biological products, or developing bioma-
terials. In recent years, interest in this interdisciplinary field has grown signifi-
cantly due to the substantial benefits it offers, providing appropriate tools for the
development of a more effective and efficient healthcare system (Bronzino and
Peterson, 2014). The present Doctoral Thesis have been aimed at the analysis of
HRV signal to extract pertinent information related to pediatric OSA. Accord-
ingly, the primary focus of this work lies within the domain of biomedical signal
processing area.

Biomedical signal processing has assumed a critical role in comprehending bi-
ological systems through an engineering perspective. The physiological systems
of the human body generate a multitude of biomedical signals that reflect their
temporal behavior (Bronzino and Peterson, 2014). As such, by analyzing these
signals, biomedical engineers can assess the physiological state of the user, iden-
tifying significant changes in the biological systems, and detecting pathological
conditions. However, understanding the information embedded in raw biomedi-
cal signals is challenging and frequently beyond the capabilities of visual inspec-
tion. A processing stage, therefore, is needed to extract and decode relevant infor-
mation. Signal processing techniques aim to extract features that characterize the
signals as functions conveying information on the behavior or attributes of the
underlying phenomena, using mathematical and information theory methodolo-
gies (Najarian and Splinter, 2016; Rangayyan, 2015; Sörnmo and Laguna, 2005).
Consequently, signal processing enables the automatic extraction of physiologi-
cal signal features, which is crucial to understand the information obtained from
biological systems. Subsequently, statistical techniques like hypothesis testing or
CMA can be used to assess the dissimilarities in the behavior exhibited by fea-
tures derived from healthy and pathological systems. Furthermore, this feature-
extraction step is the first stage for a methodology known as feature engineering,
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the ultimate goal of which is the development of automatic diagnostic methods
(Najarian and Splinter, 2016).

Feature-engineering techniques are composed of three main stages. The first
one is the aforementioned feature-extraction stage. Sometimes, this stage results
in a considerable amount of information, which can lead to the evaluation of
redundant information and an unnecessary high computational cost, i.e., sub-
optimal features set (Rangayyan, 2015). When it occurs, the second stage of the
feature-engineering approach, known as feature-selection stage, becomes neces-
sary. In the feature-selection step, automatic statistically based techniques are
used to search for significant and non-redundant information among the ini-
tial feature group, leading to an optimum feature set (Rangayyan, 2015). Af-
terwards, the final information can be used in the third stage to train machine-
learning models, providing prediction models for automatic diagnosis (Najarian
and Splinter, 2016; Rangayyan, 2015).

Machine learning is a specialized area of artificial intelligence that aims to cre-
ate algorithms and statistical models capable of automatically learning and im-
proving from experience without human intervention (Alpaydin, 2014; Bishop,
2006). Machine-learning algorithms are designed to recognize patterns and rela-
tionships in extensive data sets and use that knowledge to make predictions or
decisions about new data (Alpaydin, 2014; Bishop, 2006). In a supervised learn-
ing approach, this procedure involves training a model on a set of labeled data,
where the output is already known, and then using the trained model to make
predictions on new, unseen data, assigning a class among different categories
(classification), or providing a continuous output (regression) (Alpaydin, 2014).
The development of machine-learning algorithms has been a significant driving
force behind recent advances in artificial intelligence and has opened up new op-
portunities for automated decision-making and problem-solving. Notwithstand-
ing, since its origins, machine-learning models have been perceived as a ’black
box’, which is a clear drawback when the predictions are used in fields such as
the health context (Adadi and Berrada, 2018). To solve this limitation, in the last
years the concept of ’eXplainable Artificial Intelligence’ (XAI) has gained rele-
vance, as methodologies utilized to create transparency and comprehensibility in
the decision-making process of artificial intelligence models for human interpre-
tation (Adadi and Berrada, 2018).

The purpose of the present Doctoral Thesis was to provide an exhaustive char-
acterization of the behavior of overnight HRV to obtain significant and valuable
information of the alterations caused by pediatric OSA. Accordingly, all the pa-
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pers of the compendium have addressed, at least, one of the feature-engineering
stages aforementioned to help in the diagnosis of pediatric OSA or evaluate
its treatment effects. Furthermore, in the last of these studies, XAI techniques
have also been used (Martín-Montero et al., 2023). Therefore, the context above-
presented reflects the framework of this research work.

1.3 Pediatric Obstructive Sleep Apnea (OSA)

OSA is a medical condition that occurs when the upper airway is blocked dur-
ing sleep leading to apnea events, in which there is a total absence of airflow,
or hypopnea events, in which there is partial obstruction only. OSA affects both
adults and children, but there are significant differences that demands distinction
between the two groups (Marcus et al., 2012). The American Academy of Sleep
Medicine (AASM) has established rules for scoring apneic events (Berry et al.,
2020), whereby an event is considered apneic when there is a complete absence or
a reduction of over 90% of airflow for at least 10 seconds in adults. For hypopnea,
the reduction in airflow should be between 30-90% for at least 10 seconds. To deal
with this complications, the preferred treatment for OSA in adults is continuous
positive airway pressure (CPAP) (Marcus et al., 2012; Vlahandonis et al., 2013). In
contrast, for children, an event is scored when there is a minimum duration of 2
breathing cycles, instead of 10 seconds (Berry et al., 2020). Additionally, OSA in
children is primarily caused by enlarged tonsils and adenoids, leading to the pre-
ferred treatment of adenotonsillectomy (AT). Given these differences in disease
definition and management, it is essential to study OSA and its consequences in
children and adults separately.

OSA has been proven to threaten children quality of life, normal develop-
ment, and cardiovascular health. The repeated occurrences of apneas and hypop-
neas result in intermittent hypoxia and hypercapnia, which can trigger systemic
inflammation, impaired autonomic regulation, oxidative stress, and endothelial
dysfunction (Bhattacharjee et al., 2009; Marcus et al., 2012). These factors con-
tribute to the development of atherosclerosis and increase the risk of hyperten-
sion, myocardial infarction, stroke, and other cardiovascular disorders (Bhat-
tacharjee et al., 2009; Marcus et al., 2012; Tauman and Gozal, 2011). Addition-
ally, children diagnosed with OSA have an increased likelihood of developing
hypertension, obesity, and insulin resistance, all of which are significant cardio-
vascular risk factors (Smith and Amin, 2019). These findings emphasize that OSA
in children is not merely a respiratory disorder but also a significant risk factor
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for cardiovascular disease. Furthermore, OSA in children has also been linked to
other adverse outcomes, such as cognitive impairment, decreased academic per-
formance, or increased daytime sleepiness (Hunter et al., 2016). Therefore, the
prompt identification and treatment of OSA in children are crucial to anticipate
long-term complications.

Apart from the aforementioned consequences, pediatric OSA also poses a sig-
nificant menace to children due to its high prevalence and underdiagnosis. Epi-
demiological studies have reported that the prevalence of OSA in children ranges
from 1.2% to 5.7%, with the highest prevalence occurring in preschool-aged chil-
dren and up to 30% in certain high-risk groups, such as those with obesity or
craniofacial abnormalities (Lumeng and Chervin, 2008; Marcus et al., 2012). De-
spite these high numbers, it is estimated that 90% of children with OSA have not
been diagnosed yet (Kheirandish-Gozal, 2010). This combination of high preva-
lence and underdiagnosis highlights the substantial number of children who may
experience adverse health effects due to OSA.

1.4 Pediatric OSA diagnosis: Polysomnography

(PSG)

The gold standard diagnostic test for pediatric OSA is overnight PSG, which
requires the child to spend a night in a specialized pediatric sleep unit while
multiple neurophysiological and cardiorespiratory signals are recorded using
different body sensors (Marcus et al., 2012). These signals include electroen-
cephalogram (EEG), electromyogram (EMG), electrooculogram (EOG), electro-
cardiogram (ECG), oronasal airflow (AF), abdominal and chest wall movements,
respiratory effort, photoplethysmography (PPG), and continuous measurement
of blood oxygen saturation (SpO2) from PPG (Jon, 2009; Tan et al., 2014). Sleep
medical specialists visually inspect the recordings for manual scoring of apnea
and hypopnea events, and the number of apneas and hypopneas per hour of
sleep, known as the apnea-hypopnea index (AHI), is used to diagnose and clas-
sify OSA severity in children (Berry et al., 2020). AHI thresholds of 1, 5, and 10
events per hour (e/h) are frequently utilized to classify the severity of obstruc-
tive sleep apnea (OSA) in children as none (AHI < 1 e/h), mild (1 e/h ≤ AHI < 5
e/h), moderate (5 e/h ≤ AHI < 10 e/h), or severe OSA (AHI ≥ 10 e/h) (Hornero
et al., 2017; Luz Alonso-Álvarez et al., 2011; Tan et al., 2014). It is noteworthy
that these thresholds are more cautious than those used in adults to distinguish
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between different levels of OSA severity (Kapur et al., 2017).
Although PSG is widely regarded as the gold standard for diagnosing child-

hood OSA, it presents certain limitations. Due to the need for recording multiple
signals, PSG is a complex test, requiring the child to spend at least one night in
a sleep laboratory with qualified technicians present, resulting in high hospital
expenses (Alonso-Álvarez et al., 2015; Tan et al., 2014). Visual scoring of apneic
events is also labor-intensive and may lead to subjective diagnoses (Tan et al.,
2015). In addition, PSG requires the attachment of multiple body sensors to chil-
dren, which can be uncomfortable (Alonso-Álvarez et al., 2015; Jon, 2009). Fur-
thermore, the fact that children sleep in an unfamiliar environment may lead to
sleep recordings that are not a true representation of natural sleep, thus resulting
in the need to repeat the diagnostic test (Katz et al., 2012).

The diagnosis and treatment of children affected by OSA are hindered by long
waiting lists, complexity, cost, time required to analyze sleep signals, and the rest
of drawbacks of the PSG aforementioned (Tan et al., 2015). As a result, there is
a need for simplified screening tests to address the unavailability of PSG. The
use of portable monitoring equipment has been proposed as the primary substi-
tute for PSG in diagnosing pediatric OSA, addressing the limitations of the latter
(Kaditis et al., 2016; Marcus et al., 2012). The devices used for sleep studies are
categorized into four types, based on the number and type of the recorded sig-
nals, as defined by the Portable Monitoring Task Force of the AASM (Standards
of Practice Committee of the American Sleep Disorders Association, 1994):

1. Type I: is the conventional PSG equipment and is considered the gold stan-
dard to which the other types must be compared. This equipment is capable
of recording up to 32 biomedical signals.

2. Type II: the comprehensive portable PSG, records at least seven channels
that allows for the identification of sleep stages and the calculation of the
AHI. The channels required to this purpose are AF, ECG or heart rate (HR),
EEG, EMG (located on the chin), EOG, respiratory effort, and SpO2.

3. Type III: the modified portable sleep apnea testing, involves the recording
of ventilation (i.e., at least two respiratory movement recordings or a res-
piratory movement along with AF), ECG or heart rate, and SpO2. These
studies are also known as respiratory polygraphy.

4. Type IV: characterized by the continuous recording of one or two physio-
logical signals, usually AF and/or SpO2. Any device that fails to satisfy the
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criteria of Type III is also classified under this type.

Therefore, the advantages that portable monitoring offers compared to PSG
are a reduction in the set of channels used, and its realization at children home,
leading to a reduction in costs and complexity, and an increase in the comfort-
ability of the test (Chiner et al., 2020; Tan et al., 2014). However, the American
Academy of Pediatrics guidelines recommend caution when using alternative
tests, as more conclusive evidence is needed about their efficacy (Marcus et al.,
2012). Thus, there has been a search and development of alternative methods
to simplify and accelerate pediatric OSA diagnosis before the consequences get
worse (Alonso-Álvarez et al., 2015).

1.5 Literature review: cardiovascular signal analysis

in pediatric OSA context

The seek for alternative diagnostic methods for pediatric OSA has focused on an-
alyzing a reduced set of signals involved in PSG (Gutiérrez-Tobal et al., 2022). In
this regard, the evaluation of cardiovascular signals has gained relevance to char-
acterize pediatric OSA and aid in its diagnosis. The rationale behind studying
cardiovascular signals to evaluate OSA is that apneic events are typically associ-
ated with progressive bradycardia followed by an abrupt tachycardia at the end
of the event (Guilleminault et al., 1984). While these cyclic variations are well-
established in adults, they also occur in children, albeit with a high degree of
variability depending on the presence, type, and duration of the apneic events,
leading to increased cardiovascular risks (Aljadeff et al., 1997; Gozal et al., 2013;
O’Driscoll et al., 2009; Vitelli et al., 2016). Therefore, these characteristic changes
in heart rate during sleep reflect the direct impact of OSA on ANS behavior.

The ANS plays a crucial role in regulating cardiac activity. This is composed of
two branches: the sympathetic nervous system (SNS), and the parasympathetic
nervous system (PNS). While SNS raises heart rate and contractility, PNS dimin-
ishes it (Acharya et al., 2006). The interplay between both branches maintains
appropriate cardiac output and blood pressure in response to physiological de-
mands, such as the above mentioned OSA alterations (Acharya et al., 2006; Gozal
et al., 2013). Thus, evaluating ANS functioning during sleep can improve the
understanding of the cardiovascular implications of childhood OSA. The most
widespread method to assess ANS status non-invasively is HRV, a signal derived
from ECG that quantifies the fluctuations in the time between consecutive heart-
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beats, allowing the monitorization of both ANS branches modulation (Acharya
et al., 2006). Figure 1.2 shows HRV signals for different situations that are dis-
played in both the time and frequency domains. It can be observed that there
exists a distinct HRV pattern that appears during apneic events, which is not
present during normal sleep (see Figures 1.2.a and 1.2.b). Additionally, the alter-
ations due to these periodic patterns are captured through HRV spectral analysis,
resulting in differences reflected in the power spectral density (PSD) (see Figure
1.2.c).

Alternative to the ECG acquisition, several studies have examined the use of
PPG signals. PPG is a non-invasive optical method that measures changes in
blood volume through the skin surface. By using a light source and a detector,
it is possible to measure pulse rate and blood oxygen saturation, being an easy-

Figure 1.2. Examples of HRV from a OSA child corresponding to: (a) 5-minute segment of
HRV during apneic events, (b) 5-minute segments of HRV without apneic events, (c) av-
eraged PSD of all HRV segments across night, separated by those with presence of apneic
events (black line) and those without apneic events (green line).
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to-acquire signal (Allen, 2007). As PPG is related to arterial vasodilatation or
vasoconstriction generated by the ANS, it can capture ANS alterations too (Allen,
2007; Gil et al., 2009). PPG has been widely investigated to extract pulse rate
variability (PRV), which can serve as a surrogate measure of HRV (Georgiou et al.,
2018). Similar to HRV, PRV is determined by the variation of the pulse-to-pulse
intervals calculated from the PPG, allowing for the analysis of ANS alterations
under different conditions (Georgiou et al., 2018; Mejía-Mejía et al., 2020). Finally,
by combining the information provided by ECG and PPG signals, pulse transit
time (PTT) has also been assessed. PTT refers to the time interval between the
ECG R-peak and the corresponding wave-peak in the PPG signal (Mukkamala
et al., 2015), and it can be influenced by factors such as continuous blood pressure
or HR, being altered accordingly to the presence of apneic events (Katz et al., 2003;
Lázaro et al., 2014). Given the usefulness of the cardiovascular signals mentioned
above to assess ANS alterations, several studies have explored their potential
for characterizing, evaluating the implications of treatment, and automatically
diagnosing pediatric OSA.

1.5.1 Cardiovascular signal processing methods to characterize
pediatric OSA

The assessment of pediatric OSA through the analysis of cardiovascular signals
has mainly relied on traditional metrics, particularly those derived from HRV in
the frequency domain. The most widespread evaluated parameters in this do-
main are the activity in the LF and HF frequency bands, as well as the LF/HF
ratio in HRV (Baharav et al., 1999; Liao et al., 2010a,b; Nisbet et al., 2013; Van
Eyck et al., 2016; Vlahandonis et al., 2014; Walter et al., 2013; Wu et al., 2022).
The LF band is believed to reflect both PNS and SNS activity, whereas HF is con-
sidered to reflect PNS activity (Acharya et al., 2006; Shaffer and Ginsberg, 2017).
Hence, LF/HF is commonly reported as an indicator of sympathovagal balance
(Malik et al., 1996), although this assumption should be approached with cau-
tion (Stein and Pu, 2012). In a less degree, some previous studies have also ex-
amined, alongside the previously mentioned parameters, the VLF band in both
HRV (Kwok et al., 2011) and PRV (Dehkordi et al., 2016; Garde et al., 2014, 2019),
whose interpretation is more controversial, being assumed to reflect slow regu-
latory mechanisms (Shaffer and Ginsberg, 2017). Also in the frequency domain,
Horne et al. (2018) conducted a study comparing cardiovascular activity between
normal weight and overweight children with OSA and controls by combining
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HRV evaluation with averaged PTT across the night.
In addition to the conventional frequency metrics, several studies have an-

alyzed cardiovascular signals in the temporal domain to characterize pediatric
OSA. The principle behind the assessment of HRV and PRV in the frequency
domain is similar, as the former is based on R-R intervals and the latter on the
pulse-to-pulse intervals. Thus, extracted from the normal-to-normal (NN) inter-
vals from HRV (Liao et al., 2010a,b; Nisbet et al., 2013; Van Eyck et al., 2016) and
PRV (Dehkordi et al., 2016; Garde et al., 2014), previous studies have analyzed
its mean (mNN), directly influenced by mean HR, standard deviation (SDNN),
as an overall ANS measure, and root mean square of its successive differences
(RMSSD), mainly influenced by PNS (Malik et al., 1996). Although less common,
several studies have also included the evaluation of the standard deviation of 5-
min means of NN intervals (SDANN) and the percentage of differences between
adjacent NN intervals that are over 50 msec (pNN50) in their analysis (Kwok et al.,
2011; Wu et al., 2022), measuring long-term and short-term components of HRV,
respectively (Malik et al., 1996). Besides the thoroughly cardiovascular analysis
using conventional metrics from the temporal and frequency domain in pediatric
OSA context, a non-linear approach has also been performed in the studies con-
ducted by Aljadeff et al. (1997) and Vitelli et al. (2016) through Poincaré plots to
investigate ANS imbalance in children suffering from OSA. The non-stationarity
of PRV was also evaluated by Dehkordi et al. (2016) via detrended fluctuation
analysis, in addition to the spectral analysis aforementioned. Despite some con-
troversy in the findings among all the previous studies, there is a consistent trend
of sympathetic dominance, along with parasympathetic inhibition, leading to a
progressive sympathovagal imbalance during apneic events in pediatric OSA.
However these findings were based on the conventional HRV metrics that were
originally designed to assess the typical ANS behavior. In contrast, this Doctoral
Thesis has introduced novel HRV metrics that are specifically designed to evalu-
ate the alterations caused by pediatric OSA (Martín-Montero et al., 2021a,b).

Several of the previous studies on cardiovascular activity in pediatric OSA
have assessed alterations during sleep using a whole night approach (Aljadeff
et al., 1997; Garde et al., 2014, 2019; Liao et al., 2010a; Van Eyck et al., 2016; Vitelli
et al., 2016). Notwithstanding, cardiac behavior varies between wakefulness and
sleep and is influenced by sleep stages (Bonnet and Arand, 1997; Qin et al., 2021).
In this regard, some works have compared HRV patterns across sleep stages be-
tween children with OSA and healthy children to analyze alterations related to
pediatric OSA. Among those assessing pediatric OSA across sleep stages, some
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studies did not differentiate between signals segments with and without respi-
ratory episodes (Baharav et al., 1999; Horne et al., 2018; Walter et al., 2013; Wu
et al., 2022), whereas others excluded segments containing apneic events, thereby
losing the modulation caused by these episodes (Liao et al., 2010b; Nisbet et al.,
2013; Vlahandonis et al., 2014). Among all the previous work, the study devel-
oped by Dehkordi et al. (2016) was the only one considering simultaneously sleep
stage (REM or NREM), and differentiating apneic and non-apneic segments, but
mixing all apneic segments without differentiating its severity. In contrast, Kwok
et al. (2011) followed a different approach, evaluating HRV alterations in pedi-
atric OSA during the daytime. Differing from these previous studies, in one of
our works HRV was characterized in pediatric OSA by considering both sleep
stages and presence of apneic events, while distinguishing between several de-
grees of severity (Martín-Montero et al., 2023).

1.5.2 Pediatric OSA treatment effects in ANS

In light of the abnormalities that occur in the ANS in the presence of childhood
OSA, several works have investigated the ability of OSA treatment to reverse
these alterations. As it has been previously commented, the preferred treatment
for pediatric OSA is AT. Thus, some works have evaluated AT effects on tradi-
tional cardiovascular metrics. The work developed by Şaylan et al. (2011) re-
ported that, in a reduced cohort of 15 OSA and 15 healthy children, altered HRV
in pre-AT patients apparently did not differ significantly after AT. However, other
studies analyzing AT effects on cardiovascular signals have reported that the al-
terations caused by OSA in the ANS revert following AT, as reflected by a reduc-
tion of the sympathetic tone measured through HRV analysis (Kaditis et al., 2011;
Muzumdar et al., 2011), PRV (Constantin et al., 2008) or a combination of HRV
and PTT (El-Hamad et al., 2017). The study performed by Pavone et al. (2017)
posed an interesting approach, trying to predict OSA patients that were referred
to AT through PRV and pulse rate analysis. In addition to the analysis of AT
effects on cardiovascular measures, Kirk et al. (2020) conducted a study to exam-
ine the impact of non-invasive ventilation treatment on HRV. The study reported
that, despite a sympathetic-parasympathetic imbalance around arousal events in
12 obese OSA children, no overall treatment effect was found in the classic HRV
measures.

Finally, to assess treatment effects, prior works have also taken advantage
of the benefits offered by the Childhood Adenotonsillectomy Trial database
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(CHAT). This was a prospective randomized controlled trial developed to as-
sess the efficacy of AT versus a strategy of watchful waiting with supportive care
(WWSC) for pediatric OSA treatment (Marcus et al., 2013; Redline et al., 2011).
Liu et al. (2018) analyzed symbolic pattern dynamics directly from the ECG to
evaluate both treatment arm effects. Quante et al. (2015) evaluated heart rate
and cardiometabolic measures by assessing differences between both treatment
groups. Baumert et al. (2016) evaluated differences in respiratory rate, respiratory
sinus arrhythmia and heart rate. In all the previous works, there exist an over-
all absence of significant differences between treatment arms, highlighting that
cardiovascular improvements were due to OSA resolution rather than the inter-
vention itself. Curiously, the original CHAT study found that whereas only a
portion of the AT population resolved OSA, half of the children from the WWSC
group also resolved OSA (Marcus et al., 2013). Thus, Isaiah et al. (2020) evalu-
ated changes in HRV conventional measures related to pediatric OSA treatment
using CMA and reported no causal mediation effects in those parameters, re-
gardless treatment arm. As the novel OSA-specific HRV spectral measures de-
veloped in this Doctoral Thesis had not been evaluated for assessing pediatric
OSA treatment effects, a CMA has been conducted using the CHAT database to
assess those parameters as potential treatment effect biomarkers on HRV (Martín-
Montero et al., 2022).

1.5.3 Automatic cardiovascular signal analysis to diagnose pedi-
atric OSA

The information contained in the cardiovascular signals about the alterations in
the ANS consequence of pediatric OSA can be used to aid in automatic diagnosis
of this disease. Therefore, several works have scrutinized the efficacy of auto-
mated analysis of these signals in pediatric OSA context. These investigations
have been focused in two directions: detection of apneic episodes and pediatric
OSA diagnosis.

Framed in the first approach, Cohen and de Chazal (2015) conducted auto-
mated event detection by distinguishing between 30-second epochs of apnea or
normal breathing. They achieved this by using temporal and frequency-based
features extracted from HRV through a linear discriminant classifier. Similarly,
Garde et al. (2017) compared performance of multivariate logistic regression
models developed based on correntropy spectral density against PSD analysis
of PRV to detect 1-minute epochs with apneic events. In both studies, the authors
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noted that combining information obtained from cardiovascular signals along
with SpO2 features led to an improvement in the diagnostic performance of the
models.

Other studies have used apneic event detection as a preliminary step to diag-
nose pediatric OSA. Shouldice et al. (2004) combined segmentation and charac-
terization in the temporal and frequency domain of HRV and electrocardiogram-
derived respiration (EDR) signals, achieving the highest accuracy through 1-
minute segments model of HRV alone. In addition, three studies from a research
group performed per-subject classification based on event detection. Specifically,
Gil et al. (2009) diagnosed patients using HRV spectral parameters extracted from
decreases in amplitude fluctuations of the PPG. In a subsequent study, Gil et al.
(2010) analyzed temporal evolution of time-frequency PTT variability measures
to classify events as apneic or non-apneic, providing later a clinical diagnosis for
each subject. On the other hand, Lázaro et al. (2014) used conventional frequency
analysis of PRV signal to the same purpose.

Lastly, some authors directly reported per-subject classification of pediatric
OSA patients. Dehkordi et al. (2016) utilized PRV characterization via temporal
and frequency analysis, along with detrended fluctuation analysis, to evaluate its
clinical usefulness in diagnosing pediatric OSA. Garde et al. (2014, 2019) extracted
PRV and SpO2 features in the temporal and frequency domains to detect the pres-
ence of pediatric OSA (Garde et al., 2014), and to establish different degrees of the
disease (Garde et al., 2019). Again, these studies achieved the highest diagnos-
tic performance when combining cardiovascular information with SpO2 signals.
However, in a recent systematic review (Gutiérrez-Tobal et al., 2022), it has been
emphasized that the vast majority of studies on machine-learning applications for
diagnosing pediatric OSA were based on SpO2 signal analysis, revealing a gap in
research focusing on other biomedical recordings, such as cardiovascular signals,
as alternatives to PSG. To help filling this gap in the literature, in this Doctoral
Thesis the analysis of exclusively HRV features to aid in pediatric OSA diagnosis
has been developed. Thus, we have conducted an evaluation of individual and
joint diagnostic performance of the novel metrics presented to diagnose pediatric
OSA, and a comparison against traditional HRV metrics (Martín-Montero et al.,
2021a,b). Additionally, the potential of HRV segments characterization to diag-
nose pediatric OSA has been evaluated in Martín-Montero et al. (2023), as well
as its potential to classify sleep stages, a task that, to the best of our knowledge,
had not been performed earlier through HRV analysis in the context of pediatric
OSA.



Chapter 2

Hypotheses and objectives

The preceding chapter has been devoted to highlight the negative impact of pedi-
atric OSA on cardiovascular health, emphasizing the significance of early diagno-
sis and disease management to prevent its complications. Accordingly, this doc-
toral thesis aims to characterize specific overnight HRV behavior using different
methodological approaches to enhance the understanding of OSA implications
in ANS and facilitate disease diagnosis. Thus, Section 2.1 outlines the hypothe-
ses that have been stated across the realization of this Doctoral Thesis. Likewise,
Section 2.2 delineates the primary goal of this research, along with the specific
objectives established to achieve it.

2.1 Hypotheses

The occurrence of apneic events results in recurrent oscillations in the HRV sig-
nal (see Figure 1.2.a). As stated in Section 1.5, these cyclic variations have been
well-documented in adults, taking the form of a bradycardia-tachycardia pattern
(Guilleminault et al., 1984), which also occurs in children but with greater vari-
ability based on the characteristics of the breathing pauses (Aljadeff et al., 1997;
Gozal et al., 2013; O’Driscoll et al., 2009; Vitelli et al., 2016). Despite these specific
cardiac alterations, the periodic behavior of HRV in pediatric OSA has typically
been assessed using spectral analysis within the fixed boundaries of classic HRV
frequency bands (Malik et al., 1996). However, a prior study in adults revealed
that OSA-related alterations are reflected in a spectral range extending between
the VLF and LF bands, suggesting the existence of specific HRV frequency bands
for OSA (Gutiérrez-Tobal et al., 2015). Accordingly, at the starting point of this

21
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Doctoral Thesis, it was hypothesized that novel feature-extraction approaches would
enable the characterization of overnight HRV patterns in children with OSA in a more
specific manner.

Additionally, as mentioned in Subsection 1.5.2, the proved alterations in the
ANS resulting from pediatric OSA have stimulated the investigation of treatment
effects on cardiovascular signals, with some researchers reporting a reversal of
the effects that manifests mainly as a return of sympathetic tone to normal levels
(Constantin et al., 2008; El-Hamad et al., 2017; Kaditis et al., 2011; Muzumdar
et al., 2011). As these findings were derived from the conventional analysis of
cardiovascular signals, we assume that improvements in the severity and resolution
of pediatric OSA due to treatment may induce modifications in the HRV features specific
to this disease.

Finally, automated methods have been developed as a potential alternative to
PSG for the diagnosis of pediatric OSA, with most of these methods focusing on
features derived from the SpO2 signal (Gutiérrez-Tobal et al., 2022). However,
due to the limited presence of alternatives in the literature for the automated
diagnosis of OSA in children that extend beyond SpO2-based models, we wonder
if the novel features extracted from HRV can provide complementary information that,
in combination with machine-learning models, can be useful to help in the automatic
detection and determination of the severity of OSA in pediatric patients.

The aforementioned statements constitute the principal hypotheses that com-
prise the fundamental basis of the present Doctoral Thesis, which can be synthe-
sized into the subsequent global hypothesis:

“The characterization of HRV signal through new approaches could reveal
unknown information of the overnight ANS behavior linked to pediatric
OSA, helping to simply the diagnosis of the disease”

2.2 Objectives

The primary aim of the present Doctoral Thesis is the development of new HRV
signal processing techniques that allow a comprehensive description of the alter-
ations arising in the overnight ANS of OSA children, and aiding in the diagnosis
of the disease. In order to reach this main goal, the next specific objectives have
been established:

I. To identify novel HRV features that contain significant and non-redundant
information about ANS in the presence of apneic events in children with
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OSA.

II. To assess the capability of the novel OSA-specific HRV features to reflect
the impacts of OSA treatment in the ANS of the affected children.

III. To conceive and assess machine-learning models to maximize the clinical
usefulness of the novel HRV characterization, to ascertain the existence and
severity of the disease, as well as to classify sleep stages through the em-
ployment of optimal sets of HRV features.





Chapter 3

Subjects and signals under
study

During the present Doctoral Thesis, we investigated two different databases of
pediatric ECG recordings: a private and a public one. The private database,
named University of Chicago (UofC) database, was obtained from the Comer
Children’s Hospital of the University of Chicago (Chicago, IL, USA), while the
public database was the CHAT database (Marcus et al., 2013; Redline et al., 2011).
Both of them included ECG recordings of children ranging from 0 to 13 years of
age who had clinical suspicion of OSA due to a range of symptoms, including
snoring, apneas, excessive daytime sleepiness, and tonsillar hypertrophy, among
others. The CHAT database consisted of 1612 sleep studies from multiple cen-
ters, while the UofC database included 981 children, all of them undergoing a
complete overnight PSG at the pediatric sleep unit of the corresponding hospi-
tals. Pediatric sleep studies were scored in two databases by trained medical
sleep specialists in accordance with the AASM rules (Berry et al., 2012). The AHI
was derived from these annotations to determine the severity of OSA in the pedi-
atric subjects. Based on previous studies (Church, 2012; Hornero et al., 2017; Tan
et al., 2014), three frequent AHI thresholds (1, 5, and 10 e/h) were used to cate-
gorize the severity of OSA into four groups: no-OSA (AHI < 1 e/h), mild OSA
(1 ≤ AHI < 5 e/h), moderate OSA (5 ≤ AHI < 10 e/h), and severe OSA (AHI ≥
10 e/h). Tables 3.1 and 3.2 provide details of both databases, including the total
population, age, sex, body mass index (BMI), and the amount of children in each
severity group.

25
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3.1 Childhood Adenotonsillectomy Trial (CHAT)

database

The CHAT database was a randomized, single-blind controlled trial compris-
ing 1639 sleep studies from children between the ages of 5 and 10 years with
symptoms of OSA at the onset of the study (Marcus et al., 2013; Redline et al.,
2011). PSGs were conducted at six different pediatric sleep centers located in
the United States (Boston Children’s Hospital, Boston, MA; Cardinal Glennon
Children’s Hospital, St. Louis, MI; Cincinnati Children’s Medical Center, Cincin-
nati, OH; Montefiore Medical Center, Bronx, NY; Pennsylvania Children’s Hospi-
tal, Philadelphia, PA; Rainbow Babies and Children’s Hospital, Cleveland, OH)
(Marcus et al., 2013; Redline et al., 2011). All children caretakers provided writ-
ten consent for permission for the research, and assent was obtained from those
children over the age of 7 years as part of the research protocol (Marcus et al.,
2013). Out of the 1639 original sleep recordings, 1612 contained ECG recordings
and fulfilled our studies requirements, thereby being used in the articles of the
compendium. The dataset is internally split into three subsets:

• Baseline group, comprised of 451 ECG recordings from children diagnosed
with OSA, satisfying the eligibility criteria outlined in Section 3.1.1 to be
randomized to early AT or WWSC strategies (Marcus et al., 2013; Redline
et al., 2011). The complete set of 451 recordings was used in Martín-Montero
et al. (2023). In contrast, and according to the study design, we included
only those children who completed the entire trial in Martín-Montero et al.
(2022). As a result, a subset of 404 out of the 451 ECG recordings was used
in this research.

• Follow-up group, formed by 404 ECG recordings from those children that
performed a second nocturnal PSG, completing the entire trial procedure.
This subset was used for the purpose of the studies presented in Martín-
Montero et al. (2022) and in Martín-Montero et al. (2023).

• Nonrandomized group, consisted of ECG recordings from 757 children who
underwent an overnight PSG but did not meet the inclusion criteria (see
Section 3.1.1) set in the primary CHAT studies (Marcus et al., 2013; Redline
et al., 2011). The complete subset was used in both Martín-Montero et al.
(2021a) and Martín-Montero et al. (2021b). However, two subjects were later
removed from the subset based on a reviewer’s recommendation due to a
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low ECG sampling frequency of 50Hz. Hence, in Martín-Montero et al.
(2023), 755 children from this group were included.

The standardized procedure outlined in Redline et al. (2011) was followed during
nocturnal PSG, which included the collection of ECG recordings through the use
of gold cup electrodes or Ag/AgCl patches at sampling frequencies ranging from
200 to 512 Hz. The complete protocol for the CHAT database, with clinical trial
identifier NCT00560859, can be found in the supplementary material of Marcus
et al. (2013). Sociodemographic and clinical data from the database are presented
in Table 3.1.

3.1.1 CHAT database eligibility criteria

As aforementioned, the original CHAT study was developed to include both fe-
male and male children at ages ranging from 5.0 to 9.9 years with reported OSA.
Accordingly, the inclusion criteria for the original study were as follows (Redline
et al., 2011):

• Children aged between 5 and 9.9 years at the screening moment.

• Children with confirmed OSA, defined as those children presenting OAI ≥
1 or AHI ≥ 2 after PSG evaluation, and with habitual snoring reported by
their legal caretakers.

• Children presenting tonsillar size ≥ 1 regarding to a standardized scale
from 0 to 4.

• Children considered candidates for surgical AT after otorhinolaryngologi-
cal evaluation.

Table 3.1. Sociodemographic and clinical data from children of the CHAT database.

All no-OSA mild OSA moderate OSA severe OSA

Subjects (n) 1612 346 798 253 215
(100%) (21.5%) (49.5%) (15.7%) (13.3%)

Age (years) 7.0 7.0 6.8 7.0 6.6
[6.0, 8.0] [6.0, 8.3] [6.0, 8.0] [6.0, 8.0] [5.8, 8.0]

Males (n) 774 163 380 123 108
(48.0%) (47.1%) (47.6%) (48.6%) (50.2%)

BMI (kg/m2) 17.3 17.1 17.2 18.5 18.6
[15.6, 21.6] [15.5, 19.6] [15.6, 20.8] [15.4, 23.3] [15.9, 23.8]

AHI (e/h) 2.5 0.6 2.2 7.1 17.1
[1.2, 6.0] [0.4, 0.8] [1.6, 3.3] [6.0, 8.5] [12.7, 26.7]

Data are shown as median [25th percentile, 75th percentile], or number (percentage). AHI = apnea-
hypopnea index, BMI: body mass index, OSA: obstructive sleep apnea.

https://clinicaltrials.gov/ct2/show/study/NCT00560859
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Similarly, the exclusion criteria applied to remove children from the original
study were the next (Redline et al., 2011):

• Recurrent tonsillitis, defined as over three events in each of three years, five
events repeated two consecutive years, or seven events in a year.

• Children with craniofacial anomalies that could hamper general anesthesia
or surgical AT.

• Obstructive respiration during awake that requires immediate AT, evalu-
ated by a physician.

• Children suffering from severe OSA (OAI > 20 or AHI > 30) or significant
hypoxemia (SpO2 < 90% during > 2% sleep duration).

• Normal values of AHI (OAI < 1 or AHI < 2).

• Children evidencing significant cardiac arrhythmias after PSG evaluation.

• Children with severe health conditions that could worsen because of the
delay in AT application, such as cardiopulmonary affections,epilepsy or di-
abetes, among others.

• Behavioral or psychiatric disorders that may lead to the initiation of medical
treatments during trial duration.

• Genetic, neurological, psychiatric or craniofacial alterations that could dis-
turb airway, behavior or cognition.

• Children under: ADHD or psychotropic drugs, hypnotics, antihyperten-
sives, insulin or hypoglycemic agents, growth hormone, anticonvulsants,
corticosteroids, anticoagulants.

3.2 University of Chicago (UofC) database

The private UofC sample, which was also used in the realization of this Doc-
toral Thesis, comprises 981 ECG recordings of pediatric patients aged between 0
and 13 years. All children included in this database presented OSA symptoms,
being derived to the pediatric sleep unit from the Comer Children’s Hospital
of the University of Chicago Sleep Medicine (Chicago, IL, USA) to undergo an
overnight PSG. A digital polysomnography system (Polysmith; Nihon Kohden
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America Inc., CA, USA) was used to conduct the PSGs, which enabled the regis-
tration of ECG signals at a sampling rate of either 200 Hz or 500 Hz. The study
protocol of the UofC sample was approved by the Ethics Committee of the Comer
Children’s Hospital (numbers of approval: (#11-0268-AM017, #09-115-B-AM031,
and #IRB14–1241), and informed consent was obtained from the legal guardians
of all participating children. This written consent provided by the legal caretak-
ers conformed to the Declaration of Helsinki. The UofC database was used in
Martín-Montero et al. (2021a), as well as in Martín-Montero et al. (2021b). In both
studies, these sample serve as the training set of the research works. Sociode-
mographic and clinical data from the UofC database can be found in Table 3.2.

3.2.1 UofC database eligibility criteria

For children to be referred for polysomnography in the UofC database, they had
to meet the following inclusion criteria:

• Children ranging from 0 up to 17 years of age.

• Children under high suspicion of OSA because of showing one or several
symptoms among snoring, apneas, arousals, excessive daytime sleepiness,
restless sleep, hyperactivity, tonsillar hypertrophy, increase in neck circum-
ference, developmental disorder depression and low self-esteem, enuresis,
obesity, attention deficit, behavioral problems, and headache.

• Legal caretakers of the children involved in the study gave their informed
consent.

Table 3.2. Sociodemographic and clinical data from children of the UofC database.

All no-OSA mild OSA moderate OSA severe OSA

Subjects (n) 981 173 401 178 229
(100%) (17.6%) (40.9%) (18.1%) (23.3%)

Age (years) 6 7 6 5 4
[3, 9] [4, 10] [4, 9] [2, 8] [2, 8]

Males (n) 602 107 247 109 139
(61.4%) (61.8%) (61.6%) (61.2%) (60.7%)

BMI (kg/m2) 18.0 17.6 17.9 18.6 18.3
[16.1, 21.9] [15.6, 21.0] [16.1, 21.2] [16.5, 24.0] [16.1, 23.2]

AHI (e/h) 3.8 0.5 2.5 6.8 19.1
[1.5, 9.3] [0.1, 0.8] [1.7, 3.5] [5.8, 8.3] [13.9, 31.1]

Data are shown as median [25th percentile, 75th percentile], or number (percentage). AHI = apnea-
hypopnea index, BMI: body mass index, OSA: obstructive sleep apnea.
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Similarly, the following exclusion criteria were also applied:

• Children suffering from other sleep disorders.

• Children with crania-encephalic abnormalities, epilepsy, neuromuscular
disease, genetic syndromes, and congenital cardiac or pulmonary disease.

• Legal caretakers of the children involved in the study gave their informed
consent. This consent included the aims of the study, a description about
the diagnostic process and a clause stating that the inclusion of the children
was voluntary.



Chapter 4

Methods

This chapter provides a comprehensive overview of the methodology used dur-
ing the Doctoral Thesis. Figure 4.1 depicts the overall methodology steps, be-
ginning with ECG signal acquisition, followed by a pre-processing stage and a
segmentation procedure (right branch) to meet the requirements of the different
study approaches. Once the ECG has been optimized, the next step involves
R-peak detection and HRV extraction. The information related to these initial
steps are collected in Section 4.1. Following this pre-processing stage, the feature-
engineering approach starts with feature-extraction techniques. In this Doctoral
thesis, time, spectral and bispectral analysis techniques have been used, all of
them detailed through Section 4.2. Among all the analysis performed, only the
bispectral analysis approach included a considerably large number of features,
being likely that it included suboptimal feature sets, containing redundant and
non-relevant information. For this reason, this is the only branch that contem-
plated a feature-selection stage, based on FCBF algorithm (see Section 4.3). After-
wards, Section 4.4 provides a comprehensive explanation of the different pattern
recognition techniques fed with the different feature sets for pediatric OSA diag-
nosis or sleep stage classification. Later, Section 4.5 reflects the XAI techniques
applied to enhance the understanding of the decisions made by some of the
machine-learning algorithms considered. Additionally, one of the studies used
spectral HRV characterization with a CMA analysis, described in Section 4.6, to
assess whether OSA treatment had any causal effect on changes in HRV. Finally,
Section Section 4.7 describes the statistical analysis methods used to evaluate the
results.

All the methods detailed in this chapter, but CMA, have been developed us-
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Figure 4.1. Scheme of the overall methodology performed through the Doctoral Thesis.
Green boxes indicates that the corresponding step of the protocol was applied per subject,
while blue boxes means that the step was applied per segment. AdaBoost: adaptive boost-
ing, ECG: electrocardiogram, FCBF: fast correlation-based filter, HRV: heart rate variability,
LDA: linear discriminant analysis, LSBoost: least-squares boosting, MLP: multi-layer per-
ceptron, OSA: obstructive sleep apnea, XAI: explainable artificial intelligence.
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ing Matlab software (Mathworks Inc, Natick, MA, USA). The methodology ap-
plied in Martín-Montero et al. (2021b) was implemented in Matlab environment
version R2018b. The computation of the methods from Martín-Montero et al.
(2021a) and Martín-Montero et al. (2023) were implemented in Matlab version
R2021b. This version of MATLAB software was also applied to perform the re-
search presented in Martín-Montero et al. (2022), but CMA from this work was
performed using R statistical software (v4.0.5; R Core Team 2021) through the R
package developed by (Tingley et al., 2014).

4.1 ECG pre-processing and HRV extraction

ECG recordings from the different databases used in this research were acquired
during the PSG tests. The electrode was placed on the torso below the right clavi-
cle, while the reference electrode was aligned to the left hip, following the AASM
guidelines (Iber et al., 2007). The employment of this single modified ECG lead
II using electrode torso placement rather than limb was first proposed by Ma-
son and Likar (1966), as this montage allows to reduce artifacts due to movement
(Mason and Likar, 1966). The primary focus of this work was HRV, which is based
on the detection of the QRS complex in the ECG. However, raw ECG signals often
contain artifacts, such as motion or muscle noise, signal loss, or baseline wander,
hindering QRS complex detection (Benitez et al., 2001). Accordingly, ECG signals
underwent a pre-processing stage to remove noise, improve QRS detection, and
standardize HRV signals.

The pre-processing procedures applied to the ECG signals differed between
the three first articles from the compendium and the last one, as they pursued dif-
ferent research objectives. In Martín-Montero et al. (2021a), Martín-Montero et al.
(2021b) and Martín-Montero et al. (2022), a whole-night approach was adopted.
Thus, the first step was to remove the initial and final 15 minutes, eliminating
frequent artifacts during these periods. In addition, to ensure enough and repre-
sentative data for each child included in the study, each ECG signal was required
to contain at least 3 hours of sleep; otherwise, it was excluded from the study, con-
sistent with previous research on pediatric OSA (Barroso-García et al., 2020, 2021;
Garde et al., 2014; Xu et al., 2019). Conversely, in Martín-Montero et al. (2023), a
segment-level approach was taken, involving the split of the original ECG record-
ings into 10-minute segments prior to HRV computation (just following R peaks
detection, explained below).

The QRS complex detection algorithm used in all the studies was based on the
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Hilbert transform. This algorithm, which was previously introduced by Benitez
et al. (2001), includes a preliminary two-step filtering stage. First, two median fil-
ters were applied to reduce the ripple of QRS complex, and P and T oscillations,
followed by a zero-phase low-pass Butterworth filter of 5th order with a cut-off
frequency of 0.8 Hz to estimate baseline wander, removing it later from the orig-
inal signal (Benitez et al., 2001). Figure 4.2 shows an example of an ECG signal
before and after pre-processing, highlighting the correction of baseline wander
(see Figure 4.2.a). Following this, the QRS complex detection methodology was
applied (Benitez et al., 2001). The first differential of the corrected ECG was com-
puted, and then the Hilbert transform was applied to obtain regions with high
likelihood of having R peaks inside (Benitez et al., 2001). An adaptive threshold
was then used to obtain the final R peak for each region. An example of the R
peaks detected has also been depicted in Figure 4.2.b, over the corrected signal.

The final step in obtaining HRV signals is computing the R-R intervals, which
can be accomplished once the R peaks have been detected. However, to ensure
the accuracy of the results, we also implemented an artifact rejection process
aimed at removing physiologically implausible beats detected by the algorithm.
To this end, we discarded R peaks that did not satisfy the following criteria (Pen-
zel et al., 2003): (i) the duration of R-R intervals had to be between 0.33s and
1.5s, and (ii) the maximum variation between an R-R interval and the preced-
ing interval was 0.66s. The outcome of the aforementioned procedures resulted

Figure 4.2. Example of the pre-processing applied over an ECG and the R-peaks detection:
(a) raw ECG recording, with a clear presence of baseline wander, (b) ECG signal corrected,
with the R-peaks located depicted in red over it.
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in obtaining normal-to-normal (N-N) intervals, which were subsequently used
for HRV estimation. Furthermore, in Martín-Montero et al. (2023), an additional
step was taken to minimize the amount of excessively noisy 10-minute segments
included. This involved the rejection of segments with less than 500 normal R
peaks, equivalent to a HR of 50 beats per minute (bpm). The 50-bpm threshold
was chosen as the minimum heart rate for the age range of the children under
study (Fleming et al., 2011). Despite the segment-level approach, the criterion
of having at least 3 hours of analyzed data for each child was still applied and
confirmed after artifact rejection in all the studies included in the compendium.

4.2 Feature extraction

As aforesaid, the Doctoral Thesis aimed at comprehensively characterize
overnight HRV in the presence of pediatric OSA. Therefore, the feature-extraction
stage from HRV was crucial in achieving this goal. In this regard, different signal
processing methods were applied to obtain features from the HRV signal, includ-
ing both time and frequency domain approaches. Also, novel approaches were
proposed in this study to better capture the intrinsic properties of the HRV sig-
nal and provide unique information compared to classical methods. All these
techniques are described in detail below.

4.2.1 Temporal domain

Conventional HRV metrics in the temporal domain were computed in Martín-
Montero et al. (2023) to characterize the activity in the different segments consid-
ered across the study. These metrics are based on the assessment of the temporal
variations of R-R intervals and offer valuable information on general variability
and short-term HRV fluctuations. They are commonly measured to evaluate ANS
function and cardiovascular health (Malik et al., 1996). Specifically, three widely
used metrics were selected:

• Mean heart rate (mHR), which is the average HR in each segment, mea-
sured in bpm. This parameter is related to the inverse of mNN, so when
comparing both measures, results should be interpreted in the opposite di-
rection.

• Standard deviation of normal-to-normal interval time series (SDNN),
which globally reflects the variability in the N-N time series, reflecting
global ANS activity (Malik et al., 1996).
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• Root mean square of the successive differences (RMSSD), which reflects
short-term HRV (Malik et al., 1996).

4.2.2 Frequency domain

Frequency-domain measures evaluate HRV at specific frequency ranges associ-
ated with particular physiological processes (Acharya et al., 2006). Prior to com-
pute frequency domain analysis, it was necessary to detect and remove all ab-
normal heartbeats and artifacts, as outlined in Section 4.1. After removing the
abnormal beats, the resulting HRV signal was irregularly sampled, and it needed
to be resampled to allow for HRV evaluation in the frequency domain (Acharya
et al., 2006). In all the publications of the compendium, we resampled the HRV
signal to a constant frequency rate of 3.41 Hz, enabling us to compute the corre-
sponding frequency analysis using a window length power of two (1024 samples
for 5-min HRV segments), making spectral estimation computationally efficient
without adding unnecessary amount of estimated data (Gutiérrez-Tobal et al.,
2015; Penzel et al., 2003). The resampling of HRV signal was performed using lin-
ear interpolation (Gnauck, 2004; Morelli et al., 2019). The frequency domain was
examined in this Doctoral Thesis using two distinct approaches: power spectral
density (PSD) and bispectral analysis.

4.2.2.1 Power Spectral Density

One of the main drawbacks of using time domain parameters extracted from HRV
is that they are more limited when differentiating between the contribution of the
PNS and SNS to the HRV. To address this limitation, PSD analysis is commonly
used, which allows for the decomposition of HRV spectral components, requir-
ing at least 5 minutes of recording (Acharya et al., 2006). Therefore, in Martín-
Montero et al. (2021b) and Martín-Montero et al. (2022), PSD of the HRV signal
was estimated using Welch’s approach (Welch, 1967) with a Hamming window
of 210 (5 minutes at a sampling frequency of 3.41 Hz), using 50% overlapping and
a fast Fourier transform (FFT) of 211 samples. However, in Martín-Montero et al.
(2023), due to the study design, we aimed to evaluate differences between the
HRV activity of the different 10-minute segment types considered. Consequently,
in this work, we estimated PSD using a periodogram method with a Hamming
window of 211 samples (the entire 10-minute segment at 3.41 Hz). In all instances,
the amplitude values at each frequency of the PSDs were divided by the corre-
sponding total spectral power to normalize the PSD, obtaining normalized PSD
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(PSDn).

OSA-specific frequency bands definition

The traditional analysis of HRV spectral features focuses on the well-known VLF,
LF, and HF frequency bands. However, the definition of these ranges was origi-
nally based mainly on the normal behavior of ANS branches (Acharya et al., 2006;
Malik et al., 1996). As one of the main aims of this Doctoral Thesis was to assess
ANS alterations in pediatric OSA, alternative frequency bands that specifically
reflect such changes were found in Martín-Montero et al. (2021b). Two different
approaches were used depending on the frequency range. The first approach fo-
cused on the 0-0.15 Hz range, which covered VLF and LF ranges. As commented
in the hypothesis section, the rationale for the search of OSA-specific frequency
bands between the fixed range from VLF to LF was a previous work in adults sug-
gesting that OSA-related alterations may be affecting HRV activity between both
ranges (Gutiérrez-Tobal et al., 2015). The second approach involved an adaptive
analysis within the HF range (0.15-0.4 Hz), which is known to be respiratory-
modulated (Acharya et al., 2006), thus being strongly influenced by age (Michels
et al., 2013). To reduce inter-subject variability, the maximum inside the HF range
was first located as a surrogate measure of the individual respiratory peak (Goren
et al., 2006), and an adaptive range of 0.15 Hz width was defined centered on this
peak (Milagro et al., 2018, 2019). The specific frequency bands were then selected
in both approaches based on statistical differences between the PSDns from chil-
dren of the OSA severity groups established in the training set of this work (UofC
database). We performed Mann-Whitney U tests to compare the amplitude val-
ues from the PSDns between pairs of severity groups. In the first approach, we
compared by frequencies, while in the adaptive approach, we compared by sam-
ples. The application of these six statistical tests between OSA severity groups
provided us a p-value at each frequency point (0-0.15 Hz range) or at each sam-
ple (adaptive range). After performing Bonferroni correction, we established as
band of interest those ranges where, at least, two of the tests showed statistically
significant differences (fixed at p<0.01). The outcomes of both approaches are
shown in Figure 4.3, with the shadow areas corresponding to the frequency bands
selected. As can be seen, the first approach led to the identification of two OSA-
specific frequency ranges: BW1 (0.001-0.005 Hz) and BW2 (0.028-0.074 Hz). In the
adaptive range, three frequency ranges were obtained using the applied method-
ology. However, after verification (detailed in the next chapter), it was concluded
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Figure 4.3. Methodology applied to the extraction of pediatric OSA-specific frequency
bands in the training set of Martín-Montero et al. (2021b). The resulting frequency bands
of interest are represented by the gray-shaded areas. (a) Averaged PSDns for each OSA
severity group in the range 0-0.15 Hz. (b) Averaged PSDns for each OSA severity group in
the adaptive range. (c) p-values from the statistical test for each pair of severity groups in
the range 0-0.15 Hz, with the dashed red line highlighting the significance threshold. (d)
p-values from the statistical test for each pair of severity groups in the adaptive band, with
the dashed red line highlighting the significance threshold. This figure has been adapted
from Martín-Montero et al. (2021b).

that a range of 0.04 Hz surrounding the respiratory peak (corresponding roughly
with ABW3 in Figure 4.3.b) is sufficient for obtaining the OSA-specific frequency
band within respiratory range. Thus, ABW3 was renamed BWRes, and was the
only band from the adaptive approach used in subsequent analyses, considering
ABW1 and ABW2 as spurious.

PSD feature extraction

After defining the OSA-specific frequency bands, the activity in both conven-
tional and novel frequency ranges was characterized by calculating relative
power (RP), which is the sum of the amplitude values of the PSDn within a speci-
fied frequency range. Therefore, in this Doctoral Thesis, the PSDns of the children
were used to extract the following HRV spectral features (Martín-Montero et al.,
2023, 2021b, 2022):
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• RP within VLF band (RPVLF, 0-0.04 Hz). Its physiological significance re-
mains controversial. It has been suggested that it may be related to slow
regulatory mechanisms (Acharya et al., 2006). However, the magnitude and
frequency of its oscillations may also be affected by the SNS. This parameter
correlates with SDNN (Shaffer and Ginsberg, 2017).

• RP within LF band (RPLF, 0.04-0.15 Hz). It may reflect PNS, SNS and barore-
ceptor activity (Acharya et al., 2006; Shaffer and Ginsberg, 2017). It is also
assumed to correlate with SDNN (Shaffer and Ginsberg, 2017).

• RP within HF band (RPHF, 0.15-0.40 Hz). It reflects HR changes due
to respiration, being linked to PNS activity, and correlating with RMSSD
(Acharya et al., 2006; Shaffer and Ginsberg, 2017).

• LF/HF ratio (LF/HF). It is usually used to measure the balance between
SNS and PNS, where a decrease might reflect either increased PNS or de-
creased SNS, and vice versa (Acharya et al., 2006). This parameter was com-
puted in Martín-Montero et al. (2021b) and Martín-Montero et al. (2022).

• Normalized power in LF (LFn). It is measured as the proportion between
RPLF and the sum of RPLF and RPHF. As LF/HF, is also used as a measure
of sympathovagal balance, but the normalization applied emphasizes the
balanced activation of both PNS and SNS (Malik et al., 1996). This feature
was computed in Martín-Montero et al. (2023).

• RP within BW1 band (RPBW1, 0.001-0.005 Hz). The HRV activity inside the
first out of three novel pediatric OSA-related frequency bands presented in
this Doctoral Thesis.

• RP within BW2 band (RPBW1, 0.028-0.074 Hz). The HRV activity inside the
second out of three novel pediatric OSA-related frequency bands presented
in this Doctoral Thesis.

• RP within BWRes band (RPBWRes, adaptive band of ± 0.02 Hz around the
respiratory peak). The HRV activity inside the last of the novel pediatric
OSA-related frequency bands identified.

4.2.2.2 Bispectrum

For decades, power spectrum estimation has been a fundamental tool for analyz-
ing biological signals (Chua et al., 2010). However, this technique only retains in-
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formation about the autocorrelation sequence, which is adequate for characteriz-
ing Gaussian signals, but does not capture phase relationships among frequencies
or phase coupling (Chua et al., 2008, 2010). HRV signals, along with many other
biological signals, are nonlinear, non-Gaussian, and non-stationary (Chua et al.,
2010). Indeed, the nonlinear dynamics of HRV signals could be exacerbated dur-
ing sleep (Martín-González et al., 2018; Penzel et al., 2003). Additionally, OSA-
induced cardiac changes may also contribute to increased HRV nonlinearity (Atri
and Mohebbi, 2015; Guilleminault et al., 1984; Martín-González et al., 2018; Pen-
zel et al., 2003). As a result, PSD analysis may be insufficient to fully character-
ize changes in HRV series (Chua et al., 2008). In contrast, higher-order spectra
(HOS) analysis incorporates both phase and amplitude information and can be
used to evaluate diversions in Gaussianity, stationarity, and linearity (Chua et al.,
2010). Specifically, the bispectrum is a type of HOS that is derived from the third-
order cumulant of a random process, and provides a spectral decomposition of
the skewness of the signal across frequency (Chua et al., 2010). Due to the abil-
ity of bispectral analysis to overcome PSD limitations, we performed bispectral
HRV analysis in Martín-Montero et al. (2021a) to describe alterations due to the
disease. The computation of the bispectrum is based on the two-dimensional
Fourier transform of the third-order cumulant, and it can be mathematically de-
fined as (Chua et al., 2008, 2010):

B( f1, f2) = X( f1) · X( f2) · X∗( f1 + f2), f1, f2 = 0, ..., fN , (4.1)

where X( f ) is the discrete Fourier transform of a given signal, f1 and f2 are the
frequency indices of the bispectral axes, and fN is the signal Nyquist frequency.
The same configuration parameters used for spectral analysis were also applied
for bispectrum computation, which included a Hamming window length of 210

samples, 50% overlapping, and FFT of 211 samples (Martín-Montero et al., 2021b,
2022). Following bispectrum computation, a normalization step was carried out
to constrain all values in the bispectral matrix to a range between 0 and 1, divid-
ing each value of the bispectral matrix by the sum of all its elements as follows
(Barroso-García et al., 2021; Chua et al., 2010):

BN( f1, f2) =
B( f1, f2)

BP
, f1, f2 = 0, ..., fN , (4.2)

where BP represents total bispectral power, computed as the sum of all the matrix
values.

The bispectral matrix, by definition, presents symmetric properties, allowing
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for the evaluation of a non-redundant triangular area called the region of inter-
est. This triangular area, which is enough for whole bispectrum description, is
bounded by 0 ≤ f 1 ≤ f 2 ≤ f 1 + f 2 ≤ f N (Chua et al., 2008, 2010). Previous
studies in other research areas have performed bispectral HRV analysis within
this non-redundant triangular region of interest (Atri and Mohebbi, 2015; Chua,
2009; Chua et al., 2008). However, as the bispectral matrix axis ranges from 0 to
fN , it is possible to define sub-regions within specific frequency ranges. Thus, we
identified six sub-regions from the bispectral matrix, three based on classic fre-
quency ranges (i.e., VLF, LF, and HF), and the remaining three based on the OSA-
related frequency ranges, which were obtained in Martín-Montero et al. (2021b)
(i.e., BW1, BW2, and BWRes). Of note, all bispectral regions but BWRes are lo-
cated on the main diagonal of the bispectral matrix, while BWRes was defined
by searching for the maximum value within the HF region and fixing its limits
around this peak, it may or may not being centered in the main diagonal. Accord-
ingly, those parameters (detailed below) that are based on the diagonal elements
of the bispectral regions cannot be computed for this adaptive region, as they lose
its physiological meaning.

Once that the bispectral sub-regions were defined, we followed four different
feature-extraction approaches to characterize them: bispectral region amplitude,
bispectral region entropy, bispectral region moment, and weighted center of bis-
pectrum (WCOB) region features. Additionally, a novel bispectral feature was
introduced. Those parameters are described below.

• Features derived from bispectral regions amplitudes:

– Maximum amplitude (Bmax) quantified as the highest magnitude value
found within each of the evaluated regions (Barroso-García et al.,
2021):

Bmax = max(|BN( f1, f2)|), f 1, f 2 ∈ Ω, (4.3)

where Ω is one out of the six regions under study.

– Minimum amplitude (Bmin) computed as the lowest magnitude value
within each of the considered regions (Barroso-García et al., 2021):

Bmin = min(|BN( f1, f2)|), f 1, f 2 ∈ Ω, (4.4)

– Total bispectral power (Btotal), which enables to measure Gaussianity
deviations, and is quantified as the sum of all the values within each
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region (Barroso-García et al., 2021):

Btotal = ∑
f1, f2∈Ω

|BN( f1, f2)|. (4.5)

• Features derived from bispectral regions entropy:

– Normalized bispectral entropy of first (BE1), second (BE2), and third
order (BE3), which measure the irregularity of the bispectral distribu-
tion in each region based on Shannon’s entropy as follows (Barroso-
García et al., 2021; Chua, 2009):

BEi = − ∑
j∈Ω

pj · log(pj), i = 1, 2, 3, (4.6)

where p is the amplitude distribution of the values of the region, com-
puted as:

pj =
|BN( f1, f2)|i

∑
f 1, f 2∈Ω

|BN( f1, f2)|i
, i = 1, 2, 3. (4.7)

The bispectral entropies are sensitive to the degree of randomness in
a process. Therefore, the changes in HRV irregularity resulting from
OSA can be captured by the bispectral regions entropies (Atri and Mo-
hebbi, 2015).

– Phase entropy (PE), which measures irregularity in the phase of the
bispectral region, also based on Shannon’s entropy (Barroso-García
et al., 2021; Chua et al., 2010). PE is analogous to the bispectral en-
tropies in the sense that higher values indicate greater randomness,
while a harmonious, recurrent and predictable process would have a
PE of zero (Chua et al., 2008). PE is calculated by applying Shannon’s
entropy to the normalized distribution of the phase angles in the re-
gion as (Barroso-García et al., 2021; Chua et al., 2010):

PE = − ∑
n∈Ω

p(Ψn) · log(p(Ψn)) (4.8)

where:
p(Ψn) =

1
L ∑

f 1, f 2∈Ω
Ind(ϕ[BN( f1, f2)] ∈ Ψn)|, (4.9)

Ψn = {ϕ| − π +
2πn

N
≤ ϕ < −π +

2π(n + 1)
N

}. (4.10)
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In the computation of the phase entropy, the indicator function Ind(·)
is used to determine if the phase angle ϕ is within the range of the
histogram bins Ψn, where Ψn represents the n-th bin of the histogram.
If ϕ is within the range of Ψn, then Ind(·) equals 1, otherwise it equals
0. The value of N corresponds to the number of bins in the histogram.

• Features derived from bispectral regions moments:

– Sum of logarithmic amplitude values of each bispectral region (H1),
the sum of logarithmic amplitude values of the diagonal components
of each region (H2), and the first- and second-order spectral moments
of the amplitude values of the diagonal components of each region (H3
and H4, respectively). These parameters were selected for their ability
to capture nonlinear effects within the regions, measured as (Atri and
Mohebbi, 2015; Barroso-García et al., 2021):

H1 = ∑
f1, f2∈Ω

log(|BN( f1, f2)|), (4.11)

H2 = ∑
fk∈Γdiag

log(|BN( fk, fk)|), (4.12)

H3 = ∑
fk∈Γdiag

k · log(|BN( fk, fk)|), (4.13)

H4 = ∑
fk∈Γdiag

(k − H3)2 · log(|BN( fk, fk)|), (4.14)

where Γdiag represents the diagonal components of the bispectral re-
gion being evaluated (unless BWRes region).

• Features derived from bispectral WCOB:

– WCOB is a feature that reflects the interaction between different fre-
quency components within a bispectral region. This is achieved by as-
signing a weight to each bispectral element (Ji-Wu Zhang et al., 2000;
Wang et al., 2015). WCOB is made up of two vectors, f 1m and f 2m,
which are used to measure the coupling focus of the bispectral region
and summarize the interaction between frequencies. WCOB param-
eters are correlated with the bispectral maximum values, where a de-
crease in the values of f 1m and f 2m indicates a shift in activity towards
lower frequencies (Barroso-García et al., 2021; Wang et al., 2015). The
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two vectors extracted from the WCOB are computed as follows (Ji-Wu
Zhang et al., 2000; Wang et al., 2015):

f 1m =

∑
f 1, f 2∈Ω

f 1 · BN( f1, f2)

∑
f 1, f 2∈Ω

BN( f1, f2)
, (4.15)

f 2m =

∑
f 1, f 2∈Ω

f 2 · BN( f1, f2)

∑
f 1, f 2∈Ω

BN( f1, f2)
, (4.16)

• Novel bispectral feature: Relative Power of the diagonal.

– Relative power of the diagonal (RPDiag), measured as the sum of the
bispectral magnitudes of the diagonal elements of the region, after ap-
plying a normalization over the whole diagonal from the bispectral
matrix. This novel bispectral feature, evaluated for the first time dur-
ing the development of the present doctoral thesis, quantifies the rela-
tive bispectral amplitude within the diagonal of the region with refer-
ence to the whole bispectral diagonal (Diag), and is computed as:

RPDiag = ∑
fk∈Γdiag

|DiagN( fk)|, (4.17)

where DiagN is the normalized diagonal os the bispectral matrix after
applying the following normalization:

DiagN( fk) =
DiagN( fk)

DP
, fk = 0, ..., fN (4.18)

where DP is the power inside the diagonal of the region, computed
as the sum of all the magnitude values of the Diag components. The
diagonal elements are a specific case when f1 = f2; therefore, this
feature is intended to measure the phase coupling between the har-
monic components of HRV signals, such that f3 = f1 + f2 = 2 f1

and ϕ3 = ϕ1 + ϕ2 = 2ϕ1. Through the normalization, the sum of all
diagonal elements is equal to 1, so evaluating RPDiag over a specific
region reflects the proportion of total diagonal bispectral power con-
tained within the region. Thus, the underlying principle of this feature
is that the normalization applied allows to reflect shifts in the bispec-
tral power concentration from other regions to those elements within
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the diagonal of the region being evaluated.

4.3 Feature selection

After characterizing HRV signals through feature extraction, a set of variables is
obtained that may contain irrelevant or redundant information (Guyon and Elis-
seeff, 2003). Extracting a large number of features does not necessarily improve
pattern recognition results, as redundant or irrelevant features can adversely im-
pact predictability and even lead to overfitting in the classifier (Guyon and Elisse-
eff, 2003). To address this issue, a feature-selection stage can be included to obtain
a more concise representation of the information and reduce input features for
classifiers. Using feature-selection techniques not only enhances understanding
of the feature-extraction process but also improves computation time, efficiency
of classifiers, and prediction capability (Guyon and Elisseeff, 2003). In Martín-
Montero et al. (2021a), up to eighty features were initially extracted from the dif-
ferent bispectral regions. Consequently, the fast correlation-based filter (FCBF)
algorithm was used to obtain two optimal subsets: one for the features extracted
in the classic HRV bispectral regions and the other for the OSA-related regions.
It is also noteworthy that, as explained below in Section 4.4.3, the least-squares
boosting (LSBoost) algorithm used in Martín-Montero et al. (2023) for the pattern
recognition stage also performs an internal de facto feature-selection process.

4.3.1 Fast Correlation-Based Filter (FCBF)

The application of the FCBF algorithm has been extensively reported in the field
of pediatric OSA diagnosis (Barroso-García et al., 2020, 2021; Hornero et al., 2017;
Jiménez-García et al., 2020; Vaquerizo-Villar et al., 2018a,b,c). This filter method
operates through a two-stage process, where the symmetrical uncertainty (SU)
is used to evaluate the relevance and redundancy of features. In the first stage,
the algorithm calculates the SU between the feature vector Xi and a dependent
variable Y to determine the relevance of the feature as follows (Yu and Liu, 2004):

SU(Xi, Y) = 2 · (H(Xi)− H(Xi|Y)
H(Xi) + H(Y)

), (4.19)

where H(Xi) and H(Y) denote the Shannon entropies of Xi and Y, respectively,
and H(Xi|Y) represents the Shannon entropy of Xi when Y is observed. In pe-
diatric OSA context, the dependent variable Y is usually the AHI. In the sec-
ond stage, the redundancy of Xi is computed as SU(Xi, Xj), where Xj represents
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other feature vector. Based on its relevance and redundancy, FCBF removes Xj if
SU(Xi, Y) ≥ SU(Xj, Y), and SU(Xi, Xj) ≥ SU(Xj, Y) (Yu and Liu, 2004). Conse-
quently, the FCBF algorithm produces an optimum subset of non-redundant and
relevant features.

In this Doctoral Thesis, the FCBF algorithm was applied in Martín-Montero
et al. (2021a) to select features subsets that were relevant and non-redundant us-
ing 1000 bootstrap-derived replicates from the corresponding training dataset.
The features selected more than 500 times were included in the optimal subsets.

4.4 Pattern recognition

The pattern recognition stage involved machine-learning techniques to extract
complex patterns from the sets of features and make predictions based on this in-
formation (Alpaydin, 2014; Bishop, 2006). As the datasets considered is labeled,
several supervised learning approaches were used for different purposes. Bi-
nary classification tasks were conducted using linear discriminant analysis (LDA)
and multi-layer perceptron (MLP) to diagnose pediatric OSA based on different
AHI thresholds. An adaptive boosting (AdaBoost) ensemble-learning method
was used for multiclass classification to distinguish between wake, NREM, and
REM sleep stages. Finally, in a regression task, a LSBoost model was developed
to estimate the AHI of the children from HRV signals.

4.4.1 Binary classification

4.4.1.1 Linear Discriminant Analysis (LDA)

The LDA classifier is a statistical approach used to distinguish between two
or more classes of events or objects by identifying a linear combination of fea-
tures that characterizes or separates them (Bishop, 2006). The objective of the
LDA algorithm is to decrease the dimensionality of the feature space by pro-
jecting the original data onto a new feature subspace while retaining as much
class-discriminatory information as possible (Bishop, 2006; Friedman, 1989). To
achieve this, a set of linear discriminant functions is determined, which maxi-
mizes the proportion of between-class variance to within-class variance (Bishop,
2006; Friedman, 1989). When using LDA, the discriminant score for each class is
calculated as follows (Friedman, 1989; Marcos et al., 2009):

yj(x) = µT
j ∑ −1x − 1

2
µT

j ∑ −1
µj + lnP(Cj), (4.20)
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where µj is the mean vector for class Cj, P(Cj) is the prior probability of Cj (i.e.,
the ratio of input feature vectors xj belonging to Cj), and ∑ is the covariance
matrix. The resulting discriminant scores are then used to assign new instances
into one of the pre-defined classes based on the decision boundaries established
(Bishop, 2006; Friedman, 1989).

In Martín-Montero et al. (2021b), two LDA models were trained for each of the
binary severity AHI thresholds (1, 5 and 10 e/h). In each case, one of the mod-
els was developed based on the RPs in the classic HRV frequency bands, while
the other model was developed based on the RPs in the OSA-specific frequency
bands.

4.4.1.2 Multi-layer perceptron (MLP) neural network

Artificial neural networks (ANNs) were developed to simulate biological systems
information processing by mathematical models (Bishop, 2006). ANNs are com-
posed of basic interconnected processing units, also called neurons, which can
learn complex patterns from the input data. Among the various types of ANNs,
the multi-layer perceptron (MLP) is the most commonly used in the context of pe-
diatric OSA (Gutiérrez-Tobal et al., 2022). MLP is a feed-forward ANN typically
consisting of an input, a hidden, and an output layer. The neurons in MLP are
known as perceptrons and each perceptron is connected to every perceptron in
the subsequent layer, assigning a weight to each link. Perceptrons are defined by
an activation function that performs a nonlinear conversion of the data (Bishop,
2006). In the input layer, the number of perceptrons corresponds to the number
of features in the input data (N). The number of neurons in the hidden layer (NH)
is a parameter that needs to be optimized. Each hidden layer neuron receives a
linear combination of the outputs from the input layer neurons and provides a
non-linear function of it as output (Bishop, 2006). In the output layer, the number
of perceptrons is adapted based on the task of the MLP. For binary classification,
as in Martín-Montero et al. (2021a), a single perceptron is used, which receives the
hidden layer outputs and provide the posterior likelihood of belonging to each
severity group under study. The values of the output units are then calculated as
(Bishop, 2006):

yk = go{
NH

∑
j=1

wjkgh{
N

∑
i=1

wijxi + bj}+ bk}, (4.21)
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where xi is the feature input vector, gh(·) and go(·) represent the activation func-
tions of the perceptrons in the hidden and output layers, respectively, wik indi-
cates the weight associated with the connection between the i-th input feature
and the j-th hidden layer perceptron, and wjk represents the weight associated
with the link that connects the j-th hidden layer perceptron to the output per-
ceptron yk. Additionally, bj and bk are the biases of the hidden and the output
layers, respectively. Furthermore, we introduced a regularization parameter (λ)
in the tunning of the MLP weights to minimize overfitting (Bishop, 2006), that
was randomly initialized and optimized later.

In Martín-Montero et al. (2021a), the two optimum subsets obtained from the
FCBF algorithm were utilized to train MLP models for binary classification across
each severity thresholds, with up to six MLP neural networks being optimized.
The optimization of the hidden layer design parameters (i.e, NH and λ) was car-
ried out by performing 1000 bootstrap replicates from the training set. The com-
bination of NH and λ values chosen for each model was the one that yielded the
highest Cohen’s kappa coefficient (k) for each specific case.

4.4.2 Multiclass classification: Adaptive Boosting

The concept of ensemble learning refers to the merging of multiple models to im-
prove the overall performance beyond what each individual model can achieve
(Freund and Schapire, 1997; Witten et al., 2011). Boosting is one of the most
profitable strategies for implementing ensemble-learning algorithms, as it can
significantly enhance the prediction capability on new data (Bishop, 2006; Wit-
ten et al., 2011). Boosting algorithms combine models iteratively to complement
each other by fitting weighted votes assigned to the same type of base classifiers
at each iteration (Bishop, 2006; Witten et al., 2011). AdaBoost is an ensemble-
learning boosting algorithm where weak classifiers are commonly used as base
classifiers. Weak classifiers are preferred because complex classifiers may cause
overfitting, thereby reducing the generalizability of the algorithm (Bishop, 2006;
Freund and Schapire, 1997). Following a similar approach than in previous re-
search in OSA context (Gutierrez-Tobal et al., 2019; Jiménez-García et al., 2020),
in Martín-Montero et al. (2023), an AdaBoost algorithm with LDA as weak clas-
sifier was implemented.

The AdaBoost algorithm functions by assigning a weight (wm
i ) at each itera-

tion (m) to each observation (xi), i.e., the feature vector of each instance in the
training group. The model for that iteration is then trained with the associated
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weighted observation, and its performance is evaluated, with an error (ϵm) being
computed. This error is used to assign the weighted vote (αm) of the classifier
being trained in that iteration, with a smaller error resulting in a higher contribu-
tion to the final prediction (Witten et al., 2011). At the end of each iteration, the
weights are updated, giving more importance to those observations that were
misclassified, thus increasing the chance of proper classification in the next itera-
tion (Freund and Schapire, 1997; Witten et al., 2011).

Various versions of the AdaBoost algorithm exist, each with a specific pur-
pose. In Martín-Montero et al. (2023), we utilized AdaBoost.M2, the AdaBoost
algorithm specifically designed for multiclass classification, for the purpose of
classification of sleep stages. In this version of AdaBoost, the ϵm value is com-
puted using the next equation (Freund and Schapire, 1997):

ϵm =
1
2

N

∑
k=1

∑
l ̸=ltrue

wm
i,l(1 − cm(xi, ltrue) + cm(xi, l)), (4.22)

where l refers to a categorical variable containing the different classes, ltrue in-
dicates the original class assigned to xi, and cm represents the LDA confidence
prediction for a feature vector and a given class. The predicted class is deter-
mined as the class that receives the largest sum of weighted votes from the LDA
classifiers, with the weight of the predictions calculated as follows (Freund and
Schapire, 1997):

αm = ln(βm), (4.23)

where the calculation of βm is determined by ϵm as (1−ϵm)
ϵm

(Freund and Schapire,
1997). To minimize overfitting, a learning rate (ν) can also be introduced in the
computation of βm. Thus, for the multiclass classification task addressed in this
Doctoral Thesis, there were certain parameters for the design of the AdaBoost
algorithm that required tuning. These parameters included the number of LDA
classifiers used (NAB) and the regularization parameter ν. The optimization pro-
cess was carried out by identifying the (NAB,ν) pair that maximized the multiclass
k on the validation set. To do this, ν was increased from 0.1 to 1 in increments of
0.1, while NAB was modified from 1 to 10,000 in increments of multiples of 10,
starting with 1 and increasing up to 9 in increments of 1, then from 10 to 100 in
increments of 10, and so on.
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4.4.3 Regression: Least-Squares Boosting

In the present Doctoral Thesis, the LSBoost algorithm was used to perform a re-
gression task. LSBoost, like AdaBoost, is a type of ensemble-learning boosting
algorithm that sequentially combines weak base learners, with the aim of min-
imizing the sum of squared errors between the predicted and actual values of
the regression problem (Bühlmann and Hothorn, 2007). In Martín-Montero et al.
(2023), we used as weak learners decision stumps, which are decision trees with
one parent and two child nodes, thus conducting a de facto selection process at
each iteration (Gutiérrez-Tobal et al., 2021). In particular, we used LSBoost to es-
timate the number of apneic events present in each HRV segment considered. The
generic workflow of LSBoost algorithm can be summarized as follows (Bühlmann
and Hothorn, 2007; Bühlmann and Yu, 2003):

1. Considering f m(x) as the predicted output, the number of learners (m) is
initialize to 0, computing the corresponding f 0(x).

2. m is increased by 1, computing the residuals as: Ui = yi − f m−1(xi) for
i = 1, 2, ...N, where yi is the target variable, xi is the corresponding instance,
and N is the number of instances in the training group.

3. The residual vector is fitted using least squares loss function, the base
learner h, and the predictor for every instance xi : (λm, am) =

argminλ,a ∑m
i=1[U

m
i − λh(xi; a)]2, being a the parameters of h, and λ a regu-

larization factor.

4. f m(x) is updated as: f m(x) = f m−1(x) + λmh(x; am).

5. Steps 2 to 4 are sequentially repeated until m = NLSB, where NLSB is the
number of learners considered.

Thus, in our study, yi was the original number of apneic event scored to each
segment, xi was the feature vector of each segment, and N was the number of seg-
ments included in the training set. Following the prediction of apneic events pres-
ence in every HRV segment, the estimated AHI for each subject can be measured
as the proportion between the estimation and the total recording time. Neverthe-
less, the original AHI is constructed based on the total sleep time scored by the
medical experts. Thus, the use of the total recording time causes an underestima-
tion in the AHI reconstruction (Deviaene et al., 2019). To solve this limitation, a
linear regression model can be fitted using training data, helping to deal with this
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bias introduced by the use of total recording time, and improving AHI estimation
(Deviaene et al., 2019; Vaquerizo-Villar et al., 2021).

Similar to the optimization of hyperparameters for the AdaBoost model, the
LSBoost algorithm also required the tuning of two hyperparameters: λ and NLSB.
The optimization process for LSBoost followed the same procedure as for Ad-
aBoost, which involved varying the values of λ and NLSB over the same range as
those used for ν and NAB, respectively.

4.5 Explainable Artificial Intelligence (XAI)

As mentioned in Section 1.2, the concept of XAI has become increasingly im-
portant, particularly in health research. XAI enhances the interpretability of AI
predictions, reducing the perception of AI models as ‘black boxes’ and ensur-
ing that they work safely and ethically (Adadi and Berrada, 2018). Therefore,
in the final research included in the compendium of publications, we aimed to
incorporate some XAI techniques that would help us to better understand the
decision-making processes of the AdaBoost and LSBoost algorithms, focused in
the analysis of feature importance.

The XAI techniques were chosen based on the selected base learners for each
case. As previously mentioned, in the case of AdaBoost, we used LDA as base
learners. Accordingly, to improve the interpretability of the predictions of the
algorithm, we utilized local interpretable model-agnostic explanation (LIME), as
an XAI technique that can be applied to any type of model regardless of its in-
ternal functioning (Ribeiro et al., 2016). LIME is one of the most widespread XAI
techniques due to its simplicity and its ability to create interpretable explanations
of machine-learning approaches predictions. It operates by constructing an in-
terpretable model of the classifier around the prediction of each instance, which
is known as local explanation. This local model is fitted around altered sam-
ples close to the target instance, with these slight modifications created through
the addition of noise or direct manipulation of the instance’s features (Ribeiro
et al., 2016). Therefore, we applied LIME to generate local models around each
instance from the test set, resulting in a weighted coefficient Wij for each instance
and feature (Ribeiro et al., 2016). Using this coefficient, we computed the total
importance of the j-th feature as the square root of the sum of the absolute values
of all the coefficients obtained for this feature in the n instances from the test set
(Ribeiro et al., 2016):
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Ij =

√
n

∑
i=1

|Wij|. (4.24)

After computing Ij for all features, the total importance of each parameter can
be scaled as a proportion of its contribution to the sum of the total importance of
all the features considered. This provides the relative importance for each feature
to the AdaBoost model as a percentage of contribution, allowing us to measure
the role of each feature in the sleep stage classification task.

In contrast to AdaBoost, the selection of an appropriate XAI strategy for the
LSBoost algorithm was different due to the use of decision stumps as base learn-
ers. Each stump tree h(x; am) in the LSBoost algorithm depends on a single
feature. Consequently, as explained in Section 4.4.3, LSBoost conducts an in-
ternal feature-selection process for each decision (Bühlmann and Hothorn, 2007;
Bühlmann and Yu, 2003). Hence, the importance of each feature in the LSBoost
algorithm can be determined using the mean squared error (MSE), as follows
(Friedman and Meulman, 2003; Gutiérrez-Tobal et al., 2021):

Î2
j =

1
NLSB

NLSB

∑
m=1

MSEm(xj)wm − (MSEp
m(xj)w

p
m + MSEr

m(xj)wr
m), (4.25)

where wm represents the weight of the parent node likelihood, MSEm corre-
sponds to the MSE of the m-th tree linked to the j-th feature, and p and r are
the parameters linked to the children nodes. Once the importance of each feature
to the LSBoost model has been calculated, it can be scaled as a proportion of the
total contribution (Elith et al., 2008), measuring the relative importance of each
feature in the pediatric OSA diagnosis task.

4.6 Causal Mediation Analysis (CMA)

CMA is a statistical methodology applied to evaluate the causal pathways by
which an action, typically a treatment, affects an outcome (Imai et al., 2010a,b).
The purpose of CMA is to measure the impact of intermediate variables (named
mediators) and the extent of their influence on the outcome due to the treatment,
as well as the remaining effect of the treatment that is not linked to the medi-
ator being evaluated. The impact of the treatment on the outcome through the
mediator is known as the averaged causal mediation effect (ACME), while the
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treatment effect that is not linked to the mediator is known as the averaged di-
rect effect (ADE) (Imai et al., 2010a,b; Tingley et al., 2014). Figure 4.4 presents the
general framework of CMA, which decomposes the total treatment effect into the
ACME and ADE. The reason for using CMA instead of estimating general causal
effects is that while a causal effect indicates whether the treatment has a causal
impact, it cannot explain how or why this influence occurs, which CMA can do
(Imai et al., 2010a). This distinction is also depicted in Figure 4.4, which explains
the difference between general causal effects and CMA. When ACME and ADE
act in opposite directions, the values of ADE may mask ACME effects, leading

Figure 4.4. The diagram illustrates the framework of the causal mediation analysis (CMA).
(a) Overall estimation of the causal total effect. (b) Workflow of the CMA, aimed to identify
the causal pathways or mediators through which the treatment influences variations in
an outcome. The average causal mediation effect (ACME) reflects the alteration in the
outcome as a result of the change in the mediator caused by the intervention, while the
average direct effect (ADE) reflects the variation in the outcome that occurs for any other
reason but the mediator. In this Doctoral Thesis, the effects were averaged over both trial
arms, after verifying that the no-interaction can be assumed. ACME and ADE jointly form
the total effect. Two examples of the effects estimated for an outcome and a mediator are
represented in (c) and (d), along with their 95th percentile confidence intervals. In (c),
all the effects are in the same direction, and none of them include the value of 0, which
indicates that these effects are statistically significant different from 0. In contrast, in (d),
the ACME shows an opposite direction to the ADE and Total Effect, and only the ACME
does not include 0, indicating that is the only effect statistically significant different from
0, which would be masked if just the total effect is observed.
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to the conclusion that there are not causal effects if the total effect is analyzed
isolated, thus highlighting the usefulness of CMA (Imai et al., 2010a).

The current Doctoral Thesis used the mediation analysis approach originally
proposed by Baron and Kenny (Baron and Kenny, 1986) within the framework
of linear structural equation modeling, which was later expanded into a general
approach by Imai et al. (2010a) to enable the measurement of causal relations and
the inclusion of discrete variables. To facilitate clarity and consistency with the
original work, the statistical framework of this analysis is explained here using
the same notation. Specifically, Ti represents the binary treatment variable and
Mi denotes the observed mediator, which is expected to be influenced by the
treatment arm. Thus, the mediator variable can take two potential values, Mi(1)
or Mi(0), but only one value is observed for each subject, represented as Mi(Ti).
In the potential outcomes framework, the outcome variable is influenced by both
the treatment and mediator, being denoted by Yi(t, m). Therefore, the indirect
effect for each subject is then defined accordingly (Imai et al., 2010a):

δi(t) = Yi(t, Mi(1))− Yi(t, Mi(0)), (4.26)

for t = 0, 1. According to the original authors (Imai et al., 2010a), the signif-
icance of the previous equation can be attributed to the counterfactual inquiry
concerning the alteration in the outcome that would result from a change in the
mediator value. Specifically, this refers to the shift from the mediator value un-
der one treatment condition (e.g., Mi(0)) to that of the other treatment condition
(Mi(1)), while keeping the treatment value constant at t. If the mediator is not
impacted by the treatment, Mi(1) will be equal to Mi(0), leading to an indirect
effect of 0 (Imai et al., 2010a). Likewise, the direct effect can be defined as follows
(Imai et al., 2010a):

ζi(t) = Yi(1, Mi(t))− Yi(0, Mi(t)). (4.27)

Therefore, the total effect is computed as the union of both effects (Imai et al.,
2010a):

τi = Yi(1, Mi(1))− Yi(0, Mi(0)) =
1
2

1

∑
t=0

δi(t) + ζi(t). (4.28)

Assuming what is known as the no-interaction assumption, it is supposed that
the direct and indirect effects are not dependent on the treatment arm. Therefore,
for each child, δi = δi(1) = δi(0), ζi = ζi(1) = ζi(0) and τi = δi + ζi. Conse-
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quently, we can compute the ACME, ADE and total effects (τ̄) across all subjects
by using the following formulae (Imai et al., 2010a):

ACME(t) = δ̄(t) = E(Yi(t, Mi(1))− Yi(t, Mi(0))), (4.29)

ADE(t) = ζ̄(t) = E(Yi(1, Mi(t))− Yi(0, Mi(t))), (4.30)

and

τ̄(t) = E(Yi(1, Mi(1))− Yi(0, Mi(0))) =
1
2

1

∑
t=0

δ̄(t) + ζ̄(t). (4.31)

Again, under no-interaction assumption, we obtain ACME = δ̄ = δ̄(1) =

δ̄(0) and ADE = ζ̄ = ζ̄(1) = ζ̄(0). The joint of ACME and ADE then leads to
obtaining the average total effect (τ̄ = δ̄ + ζ̄) (Imai et al., 2010a).

A crucial assumption for valid interpretations of CMA is known as sequential
ignorability, which assumes that the treatment assignment is independent of the
mediators and outcomes (satisfied in randomized controlled trials, such as the
CHAT study), and that all baseline confounding variables have been accounted
for. To partially deal with confounding variables, the software implementation
developed by Tingley et al. (2014) allows the inclusion of baseline covariates in
the CMA computation. However, there may be remaining unobserved confound-
ing variables, being it difficult to totally fulfill with this assumption (Imai et al.,
2010a). To address this, Imai et al. (2010a,b) also proposed a sensitivity analysis
methodology that can evaluate the robustness of the conclusion extracted in case
that the sequential ignorability assumption is violated, and they strongly recom-
mended performing this analysis when using CMA (Imai et al., 2010a,b).

Therefore, in Martín-Montero et al. (2022), we utilized CMA to assess whether
modifications in HRV parameters were causally linked to the treatment, exploit-
ing the design of the CHAT study, which provided an appropriate framework
for CMA evaluation. In that work, the intervention was represented by any
of the two randomized treatment arms assigned to the children (early AT or
WWSC). We considered changes in RP for each of the six frequency bands, in-
cluding both classical and OSA-specific frequency bands, as outcomes. Those
outcomes were defined as the difference in RP between baseline and follow-up
(∆RPband = RPband_ f ollow−up − RPband_baseline). We included five continuous and
two binary mediators, all of which were related to the severity of the disease
to varying degrees. The continuous mediators comprised changes in AHI, ob-
structive AHI (OAHI), oxygen desaturation index (ODI), the minimum satura-
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tion (minsat) during night, and the total arousal index (TAI). To assess disease
resolution, we incorporated two binary mediators: OSA resolution, which was
equal to 1 for those subjects where follow-up OAHI ≤ 2 e/h and OAI ≤ 1 e/h
were present, and 0 otherwise, and OSAO+C resolution, which took into account
the presence of central apneas, and was defined as follow-up AHI ≤ 2 e/h and
apnea index (AI) ≤ 1 e/h.

The R package developed by Tingley et al. (2014) was utilized to conduct all
the computations. Initially, we assessed whether the effects on HRV were reliant
on the treatment arms, obtaining that it did not occur. Thus, we assumed no-
interaction, providing the averaged effect regardless treatment arm (Imai et al.,
2010a,b). To control for as many baseline confounders as possible, we incorpo-
rated well-known confounders such as age, race, sex, BMI z-score, average HR,
and tonsil size in the analysis. Finally, we tested the potential infringement of the
sequential ignorability assumption by carrying out a sensitivity analysis using
this software (Imai et al., 2010a,b).

4.7 Statistical analysis

The present Doctoral Thesis used several techniques to describe and assess the
results obtained from signal processing approaches. These methods include sta-
tistical tests, performance metrics for pediatric OSA diagnosis or sleep stage clas-
sification, measures of agreement, and validation approaches.

4.7.1 Statistical tests

Statistical hypothesis tests are techniques used in statistical inference to deter-
mine if it is possible to extract conclusions about a population based on a sam-
ple of data (Jobson, 2012). In this research, we initially evaluated the normality
and homoscedasticity of the distributions under study through the use of the
Lilliefors (Lilliefors, 1967), and Levene (Levene, 1960) tests, respectively. We ob-
tained that not all the variables passed normality and homoscedasticity tests. Ac-
cordingly, non-parametric tests were performed through the realization of this
Doctoral Thesis to identify statistically significant differences among the groups
being studied (Jobson, 2012). Thus, in the search of the pediatric OSA-related
frequency bands in Martín-Montero et al. (2021b), Mann-Whitney U test was
used to evaluate the differences between the averaged PSDns of each two OSA
severity groups. Regarding the assessment of differences in the HRV parameters,
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the Mann-Whitney U test was computed when comparing two different sever-
ity groups, the Wilcoxon signed rank test for intra-group comparisons, and the
Kruskal-Wallis test to assess differences between more than two groups. The sig-
nificance level was adjusted for the number of subjects, and different p-values
were used across studies. In Martín-Montero et al. (2021a,b), where there were
larger sample size (1738 subjects), the significance level was set at p < 0.01. In
Martín-Montero et al. (2023, 2022), the threshold of significance was set at p
< 0.05. However, in Martín-Montero et al. (2023), although the database was
slightly shorter than in the two first studies of the compendium, a segment-level
approach was followed, thus increasing considerably the sample size used to as-
sess differences. When it occurs, the p-value would not be enough for a com-
prehensive evaluation of the differences (Sullivan and Feinn, 2012). Accordingly,
our conclusions were based on the effect size computed using the non-parametric
Cohen’s d measure, with differences interpreted as small (0.2 ≤ d < 0.5), medium
(0.5 ≤ d < 0.8), or large (d ≥ 0.8) effect size (Cohen, 1998; Sullivan and Feinn,
2012). Bonferroni correction was applied in Martín-Montero et al. (2023, 2021a,b),
while false discovery rate was used in Martín-Montero et al. (2022) when multiple
comparisons were present.

To obtain complementary information and aid in the physiological interpre-
tation of the results, additional statistical techniques were utilized. Specifically,
Spearman’s partial correlation coefficient (ρS) was chosen to evaluate the rela-
tionship between the HRV features and polysomnographic indices such as AHI,
OAHI, OAI, ODI, minsat, TAI, the number of awakenings during the night
(#Awakenings), the wake after sleep onset (WASO) time, and the percentage of
sleep spent in different stages (%N1, %N2, %N3, and %REM). Using ρS also al-
lows for the control of possible confounding factors, such as age or the baseline
confounders included in the CMA. Furthermore, boxplot representations were
used as a graphical approach to illustrate the distribution of the HRV features
computed through the different studies. When using boxplots, the box of the plot
represents 50% of the data, with the lower portion of the box indicating the first
quartile and the upper portion indicating the third quartile. Thus, boxplots are
frequently used in data analysis, as they offer insights into the range and skew-
ness of the features being represented.
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4.7.2 Diagnostic performance metrics

Throughout the realization of this Doctoral Thesis, the diagnostic capabilities of
individual HRV features, as well as the diagnostic yield of several models ob-
tained from the different feature-engineering approaches were evaluated. Diag-
nostic performance was assessed using statistical measures that take into account
the number of successfully or erroneously classified subjects. In a binary classi-
fication task, a confusion matrix can be constructed based on the following com-
ponents (Flemons and Littner, 2003):

• True positives (TP), measured as the sum of positive subjects that have been
successfully classified as positive (e.g., children with OSA classified as OSA
positives).

• True negatives (TN), measured as the sum of negative subjects that have
been successfully classified as negative (e.g., children without OSA classi-
fied as OSA negatives).

• False positives (FP), measured as the sum of negative subjects that have
been erroneously classified as positive (e.g., children without OSA classified
as OSA positives).

• False negatives (FN), measured as the sum of positive subjects that have
been erroneously classified as negatives (e.g., children with OSA classified
as OSA negatives).

Hence, by obtaining those values, the subsequent statistics parameters were
selected as the main diagnostic performance metrics used to evaluate the diag-
nostic efficiency in the binary classification tasks using the three AHI thresholds
aforementioned (1, 5 and 10 e/h) (Flemons and Littner, 2003):

• Sensitivity (Se). Percentage of subjects with the disease (AHI ≥ threshold)
successfully classified:

Se =
TP

TP + FN
· 100 (4.32)

• Specificity (Sp). Percentage of subjects without the disease (AHI < thresh-
old) successfully classified:

Sp =
TN

TN + FP
· 100 (4.33)
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• Accuracy (Acc). Percentage of subjects successfully classified. For a binary
classification problem, it is computed as follows:

Acc =
TP + TN

TP + TN + FP + FN
· 100 (4.34)

• Area under the Receiver-Operating Characteristics curve (AUC). The ef-
fectiveness of diagnostic tests can be evaluated using the receiver operating
characteristic (ROC) curve, which is a 2D parametric curve representing the
trade-off between Se and 1 − Sp. The ROC curve is constructed by varying
the decision threshold of the test, and the upper left corner of the curve rep-
resents an ideal classification result, where Se = 1 and 1 − Sp = 0 (Fawcett,
2006; Zweig and Campbell, 1993). AUC is a measure used to summarize
the ROC curve, computed as the area comprised between the curve and the
abscissa axis. Accordingly, AUC values close to 1 indicate high diagnostic
performance (Fawcett, 2006; Zweig and Campbell, 1993). In this doctoral
Thesis, AUC has been measured as a diagnostic performance metric for the
machine-learning models developed, and a ROC curve analysis has been
performed to evaluate the individual diagnostic performance of some of
the HRV features. This was done by selecting as optimum threshold the
feature values that provides a ROC curve closer to the ideal classification
point (in the training set) (Fawcett, 2006; Zweig and Campbell, 1993).

Along with those parameters, in Martín-Montero et al. (2023) we decided to
include some additional metrics to complement the evaluation of the clinical ap-
plicability of the LSBoost and AdaBoost models:

• Multiclass accuracy Acck. The binary Acc definition can also be extended
for a multiclass classification problem as the sum of instances rightly clas-
sified in each class, computed based on the main diagonal of the confusion
matrix as:

AccK =
∑K

i=1 ni,i

N
· 100 (4.35)

where K is the number of classes, and N is the sample size. For the LSBoost
model, we computed the multiclass accuracy for four classes (Acc4), where
each class was one of the four OSA severity levels defined. Regarding the
AdaBoost model, we computed the three-class accuracy (Acc3), with each
class being one out of the three sleep stages considered.

• Positive predictive value (PPV), also known as precision. Percentage of
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subjects successfully classified among all the subjects that has been classi-
fied as positives:

PPV =
TP

TP + FP
· 100 (4.36)

• Negative predictive value (NPV). Percentage of subjects successfully clas-
sified among all the subjects that has been classified as negatives:

NPV =
TN

TN + FN
· 100 (4.37)

• Positive likelihood ratio (LR+). Proportion of subjects from the positive
group successfully classified in relation to the proportion of subjects from
the negative group erroneously classified:

LR+ =
Se

1 − Sp
(4.38)

• Negative likelihood ratio (LR−). Proportion of subjects from the positive
group erroneously classified in relation to the proportion of subjects from
the negative group successfully classified:

LR− =
1 − Se

Sp
(4.39)

• F1 − score. This diagnostic performance metric, especially useful when
there exist imbalance between classes, is computed as the harmonic mean
of precision (i.e., PPV), and recall (i.e., Se):

F1 − score = 2 · PPV · Se
PPV + Se

=
2TP

2TP + FP + FN
(4.40)

4.7.3 Measures of agreement

Agreement measures are computed to determine the level of consistency between
the predicted and true labels of a sample set. These measures are useful in eval-
uating the precision of classification models and comparing the performance of
different classifiers. Thus, besides to the diagnostic performance metrics, an ad-
ditional agreement measure has been included in this Doctoral Thesis:

• Cohen’s kappa coefficient (k). This statistic is a metric computed to evaluate
the agreement between the classes observed and the predicted ones, while
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taking into account the possibility of agreement occurring by chance. This
measure is computed as (Cohen, 1960):

k =
po − pe

1 − pe
(4.41)

where po represents the observed concordance between predicted and ac-
tual classes, and pe represents the likelihood of agreement occurring by
chance. The range of k values is between -1 and 1, where a k value of -1 indi-
cates total absence of agreement, k=1 means full agreement, and k=0 means
that the agreement occurred by chance (Cohen, 1960). In Martín-Montero
et al. (2023), the k statistic was used to evaluate the overall performance of
the LSBoost model in pediatric OSA diagnosis, as well as for the AdaBoost
model in sleep stage classification. Moreover, the optimization of the MLP
models in Martín-Montero et al. (2021a) used this measure of agreement by
selecting the combination of NH/NAB and λ/ν that maximizes k in each
case.

4.7.4 Validation approaches

Validation approaches are techniques frequently used to improve the reliability
and generalization of research findings. It is a common practice to divide the
available datasets into subsets to fit the required optimization steps and reduce
the risk of overfitting (Witten et al., 2011). To meet these requirements, two val-
idation techniques were used in this Doctoral Thesis. The hold-out method was
used to divide the available databases into training-test sets (Martín-Montero
et al., 2021a,b) or training-validation-test sets (Martín-Montero et al., 2023). Fur-
thermore, in Martín-Montero et al. (2021a, 2022), bootstrapping techniques were
used for different purposes.

• Hold-out validation. In order to ensure accurate validation of a model,
it is recommended to use different sets to optimize the various stages of
the methodology followed (Witten et al., 2011). The simplest form of the
hold-out validation strategy involves fitting the model parameters using
a training set and estimating the performance of the model using an in-
dependent test set (the hold-out group) (Bishop, 2006; Witten et al., 2011).
If the model fitting process requires more than one optimization phase, the
dataset should be split into as many sets as needed (Witten et al., 2011). Typ-
ically, when it occurs, three subsets are used: the training set for adjusting
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the model parameters, the validation set for fitting the hyperparameters,
and the test set for independently assessing diagnostic yield. When there
is insufficient data to use a different set for each phase, hold-out should be
combined with additional validation techniques such as bootstrapping to
ensure robustness and generalization of the obtained results. For instance,
in Martín-Montero et al. (2021b), the private database was used as a train-
ing set, while the public database was the test set to increase the general-
ization of the results. In Martín-Montero et al. (2021a), the same division
was applied for comparison purposes, but since the MLP models needed to
optimize hyperparameters, bootstrapping was also used. Finally, in Martín-
Montero et al. (2023), the dataset was divided into training-validation-test
sets to optimize the LSBoost and AdaBoost models. Concretely, for the non-
randomized group, 75% of the subjects were allocated to the training set
(comprising 567 recordings), 12.5% were assigned to the validation set (94
recordings), and the remaining 12.5% were designated to the test set (94
recordings). In the baseline and follow-up groups, among the 404 subjects
undergoing a follow-up study, 50% were distributed to the training set (con-
sisting of 404 recordings, 202 from baseline and 202 from follow-up), 25%
were allocated to the validation set (101 recordings from baseline and 101
from follow-up), and the final 25% were included in the test set (compris-
ing 101 recordings from baseline and 101 from follow-up). It is important to
note that for each child with both baseline and follow-up recordings, both
recordings were systematically incorporated into the same group to prevent
any biases. The remaining 47 recordings from the baseline group without
follow-up studies were included in the training set.

• Bootstrapping. This validation technique involves generating M bootstrap
replicates on which to apply the proposed method (Efron and Tibshirani,
1994). A bootstrap replicate refers to a sample that is created by randomly
resampling the original set with replacement. This means that some obser-
vations may be selected several times, while others may not be selected at
all (Witten et al., 2011). Each bootstrap replicate has the same length than
the original set, and the process is repeated M times, corresponding to the
number of replicates created. As a result, M estimates will be generated for
each statistical metric. In Martín-Montero et al. (2021a), bootstrapping was
used for two different purposes. Firstly, in the feature-selection stage, the
FCBF algorithm was implemented on 1000 bootstrap replicates of the train-
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ing set, choosing as relevant those features selected over 500 times. Ad-
ditionally, the optimization of the MLP hyperparameters was carried out
on a different 1000 bootstrap replicates from the training group. Finally,
in Martín-Montero et al. (2022) the confidence intervals of the CMA were
established using 2000 non-parametric bootstrap iterations.

In this chapter, the methodology applied throughout the realization of this
Doctoral Thesis have been presented. In the following chapter, the most relevant
results obtained with this methodology will be presented.





Chapter 5

Results

The purpose of this chapter is to report the main findings of the Doctoral Thesis.
The chapter is organized based on the various approaches that were applied as
follows: 5.1 Spectral analysis and evaluation of the novel pediatric OSA-related
frequency bands, 5.2 Bispectral analysis, 5.3 Causal mediation analysis, and 5.4
HRV segments characterization. As a result, the chapter is directly linked to the
publications that compose the Doctoral Thesis compendium.

5.1 Spectral analysis: novel OSA-specific frequency

bands

In Martín-Montero et al. (2021b), we conducted a search for frequency bands that
would be able to reflect the specific alterations that OSA cause in the ANS. As
detailed in Section 4.2.2, the search led to three novel pediatric OSA-specific fre-
quency bands (see Figure 4.3): BW1 (0.001-0.005 Hz), BW2 (0.028-0.074 Hz), and
BWRes (0.04 Hz around maximum value within HF). This frequency bands were
established in the UofC database, that was settled as training group in this study.

Table 5.1 displays the obtained RPs for each severity group (median [in-
terquartile range]) in both the training (UofC database) and test set (nonrandom-
ized group from the CHAT database) for the classic and OSA-specific frequency
ranges. The p-values resulting from the Kruskal-Wallis test have also been in-
cluded. It can be observed that RPBW2, RPLF and LF/HF increased with the
severity (p-value < 0.01 after Bonferroni correction), while RPBW1 decreased in
both sets. Additionally, RPBWRes and RPHF decreased with increasing OSA sever-
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Table 5.1. Features for the four OSA severity groups (median [interquartile range]) in the
training (UofC database) and test (nonrandomized group from CHAT database) sets. This
table has been adapted from Martín-Montero et al. (2021b).

Features No-OSA mild OSA moderate OSA severe OSA p-value

Training set
RPVLF 0.370 [0.174] 0.359 [0.163] 0.381 [0.179] 0.371 [0.164] 0.675
RPLF 0.225 [0.060] 0.224 [0.075] 0.235 [0.081] 0.244 [0.090] «0.01
RPHF 0.317 [0.179] 0.340 [0.195] 0.300 [0.218] 0.275 [0.213] <0.01
LF/HF 0.706 [0.510] 0.697 [0.594] 0.814 [0.791] 0.892 [0.985] «0.01
RPBW1 0.083 [0.055] 0.082 [0.050] 0.083 [0.047] 0.071 [0.049] <0.01
RPBW2 0.169 [0.054] 0.175 [0.068] 0.185 [0.086] 0.213 [0.107] «0.01
RPBWRes 0.119 [0.110] 0.121 [0.121] 0.110 [0.115] 0.087 [0.098] «0.01
Test set
RPVLF 0.337 [0.140] 0.332 [0.155] 0.282 [0.149] 0.342 [0.186] 0.200
RPLF 0.218 [0.060] 0.227 [0.063] 0.222 [0.090] 0.259 [0.110] «0.01
RPHF 0.368 [0.167] 0.363 [0.184] 0.388 [0.198] 0.307 [0.217] 0.015
LF/HF 0.610 [0.407] 0.649 [0.462] 0.597 [0.539] 0.818 [0.886] <0.01
RPBW1 0.081 [0.044] 0.078 [0.039] 0.063 [0.045] 0.061 [0.043] <0.01
RPBW2 0.148 [0.055] 0.161 [0.062] 0.165 [0.078] 0.209 [0.113] «0.01
RPBWRes 0.132 [0.108] 0.123 [0.107] 0.134 [0.143] 0.103 [0.093] 0.004a

RP: relative power, OSA: obstructive sleep apnea, VLF: very low frequency, LF: low frequency, HF:
high frequency.
p-values < 10−4 after Bonferroni correction appears as << 0.01.
aNon-significant after applying Bonferroni correction.
p-values statistically significant (< 0.01 after Bonferroni correction) appears in bold.

ity, but only reaching statistically significant differences in the training set for
the Kruskal-Wallis test. However, if statistically significant differences are evalu-
ated between each pair of severity groups, both databases reach the same results,
showing statistically significant differences when comparing severe OSA group
against the no-OSA and mild OSA groups. RPVLF did not exhibit any statistically
significant differences.

To help giving a physiological interpretation to the novel frequency bands,
Table 5.2 presents the results in the test set of the Spearman’s partial correlation
analysis performed, which controlled for the influence of age, between the RPs
and various polysomnographic indices. The analysis revealed that RPBW2 had
the strongest correlations with OSA-related indices (positively correlated with
AHI, OAHI, OAI and ODI). RPBW1 showed positive correlations with macro sleep
disruption variables (#Awakenings and WASO) and negative correlations with
AHI and OAHI. RPBWRes had statistically significant negative correlations with
the same variables than RPHF (OAI and WASO), as well as with TAI. Of note,
although the correlations observed were not notably strong, among all the in-
dices exhibiting statistically significant values, our proposed features consistently
demonstrated the highest |ρS|.
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Table 5.2. Evaluation of the partial correlations in the test set (nonrandomized group from
CHAT database) between features and the polysomnographic indices considered. This
table has been adapted from Martín-Montero et al. (2021b).

Classic bands

PSG index RPVLF RPLF RPHF LF/HF

ρS p-value ρS p-value ρS p-value ρS p-value

AHI -0.031 0.391 0.150 <0.01 -0.075 0.040 0.118 0.001a

OAHI -0.073 0.043 0.088 0.015 -0.012 0.737 0.046 0.207
OAI -0.035 0.333 0.067 0.066 -0.031 0.392 0.052 0.154
ODI 0.039 0.289 0.194 «0.01 -0.161 «0.01 0.195 «0.01
#Awakenings 0.133 <0.01 0.036 0.324 -0.115 0.014 0.086 0.018
WASO 0.071 0.049 0.112 0.002a -0.146 <0.01 0.145 <0.01
%N1 0.003 0.930 0.063 0.084 -0.040 0.266 0.058 0.111
%N2 -0.085 0.019 -0.076 0.038 0.098 0.007a -0.112 0.002a

%N3 0.068 0.060 0.074 0.043 -0.089 0.014 0.101 0.005a

%REM 0.041 0.262 -0.083 0.022 0.030 0.404 -0.047 0.197
TAI 0.031 0.389 0.128 <0.01 -0.098 0.007a 0.126 <0.01

Novel bands

PSG index RPBW1 RPBW2 RPBWRes

ρS p-value ρS p-value ρS p-value

AHI -0.132 <0.01 0.233 «0.01 -0.101 0.005a

OAHI -0.157 <0.01 0.164 «0.01 -0.033 0.368
OAI -0.096 0.008a 0.149 <0.01 -0.049 0.180
ODI -0.033 0.358 0.220 «0.01 -0.192 «0.01
#Awakenings 0.174 «0.01 0.069 0.059 -0.096 0.008a

WASO 0.186 «0.01 0.054 0.141 -0.195 «0.01
%N1 0.001 0.969 0.087 0.017 -0.063 0.083
%N2 -0.073 0.045 -0.092 0.011 0.083 0.023
%N3 0.058 0.111 0.052 0.155 -0.066 0.069
%REM 0.048 0.187 -0.049 0.175 0.041 0.262
TAI -0.059 0.105 0.220 «0.01 -0.123 <0.01

PSG: polysomnography, RP: relative power, VLF: very low frequency, LF: low frequency, HF: high
frequency, AHI: apnea-hypopnea index, OAHI: obstructive AHI, OAI: obstructive apnea index, ODI:
oxygen desaturation index, WASO: wake after sleep onset, %N1: sleep time in N1 stage, %N2: sleep
time in N2 stage, %N3: sleep time in N3 stage, %REM: sleep time in REM stage, TAI: total arousal
index.
aNon-significant after applying Bonferroni correction.
Statistically significant correlations (p-value < 0.01 after applying Bonferroni correction) appears in
bold.

Following the HRV characterization, we wanted to compare the utility of the
novel frequency bands in pediatric OSA context against the parameters com-
monly used. Thus, the diagnostic performance results in the test set have been
collected in Table 5.3 for each measure computed individually and for the LDA
models constructed using the classic and new OSA-specific frequency bands
(with and without ABW1 and ABW2). RPBW2 achieved the highest overall per-
formance in all three OSA severity cutoffs evaluated, with the highest AUC at
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Table 5.3. Diagnostic performance for each feature individually, as well as for the LDA
models in the test set (nonrandomized group from CHAT database). This table has been
adapted from Martín-Montero et al. (2021b).

Feature/model AHI cutoff Se Sp Acc AUC

1 e/h 68.9 31.6 56.3 0.518
RPVLF 5 e/h 33.0 65.0 60.2 0.456

10 e/h 40.6 64.2 62.1 0.495

1 e/h 43.5 62.9 50.1 0.557
RPLF 5 e/h 52.7 58.4 57.6 0.590

10 e/h 59.4 58.4 58.5 0.666

1 e/h 35.5 71.9 47.8 0.523
RPHF 5 e/h 39.3 68.1 63.8 0.540

10 e/h 43.5 76.7 73.7 0.605

1 e/h 37.7 70.3 48.7 0.540
LF/HF 5 e/h 45.5 66.8 63.7 0.567

10 e/h 49.3 70.8 68.8 0.643

1 e/h 66.3 45.3 59.2 0.559
RPBW1 5 e/h 65.2 54.0 55.6 0.621

10 e/h 69.6 52.3 53.9 0.624

1 e/h 32.7 78.1 48.1 0.591
RPBW1 5 e/h 45.5 82.0 76.6 0.670

10 e/h 58.0 78.2 76.4 0.751

1 e/h 45.5 56.6 49.3 0.532
RPBWRes 5 e/h 44.6 64.0 61.2 0.571

10 e/h 49.3 64.0 62.6 0.628

1 e/h 25.7 81.3 44.5 0.559
LDAClassic 5 e/h 46.4 72.2 68.4 0.633

10 e/h 50.7 75.3 73.1 0.685

1 e/h 42.5 72.3 52.6 0.592
LDASpeci f ic (with ABW1 and ABW2) 5 e/h 50.0 80.9 76.4 0.688

10 e/h 63.8 84.7 82.8 0.796

1 e/h 37.7 80.1 52.0 0.597
LDASpeci f ic (without ABW1 and ABW2) 5 e/h 48.2 80.8 76.0 0.696

10 e/h 62.8 84.3 82.3 0.774
RP: relative power, VLF: very low frequency, LF: low frequency, HF: high frequency, AHI: apnea-
hypopnea index, LDA: linear discriminant analysis, Se: sensitivity (%), Sp: specificity (%), Acc =
accuracy (%), AUC: area under receiver-operating characteristics curve.
For each AHI cutoff, the highest Acc and AUC has been highlighted in bold.

all the cutoffs, and the highest Acc, Se and Sp at the 5 and 10 e/h thresholds.
Regarding the LDA models, the OSA-specific frequency bands outperformed the
classic ones in all diagnostic metrics, except Sp in the 1 e/h threshold, but show-
ing a strongly unbalanced Se/Sp pair. When comparing the LDA models with
and without ABW1 and ABW2, we just observed a slight decline in AUC in the
two lowest severity thresholds if those bands were excluded. This fact, as well
as the absence of statistically significant correlations with PSG indices observed
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in Martín-Montero et al. (2021b) for those bands, led us to concluded that ABW1
and ABW2 had no clinical utility, considering them as spurious and discarding
those ranges in further research.

5.2 Bispectral analysis

After defining and characterizing the novel HRV frequency bands specific to pe-
diatric OSA, the following step involved examining phase coupling, Gaussian-
ity, and nonlinearity of pediatric HRV in the presence of OSA. For this purpose,
bispectral analysis was conducted in Martín-Montero et al. (2021a). To ensure a
fair comparison, the same training/test set division as in Martín-Montero et al.
(2021b) was utilized, with the UofC database as the training set and the non-
randomized group of the CHAT database as the test set. Figure 5.1 displays the
averaged bispectral matrix in the frequency range of 0-0.4 Hz for each consid-
ered OSA severity group. In this figure, for each child the bispectral matrix has
been calculated, which contains the bispectral power values for each f1, f2 pair.
Subsequently, each subject is assigned to the corresponding OSA severity group,
and the bispectral power values are averaged, giving rise to the four subfigures
represented in Figure 5.1. This figure illustrates that, in the no-OSA group, the
bispectral power was primarily concentrated below 0.02 Hz, but as OSA wors-
ened, it expanded to higher frequencies. As described in Section 4.2.2.2, six
sub-regions were defined within this bispectral matrix: three based on the clas-
sic HRV frequency ranges and three based on the HRV OSA-specific frequency
bands. Detailed 3D zoomed-in views of each averaged bispectral region, seg-
mented by severity groups, can be found in Figures A1-A6 from Martín-Montero
et al. (2021a). In the classic regions, a total of 42 features were computed, while for
the OSA-specific bispectral matrices, 38 features were calculated. The FCBF algo-
rithm was then applied to select two optimal subsets: one from each subgroup
of regions. The results are presented in Figure 5.2, which shows that the opti-
mal subset for the classic regions (BISPClassic) comprised VLF_ f 2m, LF_BE2, and
HF_PE, whereas the optimal subset for the OSA-specific regions (BISPSpeci f ic)
consisted of BW2_RPDiag, BW2_BE1, BWRes_Bmin, and BWRes_BE3.

Figures 5.3 and 5.4 depict the boxplot distributions for each OSA sever-
ity group of the features chosen in the two optimal subsets, BISPClassic and
BISPSpeci f ic, respectively. The corresponding p-values from the Kruskal-Wallis
test are also provided. In relation to the features within the BISPClassic subset,
a discernible pattern was observed. VLF_ f 2m exhibited an increasing trend,
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Figure 5.1. Bispectral matrix in the range 0-0.4 Hz averaged for each severity group in the
training set. In the upper right corner, a zoomed representation between 0-0.05 Hz have
been depicted, to better visualize the coupling focus. (a) No-OSA group (AHI < 1 e/h), (b)
mild OSA group (1 ≤ AHI < 5 e/h), (b) moderate OSA group (5 ≤ AHI < 10 e/h), (b)
severe OSA group ( AHI ≥ 10 e/h). This figure has been derived from Martín-Montero
et al. (2021a).

whereas LF_BE2 and HF_PE demonstrated a decreasing trend as OSA severity
worsened. On the other hand, for the features comprising the BISPSpeci f ic subset,
BW2_RPDiag and BWRes_BE3 exhibited increments, particularly in the first pa-
rameter, while BW2_BE1 experienced a decrease across the OSA severity groups.
Among all the features selected by the FCBF algorithm, only BWRes_Bmin did
not show statistically significant differences between the OSA groups.

Subsequently, the features from both optimal subsets were utilized as input
features to construct six MLP models for binary classification, two models for
each AHI cutoff. Specifically, three MLP models were constructed using the
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Figure 5.2. Results of the feature-selection stage applying FCBF algorithm in the training
set using 1000 bootstrap replicates. The decision threshold (500 times) has been depicted
as a red line. (a) Features selected from the classic regions, (b) Features selected from the
OSA-related regions. This figure has been taken from Martín-Montero et al. (2021a).

Figure 5.3. Boxplots representation of the features that were selected in the optimum
BISPClassic subset, along with the p-value obtained from the corresponding Kruskal-Wallis
test. (a) VLF_ f 2m boxplot distribution and p-value, (b) LF_BE2 boxplot distribution and
p-value, (c) HF_PE boxplot distribution and p-value. This figure has been taken from
Martín-Montero et al. (2021a).

BISPClassic features, namely MLP1Classic, MLP5Classic, and MLP10Classic mod-
els, corresponding to AHI cutoffs of 1, 5, and 10 e/h, respectively. Similarly,
the remaining three models, MLP1Speci f ic, MLP5Speci f ic, and MLP10Speci f ic, were
formed using the BISPSpeci f ic features. As outlined in Section 4.4.1.2, the hyper-
parameters of each MLP model were optimized through 1000 bootstrap replicates
from the training set. The NH values tested ranged from 2 to 20 in steps of 1, and
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Figure 5.4. Boxplots representation of the features that were selected in the optimum
BISPSpeci f ic subset, along with the p-value obtained from the corresponding Kruskal-
Wallis test. (a) BW2_RPDiag boxplot distribution and p-value, (b) BW2_BE1 boxplot dis-
tribution and p-value, (c) BWRes_Bmin boxplot distribution and p-value, (d) BWRes_BE3
boxplot distribution and p-value. This figure has been taken from Martín-Montero et al.
(2021a).

from 22 to 50 in steps of 2, while the λ values ranged from 0.5 to 10 in steps of 0.5.
The combination of hyperparameters resulting in the highest k value was found
to be NH = 2 and λ = 5 in four out of the six models (MLP1Classic, MLP5Classic,
MLP5Speci f ic, and MLP10Speci f ic), NH = 34 and λ = 5 for the MLP10Classic model,
and NH = 38 and λ = 5 in the MLP1Speci f ic model. Consequently, these specific
hyperparameters were utilized to assess the diagnostic performance of all the de-
veloped MLP models.

Table 5.4 presents the diagnostic performance reached by each of the devel-
oped MLP models, along with the individual diagnostic yield for each severity
thresholds of the features included in the optimal subsets. Regarding the individ-
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Table 5.4. Evaluation of the diagnostic performance for binary classification by each fea-
ture selected individually, as well as each MLP optimized model in the test set (nonran-
domized group from CHAT database). This table has been adapted from Martín-Montero
et al. (2021a).

Threshold: AHI = 1 e/h

Feature/Model Se Sp Acc AUC

VLF_ f 2m 44.5 72.3 53.9 0.605
LF_BE2 42.1 72.7 52.4 0.581
HF_PE 42.9 63.3 49.8 0.550
BW2_RPDiag 50.9 64.8 55.6 0.629
BW2_BE1 47.1 59.4 51.3 0.559
BWRes_Bmin 40.5 57.4 46.2 0.482
BWRes_BE3 41.5 57.4 46.9 0.513

MLP1Classic 52.3 59.4 54.7 0.600
MLP1Speci f ic 76.3 38.3 63.4 0.627

Threshold: AHI = 5 e/h

Feature/Model Se Sp Acc AUC

VLF_ f 2m 62.5 72.2 70.8 0.749
LF_BE2 56.3 74.4 71.7 0.670
HF_PE 45.5 72.1 68.2 0.628
BW2_RPDiag 60.7 77.7 75.2 0.747
BW2_BE1 56.3 70.1 68.0 0.671
BWRes_Bmin 58.9 45.3 47.3 0.567
BWRes_BE3 47.3 58.4 56.8 0.569

MLP5Classic 50.9 86.2 81.0 0.774
MLP5Speci f ic 62.5 84.2 81.0 0.791

Threshold: AHI = 10 e/h

Feature/Model Se Sp Acc AUC

VLF_ f 2m 63.8 76.7 75.6 0.784
LF_BE2 58.0 81.5 79.4 0.740
HF_PE 53.6 72.1 70.4 0.663
BW2_RPDiag 68.1 76.0 75.3 0.789
BW2_BE1 47.8 76.0 73.4 0.692
BWRes_Bmin 56.5 50.6 51.1 0.557
BWRes_BE3 55.1 59.4 59.0 0.614

MLP10Classic 43.5 96.5 91.7 0.847
MLP10Speci f ic 66.7 91.6 89.3 0.841

VLF: very low frequency, LF: low frequency, HF: high frequency, MLP: multi-layer perceptron, AHI:
apnea-hypopnea index, Se: sensitivity (%), Sp: specificity (%), Acc: accuracy (%), AUC: area under
receiver-operating characteristic curve.
For each AHI cutoff, the highest Acc and AUC has been highlighted in bold.

ual features, BW2_RPDiag demonstrated the best overall performance. It achieved
the highest Acc and AUC in the 1 e/h, the highest Acc in the 5 e/h, and the
highest AUC in the 10 e/h thresholds. Notably, BW2_RPDiag exhibited a more
balanced Se/Sp pair than LF_BE2, which had a higher Acc in the 10 e/h thresh-
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old. Additionally, all the MLP models outperformed the individual diagnostic
ability of the features. The MLP models based on OSA-specific region features
showed the highest diagnostic ability in the 1 and 5 e/h thresholds, while the
MLP10Classic model outperformed the rest in the 10 e/h cutoff, albeit with a sig-
nificantly unbalanced Se/Sp pair.

5.3 Causal mediation analysis

In Martín-Montero et al. (2022), our aim was to assess whether changes in HRV
parameters following OSA treatment could reliably identify variations in OSA
severity indices or reflect OSA resolution. To accomplish this, we conducted a
CMA, as described in Section 4.6, by averaging mediation effects across treat-
ment arms. Through this analysis, we were able to evaluate the influence of the
chosen mediator variables (OSA severity indices and resolution) on the features
selected as outcomes (extracted from the HRV), as well as the extent of these im-
pact (represented by ACME values). Additionally, it allowed us to identify the re-
maining effects unassociated with the mediators (termed as ADE). The results of
the CMA are presented in Table 5.5, which shows the averaged values of ACME
and ADE, along with their corresponding 95th percentile confidence intervals for
each mediator and outcome considered in the study. The associated p-values can
be consulted in Supplementary Table S11 from Martín-Montero et al. (2022). No-
tably, among all the evaluated parameters, only ∆RPBW2 exhibited statistically
significant ACMEs for all the mediators, and these effects were mediated in the
negative direction. Moreover, ∆RPBW2 was the only parameter that showed sta-
tistically significant ACME with OSA resolution, while obtaining non-statistically
significant ADE effects with ∆Minsat and any of the resolution mediators. This
highlights the importance of these mediators in the context of BW2. Regarding
the OSAO+C resolution mediator, apart from BW2 it also mediated changes in
∆(LF/HF). All the remaining parameters obtained ACME effects to some extent
in at least one of the mediators considered, except for ∆RPVLF, which did not
achieve any statistically significant ACME.

After performing the CMA, we proceeded to examine whether changes me-
diated by the resolution mediators could differentiate the HRV activity of chil-
dren who experienced OSA resolution compared to those who did not, following
randomization. Accordingly, we evaluated differences at follow-up between chil-
dren with resolved and unresolved OSA using both resolution criteria, focusing
on parameters where the change in the mediator resulted in a statistically signifi-
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cant ACME in each case. The results are presented in Figure 5.5, which displays
the boxplot distributions of RPBW2 at follow-up of each group for both mediators,
as well as LF/HF for the OSAO+C resolution mediator. As can be seen, RPBW2

was the only feature that exhibited a discernible distinction (p-value < 0.05) in
HRV activity between children who experienced resolution of the disease and
those who did not.

Figure 5.5. Differences at follow-up between resolved and unresolved children when eval-
uating both resolution mediators. Only the boxplots distribution of the parameters that
showed ACME effects with those mediators were evaluated. The p-values resulting from
the Mann-Whitney U tests are also provided. (a) Differences in RPBW2 using OSAO+C res-
olution criteria.(b) Differences in LF/HF ratio using OSAO+C resolution criteria. (c) Dif-
ferences in RPBW2 using OSA resolution criteria. This figure has been taken from Martín-
Montero et al. (2022).



5.4. HRV segments characterization 77

5.4 HRV segments characterization

The outcomes of the previous investigations primarily focused on examining the
behavior of HRV throughout the entire night. In the last step, we wanted to
assess how sleep stages and the presence of apneic events influence overnight
HRV in the context of pediatric sleep apnea. To this end, in Martín-Montero
et al. (2023), HRV 10-min segments were characterized and analyzed depending
on the sleep stage (wake,W; NREM; and REM) as well as the number of apneic
events contained within each segment (less than 1 event per segment, e/s; 1 to 5
e/s; 5 to 10 e/s; and above 10 e/s). Figures 5.6-5.8 depict the boxplot distribu-
tions in the training set for each segment type, representing the features extracted
from the temporal domain, classic frequency bands, and OSA-related frequency
bands, respectively. The corresponding p-values for the Mann-Whitney U test
conducted between each pair of segments can be found in Supplemental Table 1
from Martín-Montero et al. (2023). However, as explained in Section 4.7, given the
large number of segments included in the study, differences are better quantified
using Cohen’s d measure. Therefore, the Cohen’s d values for each comparison
are presented in Table 5.6.

In general terms, when comparing different severity segments within the
same sleep stage, NREM segments exhibited a higher number of comparisons

Figure 5.6. Boxplot distribution in the training set of the features in the temporal domain
for every type of segment considered. (a) mHR boxplot distributions, (b) SDNN boxplot
distributions, (c) RMSSD boxplot distributions. This figure has been derived from Martín-
Montero et al. (2023).
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Figure 5.7. Boxplot distribution in the training set of the features in the frequency domain
from the classic frequency bands for every type of segment considered. (a) RPVLF boxplot
distributions, (b) RPLF boxplot distributions, (c) RPHF boxplot distributions, (d) LFn box-
plot distributions. This figure has been derived from Martín-Montero et al. (2023).

Figure 5.8. Boxplot distribution in the training set of the features in the frequency domain
from the OSA-specific frequency bands for every type of segment considered. (a) RPBW1
boxplot distributions, (b) RPBW2 boxplot distributions, (c) RPBWRes boxplot distributions.
This figure has been derived from Martín-Montero et al. (2023).

with substantial effect sizes (d ≥ 0.5), while the effects were reduced during REM.
This fact is also reflected in the boxplots (Figures 5.6-5.8), where REM trends fol-
lowed similar patterns to NREM but less pronounced. Among the intra-sleep
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NREM stage comparisons, RPBW2 showed the highest effect sizes in five out of
six comparisons, indicating an increase in RPBW2 with the presence of events (see
Figure 5.8.b). This increase was also observed for mHR and SDNN in the tem-
poral domain (see Figure 5.6), as well as in LFn (see Figure 5.7.b). Conversely,
RPBWRes exhibited the opposite trend in these comparisons, showing medium or
large effect sizes, as well as RPHF to a lesser extent. In the case of intra-sleep
REM stage, Table 5.6 reflects that several parameters had negligible or small ef-
fect sizes (d ≤ 0.2), with mHR and RPBW2 exhibiting the highest effect sizes in
these comparisons. Moving on to inter-sleep stage differences, in the absence of
apneic events, only RPBW2 showed negligible effect sizes between stages, while
the largest differences were observed in RPBWRes (in W vs NREM and NREM
vs REM comparisons) and mHR (in W vs REM comparison). When including
apneic events, RPBWRes obtained the highest differentiation between NREM and
REM for segments containing 1 to 5 e/s, while RPBW2 regained relevance when
comparing segments with 5 to 10 e/s, as well as those with above 10 e/s, consis-
tently demonstrating the largest effect size.

After completing the feature-extraction stage, the ten extracted features were
used as input for the AdaBoost and LSBoost models to assess the clinical use-
fulness of HRV characterization. The validation set was selected to optimize the
hyperparameters for both models, as explained in sections 4.4.2 and 4.4.3. The
hyperparameters combinations that yielded the highest Cohen’s k value were
as follows: λ = 0.3 and NLSB = 300 for the LSBoost model, and ν = 0.1 and
NAB = 3000 for the AdaBoost model. Following the optimization of the models,
their clinical applicability was evaluated. The LSBoost model was assessed for di-
agnosing pediatric OSA, while the AdaBoost model was evaluated for sleep stage
classification. Confusion matrices in the test set for both tasks, along with the cor-
responding multiclass Acc and Cohen’s k values are presented in Figure 5.9. The
performance of the LSBoost model was evaluated on a per-subject basis, while the
performance of the AdaBoost model was computed per-segment. The darkness
of the cells along the main diagonal in the confusion matrices indicates the perfor-
mance of each model, with darker colors indicating better performance. The di-
agnostic metrics achieved by the LSBoost model in the test set for the per-subject
binary classification task, considering each AHI cutoff, are presented in Table 5.7.
Additionally, the diagnostic performance results of the AdaBoost model for sleep
stage classification in the test set, considering individual sleep stages, are sum-
marized in Table 5.8. Finally, to assess the role of each feature in both tasks, the
results of the relative importance evaluation are displayed in Figure 5.10.
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Figure 5.9. Confusion matrices in the test set for the tasks performed to assess the clinical
applicability of the HRV segments characterization. (a) Confusion matrix for the LSBoost
model in the per-subject pediatric OSA diagnosis task. 1: no-OSA group (AHI < 1 e/h), 2:
mild OSA (1 ≤ AHI < 5 e/h), 3: moderate OSA (5 ≤ AHI < 10 e/h), 4: severe OSA (AHI
≥ 10 e/h). (b) Confusion matrix for the AdaBoost model in the per-segment sleep stage
classification task. This figure has been adapted from Martín-Montero et al. (2023).

Regarding the diagnosis of pediatric OSA, Figure 5.9.a shows that the LSBoost
model tended to overestimate the AHI for the no-OSA group, achieving the worst
proportion of correctly classified subjects, while moderate OSA subjects obtained
the highest performance. The binary classification results presented in Table 5.7
demonstrate an overall improvement in diagnostic performance (higher AUC)
with increasing severity cutoffs. These outcomes were primarily influenced by
RPBW2, which accounted for the largest proportion of feature importance (72.01%,
as shown in Figure 5.10.a). Following RPBW2, SDNN and RPLF were the next
most influential features, accounting for 7.09% and 6.08% of the feature impor-
tance, respectively.

Finally, for sleep stage classification task, Figure 5.9.b shows that, in general,
REM segments obtained the highest proportion of well-classified segments. Nev-
ertheless, when examining the individual sleep stage classification results (Ta-
ble 5.8), REM sleep stage had the lowest precision (39.7%) despite a high recall
(77.13%). On the other hand, NREM achieved the highest precision (94.55%) and
F1 − score (0.818) among the considered sleep stages. Regarding feature impor-
tance in this task, Figure 5.10.b highlights that RPBWRes was the feature with the
greatest relative importance, accounting for 20.04% of the overall importance.
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Table 5.7. Diagnostic yield achieved in the test set (subgroup from CHAT database) by the
optimized LSBoost model for binary classification using the three AHI thresholds (1, 5 and
10 events/hour). This table has been derived from Martín-Montero et al. (2023).

Optimized LSBoost Model: λ = 0.3; NLSB = 300

AHI Se Sp Acc PPV NPV LR+ LR− AUC F1-score

Test Set
1 e/h 90.76 23.40 80.07 86.26 32.35 1.18 0.39 0.651 0.885
5 e/h 66.67 61.17 63.18 49.66 76.16 1.72 0.54 0.677 0.569
10 e/h 40.00 92.03 84.12 47.37 89.53 5.02 0.65 0.742 0.434

AHI: apnea-hypopnea index, Se: sensitivity (%), Sp: specificity (%), Acc: accuracy (%), PPV: posi-
tive predictive value (%), NPV: negative predictive value (%), LR+: positive likelihood ratio, LR−:
negative likelihood ratio, AUC: area under receiver-operating characteristic curve.

Table 5.8. Diagnostic yield achieved in the test set (subgroup from CHAT database) by
the optimized AdaBoost model for individual sleep stage classification in the three stages
considered (W, NREM and REM). This table has been derived from Martín-Montero et al.
(2023).

Optimized AdaBoost Model: ν = 0.1; NAB = 3000

Sleep Stage Precision (%) Recall(%) F1-score

Test Set
W 54.78 66.94 0.603
NREM 94.55 72.08 0.818
REM 39.17 77.13 0.516

Figure 5.10. Evaluation of the relative feature importance for the models applied. (a) Rel-
ative importance of the features selected by the tree base classifiers used in the LSBoost
model. (b) Relative importance of the features used as input in the AdaBoost model, ob-
tained through LIME technique. This figure has been taken from Martín-Montero et al.
(2023).



Chapter 6

Discussion

The present Doctoral Thesis is intended to characterize nocturnal HRV and as-
sess ANS alterations associated with pediatric OSA and help in its diagnosis. To
this end, various HRV signal processing techniques have been used, including
temporal, spectral, and bispectral domain analyses. This methodology has en-
abled the evaluation of ANS alterations specific to pediatric OSA, unveiling novel
OSA-specific frequency bands that provide valuable insights into HRV patterns
throughout the night and during specific sleep stages. Additionally, the clinical
utility of each approach has been demonstrated, along with the effects of pediatric
OSA treatment on HRV in relation to changes in OSA severity and resolution us-
ing CMA. Thus, the main findings of this research are extensively discussed in
this chapter. Furthermore, the clinical applicability of the different approaches
for diagnosing pediatric OSA is compared, along with a comparison with state-
of-the-art research works in this field. Lastly, the main limitations of the Doctoral
Thesis are indicated.

6.1 Characterization of nocturnal HRV in children

As previously stated, spectral analysis (Martín-Montero et al., 2021b), bispectral
analysis (Martín-Montero et al., 2021a), CMA (Martín-Montero et al., 2022), and
HRV segmentation (Martín-Montero et al., 2023) approaches were followed to
characterize alterations in the ANS that occurs due to OSA in the HRV dynamics.

83
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6.1.1 Spectral analysis: novel OSA-specific spectral bands

The HRV spectral analysis conducted in Martín-Montero et al. (2021b) allowed
to identify and assess three novel frequency bands of interest, aiming to enhance
understanding of cardiovascular dynamics in pediatric OSA presence. These fre-
quency bands exhibited significant correlations with respiratory events and in-
dices of micro and macro sleep disruption, and demonstrated superior diagnostic
ability compared to the conventional classic HRV spectral bands. These findings
highlights the value of incorporating these novel frequency bands in the investi-
gation of HRV in the field of pediatric OSA.

The first of these frequency bands, referred to as BW1 (0.001-0.005 Hz), encom-
passes a narrower fragment within the VLF range (0-0.04 Hz). While RPVLF did
not exhibit any statistically significant differences between OSA severity groups,
RPBW1 reached significant differences in both the training and test sets. Addition-
ally, RPBW1 exhibited superior individual diagnostic yield compared to RPVLF.
Moreover, this novel frequency band was statistically significant correlated with
#Awakenings and WASO. Collectively, these findings suggest that sleep fragmen-
tation, a direct consequence of pediatric OSA, primarily manifests within the fre-
quency range covered by BW1, thereby capturing OSA-related alterations more
effectively than VLF.

The second frequency band of interest identified was BW2 (0.028-0.074 Hz),
which falls between the classic VLF and LF ranges. RPBW2 exhibited the strongest
correlations with OSA respiratory indices and TAI, and reached the highest in-
dividual diagnostic performance in overall terms, particularly for the 5 and
10 e/h AHI thresholds. Previous research analyzing airflow signals in adults
also reported a similar range of interest for OSA (approximately 0.025-0.050 Hz)
(Gutiérrez-Tobal et al., 2013, 2012). This similarity may be attributed to the pres-
ence of cardio-respiratory coordination during OSA (Riedl et al., 2014). However,
BW2 is broader than the frequency band observed in adults. These slight dis-
similarities may be explained by variations in the disease between adults and
children, as well as a shorter duration of cardiac events compared to respiratory
events. As explained in Section 1.3, in pediatric OSA, an apneic event is scored if
it lasts at least 2 respiratory cycles (approximately 6 seconds) (Berry et al., 2020).
Therefore, the frequency range covered by BW2, which captures recurrence pat-
terns between 13 and 35 seconds, aligns with the annotation of apneic events,
and suggests a duration range of cardiac patterns as a result of pediatric OSA.
Furthermore, the implications of pediatric OSA on the ANS can be inferred from



6.1. Characterization of nocturnal HRV in children 85

changes in BW2 activity. It is well-known that apneic events lead to the activation
of the SNS, often reported as an increase in LF band (Aljadeff et al., 1997; Gozal
et al., 2013; Walter et al., 2016). LF is generally associated with both SNS and
PNS activity, with the PNS showing a faster response time (Nisbet et al., 2014).
Accordingly, we propose that alterations in these frequency domains caused by
OSA (which consistently elevates SNS activity) are specifically reflected in the
BW2 frequency range. Based on these findings, we propose that OSA-related car-
diac recurrent patterns due to alterations of the ANS are specifically captured by
BW2, being particularly relevant for spectral analysis of HRV in the context of
pediatric OSA.

The last OSA-related spectral band identified was BWRes, an individually
adaptive frequency band that encompasses a 0.04 Hz range centered around the
respiratory peak, which represents the highest value within the HF range. The ra-
tionale behind exploring this frequency band was to capture the respiratory mod-
ulation of HRV activity while mitigating the age-related effects that can influence
activity within the classic HF range. As expected, we observed that the higher the
OSA severity, the lower the magnitude of RPBWRes. This band exhibited negative
correlations with TAI, WASO and, interestingly, only ODI among all the respira-
tory indices evaluated, with these correlations being stronger than those observed
for RPHF. This suggests that normal respiratory activity is disrupted by awaken-
ing and micro-awakening periods, which may occur as a result of oxyhemoglobin
desaturation (American Thoracic Society, 1996; Berry et al., 2012), thus leading to
a decrease in HRV activity within BWRes. Besides, the AUC for RPBWRes outper-
formed RPHF in binary classification across all three AHI cutoffs, supporting the
use of adaptive BWRes instead of HF when assessing HRV in children with OSA.

6.1.2 Bispectral analysis

To overcome the limitations of spectral analysis and examine the nonlinear, non-
Gaussian, and non-stationary characteristics of HRV associated with OSA, we
followed a bispectral approach in Martín-Montero et al. (2021a). This approach
involved defining and extracting features from bispectral regions of HRV, which
were based on both the traditional HRV frequency ranges and the OSA-specific
frequency ranges identified in our earlier study. The feature-selection process
conducted for both types of regions demonstrated the complementary nature of
certain features, resulting in the identification of two optimal subsets of features.

The overall exploratory analysis revealed interesting findings, as depicted in
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Figure 5.1. In the absence of OSA, there was a concentration of bispectral power
below 0.02 Hz, indicating a certain coupling focus in the no-OSA group. How-
ever, with increasing OSA severity, there was a shift of bispectral power towards
higher frequencies, leading to a significantly lower coupling focus in the severe
OSA group. This dispersion of bispectral power to higher frequencies with OSA
severity suggests an increase in HRV Gaussianity and linearity at VLF, likely due
to OSA-related apneic events (Chua et al., 2010). This finding was further sup-
ported by the selected feature VLF_ f 2m, which exhibited increased values with
OSA severity (see Figure 5.3), indicating the spreading of coupling focus from
the VLF region (0-0.04 Hz range) to higher frequencies, specifically the BW2 re-
gion (0.028-0.074 Hz range), which is known to reflect alterations associated with
apneic events. Additionally, a novel bispectral parameter developed during this
doctoral thesis, RPDiag, was also selected within BW2 region, and its values in-
creased with OSA severity (see Figure 5.4). As explained in Section 4.2.2.2, RPDiag

measures the phase coupling between harmonic components of HRV. Increasing
nonlinear interactions among the harmonics of children affected by OSA would
be suggested by the higher BW2_RPDiag values with OSA severity. Accordingly,
the raising in this feature with OSA suggest that apneic events result in the emer-
gence of less random and more periodic harmonics in HRV activity within this
region. Notably, BW2_RPDiag exhibited the highest individual diagnostic perfor-
mance among the selected features. Therefore, these findings highlight the utility
of the BW2 bispectral region, particularly in conjunction with the novel parame-
ter RPDiag, when studying HRV in pediatric OSA.

The three bispectral entropy features demonstrated their utility and were se-
lected in both optimal subsets. Specifically, BW2_BE1, LF_BE2, and BWRes_BE3
were chosen, with the first two exhibiting decreases with OSA severity, while
the latter increased with the disease. The decrease in BW2_BE1 and LF_BE2 in-
dicates a reduction irregularity within both frequency ranges in the presence of
apneic events. This can be attributed to the previously mentioned increase in less
random harmonics within BW2 region (partially overlapping with the LF region)
as OSA severity worsens. It appears that, as BW2 region is more effective in re-
flecting the effects of apneic events, BE1 is sufficient to characterize irregularity
changes caused by OSA in this region. However, in LF, the inclusion of quadratic
amplitude (BE2) is necessary to capture these effects. Regarding BWRes, BE3 in-
creased with OSA, reflecting an increase of irregularity. This may occur because
in the absence of OSA, bispectral power in BWRes is concentrated around the res-
piratory peak. However, with the increasing presence of OSA effects, respiration



6.1. Characterization of nocturnal HRV in children 87

becomes more irregular, leading to a decrease in coupling around the respiratory
peak and its redistribution to other frequencies. Consequently, HRV irregularity
is amplified in the bispectral respiratory region, while irregularity in bispectral
regions associated with apneic duration decreases as a result of OSA. Along with
bispectral entropies, PE was also chosen in the HF region, decreasing as OSA
severity increases. This indicates that the disease-related alterations result in a
reduction in the irregularity of HRV phase. These findings highlights the signifi-
cance of including entropy features when conducting HRV bispectral analysis to
evaluate changes in irregularity caused by pediatric OSA.

The last of the features selected by the FCBF algorithm was BWRes_Bmin. Al-
though it did not exhibit a clear trend in its evolution across OSA severity groups
(see Figure 5.4.c), its selection indicates that it provides complementary and non-
redundant information to the other selected features in the optimum features sub-
set specific to OSA. It is worth noting that none of the features computed in BW1
were chosen by the algorithm, suggesting that the analysis of BW2 and BWRes re-
gions may be sufficient to characterize HRV patterns in the presence of pediatric
OSA through bispectral analysis.

6.1.3 Causal mediation analysis

The computation of the CMA methodology in Martín-Montero et al. (2022) en-
abled us to infer that the changes observed in HRV following OSA intervention
were causally linked to the effects of the treatment. This analysis established con-
nections between alterations in HRV features and changes in polysomnographic
indices directly related to OSA severity and its resolution. All the mediators con-
sidered were found to causally impact at least one of the evaluated outcomes.
Among the various HRV features extracted, ∆RPBW2 was the only parameter that
reached statistically significant ACMEs for each mediator included. It exhibited
the highest level of statistical significance for most of the mediators, underscoring
its importance in reflecting treatment effects on HRV activity.

The evaluation of disease resolution was conducted using two criteria: the
conventional approach, as in the original CHAT study, and a stricter approach
that also considered central apneas. When considering OSA resolution as a me-
diator (based on OAI and OAHI), the CMA revealed that this mediator only
had a causal effect on ∆RPBW2. When central apneas were included to establish
OSAO+C resolution as a mediator, two parameters reached statistically signifi-
cant ACMEs: ∆RPBW2 and ∆LF/HF. However, when evaluating the differences
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in HRV activity between children who resolved OSA and those who did not for
those features, it was found that resolution significantly affected only BW2. Al-
though ∆LF/HF showed a statistically significant ACME with OSAO+C resolu-
tion, there were no differences at follow-up between children with and without
OSAO+C resolution in LF/HF activity. It may be due to the higher ADE reached
in the opposite direction, pointing to the presence of other factors that mask the
effects of resolution on this feature. Therefore, BW2 activity was the only feature
that allowed for differentiation between resolved and unresolved OSA children.
In the light of these results, we propose BW2 as a potential biomarker for pedi-
atric OSA resolution.

6.1.4 HRV segments characterization

In Martín-Montero et al. (2023), we conducted a characterization of nocturnal
HRV segments, considering both sleep stages and the presence of apneic events.
The applied methodology allowed us to uncover that, when comparing segments
with varying degrees of apneic event presence, the differences were more pro-
nounced in NREM sleep compared to REM sleep. It is known that during NREM
sleep there is a decrease in SNS activity and an increase in PNS activity, which is
reversed during REM sleep and wakefulness (Qin et al., 2021). Also, increments
of sympathetic activation occurs in children with OSA (Baharav et al., 1999; Qin
et al., 2021). The results revealed that features related to SNS activity (RPBW2,
mHR, SDNN, and RPLF) exhibited clear increases with the presence of apneic
events within NREM sleep (see Figures 5.6-5.8). Nevertheless, these effects were
reduced during REM sleep, with RPBW2 and mHR being the only parameters
showing considerable effect sizes in this sleep stage in three out of the six con-
ducted comparisons. Interestingly, the reduction in differences between sever-
ity segments was observed during REM sleep, despite apneic events being more
likely to occur in clusters during this stage (Qin et al., 2021). Thus, it appears that
the inherent basal SNS excitation during REM sleep may mask the ANS alter-
ations that occur as a result of apneic events. Therefore, considering that RPBW2

showed considerable effect size in all comparisons between severity segments
during NREM sleep, and had the highest relative importance in the XAI tech-
nique of feature importance analysis for diagnosing pediatric OSA (see Figure
5.10), we emphasize the evaluation of BW2 activity as a reliable way to assess
specific SNS activation due to pediatric OSA, especially when apneic events oc-
cur during NREM sleep.
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The usefulness of RPBW2 assessment in characterizing HRV changes in the
presence of apneic events appears to diminish in their absence, yielding negli-
gible effects between sleep stages for non-apneic segments. Notwithstanding,
another OSA-specific frequency range defined in this Doctoral Thesis, RPBWRes,
was the only parameter exhibiting medium to large effects in all sleep stage com-
parisons in the absence of apnea events. This can be attributed to the significant
differences in respiratory patterns across sleep stages (Isler et al., 2016; Sazonova
et al., 2006; Schechtman and Harper, 1992; Terrill et al., 2012), as RPBWRes aims
to reflect respiratory modulation in HRV. Respiratory control transitions from
voluntary and automatic control during wakefulness to fully automatic control
during sleep. It leads to regular respiratory patterns during NREM sleep and
irregular respiration with brief breathing pauses occurring in healthy children
during REM sleep (Marcus et al., 2008). Consistent with the effect size analysis,
the application of LIME XAI technique to evaluate feature importance revealed
that RPBWRes attained the highest relative importance in the AdaBoost model for
sleep stage classification. These findings highlight the significance of respiration
in distinguishing between sleep stages, with these alterations effectively captured
through HRV spectral analysis in the RPBWRes parameter. The influence of respi-
ration is further supported by the analysis of RPHF and LFn (influenced by ac-
tivity in HF), which also reflects respiratory activity and reached high relative
importance as well.

The increased activity in HF and BWRes in NREM compared to wake and
REM sleep in non-apneic segments evidenced an excitation of PNS in NREM
compared to the other two stages evaluated. However, when these segments
accounted with apneic events, it occurs a reduction in PNS activity (decreased
RPBWRes and RPHF), reaching levels similar to REM in 5 ≤ apneic events < 10
e/s and ≥ 10 e/s segments. As a result of this decline, both features showed
small or negligible effects sizes when differentiating NREM from REM. On the
other hand, the increased presence of apneic events leads to RPBW2 allowing to
differentiate activity of severity segments between NREM and REM, and reach-
ing large effect sizes between NREM and REM for the 5 ≤ apneic events < 10 e/s
and ≥ 10 e/s segments. This result highlights the significance of BW2 to differ-
entiate NREM and REM in presence of apneic events. Therefore, through these
findings we have shown that both BWRes and BW2 novel OSA-specific frequency
bands play crucial roles in differentiating sleep stages through HRV analysis in
pediatric OSA context.
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6.2 Clinical utility of HRV characterization

In the previous section, the clinical relevance of HRV characterization in reflect-
ing the effects of OSA treatment through the CMA analysis performed in Martín-
Montero et al. (2022) was discussed, highlighting the potential of analyzing BW2
as a biomarker for OSA resolution. Additionally, the three remaining research
works in the compendium of publications have examined the clinical applicabil-
ity of HRV characterization for diagnosing pediatric OSA, and also to automati-
cally classify sleep stages in Martín-Montero et al. (2023).

6.2.1 Diagnostic performance

This Doctoral Thesis conducted various approaches to evaluate the ability of HRV
characterization in diagnosing pediatric OSA. In Martín-Montero et al. (2021b),
we compared the diagnostic ability of overnight HRV spectral analysis using
classic frequency bands against OSA-specific frequency bands, performing bi-
nary classification based on the three commonly used AHI severity thresholds.
In Martín-Montero et al. (2021a), we used the FCBF algorithm to develop two
optimal subsets of HRV features. This study followed a similar approach to the
first one, even using the same database and training/test division but focusing
on bispectral analysis. Lastly, in Martín-Montero et al. (2023), we assessed the
clinical utility of HRV segment characterization in diagnosing pediatric OSA by
optimizing an LSBoost regression model to estimate AHI, also performing binary
classification in the three AHI severity cutoff later. First of all, it is important to
note that in both Martín-Montero et al. (2021b) and Martín-Montero et al. (2021a),
the machine-learning models constructed by combining HRV features (LDA and
MLP, respectively) outperformed the individual diagnostic performance of each
feature. This highlights the usefulness of the feature-engineering approaches to
integrate HRV information and aid in the diagnosis of pediatric OSA. For com-
parison purposes, Table 6.1 presents the results obtained by the machine-learning
models developed in the three studies.

Regarding intra-study comparisons, the LDA model constructed with HRV
features from the novel OSA-specific frequency band outperformed the diagnos-
tic yield of the model using classic HRV features across all three AHI cutoffs, only
being surpassed in terms of Sp in the 1 e/h threshold but showing a stronger un-
balanced in the Se/Sp pair. Concerning bispectral feature models, consistent with
the spectral analysis, the OSA-related region features models generally outper-
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Table 6.1. Diagnostic yield achieved by the different machine-learning models through the
studies from the present Doctoral Thesis in the three AHI severity thresholds. All results
were obtained on the test set corresponding to each study, i.e., nonrandomized group from
CHAT database in Martín-Montero et al. (2021b) and Martín-Montero et al. (2021a), and
a subgroup formed by the different groups from CHAT database in Martín-Montero et al.
(2023).

Threshold: AHI = 1 e/h

Study Model Se Sp Acc PPV NPV LR+ LR− AUC F1-score

Martín-Montero
et al. (2021b)

LDAClassic 25.70 81.30 44.50 72.90 35.90 1.37 0.91 0.559 0.326
LDASpeci f ic 37.70 80.10 52.00 78.80 39.70 1.89 0.778 0.597 0.437

Martín-Montero
et al. (2021a)

MLP1Classic 52.30 59.40 54.70 71.58 38.87 1.29 0.80 0.600 0.535
MLP1Speci f ic 76.30 38.30 63.40 70.74 45.16 1.24 0.62 0.627 0.693

Martín-Montero
et al. (2023) LSBoost 90.76 23.40 80.07 86.26 32.35 1.18 0.39 0.651 0.885

Threshold: AHI = 5 e/h

Study Model Se Sp Acc PPV NPV LR+ LR− AUC F1-score

Martín-Montero
et al. (2021b)

LDAClassic 46.40 72.20 68.40 22.50 88.60 1.67 0.74 0.633 0.553
LDASpeci f ic 48.20 80.80 76.00 30.30 90.00 2.51 0.64 0.696 0.590

Martín-Montero
et al. (2021a)

MLP5Classic 50.90 86.20 81.00 39.04 91.00 3.69 0.570 0.774 0.625
MLP5Speci f ic 62.50 84.20 81.00 40.70 92.82 3.96 0.45 0.791 0.706

Martín-Montero
et al. (2023) LSBoost 66.67 61.17 63.18 49.66 76.16 1.72 0.54 0.677 0.569

Threshold: AHI = 10 e/h

Study Model Se Sp Acc PPV NPV LR+ LR− AUC F1-score

Martín-Montero
et al. (2021b)

LDAClassic 50.70 75.30 73.10 17.10 93.80 2.05 0.65 0.685 0.599
LDASpeci f ic 62.30 84.30 82.30 28.50 95.70 3.97 0.45 0.774 0.709

Martín-Montero
et al. (2021a)

MLP10Classic 43.50 96.50 91.70 55.56 94.45 12.43 0.59 0.847 0.590
MLP10Speci f ic 66.70 91.60 89.30 44.23 96.48 7.94 0.36 0.841 0.764

Martín-Montero
et al. (2023) LSBoost 40.00 92.03 84.12 47.37 89.53 5.02 0.65 0.742 0.434

AHI: apnea-hypopnea index, Se: sensitivity (%), Sp: specificity (%), Acc: accuracy (%), PPV: positive predictive
value (%), NPV: negative predictive value (%), LR+ : positive likelihood ratio, LR− : negative likelihood ratio, AUC:
area under receiver-operating characteristic curve, LDA: linear discriminant analysis, MLP: multi-layer perceptron,
LSBoost: least-squares boosting.

formed the classic ones. At the AHI = 1 e/h cutoff, MLP1Speci f ic achieved higher
Acc and AUC than MLP1Classic, albeit with an imbalanced Se/Sp pair. At the AHI
= 5 e/h threshold, both models achieved the same Acc, but MLP5Speci f ic reached
higher AUC and a more balanced Se/Sp pair. In the highest severity threshold,
the MLP10Classic model achieved the topmost Acc and AUC values among the
models in the study. However, MLP10Speci f ic achieved a more balanced Se/Sp
pair at the expense of a slight decrease in Acc and AUC (see Table 6.1), also out-
performing MLP10Classic model in terms of NPV, F1 − score and LR−. These
findings further support the notion that OSA-specific frequency bands in HRV
analysis provide more specific information about pediatric OSA compared to the
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classic features utilized so far. Finally, in the last study, the diagnostic yield of
the LSBoost model improved with increasing OSA severity but yielded moderate
overall diagnostic performance. Therefore, the optimal approach to leverage the
LSBoost model would involve implementing an automated methodology to ex-
clude the presence of OSA in its most severe form, as it achieved a Sp of 92.03%
and NPV of 89.53% at the AHI 10 e/h cutoff, along with detecting the presence
of OSA in its mildest form, with a Se of 90.76% and PPV of 86.26% in the lowest
severity threshold.

Although the first two studies followed a whole-night HRV approach for
pediatric OSA diagnosis, and the last study focused on segment-level analy-
sis, all three studies conducted per-subject binary classification using the three
AHI severity thresholds, allowing for comparison diagnostic performance results
across the studies (see Table 6.1). The first two studies involved the UofC dataset
as the training set and the nonrandomized group from CHAT database as the test
set. When considering Acc and AUC as overall performance metrics, it is evi-
dent that the MLP models developed in the bispectral approach outperformed
the LDA models using spectral analysis, consistently achieving the highest diag-
nostic yield throughout the entire Doctoral Thesis at the severity thresholds of 5
and 10 e/h. To address the possibility that this improvement could be attributed
to the utilization of more sophisticated machine-learning techniques, Appendix
B in Martín-Montero et al. (2021a) demonstrated that even with LDA models,
the bispectral approach still outperformed spectral analysis. Hence, we propose
that this improvement may also be attributed to the ability of bispectral analysis
to capture the nonlinear dynamics present in overnight HRV in the presence of
OSA, which are lost in spectral analysis. As mentioned, the overall diagnostic
performance of the LSBoost model at the 5 and 10 e/h AHI cutoffs was lower
than that of the MLP models. Notwithstanding, the LSBoost model achieved the
highest diagnostic yield across the studies at the 1 e/h severity threshold in terms
of Se, Acc, PPV, AUC, and F1 − score, thus reinforcing the notion of the clinical
utility of the LSBoost model constructed at the segment level to recognize OSA
even in its mildest severity degree.

6.2.2 Automatic classification of sleep stages

In addition to evaluating the clinical usefulness of HRV segment characterization
for pediatric OSA diagnosis in Martín-Montero et al. (2023), this study also aimed
to assess the ability of this methodology to classify sleep stages as W, NREM,
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or REM sleep using an AdaBoost model. Initially, it is evident that the perfor-
mance metrics for sleep stage classification surpass those of the OSA diagnostic
approach (see Figure 5.9), reaching significantly higher multiclass classification
metrics in terms of Cohen’s k (0.499 versus 0.166) and accuracy (Acc3 = 71.82%
versus Acc4 = 41.89%). Among the sleep stages considered,the AdaBoost model
reached the highest overall classification yield in NREM sleep (see Table 5.8),
achieving a recall of 72.08% and precision of 94.55%. These findings are coherent
with the results obtained during the characterization stage, where NREM sleep
exhibited the greatest differences between severity segments.

In the light of the results achieved in Martín-Montero et al. (2023), we sug-
gested a potential two-stage clinical application using a single-channel approach
in the context of pediatric OSA and based on a segment-level HRV characteri-
zation. The first stage would focus on detecting NREM segments through HRV
analysis, given its superior performance metrics. Subsequently, the second stage
would involve estimating AHI based on these NREM segments, as those were
the segments that allowed for the best differentiation.

6.3 Comparison with previous research works

To delve into the significance, novelty, and robustness of the findings obtained in
this Doctoral Thesis, this section offers a comprehensive comparison with previ-
ous studies that have examined HRV in the context of pediatric OSA. Firstly, we
present a comparison of our results with previous studies that have character-
ized HRV in pediatric OSA. Next, we compare our findings with prior research
that has investigated the effects of OSA treatment on HRV. Lastly, we provide a
comparison of the performance achieved in several research works that have em-
ployed cardiovascular signals for diagnosing pediatric OSA and classifying sleep
stages.

6.3.1 Characterization of HRV in pediatric OSA context

To the best of our knowledge, the research conducted by us in Martín-Montero
et al. (2021b) represented the first work to identify HRV frequency bands specifi-
cally associated with pediatric OSA. Similarly, the application of bispectral HRV
analysis in the context of pediatric OSA, as carried out in Martín-Montero et al.
(2021a), was a novel approach. However, it is important to acknowledge the simi-
larities between our work and previous studies that characterized overnight HRV
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using conventional parameters (i.e., temporal measures, such as mHR, SDNN or
RMSSD, and spectral activity, measured as the relative power in the classic fre-
quency ranges). The main findings of these previous studies have been collected
in Table 6.2. The existing literature consistently reports an increase in LF activity
and LF/HF ratio, along with a decrease in HF activity as the severity of OSA
increases (Baharav et al., 1999; Horne et al., 2018; Liao et al., 2010a,b; Van Eyck
et al., 2016; Walter et al., 2013). Moreover, prior studies have analyzed the effects
of OSA on the ANS, showing incremented SNS activation due to intermittent
hypoxia and hypercapnia (Narkiewicz and Somers, 1997; Somers et al., 1998), as
well as altered autonomic reactivity during wakefulness in children, indicating
that the effects of OSA extend after the sleep period (O’Brien and Gozal, 2005).
These findings are coherent with the spectral analysis conducted and presented in
Table 5.1, providing further support to the existing evidence that pediatric OSA
disrupts HRV by elevating SNS activity and reducing PNS activity, leading to
defective cardiac autonomic regulation. Furthermore, the lack of differences ob-
served in RPVLF (as shown in Table 5.1) was also reported in prior studies evalu-
ating this frequency band (Gil et al., 2009; Kwok et al., 2011).

The segment-level characterization of HRV considering both sleep stages and
the presence of apneic events was performed for the first time in the context of
pediatric OSA in Martín-Montero et al. (2023). Nevertheless, it is possible to make
comparisons with previous works that analyzed the behavior of classic HRV fea-
tures across sleep stages. Kontos et al. (2020) examined HRV segments during
sleep stages in healthy children and adolescents, obtaining comparable results
to our findings in the absence of apneic events. They reported similar trends
for mHR, which is actually the inverse of mean NN (the metric they evaluated),
RPLF, and RPHF compared to our results in Figures 5.6 and 5.7 for non-apneic seg-
ments. Some previous studies comparing HRV segments between children with
and without OSA excluded segments containing apneic events from their anal-
ysis, focusing solely on non-apneic segments. In this regard, three studies (Liao
et al., 2010b; Vlahandonis et al., 2014; Walter et al., 2013) agreed in reporting a
decrease in RPHF from NREM to REM in all severity groups evaluated (healthy,
primary snorers, mild OSA, and moderate-severe OSA children). We observed
a similar decrease in RPHF for non-apneic segments in our results (see Figure
5.7). Likewise, the study by Nisbet et al. (2013) evaluated HRV classical features
across sleep stages, comparing different OSA severity groups while excluding
apneic events from their analysis. They informed no differences in RPLF between
groups, suggesting that the disease may not cause autonomic dysfunction in pre-
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school children. Notwithstanding, we found strong evidence of autonomic dys-
function in the presence of OSA, with apneic events modulating HRV activity.
Therefore, the exclusion of events from their analysis may explain the lack of dif-
ferences, thus supporting our approach in Martín-Montero et al. (2023), where we
evaluated the appearance of apneic events to assess alterations in HRV through-
out the night. On the other hand, there are other studies in the literature that
included apneic events but combined segments with and without them in their
analysis to evaluate HRV activity across sleep stages. Despite this difference,
some similarities have been found. Baharav et al. (1999) examined HRV across
sleep stages in healthy and OSA children, reporting greater RPLF and LF/HF in
all sleep stages, aligning with our results for these features as the presence of ap-
neic events increased. Horne et al. (2018) informed elevated HR in overweight
OSA children compared to healthy children, as well as reduced RPHF in normal
weight primary snorers within NREM. Similarly, they found greater RPLF in OSA
children compared to overweight primary snorers. Considering that the presence
of apneic events in the HRV segments analyzed for healthy children and primary
snorers is significantly low, these results align with the trends observed in our
study for those parameters as severity of the segments increased. Finally, in a
recent study conducted by Wu et al. (2022) they obtained similar results to ours
when studying HRV segments across sleep stages in healthy and OSA children,
reporting increased mHR and LF/HF for OSA children in all sleep stages.

6.3.2 Evaluation of pediatric OSA treatment effects on HRV

The design of the CHAT sleep study provided a suitable framework for numer-
ous researchers to investigate the effects of pediatric OSA treatment in a broad set
of biomedical signals, cardiovascular measures, and so on. However, prior to its
conception, several studies also examined the impact of pediatric OSA treatment
on HRV signal, primarily focusing on AT. Table 6.3 presents the main findings
achieved in these previous research works. In a prospective trial, Şaylan et al.
(2011) assessed HRV differences between 15 OSA children who underwent AT
and 15 healthy children, revealing altered HRV in OSA children before AT that
remained unchanged after the surgical procedure. In contrast to these findings,
Kaditis et al. (2011) reported a reduction in RPLF, mainly representing a decrease
in sympathetic tone, when comparing HRV activity before and after AT in 21
OSA children. In disagreement with the previous two studies, Muzumdar et al.
(2011), who analyzed 18 OSA children, observed an increase in RPLF and RPHF
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Table 6.3. Methodological summary of the state-of-the-art research works focused on the
evaluation of the effects of pediatric OSAS treatment on HRV, along with their relevant
findings.

Study Aim Methodology Relevant findings

Şaylan et al.
(2011) AT effects on HRV Spectral analysis

All spectral featured in OSA children al-
tered before surgical process. Those pa-
rameters remained altered following AT

Kaditis et al.
(2011) AT effects on HRV Spectral analysis and

BNP levels
Increased mRR intervals and decreased
BNP levels after AT

Muzumdar et al.
(2011) AT effects on HRV Spectral and temporal

analysis

Decrease in HR and LF/HF following AT,
reflecting a decline in the proportion of
sympathetic activity with OSA improve-
ment

Kirk et al. (2020)
Noninvasive ven-
tilation effects on
HRV

Spectral and temporal
analysis

12-months noninvasive ventilation re-
sulted in decrease in HR and no changes
in HRV features

Isaiah et al. (2020) OSA treatment ef-
fects on HRV

Spectral and temporal
analysis

Changes founded in classic HRV features
were not causally attributable to treatment
effects

Martín-Montero
et al. (2022)

OSA treatment ef-
fects on HRV

Spectral and temporal
analysis

OSA treatment affects HRV through
changes in severity and OSA resolution,
mainly in OSA-specific BW2 frequency
band

AT: adenotonsillectomy, OSA: obstructive sleep apnea, BNP: brain natriuretic peptide blood, mRR: mean of RR
intervals, HR: heart rate, LF/HF: low frequency/high frequency ratio.

after AT, being greater in HF as also observed a decrease in LF/HF ratio. A more
recent study conducted by Kirk et al. (2020) in 12 children with obesity also re-
ported changes in LF/HF ratio following treatment with noninvasive ventilation,
but only when assessing HRV around arousal events, with no overall changes in
HRV observed 12 months after treatment application. As can be observed, there
are discrepancies in the existing literature regarding the effects of pediatric OSA
treatment on HRV activity. Among all the previously reported results in classic
HRV parameters, our findings are only consistent with the observed increase in
LF activity after surgical treatment reported by Muzumdar et al. (2011) (see Sup-
plemental Figure S4 from Martín-Montero et al. (2023)). Nevertheless, it is im-
portant to note that there are several methodological differences between those
studies and our research conducted in Martín-Montero et al. (2023). Notably,
our study analyzed a significantly larger population from a multicenter database,
thereby enhancing the robustness and generalizability of our findings.

Finally, it is worth comparing our study with the previous work conducted
by Isaiah et al. (2020), as they performed a similar CMA to assess the effects of
pediatric OSA treatment on classical HRV features using the CHAT database. In-
terestingly, they reported no treatment effects on classical HRV features, regard-
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less of whether early AT or WWSC was performed. Even though we observed
that the main treatment effects are reflected through the novel OSA-specific fre-
quency band BW2, we also reported treatment influence in the same HRV classic
parameters that Isaiah et al. (2020) evaluated. Upon comparing both approaches,
we believe that these differences may be attributed to their interpretation of the
results using the proportion mediated parameter instead of the ACME. The pro-
portion mediated parameter allows for the assessment of the influence of ACME
on the averaged total effect (Imai et al., 2010a). However, despite the potential
utility of proportion mediated, Figure 4.4 shows that if CMA results in ACME
and ADE in opposite directions, it could lead to non-significant proportion me-
diated parameter, even if the ACME is statistically significant. Thus, evaluating
the proportion mediated parameter in isolation can mask ACME. Consequently,
in Martín-Montero et al. (2023), we re-evaluated the results reported by Isaiah
et al. (2020) for the classical HRV frequency measures, focusing on ACME effects.
Our re-evaluation revealed that treatment also influences classical HRV features
through some of the mediators considered (see Table 5.5).

6.3.3 Comparison of machine-learning approaches

As mentioned in Section 1.5.3, some studies have explored the information de-
rived from the cardiovascular system to understand the impact of pediatric OSA
on the ANS following different approaches. Table 6.4 presents a summary of
the highest diagnostic performance achieved in these studies, as well as the di-
agnostic yield obtained by our LDA model utilizing OSA-specific HRV features
from Martín-Montero et al. (2021b), the two MLP models constructed with HRV
bispectral features from Martín-Montero et al. (2021a), and the diagnostic perfor-
mance of the LSBoost model developed in Martín-Montero et al. (2023).

Shouldice et al. (2004) performed apneic event detection to classify HRV 1-
minute segments as apneic or non-apneic, followed by the assignation of OSA
condition to a children if over 12.5 apneic segments/hour were detected. When
classifying 25 children from the test set using an AHI cutoff of 1 e/h, they re-
ported Acc = 84%, Se = 85.7%, PPV = 85.7%, Sp = 81.8%, and NPV = 81.8%. Com-
paring this performance with our highest results obtained at the 1 e/h thresh-
old, it can be observed that our LSBoost model outperformed these outcomes in
terms of Se (90.76%) and PPV (86.26%). This reinforces the notion that our LS-
Boost model would be clinically valuable for detecting OSA presence in its lowest
severity degree. Three studies conducted by the same research group (Gil et al.,
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Table 6.4. Highest diagnostic performance achieved in the state-of-the-art research works
that have focused on the automated diagnosis of pediatric OSA using cardiovascular sig-
nals.

Study Model #Total/#Test AHI Se Sp Acc PPV NPV AUC

Shouldice et al. (2004) QDA (HRV) 50/25 1 85.70 81.80 84.00 85.70 81.80 -

Gil et al. (2009) LDA (PPG + HRV) 21/21 <5 control
>18 OSA 87.50 71.40 80.00 - - -

Gil et al. (2010) LDA (PPG + PTTV) 21/21 <5 control
>18 OSA 75.00 85.70 80.00 - - -

Lázaro et al. (2014) LDA (PPG + PRV) 21/21 <5 control
>18 OSA 100 71.40 86.70 - - -

Dehkordi et al. (2016) LASSO (PRV) 146/146 5 76.00 68.00 71.00 - - 0.780

Martín-Montero
et al. (2021b) LDASpeci f ic

1 37.70 80.10 52.00 78.80 39.70 0.597
1738/757 5 48.20 80.80 76.00 30.30 90.00 0.696

10 62.80 84.30 82.30 28.50 95.70 0.774

Martín-Montero
et al. (2021a)

MLP1Classic 1 52.30 59.40 54.70 71.58 38.87 0.600
MLP5Classic 1738/757 5 50.90 86.20 81.00 39.04 91.00 0.774
MLP10Classic 10 43.50 96.50 91.70 55.56 94.45 0.847

Martín-Montero
et al. (2021a)

MLP1Speci f ic 1 76.30 38.30 63.40 70.74 45.16 0.627
MLP5Speci f ic 1738/757 5 62.50 84.20 81.00 40.70 92.82 0.791
MLP10Speci f ic 10 66.70 91.60 89.30 44.23 96.48 0.841

Martín-Montero
et al. (2023) LSBoost

1 90.76 23.40 80.07 86.26 32.35 0.651
1018/296 5 66.67 61.17 63.18 49.66 76.16 0.677

10 40.00 92.30 84.12 47.37 89.53 0.742

AHI: apnea-hypopnea index, Se: sensitivity (%), Sp: specificity (%), Acc: accuracy (%), PPV: positive predictive value (%), NPV:
negative predictive value (%), AUC: area under receiver-operating characteristic curve, QDA: quadratic discriminant analysis, HRV:
heart rate variability, LDA: linear discriminant analysis, PPG: photoplethysmography, PTTV: pulse transit time variability, PRV: pulse
rate variability, LASSO: least absolute shrinkage operating characteristic curves.

2010, 2009; Lázaro et al., 2014) also focused on detecting apneic event presence to
consequently report a per-subject classification extracting HRV features from de-
creases in amplitude fluctuations of PPG. These studies included 21 subjects, 10
OSA children (AHI > 18 e/h) and 11 controls (AHI < 5 e/h). When considering
HRV information, they reported Acc ranging from 73.3% to 80%, Se from 62.5%
to 87.5%, and Sp from 71.45% to 85.7%. Despite the lower Se identified in our re-
search, Table 6.4 shows that the MLP models constructed with bispectral features
achieved higher Acc and, more interesting, these models are particularly effec-
tive in ruling out children without severe OSA. It is evidenced by the higher Sp
achieved at a more stringent severity threshold (10 e/h). This capability has the
potential to minimize the number of individuals referred for further evaluation,
thereby reducing waiting lists. Lázaro et al. (2014) also noted that when con-
sidering PRV information rather than HRV, combined with decreased amplitude
fluctuation events, the Se and Acc increased to 100% and 86.7%, respectively (see
Table 6.4). Notwithstanding, there exist a marked difference between all these
previous works and our research, mainly in the child population included, but
also in the criterion followed to establish OSA severity, hindering further com-
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prehensive comparisons.
Dehkordi et al. (2016). conducted a study in which they characterized the PRV

signal using temporal and frequency approaches, as well as detrended fluctua-
tion analysis, for diagnosing OSA in a population of 146 children. By combining
this information, they directly reported per-subject classification using a cutoff of
5 e/h for OSA severity, reaching an Acc of 71%, Se of 76%, Sp of 68%, and AUC
of 78%. From Table 6.4, it can be observed that our highest performance at this
cutoff (MLP5Speci f ic model) surpassed their Acc, AUC, and Sp, thereby obtaining
better diagnostic yield in overall terms, and making it more suitable for clinical
implementation. Lastly, in the comparison with previous studies that performed
automated pediatric OSA diagnosis through cardiovascular signal analysis, Co-
hen and de Chazal (2015) conducted an automated classification algorithm focus-
ing exclusively on analyzing HRV. Nevertheless, their work only provided clas-
sification results for apneic event detection without further reporting per-subject
classification. Consequently, comparing their results with the OSA diagnosis per-
formance obtained in this Doctoral Thesis is not meaningful.

Regarding pediatric OSA diagnosis, the results compared so far in this sec-
tion have mainly focused on studies that used cardiovascular signals exclusively.
As it was stated in the introduction section, the systematic review performed by
Gutiérrez-Tobal et al. (2022) pointed out that the majority of research works that
focused on machine-learning approaches to diagnose pediatric OSA were based
on SpO2 signals. In this systematic review, that did not include any HRV study, a
meta-analysis was performed to gather Se and Sp metrics from 19 research works
that met their inclusion criteria (Gutiérrez-Tobal et al., 2022). While caution must
be exercised when comparing results obtained from different biological sources,
a comparison can still be made between these findings and the performance met-
rics reported in this Doctoral Thesis. Gutiérrez-Tobal et al. (2022) provided di-
agnostic performance metrics for pediatric OSA at three AHI cutoffs: 1, 5, and
10 e/h, reporting Se values of 84.9%, 71.4%, and 65.2% for the respective cutoffs,
while Sp values were reported as 49.9%, 83.2%, and 93.1%. Comparison with our
models, as shown in Table 6.4, reveals that our LSBoost model achieved higher Se
at the 1 e/h cutoff, and the LDASpeci f ic and MLP1Classic models achieved higher
Sp. For the 5 and 10 e/h cutoff, both MLP models performed within the same
range of Sp as the meta-analysis, as also did our LSBoost models for the 10 e/h
cutoff. Furthermore, MLP10Speci f ic also achieved similar Se in 10 e/h. Therefore,
the overall similar diagnostic yield achieved in this Doctoral Thesis, particularly
with the MLP10Speci f ic model, underscores the clinical utility of the HRV charac-
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terization conducted to help in pediatric OSA diagnosis.
Regarding sleep stage classification, this task in children based on cardiac

measures has been rarely explored. To the best of our knowledge, the AdaBoost
model developed in Martín-Montero et al. (2023) was the first instance where
HRV features were utilized for sleep stage classification in the context of pedi-
atric OSA. However, there have been some prior studies that focused on sleep
stage classification in healthy children. Haddad et al. (1987) examined 9 infants
aged 1 to 4 months to differentiate between REM and quiet sleep using cardiores-
piratory measures. They found that alterations in respiratory cycle time had the
highest classification ability, achieving a Se of 93% for quiet sleep and nearly 99%
for REM. Notwithstanding, they did not specifically report the performance of
cardiac measures alone. In a study by Harper et al. (1987), cardiorespiratory
measures were used to classify sleep stages in 25 infants over 6 months of age.
They classified 1-minute segments into wake, quiet sleep, and REM, reporting an
overall accuracy (Acc3) of 82% using cardiac measures alone, which increased to
84.8% when combining seven cardiac and respiratory measures. Lastly, Lewicke
et al. (2008) developed various machine-learning models for the automatic clas-
sification of sleep versus wake using 30-second HRV segments in a cohort of 190
infants. They reported an Acc of around 78%, which improved to 85-87% when
excluding 30% of segments that hindered classification. Unfortunately, due to
the differences in cohort characteristics, sample size, and the specific sleep stages
considered, it is virtually impossible to directly compare these findings with our
results regarding sleep stage classification.

6.4 Limitations of the study

In the course of this Doctoral Thesis, we have demonstrated the usefulness of the
approaches followed to characterize alterations in the ANS in presence of pedi-
atric OSA using HRV analysis. Notwithstanding, there exist certain limitations
that deserve to be mentioned.

The first of these limitations pertains to the size of the database, specifically
concerning the distribution of the population across different severity groups of
pediatric OSA. Although the research conducted involved a considerably large
population, ranging from 404 to 1738 children, there is an imbalance in the num-
ber of children included in each severity group. Similarly, when considering dif-
ferent types of HRV 10-minute segments, despite the great number of segments
from each type, there was a predominance of NREM and non-apneic segments.
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Tests carried out for balancing the dataset did not change the performance of the
models. However, to enhance the robustness and generalizability of our find-
ings, future studies should aim to increase the sample size, ensuring a more bal-
anced distribution of severity groups, or including a greater representation of
REM, wake, and apneic segments.

Likewise, the studies conducted did not assess the population stratification by
factors such as age, sex, BMI, or other relevant variables, which could have un-
veiled OSA subgroups where HRV analysis could be more specific. Nonetheless,
the definition of the OSA-specific frequency band BWRes considered the age-
related variations that may affect HRV and respiratory peaks. Additionally, all
potential covariates that could influence HRV activity were controlled for to the
best extent possible, considering them in partial correlations and incorporating
them into the CMA.

Other limitation of this study concerns to the diagnostic ability achieved by
the developed models. It is important to note that, in certain instances of this
research, the objective was not to maximize diagnostic performance, but rather
to compare the clinical usefulness of different characterization approaches em-
ployed. Nevertheless, when comparing with state-of-the-art studies using HRV
signals, our models demonstrated similar or higher diagnostic performance.
Specifically, the MLP models exhibited high diagnostic yield in the 5 e/h and 10
e/h AHI cutoffs, and our work was the only one conducting binary classification
in the 10 e/h AHI cutoff using cardiovascular signals. However, it is worth noting
that the diagnostic yield obtained in this Doctoral Thesis is surpassed by consid-
ering other biomedical signals obtained during PSG. Furthermore, the outcomes
achieved, particularly in the lower severity thresholds, are not yet sufficient for
widespread diagnostic application in real clinical settings. Therefore, future stud-
ies should focus on implementing more sophisticated predictive models aimed at
further enhancing diagnostic performance.

Concerning the applicability of our novel pediatric HRV OSA-specific fre-
quency bands to an adult population, we have not conducted testing for adult
suitability. Nevertheless, when comparing the outcomes of our study with a pre-
vious adult-focused investigation (Gutiérrez-Tobal et al., 2015), it becomes appar-
ent that dissimilarities in the occurrence and duration of apneic events, coupled
with variations in respiratory patterns, hinder the direct implementation of our
pediatric HRV OSA-specific bands in adults. Alternatively, should there be an in-
terest in employing OSA-specific HRV frequency bands for adults, future studies
could replicate our methodology, defining novel adults OSA-specific HRV fre-
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quency bands that would be able to adapt to these differences between popula-
tions.

There are also a limitation related to the feature-extraction techniques used in
this Doctoral Thesis. In recent years, nonlinear techniques based on the chaos the-
ory have been evaluated in the context of pediatric OSA. These techniques have
been found to provide additional insights into the dynamics of other biomedi-
cal signals, such as SpO2 or AF (Álvarez et al., 2017, 2013; Barroso-García et al.,
2020; Crespo et al., 2018; Garde et al., 2014; Hornero et al., 2017; Jiménez-García
et al., 2020). While the feature-extraction techniques used in the time and spec-
tral domain in this study have demonstrated their utility, the nonlinear behavior
of HRV in the presence of pediatric OSA through nonlinear parameters has not
been evaluated. Therefore, future studies should consider the inclusion of nonlin-
ear metrics, such as central tendency measure, Lempel-Ziv complexity, or sample
entropy, to assess their usefulness in pediatric OSA and their complementarity
with the HRV features examined in this Doctoral Thesis.

Also aligning with the search of more complex predictive models to evalu-
ate clinical utility of HRV, in recent years there has been growing interest in using
deep-learning techniques to tackle healthcare challenges, including the automatic
diagnosis of pediatric OSA, due to their promising results and potential utility
(Gutiérrez-Tobal et al., 2022). However, in this Doctoral Thesis, we focused solely
on assessing machine-learning approaches to evaluate diagnostic performance,
which can be considered a limitation of this study. It is important to note that one
of the main drawbacks of deep-learning techniques is their lack of interpretabil-
ity, with the perception of ‘black box’ being even more pronounced compared to
traditional machine-learning methodologies. Since one of the main aims of this
thesis was to investigate the ANS alterations associated with pediatric OSA, us-
ing a deep-learning approach would have hindered our ability to gain insights
into these alterations. Nevertheless, for future research aiming to enhance the di-
agnostic yield of pediatric OSA, the inclusion of deep-learning techniques might
be considered, coupled with more powerful XAI techniques to improve our un-
derstanding of ANS alterations in pediatric OSA.

Finally, there are also limitations associated with the acquisition of ECG sig-
nals and the diagnosis of OSA. In this study, all children underwent laboratory-
based PSG to establish OSA diagnosis and severity. While it is considered the
gold standard for OSA diagnosis, it has certain drawbacks. It involves the use of
a large number of sensors and requires children to spend a night in a laboratory,
away from their home and parents. This intrusive nature of the procedure can
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lead to changes in sleep architecture and may not fully represent the usual sleep
pattern of the children (Álvarez et al., 2017; Kheirandish-Gozal, 2010). Home-
based respiratory polygraphy has been shown to be a feasible alternative for di-
agnosing pediatric OSA (Alonso-Álvarez et al., 2015; Chiner et al., 2020). There-
fore, to ensure the reproducibility of the findings in this Doctoral Thesis, future
studies should include the analysis of at-home OSA databases in children.
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Conclusions

The four studies conducted during the course of this Doctoral Thesis share a com-
mon focus: the comprehensive characterization of ANS alterations resulting from
pediatric OSA from HRV analysis. To achieve this objective, automatic signal
processing methodologies based in novel HRV features were designed, imple-
mented, and assessed. Specifically, OSA-related HRV features in the spectral and
bispectral domain were proposed to investigate cardiac behavior in the presence
of OSA and assess the effects of OSA treatment. Additionally, the clinical utility of
these new HRV features was evaluated by using machine-learning models for the
automatic diagnosis of pediatric OSA and the classification of sleep stages. The
findings demonstrated that the newly proposed HRV features reflect ANS alter-
ations associated with pediatric OSA, with these features being useful to evaluate
the effects of OSA treatment and to aid in the diagnosis of the disease.

Section 7.1 of this chapter highlights the primary contributions made in the
research. Subsequently, Section 7.2 presents the conclusions drawn from the find-
ings of this Doctoral Thesis. Lastly, in Section 7.3, future research lines are stated.

7.1 Contributions

The primary contributions offered by the compendium of publications presented
in this Doctoral Thesis are detailed below:

1) Definition of three novel pediatric OSA-specific spectral bands: BW1
(0.001-0.005 Hz), BW2 (0.028 - 0.074 Hz) and BWRes (0.04 Hz around max-
imum value within HF). These frequency ranges have been identified and
thoroughly characterized, demonstrating their potential usefulness in as-

105
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sessing HRV alterations and treatment outcomes. These new approaches
also outperformed conventional methods in diagnosing pediatric OSA.

2) Characterization of HRV through bispectral features in the context of pe-
diatric OSA. To the best of our knowledge, this is the first research to use
bispectral HRV analysis for the characterization and diagnosis of pediatric
OSA. It enabled the extraction of two distinct feature subsets, one from the
regions bounded by the classic HRV frequency ranges, and the other one
from the OSA-specific bispectral regions. Those feature subsets provided
complementary and non-redundant information about the changes in the
non-Gaussianity, nonlinearity, and irregularity patterns of HRV in the pres-
ence of OSA. Additionally, a novel bispectral parameter, RPDiag, has been
introduced.

3) Establishment of causality relationships between changes in HRV met-
rics and OSA treatment effects. As far as we are concerned, this is the first
study to attribute changes in HRV features directly to treatment effects, as
measured by alterations in polysomnographic indices or the resolution of
the disease. The findings from this analysis have led to the identification of
BW2 as a potential biomarker of pediatric OSA resolution.

4) HRV segment characterization considering sleep stages and presence of
apneic events. To the best of our knowledge, this is the first study to con-
duct a segment-level analysis of HRV behavior taking into account sleep
stages and apneic events in pediatric OSA context. The evolution of novel
OSA-specific HRV parameters through sleep stages have also been intro-
duced in this research.

5) Evaluation of novel machine-learning models to diagnose pediatric OSA.
Although the machine-learning methodologies applied in this Doctoral
Thesis are not new, the models developed, as well as its application in the
context of pediatric OSA are a novelty. These models utilize various types
of novel HRV features, including spectral features for binary classification
(LDA), bispectral features for binary classification (two MLP models), and
classic as well as OSA-specific HRV features from 10-minute segments for
regression (LSBoost).

6) Evaluation of a machine-learning model to classify sleep stages using
HRV features in pediatric OSA population. Although it was previously
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evaluated in healthy population, to the best of our awareness, this is the
first time that a machine-learning model (AdaBoost) has been developed
solely based on HRV features for the purpose of automatically classifying
sleep stages in pediatric OSA context.

7) Evaluation of XAI techniques through feature importance metrics in the
ensemble-learning model developed. To the best of our knowledge, this
is also the first time that feature importance has been assessed in models
aimed at diagnosing pediatric OSA (relative importance with the LSBoost
model), and classifying sleep stages (LIME with the AdaBoost model). This
evaluation has revealed that two of the novel HRV spectral features (RPBW2

and RPBWRes) hold the highest importance in these two tasks, increasing the
explainability of the ensemble-learning models developed.

7.2 Conclusions

In the previous sections, we have performed a thorough evaluation and discus-
sion regarding the outcomes reached in this Doctoral Thesis. Thus, it facilitates
the extraction of the principal conclusions, which are detailed here:

1) Novel pediatric OSA-specific HRV frequency band BW1 (0.001-0.005 Hz) is
associated with macro sleep disruptions resulting from OSA, measured as
WASO time and the number of awakenings during night. The treatment
of this condition induces changes within this spectral range, which can be
attributed to alterations in the OAHI.

2) Novel pediatric OSA-specific HRV frequency band BW2 (0.028-0.074 Hz)
is strongly associated with the duration of apneic events. Treatment inter-
ventions for OSA result in changes within this frequency range, primarily
driven by alterations in OSA severity, with decreases in the activity of this
band reflecting a decrease of the severity. Furthermore, it was the only spec-
tral band where changes were causally mediated by OSA resolution and al-
lows to differentiate HRV activity between children with and without OSA
resolution. Accordingly, it has been proposed as a potential biomarker of
pediatric OSA resolution. Moreover, when considering only the HRV sig-
nal, this OSA-specific frequency band has proven to be highly valuable in
automated diagnosis of pediatric OSA.

3) Novel individual pediatric OSA-specific HRV frequency band BWRes (0.04
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Hz around individual respiratory peak) is related to oxygen desaturations
and micro sleep disruptions. Treatment interventions for OSA induce
changes within this frequency band, driven by variations in arousal indices.
Moreover, this OSA-specific frequency band has proven to be highly useful
in automatically classifying sleep stages in pediatric OSA using the HRV
signal.

4) The findings from the bispectral analysis revealed that pediatric OSA is as-
sociated with increased linearity and Gaussianity of the HRV signal at very
low frequencies. Additionally, the occurrence of apneic events induces a
shift in the coupling pattern of overnight HRV, transitioning from frequen-
cies below 0.02 Hz to higher frequencies, related to the duration of those
events. Furthermore, the presence of OSA leads to a decrease in HRV ir-
regularity at frequency components associated with BW2 and LF frequency
ranges, while there is an increase in irregularity in frequency components
associated with respiration.

5) Pediatric OSA leads to elevated sympathetic activity, which is evident in
HRV patterns during the night. It is anticipated that sympathetic activity
would be higher during the REM sleep stage due to the increased occur-
rence of apneic events in this stage. Surprisingly, the underlying sympa-
thetic excitation resulting from apneic events appears to be masked by the
basal sympathetic activation observed during REM sleep. Therefore, it be-
comes easier to discern these OSA-related alterations in HRV when ana-
lyzing data from NREM sleep stage. Consequently, we emphasize the sig-
nificance of considering the presence of apneic events together with sleep
stages when assessing HRV changes in the context of pediatric OSA.

6) The HRV analysis methods developed in this Doctoral Thesis have demon-
strated their utility in aiding to the diagnosis of pediatric OSA. The MLP
models, constructed using optimal bispectral feature subsets, achieved the
highest performance for the AHI severity thresholds of 5 (Acc = 81%,
AUC = 0.791) and 10 e/h (Acc = 91.70%, AUC = 0.847). The LSBoost
model, on the other hand, exhibited the highest performance for the AHI
severity cutoff of 1 e/h (Acc = 80.07%, AUC = 0.651), emphasizing the
effectiveness of segment-level characterization in detecting the presence of
OSA, even in its mildest form.

Based on the aforementioned considerations, it can be concluded that the
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characterization of HRV using the novel indices developed during the realiza-
tion of the present Doctoral Thesis, and computed across the new pediatric OSA-
specific frequency bands, enable a more specific assessment of the ANS alter-
ations with OSA. In addition, the inclusion of these indices in pediatric OSA
studies have the potential to contribute to the simplification of the diagnosis of
the disease.

7.3 Future research lines

Throughout the completion of this Doctoral Thesis, several issues have emerged
that warrant further investigation in order to enhance our understanding and
complementing the work presented here. Next, the following areas are identified
as potential directions for future research to complement and expand upon our
current findings:

1) The evaluation of the automatic signal processing methods stratifying by
subgroups of children with diverse clinical and demographic characteris-
tics, such as age, BMI, and gender. This approach will enable the identifica-
tion of specific subgroups where optimal results can be attained.

2) To enhance the reliability and generalizability of our results, it is sug-
gested to validate the developed methodology using ECG signals acquired
through portable devices in an at-home approach. This validation will en-
able us to assess the performance of our methodology in a real-world set-
ting, outside of a laboratory environment, thereby increasing the applica-
bility and practicality of our findings.

3) Integration of the HRV signal with feature-extraction techniques from the
EDR. The EDR signal offers a non-invasive means of monitoring respira-
tion activity directly from the ECG, without the need for dedicated respira-
tory signals. By combining the information extracted from HRV with that
obtained from the EDR, we can assess the complementary nature of these
signals and potentially develop a unified approach for diagnosing pediatric
OSA. This is particularly advantageous as both signals are derived from the
ECG, simplifying the diagnostic process.

4) Another important future area for investigation is the assessment of the
clinical utility of the HRV characterization conducted in this Doctoral Thesis
for evaluating cardiovascular risks. This evaluation holds significance due
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to the established association between cardiovascular risk and OSA. By ex-
amining the HRV features proposed in this research, we can gain insights
into the cardiovascular effects of OSA and explore potential strategies to
mitigate these effects.

5) The marked differences in the presence and duration of apneic events, along
with the differences in the respiratory patterns between children and adult
make inefficiently the application in adult population of the pediatric OSA-
specific frequency bands developed during the realization of this Doctoral
Thesis. However, the replication of the methodology followed to the identi-
fication of our novel bands of interest using an adult cohort would allow to
unravel adult HRV OSA-specific frequency bands to gain insights into the
characterization of the alterations in the ANS due to OSA in adults.

6) The inclusion of non-linear parameters would be valuable to explore in fu-
ture research. These types of features have proven their usefulness in pedi-
atric OSA context when applied to other biological signals. Accordingly, the
implementation of features such as central tendency measure, Lempel-Ziv
complexity, or sample entropy, would complement the feature-extraction
techniques implemented in this research, while providing new insights into
the ANS behavior in the context of pediatric OSA.

7) Finally, the utilization of novel deep-learning techniques, which are becom-
ing increasingly important in the field of healthcare, can enhance the diag-
nostic capabilities of HRV. Deep-learning methods are typically applied to
raw data, and their integration with advanced XAI techniques could be cru-
cial for obtaining deeper insights into the impact of OSA on cardiac behav-
ior. The incorporation of these approaches also would improve and maxi-
mize the diagnostic performance reached for pediatric OSA.

In conclusion, this Doctoral Thesis focused on providing a comprehensive un-
derstanding of the ANS behavior in the context of pediatric OSA through HRV
analysis. The applied methodology enabled us to ascertain that the assessment
of HRV signals using novel pediatric OSA-specific spectral bands and features
presented in this research offers a more specific evaluation of ANS alterations.
Consequently, it has the potential to streamline the diagnosis of OSA in children.
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Martín-Montero et al. (2021b): Heart rate variability spectrum characteristics
in children with sleep apnea.

DOI: 10.1038/s41390-020-01138-2

Adrián Martín-Montero, Gonzalo C. Gutiérrez-Tobal, Leila Kheirandish-Gozal,
Jorge Jiménez-García, Daniel Álvarez, Félix del Campo, David Gozal, and
Roberto Hornero. Pediatric Research, vol. 89 (7), p. 1771-1779, 2021. Impact
factor in 2021: 3.953, Q1 in “PEDIATRICS” (JCR-WOS).

Abstract: Background: Classic spectral analysis of heart rate variability (HRV)
in pediatric sleep apnea-hypopnea syndrome (SAHS) traditionally evaluates the
very low frequency (VLF: 0-0.04 Hz), low frequency (LF: 0.04–0.15 Hz), and
high frequency (HF: 0.15–0.40 Hz) bands. However, specific SAHS-related fre-
quency bands have not been explored. Methods: One thousand seven hundred
and thirty-eight HRV overnight recordings from two pediatric databases (0–13
years) were evaluated. The first one (981 children) served as training set to de-
fine new HRV pediatric SAHS-related frequency bands. The associated relative
power (RP) were computed in the test set, the Childhood Adenotonsillectomy
Trial database (CHAT, 757 children). Their relationships with polysomnographic
variables and diagnostic ability were assessed. Results: Two new specific spec-
tral bands of pediatric SAHS within 0–0.15 Hz were related to duration of ap-
neic events, number of awakenings, and wakefulness after sleep onset (WASO),
while an adaptive individual-specific new band from HF was related to oxyhe-
moglobin desaturations, arousals, and WASO. Furthermore, these new spectral
bands showed improved diagnostic ability than classic HRV. Conclusions: Novel
spectral bands provide improved characterization of pediatric SAHS. These find-
ings may pioneer a better understanding of the effects of SAHS on cardiac func-
tion and potentially serve as detection biomarkers.
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Martín-Montero et al. (2021a): Bispectral Analysis of Heart Rate Variability to
Characterize and Help Diagnose Pediatric Sleep Apnea.

DOI: 10.3390/e23081016

Adrián Martín-Montero, Gonzalo C. Gutiérrez-Tobal, David Gozal, Verónica
Barroso-García, Daniel Álvarez, Félix del Campo, Leila Kheirandish-Gozal, and
Roberto Hornero. Entropy, vol. 23 (8), p. 1016, 2021. Impact factor in 2021: 2.738,
Q2 in “PHYSICS, MULTIDISCIPLINARY” (JCR-WOS).

Abstract: Pediatric obstructive sleep apnea (OSA) is a breathing disorder that
alters heart rate variability (HRV) dynamics during sleep. HRV in children is
commonly assessed through conventional spectral analysis. However, bispectral
analysis provides both linearity and stationarity information and has not been
applied to the assessment of HRV in pediatric OSA. Here, this work aimed to
assess HRV using bispectral analysis in children with OSA for signal characteri-
zation and diagnostic purposes in two large pediatric databases (0–13 years). The
first database (training set) was composed of 981 overnight ECG recordings ob-
tained during polysomnography. The second database (test set) was a subset of
the Childhood Adenotonsillectomy Trial database (757 children). We character-
ized three bispectral regions based on the classic HRV frequency ranges (very low
frequency: 0–0.04 Hz; low frequency: 0.04–0.15 Hz; and high frequency: 0.15–0.40
Hz), as well as three OSA-specific frequency ranges obtained in recent studies
(BW1: 0.001–0.005 Hz; BW2: 0.028–0.074 Hz; BWRes: a subject-adaptive respira-
tory region). In each region, up to 14 bispectral features were computed. The fast
correlation-based filter was applied to the features obtained from the classic and
OSA-specific regions, showing complementary information regarding OSA alter-
ations in HRV. This information was then used to train multi-layer perceptron
(MLP) neural networks aimed at automatically detecting pediatric OSA using
three clinically defined severity classifiers. Both classic and OSA-specific MLP
models showed high and similar accuracy (Acc) and areas under the receiver op-
erating characteristic curve (AUCs) for moderate (classic regions: Acc = 81.0%,
AUC = 0.774; OSA-specific regions: Acc = 81.0%, AUC = 0.791) and severe (clas-
sic regions: Acc = 91.7%, AUC = 0.847; OSA-specific regions: Acc = 89.3%, AUC
= 0.841) OSA levels. Thus, the current findings highlight the usefulness of bispec-
tral analysis on HRV to characterize and diagnose pediatric OSA.
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Martín-Montero et al. (2022): Heart rate variability as a potential biomarker
of pediatric obstructive sleep apnea resolution.

DOI: 10.1093/sleep/zsab214

Adrián Martín-Montero, Gonzalo C. Gutiérrez-Tobal, Leila Kheirandish-Gozal,
Fernando Vaquerizo-Villar, Daniel Álvarez, Félix del Campo, David Gozal, and
Roberto Hornero. SLEEP, vol. 45 (2), p. zsab214, 2022. Impact factor in 2022:
5.599, Q1 in “CLINICAL NEUROLOGY” (JCR-WOS).

Abstract: Study Objectives: Pediatric obstructive sleep apnea (OSA) affects
cardiac autonomic regulation, altering heart rate variability (HRV). Although
changes in classical HRV parameters occur after OSA treatment, they have not
been evaluated as reporters of OSA resolution. Specific frequency bands (named
BW1, BW2, and BWRes) have been recently identified in OSA. We hypothesized
that changes with treatment in these spectral bands can reliably identify changes
in OSA severity and reflect OSA resolution. Methods: Four hundred and four
OSA children (5–9.9 years) from the prospective Childhood Adenotonsillectomy
Trial were included; 206 underwent early adenotonsillectomy (eAT), while 198
underwent watchful waiting with supportive care (WWSC). HRV changes from
baseline to follow-up were computed for classical and OSA-related frequency
bands. Causal mediation analysis was conducted to evaluate how treatment in-
fluences HRV through mediators such as OSA resolution and changes in disease
severity. Disease resolution was initially assessed by considering only obstruc-
tive events, and was followed by adding central apneas to the analyses. Re-
sults: Treatment, regardless of eAT or WWSC, affects HRV activity, mainly in
the specific frequency band BW2 (0.028–0.074 Hz). Furthermore, only changes
in BW2 were specifically attributable to all OSA resolution mediators. HRV ac-
tivity in BW2 also showed statistically significant differences between resolved
and nonresolved OSA. Conclusions: OSA treatment affects HRV activity in terms
of change in severity and disease resolution, especially in OSA-related BW2 fre-
quency band. This band allowed to differentiate HRV activity between children
with and without resolution, so we propose BW2 as potential biomarker of pedi-
atric OSA resolution.
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Martín-Montero et al. (2023): Pediatric sleep apnea: Characterization of ap-
neic events and sleep stages using heart rate variability.

DOI: 10.1016/j.compbiomed.2023.106549

Adrián Martín-Montero, Pablo Armañac-Julián, Eduardo Gil, Leila
Kheirandish-Gozal, Daniel Álvarez, Jesús Lázaro, Raquel Bailón, David Gozal,
Pablo Laguna, Roberto Hornero and Gonzalo C. Gutiérrez-Tobal. Computers
in Biology and Medicine, vol. 154, p. 106549, 2023. Impact factor in 2022 (last
year available): 7.669, D1 in “MATHEMATICAL AND COMPUTATIONAL
BIOLOGY” (JCR-WOS).

Abstract: Heart rate variability (HRV) is modulated by sleep stages and apneic
events. Previous studies in children compared classical HRV parameters dur-
ing sleep stages between obstructive sleep apnea (OSA) and controls. How-
ever, HRV-based characterization incorporating both sleep stages and apneic
events has not been conducted. Furthermore, recently proposed novel HRV OSA-
specific parameters have not been evaluated. Therefore, the aim of this study was
to characterize and compare classic and pediatric OSA-specific HRV parameters
while including both sleep stages and apneic events. A total of 1,610 electrocar-
diograms from the Childhood Adenotonsillectomy Trial (CHAT) database were
split into 10-minute segments to extract HRV parameters. Segments were charac-
terized and grouped by sleep stage (wake, W; non-rapid eye movement, NREMS;
and REMS) and presence of apneic events (under 1 apneic event per segment,
e/s; 1-5 e/s; 5-10 e/s; and over 10 e/s). NREMS showed significant changes in
HRV parameters as apneic event frequency increased, which were less marked in
REMS. In both NREMS and REMS, power in BW2, a pediatric OSA-specific fre-
quency domain, allowed for the optimal differentiation among segments. More-
over, in the absence of apneic events, another defined band, BWRes, resulted
in best differentiation between sleep stages. The clinical usefulness of segment-
based HRV characterization was then confirmed by two ensemble-learning mod-
els aimed at estimating apnea-hypopnea index and classifying sleep stages, re-
spectively. We surmise that basal sympathetic activity during REMS may mask
apneic events-induced sympathetic excitation, thus highlighting the importance
of incorporating sleep stages as well as apneic events when evaluating HRV in
pediatric OSA.
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David Gozal, Roberto Hornero, "Análisis de flujo aéreo y saturación de
oxígeno en sangre mediante transformada wavelet para la detección de la
apnea obstructiva del sueño infantil", XXXVIII Congreso Anual de la Sociedad
Española de Ingeniería Biomédica (CASEIB 2020), ISBN: 978-84-09-25491-0, pp.
315-318, Valladolid (Spain), November 25 - November 27, 2020.

4. Gonzalo C. Gutiérrez-Tobal, Leila Kheirandish-Gozal, Adrián Martín-
Montero, Jesús Poza, Daniel Álvarez, Félix del Campo, David Gozal,
Roberto Hornero, "Diferencias en el espectro del EEG nocturno en niños
con apnea del sueño", XXVII Reunión Anual de la Sociedad Española Del Sueño
(SES 2019), Vitoria (Spain), April 11 - April 13, 2019.

5. Adrián Martín-Montero, Gonzalo C. Gutiérrez-Tobal, Daniel Álvarez, Fer-
nando Vaquerizo-Villar, Verónica Barroso-García, Jorge Jiménez-García,
Leila Kheirandish-Gozal, Félix del Campo, David Gozal, Roberto Hornero,
"Utilidad de nuevas bandas espectrales en la señal de HRV para ayudar
en el diagnóstico de la apnea del sueño infantil", XXXVII Congreso Anual
de la Sociedad Española de Ingeniería Biomédica (CASEIB 2019), ISBN: 978-84-
09-16707-4, pp. 295-298, Santander (Spain), November 27 - November 29,
2019.

6. Jorge Jiménez-García, Gonzalo C. Gutiérrez-Tobal, María García, Daniel Ál-
varez, Verónica Barroso-García, Fernando Vaquerizo-Villar, Adrián Martín-
Montero, Félix del Campo, Leila Kheirandish-Gozal, David Gozal, Roberto
Hornero, "Evaluación de la información espectral de las señales de flujo
aéreo y saturación de oxígeno en sangre para la ayuda al diagnóstico de
la apnea del sueño infantil", XXXVII Congreso Anual de la Sociedad Española
de Ingeniería Biomédica (CASEIB 2019), ISBN: 978-84-09-16707-4, pp. 25-28,
Santander (Spain), November 27 - November 29, 2019.

7. Gonzalo C. Gutiérrez-Tobal, Daniel Álvarez, Verónica Barroso-García, Fer-
nando Vaquerizo-Villar, Adrián Martín-Montero, Andrea Crespo, Félix del
Campo, Roberto Hornero, "Aplicación de la entropía espectral a la señal de
variabilidad de pulso para incrementar el potencial de la oximetría en el
diagnóstico de la apnea del sueño a domicilio", XXVI Reunión Anual de la
Sociedad Española Del Sueño (SES 2018), Barcelona (Spain), April 26 - April
28, 2018.

8. Adrián Martín-Montero, Gonzalo C. Gutiérrez-Tobal, Jesús Poza, Daniel
Álvarez, Fernando Vaquerizo-Villar, Verónica Barroso-García, Saúl J. Ruiz-
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Gómez, Leila Kheirandish-Gozal, Félix del Campo, David Gozal, Roberto
Hornero, "Caracterización de la apnea del sueño infantil mediante nuevas
bandas espectrales del EEG", XXXVI Congreso Anual de la Sociedad Española
de Ingeniería Biomédica (CASEIB 2018), ISBN: 978-84-09-06253-9, pp. 249-252,
Ciudad Real (Spain), November 21 - November 23, 2018.

9. Saúl J. Ruiz-Gómez, Carlos Gómez, Jesús Poza, Pablo Núñez, Victor
Rodríguez-González, Adrián Martín-Montero, Aarón Maturana-Candelas,
Roberto Hornero, "Estudio del efecto de la conducción de volumen en me-
didas de conectividad funcional derivadas de la coherencia", XXXVI Con-
greso Anual de la Sociedad Española de Ingeniería Biomédica (CASEIB 2018),
ISBN: 978-84-09-06253-9, pp. 241-244, Ciudad Real (Spain), November 21
- November 23, 2018.

10. Pablo Núñez, Jesús Poza, Carlos Gómez, Saúl J. Ruiz-Gómez, Adrián
Martín-Montero, Miguel A. Tola-Arribas, Mónica Cano, Roberto Hornero,
"Estudio de la conectividad neuronal dinámica en la enfermedad de
Alzheimer", XXXV Congreso Anual de la Sociedad Española de Ingeniería
Biomédica (CASEIB 2017), ISBN: 978-84-9082-797-0, pp. 341-344, Bilbao
(Spain), November 29 - December 1, 2017.

A.2 International internship

Three-month research internship at the Charité - Universitätsmedizin Berlin, Ger-
many.

i. Purpose of the internship
The main purpose of the three-month research stay was to extend the
knowledge in the analysis of cardiovascular signal processing techniques in
the context of pediatric OSA through the evaluation of the EDR signal. This
signal can be combined with HRV to perform an ECG approach to help in
the diagnosis of pediatric OSA. To achieve this goal, the next specific objec-
tives were performed: (1) state-of-the-art revision mainly focused on pre-
vious works using EDR signals; (2) development and application of EDR
signal processing techniques to extract the respiratory power index (RPI),
previously used as an alternative to the AHI in adults; (3) combination of
RPI adapted to children with HRV OSA-specific metrics to characterize pe-
diatric OSA; (4) analysis and evaluation of the results obtained.
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ii. Quality indicators of the institutions
The internship took place at the International Center of Sleep Medicine
(ICSM) of Charité - Universitätsmedizin Berlin, a prestigious research center
specializing in signal processing related to sleep disorders. Charité - Uni-
versitätsmedizin Berlin is an internationally renowned and multicenter hos-
pital complex with a rich history of over 300 years. It is home to a strong
research community consisting of 3700 scientists. Notably, 11 Nobel laure-
ates have been affiliated with the institution. The trainee also collaborated
with the Cardiovascular Physics research group at Humboldt University
in Berlin during the internship. In 2022, both Charité - Universitätsmedizin
Berlin and Humboldt University of Berlin ranked between positions 51 and
75 in the Shanghai Ranking. The internship was supervised by Professor
Thomas Penzel, the scientific chair of ICSM, who has an impressive publica-
tion record with over 250 JCR articles, book chapters, and books in the field
of sleep medicine. He has received numerous prestigious awards, including
the "Bial Award" for clinical medicine in Portugal in 2001, the "Bill Gruen
Award" for Innovations in Sleep Research by the Sleep Research Society in
2008, and the "Somnus Award" by Schlafmagazin for outstanding service in
sleep medicine in 2012. Professor Penzel has also supervised more than 19
Doctoral Theses to date, further demonstrating his expertise in the field.

A.3 National internship

One-month research internship at the Biomedical Signal Interpretation and Com-
putational Simulation (BSICoS) research group from the University of Zaragoza,
Spain.

i. Purpose of the internship
The primary objective of this research internship was to delve into cardio-
vascular signal processing techniques, which is a key area of expertise for
the BSICoS research group, the host group for the internship. Thus, the
purpose of the internship was directly aligned with the main focus of the
present Doctoral Thesis. It was part of an intramural project titled Sleepy-
Heart, conducted within the Centro de Investigación Biomédica en Red –
Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), with the aim
of developing a screening tool for pediatric OSA using HRV to diagnose
severely affected children and identify those at risk of developing cardio-
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vascular problems associated with OSA. Therefore, the research project
topic was also closely connected to this Doctoral Thesis. Moreover, this
research internship also allowed the strengthening of the research collabo-
ration between BSICoS and the Biomedical Engineering Group at the Uni-
versity of Valladolid, where this Doctoral Thesis has been developed. As
a result of the primary research conducted during the internship, several
publications have emerged, including one JCR article (the fourth in the col-
lection of articles presented here), two international conference papers, and
one national conference document authored by members of these institu-
tions.

ii. Quality indicators of the institutions
The internship was conducted at the Biomedical Signal Interpretation and
Computational Simulation (BSICoS) research group from the University of
Zaragoza in Spain. The primary focus of the group is to develop meth-
ods for biomedical signal processing, with a specific emphasis on person-
alized interpretation of cardiovascular, respiratory, and autonomic nervous
system conditions, as well as their interactions. Their objective is to en-
hance the impact of information and communication technologies in health-
care and deepen the understanding of the functioning of biological systems
through the analysis of noninvasive signals. To reach this goal, they collab-
orate with clinical teams and research groups that combine expertise from
both areas. Since 1990, BSICoS research group has made significant contri-
butions, publishing over 300 JCR articles, which attests to their expertise in
the field of biomedical signal processing analysis. They are recognized as an
esteemed international institution and one of the leading research groups in
biomedical engineering in the country. Professor Pablo Laguna Lasaosa, the
scientific chair of BSICoS and the supervisor of the internship, has played
a prominent role in advancing the field of biomedical signal interpretation,
particularly in the cardiovascular domain. He has co-authored more than
150 research papers, published over 300 international conference papers,
and has provided guidance for 18 Ph.D. theses.

A.4 Grants

09/2022: Erasmus + scholarship to perform a three-month internship (Berlin,
Germany, 01/09/2022 - 01/12/2022), funded by the University of Val-
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ladolid with funds from the European Union.

07/2019: ’Ayuda para contratos predoctorales para la formación de doctores
(FPI)’ grant (PRE2018-085219), funded by the Ministerio de Ciencia, In-
novación y Universidades from the Spanish Government.

A.5 Awards and honors

09/2019: Young Investigator Competition Award at the XV Mediterranean
Conference on Medical and Biological Engineering and Computing
(MEDICON 2019), for the conference paper entitled "Network analysis
on overnight EEG spectrum to assess relationships between paediatric
sleep apnoea and cognition", conducted by Gonzalo C. Gutiérrez-Tobal,
Javier Gomez-Pilar, Leila Keirandish-Gozal, Adrián Martín-Montero,
Jesús Poza, Daniel Álvarez, Félix del Campo, David Gozal and Roberto
Hornero.

11/2018: First Jose María Ferrero Corral Award at the XXXVI Congreso An-
ual de la Sociedad Española de Ingeniería Biomédica (CASEIB 2018),
awarded by the Sociedad Española de Ingeniería Biomédica (SEIB),
for the conference paper entitled "Caracterización de la apnea del
sueño infantil mediante nuevas bandas espectrales del EEG", con-
ducted by Adrián Martín-Montero, Gonzalo C. Gutiérrez-Tobal, Jesús
Poza, Daniel Álvarez, Fernando Vaquerizo-Villar, Verónica Barroso-
García, Saúl J. Ruiz-Gómez, Leila Kheirandish-Gozal, Félix del Campo,
David Gozal and Roberto Hornero.

11/2017: First Jose María Ferrero Corral Award at the XXXV Congreso An-
ual de la Sociedad Española de Ingeniería Biomédica (CASEIB 2017),
awarded by the Sociedad Española de Ingeniería Biomédica (SEIB),
for the conference paper entitled "Estudio de la conectividad neu-
ronal dinámica en la enfermedad de Alzheimer", conducted by Pablo
Núñez, Jesús Poza, Carlos Gómez, Saúl J. Ruiz-Gómez, Adrián Martín-
Montero, Miguel A. Tola-Arribas, Mónica Cano and Roberto Hornero.





Apéndice B

Resumen en castellano

B.1 Introducción

La apnea obstructiva del sueño (AOS) pediátrica es un trastorno respiratorio del
sueño que se caracteriza por periodos de interrupción total del flujo aéreo (cono-
cidos como apneas), así como periodos de reducción significativa del flujo aéreo
(conocidos como hipopneas) (American Thoracic Society, 1996). Esta enferme-
dad tiene una alta prevalencia, padeciéndola alrededor del 6 % de la población
pediátrica general (Marcus et al., 2012), y se ha asociado con un aumento en los
problemas cardiovasculares, como la hipertrofia ventricular izquierda y derecha,
alteraciones en la regulación autónoma de la frecuencia cardíaca y cambios en
la presión sanguínea (Marcus et al., 2012). Además, la AOS también se ha rela-
cionado con problemas cognitivos, incluyendo déficits en el aprendizaje y en el
rendimiento académico (Hunter et al., 2016), lo que resalta la importancia de la
detección temprana y el tratamiento para mantener la salud cardiovascular a lar-
go plazo y el potencial académico de los niños. La prueba de referencia diagnós-
tica para la AOS es la polisomnografía (PSG) nocturna, durante la cual los niños
tienen que pasar una noche en un laboratorio del sueño, tratándose de un proceso
complejo, costoso y especialmente incómodo para ellos (Tan et al., 2014). Por ello,
los inconvenientes ligados a la PSG han motivado la búsqueda de alternativas pa-
ra diagnosticar la AOS pediátrica y estudiar sus consecuencias (Alonso-Álvarez
et al., 2015; Marcus et al., 2012; Tan et al., 2014). Entre todas las alternativas al
diagnóstico propuestas, la mayoría se han enfocado al análisis de un conjunto re-
ducido de las señales adquiridas durante la PSG, centrándose principalmente en
el análisis de la señal de saturación de oxígeno en la sangre (SpO2). No obstante,
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existe una escasez de evidencia en la literatura científica respecto al uso de seña-
les biomédicas distintas a la SpO2, como por ejemplo las señales cardiovasculares,
como una opción alternativa para el diagnóstico de la AOS (Gutiérrez-Tobal et al.,
2022).

En este sentido, en el marco de esta Tesis Doctoral se ha llevado a cabo una
caracterización exhaustiva de la variabilidad de la frecuencia cardíaca (heart ra-
te variability, HRV) con el objetivo de describir las alteraciones que ocurren en el
sistema nervioso autónomo (SNA) debido a la AOS y ayudar a simplificar el diag-
nóstico de esta enfermedad. Los resultados obtenidos a partir de estas investiga-
ciones han sido publicados en cuatro artículos científicos en revistas indexadas en
el Journal Citation Reports (JCR) entre los años 2021 y 2023. En estas publicaciones,
se emplearon técnicas de procesado de señales biomédicas (extracción de carac-
terísticas, selección de características y reconocimiento de patrones) en mayor o
menor grado para caracterizar la señal de HRV y obtener información innovado-
ra en el contexto de la AOS pediátrica. En el primer artículo, se realizó un análisis
espectral de la señal de HRV para identificar bandas de frecuencia específicas de
la AOS (Martín-Montero et al., 2021b). En el segundo artículo, se utilizó el análi-
sis biespectral, una técnica de análisis en el dominio de la frecuencia que permite
observar alteraciones en la no Gaussianidad, no linealidad e irregularidad, con
el fin de definir regiones basadas en los rangos de frecuencia clásicos y específi-
cos de la AOS en la señal de HRV y caracterizar así las alteraciones asociadas a
la AOS (Martín-Montero et al., 2021a). La utilidad de las nuevas características
específicas de la AOS para reflejar los efectos del tratamiento de la enfermedad
en la HRV se realizó en el tercer artículo mediante el empleo de análisis de me-
diación causal (Martín-Montero et al., 2022). Por último, en el cuarto artículo se
realizó un análisis a nivel de segmento para caracterizar la señal de HRV utilizan-
do métricas convencionales y métricas específicas desarrolladas en el contexto de
esta Tesis Doctoral, con el fin de evaluar la influencia en el HRV de las diferen-
tes fases del sueño junto con la presencia de eventos apneicos durante la noche
(Martín-Montero et al., 2023).

La evaluación de la utilidad clínica de los diferentes enfoques de caracteri-
zación de la HRV se realizó mediante una etapa de reconocimiento de patrones,
empleando distintos modelos de machine-learning para el diagnóstico de AOS pe-
diátrica (Martín-Montero et al., 2023, 2021a,b), así como para la clasificación au-
tomática de fases del sueño (Martín-Montero et al., 2023).
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B.2 Hipótesis y objetivos

La presencia de eventos de apnea e hipopnea provoca oscilaciones recurrentes en
la señal de la HRV. Estas variaciones cíclicas han sido previamente documentadas
en adultos, manifestándose como patrones de bradicardia progresiva seguidos de
una taquicardia abrupta al final de los eventos (Guilleminault et al., 1984). En ni-
ños también se han observado estos patrones, pero con una mayor variabilidad
en función de las características de las pausas respiratorias (Aljadeff et al., 1997;
Gozal et al., 2013; O’Driscoll et al., 2009; Vitelli et al., 2016). A pesar de estas alte-
raciones cardíacas directamente causadas por la enfermedad, el comportamiento
periódico de la señal de HRV a causa de la AOS pediátrica ha sido estudiado tra-
dicionalmente utilizando técnicas de análisis espectral dentro de los límites esta-
blecidos por las bandas de frecuencia clásicas de la HRV (Malik et al., 1996). Sin
embargo, un estudio previo en adultos (Gutiérrez-Tobal et al., 2015) reveló que las
alteraciones asociadas a la AOS se reflejan en un rango de frecuencia que se ubica
entre las bandas clásicas de frecuencia muy baja (very low frequency, VLF) y baja
frecuencia (low frequency, LF), lo cual sugiere la existencia de bandas de frecuen-
cia específicas de la AOS en la HRV. Por lo tanto, al inicio de esta Tesis Doctoral,
se planteó la hipótesis de que nuevos enfoques de extracción de características podrían
permitir una caracterización más específica de los patrones de la HRV nocturna en niños.

Las alteraciones observadas en el SNA como resultado de la AOS han genera-
do investigaciones sobre el efecto del tratamiento de la enfermedad en las señales
cardiovasculares. Varios estudios han informado de una reversión de las altera-
ciones de la AOS, principalmente manifestada como un retorno del tono simpáti-
co a niveles normales (Constantin et al., 2008; El-Hamad et al., 2017; Kaditis et al.,
2011; Muzumdar et al., 2011). Dado que estos descubrimientos también se basa-
ron en el análisis convencional de las señales cardiovasculares, se ha planteado
la hipótesis de que las mejoras en la gravedad y resolución de la AOS pediátrica como
resultado del tratamiento podrían inducir cambios en las características específicas de la
HRV relacionadas con la AOS.

En los últimos años se han realizado investigaciones sobre métodos automá-
ticos como posibles alternativas al diagnóstico de la AOS mediante la PSG, con la
mayoría de dichos estudios centrándose en características derivadas de la señal
de SpO2 (Gutiérrez-Tobal et al., 2022). Sin embargo, debido a la escasa presencia
en la literatura de alternativas al diagnóstico de la AOS en niños utilizando seña-
les distintas a la de SpO2, se plantea la hipótesis de que las nuevas características
de HRV pueden proporcionar información complementaria que, en combinación con mo-
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delos de machine-learning, podrían ser útiles para ayudar en el diagnóstico automático y
la determinación de la gravedad de la AOS en la población pediátrica.

Estas consideraciones constituyen la base fundamental de la presente Tesis
Doctoral, que se puede sintetizar en la hipótesis global de que la caracterización
de la señal de HRV mediante enfoques novedosos podría revelar una comprensión más
profunda del comportamiento nocturno del SNA asociado a la AOS pediátrica, ayudando
a simplificar el diagnóstico de la enfermedad.

En base a esta hipótesis, el objetivo general de la presente Tesis Doctoral es
diseñar, desarrollar y evaluar nuevas técnicas automáticas de procesamiento de la señal de
HRV que permitan una descripción exhaustiva de las alteraciones en el comportamiento
del SNA durante la noche y facilitar el diagnóstico de la AOS en niños. Para alcanzar
este objetivo principal, se han establecido los siguientes objetivos específicos:

I. Identificar características novedosas de HRV que contengan información
relevante y no redundante sobre el funcionamiento del SNA en presencia
de eventos apneicos en niños con AOS.

II. Evaluar la capacidad de las características específicas de HRV relacionadas
con la AOS para reflejar el impacto del tratamiento en el SNA de los niños.

III. Diseñar e implementar modelos de machine-learning para evaluar la utili-
dad clínica de la caracterización novedosa de HRV, tanto en la detección y
evaluación de la gravedad de la enfermedad como en la clasificación de las
fases del sueño, utilizando conjuntos óptimos de características de HRV.

B.3 Sujetos y señales

A lo largo de esta Tesis Doctoral, se llevaron a cabo investigaciones utilizando
dos bases de datos distintas de electrocardiograma (ECG) pediátrico: una priva-
da y otra pública. La base de datos privada, denominada como base de datos
de la Universidad de Chicago (UofC), fue obtenida del Comer Children’s Hospital
de la escuela de medicina de la Universidad de Chicago (Chicago, IL, EE. UU.),
mientras que la base de datos pública fue la base de datos del ensayo aleatoriza-
do Childhood Adenotonsillectomy Trial (CHAT) (Marcus et al., 2013; Redline et al.,
2011). Ambas bases de datos incluyeron registros de ECG de niños de edades
comprendidas entre 0 y 13 años, que fueron referidos para una prueba de sueño
debido a la presencia de síntomas clínicos de AOS, como ronquidos, apneas, ex-
cesiva somnolencia diurna e hipertrofia amigdalar, entre otros. La base de datos
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CHAT constaba de 1612 estudios de sueño de múltiples centros, mientras que la
base de datos UofC incluía a 981 niños, todos sometidos a una PSG nocturna com-
pleta en la unidad pediátrica de sueño de los respectivos hospitales. Los estudios
de sueño en ambas bases de datos fueron anotados por especialistas médicos
siguiendo las pautas de la Academia Americana de Medicina del Sueño (Berry
et al., 2012). El índice de apnea-hipopnea (IAH) se extrajo de estas anotaciones
para determinar la gravedad de la AOS en los sujetos pediátricos, evaluado co-
mo el número de eventos de apnea e hipopnea por cada hora de sueño (e/h).
Por similitud con lo realizado en estudios previos (Church, 2012; Hornero et al.,
2017; Tan et al., 2014), se utilizaron tres puntos de corte del IAH (1, 5 y 10 e/h)
para categorizar la gravedad de la AOS en cuatro grupos: no-AOS (IAH < 1 e/h),
AOS leve (1 ≤ IAH < 5 e/h), AOS moderada (5 ≤ IAH < 10 e/h) y AOS severa
(IAH ≥ 10 e/h). Las Tablas C.1 y C.2 recogen los datos demográficos y clínicos
de los sujetos incluidos en ambas bases de datos, incluyendo información sobre
la población total, edad, sexo, índice de masa corporal y el número de niños per-
tenecientes a cada grupo de gravedad.

B.4 Métodos

En esta Tesis Doctoral, se aplicaron metodologías de extracción, selección y cla-
sificación de características para analizar las señales de HRV. Estas señales se ex-
trajeron de la señal de ECG monocanal de las diferentes bases de datos, lo cual
requirió una etapa inicial de pre-procesamiento. Por tanto, las señales de ECG ori-
ginales fueron pre-procesadas para eliminar artefactos, como ruido muscular o de
movimiento, pérdida de la señal o cambios en la línea de base. A continuación, se

Tabla B.1. Datos demográficos y clínicos de los niños en la base de datos de CHAT.

Todos no-AOS AOS leve AOS moderada AOS severa

Sujetos (n) 1612 346 798 253 215
(100 %) (21.5 %) (49.5 %) (15.7 %) (13.3 %)

Edad (años) 7.0 7.0 6.8 7.0 6.6
[6.0, 8.0] [6.0, 8.3] [6.0, 8.0] [6.0, 8.0] [5.8, 8.0]

Varones (n) 774 163 380 123 108
(48.0 %) (47.1 %) (47.6 %) (48.6 %) (50.2 %)

IMC (kg/m2) 17.3 17.1 17.2 18.5 18.6
[15.6, 21.6] [15.5, 19.6] [15.6, 20.8] [15.4, 23.3] [15.9, 23.8]

IAH (e/h) 2.5 0.6 2.2 7.1 17.1
[1.2, 6.0] [0.4, 0.8] [1.6, 3.3] [6.0, 8.5] [12.7, 26.7]

Los datos se muestran como mediana [percentil 25, percentil 75], o número (porcentaje). IAH= índice
de apnea-hipopnea, IMC: índice de masa corporal, AOS: apnea obstructiva del sueño.
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Tabla B.2. Datos demográficos y clínicos de los niños en la base de datos UofC.

Todos no-AOS AOS leve AOS moderada AOS severa

Sujetos (n) 981 173 401 178 229
(100 %) (17.6 %) (40.9 %) (18.1 %) (23.3 %)

Edad (años) 6 7 6 5 4
[3, 9] [4, 10] [4, 9] [2, 8] [2, 8]

Varones (n) 602 107 247 109 139
(61.4 %) (61.8 %) (61.6 %) (61.2 %) (60.7 %)

IMC (kg/m2) 18.0 17.6 17.9 18.6 18.3
[16.1, 21.9] [15.6, 21.0] [16.1, 21.2] [16.5, 24.0] [16.1, 23.2]

IAH (e/h) 3.8 0.5 2.5 6.8 19.1
[1.5, 9.3] [0.1, 0.8] [1.7, 3.5] [5.8, 8.3] [13.9, 31.1]

Los datos se muestran como mediana [percentil 25, percentil 75], o número (porcentaje). IAH= índice
de apnea-hipopnea, IMC: índice de masa corporal, AOS: apnea obstructiva del sueño.

realizó la extracción del complejo QRS, lo que permitió calcular la HRV a partir
de los picos R detectados. La fase de pre-procesado difirió entre los primeros tres
artículos (Martín-Montero et al., 2021a,b, 2022) y el último (Martín-Montero et al.,
2023). Mientras que en los primeros se realizó un análisis continuo durante toda
la noche, en el último artículo se segmentó la señal de ECG en segmentos de 10
minutos antes de calcular la HRV.

Una vez completado el pre-procesado de las señales, se procedió a aplicar
las técnicas de procesado de señales biomédicas, las cuales se dividieron en tres
etapas fundamentales: extracción de características, selección de características y
reconocimiento de patrones. La fase de extracción de características tuvo como
objetivo la descripción exhaustiva de la HRV nocturna mediante el uso de técni-
cas novedosas que pudieran complementar los métodos de análisis tradicionales
y proporcionar información adicional sobre las alteraciones que ocurren debido
a la AOS. Se emplearon técnicas de diferente naturaleza que permitiesen reflejar
el comportamiento de la HRV: técnicas en el dominio temporal (Martín-Montero
et al., 2023), para caracterizar la actividad en los diferentes segmentos conside-
rados de la HRV; técnicas en el dominio espectral (Martín-Montero et al., 2023,
2021b, 2022), para describir la actividad frecuencial de la HRV a lo largo de to-
da la noche y en los segmentos específicos, así como para definir nuevas bandas
de frecuencia específicas de la AOS; y técnicas de análisis biespectral (Martín-
Montero et al., 2021a), que permiten realizar una evaluación en el dominio de la
frecuencia identificando relaciones de fase, así como desviaciones de linealidad y
Gaussianidad en los registros de HRV (Chua et al., 2010).

Tras la extracción de características, en el caso del estudio de bispectrum
(Martín-Montero et al., 2021a), se obtuvo un conjunto de características que con-
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tenía un elevado número de parámetros, lo que podría implicar la presencia de
información irrelevante o redundante. Con el fin de abordar esta situación, se
realizó una etapa de selección de características para obtener dos subconjuntos
óptimos: uno que incluyera características obtenidas en regiones biespectrales de-
finidas según los rangos de frecuencia clásicos de la HRV, y otro que incluyera ca-
racterísticas obtenidas en regiones definidas en base a los rangos de frecuencia de
HRV específicos de la AOS. Para lograrlo, se utilizó el método fast correlation-based
filter (FCBF) (Yu and Liu, 2004), que permite obtener subconjuntos de caracterís-
ticas relevantes y no redundantes.

Realizada la extracción y selección de características, los conjuntos de pará-
metros de HRV obtenidos mediante los diferentes enfoques se utilizaron en la
última etapa, la fase de reconocimiento de patrones, con el propósito de evaluar
la utilidad clínica de la caracterización de HRV mediante diversos modelos de
machine-learning. Para evaluar dicha utilidad clínica en el diagnóstico de la AOS
pediátrica, se emplearon tres métodos distintos: en Martín-Montero et al. (2021b)
se desarrollaron modelos de clasificación binaria de la AOS utilizando análisis
lineal discriminante (LDA). En Martín-Montero et al. (2021a), se llevó a cabo la
clasificación binaria mediante clasificadores de perceptrón multicapa (multi-layer
perceptron, MLP) utilizando los dos subconjuntos óptimos de características de
HRV obtenidos tras la fase de selección de características. Por último, en Martín-
Montero et al. (2023), se emplearon técnicas de ensemble learning, utilizando un
modelo de regresión least squares boosting (LSBoost) para estimar el IAH de los su-
jetos. Además, también en Martín-Montero et al. (2023) se implementó un modelo
de clasificación multiclase adaptive boosting (AdaBoost) para distinguir los seg-
mentos de HRV correspondientes a las fases del sueño rapid eye movement (REM),
non-rapid eye movement (NREM) o estado de vigilia. Para profundizar en el enten-
dimiento del proceso de decisiones tomado por los modelos de ensemble-learning,
en Martín-Montero et al. (2023) se incorporaron también técnicas de explainable
artificial intelligence (XAI) a los modelos de LSBoost y AdaBoost, centrados en el
análisis de la importancia de características.

Por otro lado, se realizó la evaluación de la utilidad clínica de la actividad de
la HRV tanto en las bandas clásicas como en las nuevas bandas específicas de
la AOS mediante un análisis de mediación causal, para evaluar los efectos del
tratamiento de la AOS en los cambios que se producen en esos parámetros de
HRV (Martín-Montero et al., 2022).

Por último, se han utilizado diversos métodos de análisis estadístico para eva-
luar e interpretar los resultados obtenidos mediante las técnicas de procesamien-
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to de la señal de HRV desarrolladas en esta Tesis Doctoral. Estos métodos inclu-
yen pruebas estadísticas de hipótesis (como Lilliefors, Levene, Mann-Whitney,
Kruskal-Wallis y d de Cohen), análisis de correlaciones (mediante correlaciones
parciales de Spearman para controlar el posible efecto de covariables de confu-
sión como la edad), visualización de datos (usando boxplots), medidas de rendi-
miento diagnóstico (tales como sensibilidad, especificidad, precisión, área bajo la
curva receiver-operating characteristics, valor predictivo positivo, valor predictivo
negativo, razón de verosimilitud positiva, razón de verosimilitud negativa y F1-
score), medidas de concordancia (como el índice kappa de Cohen) y estrategias
de validación (como hold-out y bootstrapping).

B.5 Resultados y discusión

Cada uno de los enfoques realizados en esta Tesis Doctoral tenía como objetivo
caracterizar el HRV nocturno y evaluar las alteraciones que ocurren en el SNA
debido a la AOS en niños, para ayudar en la simplificación de su diagnóstico. Las
metodologías aplicadas han permitido caracterizar estas alteraciones, revelando
nuevos parámetros que han proporcionado información previamente descono-
cida tanto durante la noche como en las diferentes fases del sueño. Además, se
ha demostrado la utilidad clínica de esta caracterización para evaluar los efectos
del tratamiento, así como su aplicabilidad clínica para el diagnóstico de la AOS
pediátrica y la clasificación de las fases del sueño.

El análisis espectral llevado a cabo en Martín-Montero et al. (2021b) permi-
tió identificar y evaluar tres bandas de frecuencia, con el objetivo de mejorar la
comprensión de las dinámicas cardiovasculares en presencia de AOS en niños.
La primera banda, denominada BW1 (0.001 - 0.005 Hz), mostró una asociación
con el número de despertares durante la noche y el tiempo despierto después
del inicio del sueño, lo que sugiere que la fragmentación del sueño (consecuencia
directa de la AOS) se refleja en esta banda frecuencial y puede caracterizarse me-
diante su análisis. La segunda banda, denominada BW2 (0.028-0.074 Hz), mostró
las correlaciones más altas con los índices respiratorios que evalúan la gravedad
de la AOS, y también mostró el mejor rendimiento diagnóstico individual en-
tre todos los parámetros analizados. Esta banda de frecuencia captura patrones
de recurrencia con una duración de 13 a 35 segundos, lo que podría indicar una
duración característica de los patrones cardíacos resultantes de la AOS, siendo
adecuada para caracterizar la activación simpática como resultado de la enfer-
medad. Por último, la tercera banda, llamada BWRes (0.04 Hz alrededor del pico
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respiratorio individual), mostró una asociación con la desaturación de oxígeno
causada por la AOS, así como con los microdespertares relacionados. Además,
se observó que el rendimiento diagnóstico de estas bandas específicas de la AOS
fue superior, tanto de forma individual como combinada, en comparación con las
bandas clásicas de HRV utilizadas hasta el momento. Estos hallazgos destacan la
importancia de considerar estos rangos frecuenciales al analizar la señal de HRV
en el contexto de la AOS pediátrica.

En cuanto al análisis biespectral realizado en Martín-Montero et al. (2021a), se
encontró que, en ausencia de AOS, existe un enfoque de acoplamiento de poten-
cia biespectral por debajo de 0.02 Hz, el cual se amplía hacia frecuencias más altas
a medida que aumenta la severidad de la enfermedad. Este incremento a frecuen-
cias más altas (desde las frecuencias de la región VLF hasta las frecuencias de la
región BW2) en presencia de la AOS indica un aumento en la Gaussianidad y
linealidad en esas frecuencias como resultado de los eventos apneicos. La carac-
terización de las regiones biespectrales y la posterior selección de características
nos permitieron identificar dos conjuntos óptimos de características: uno basado
en las regiones biespectrales definidas según los rangos clásicos de HRV y otro
basado en los rangos específicos de la AOS. Estos subconjuntos contenían carac-
terísticas complementarias que revelaron alteraciones en la no-Gaussianidad, no-
linealidad y la irregularidad de la HRV debido a la AOS. Entre las características
seleccionadas, se encontró que una medida novedosa propuesta en este estudio,
denominada RPDiag, presentó el mejor rendimiento diagnóstico individual y las
correlaciones más altas con los índices polisomnográficos cuando se evaluaba en
la región definida según BW2. Esto demuestra la utilidad del análisis biespectral
realizado en el contexto de la AOS pediátrica, especialmente en dicha región.

El empleo del análisis de mediación causal realizado en Martín-Montero et al.
(2022) permitió inferir que los cambios observados en el HRV después de la in-
tervención para la AOS pediátrica están causalmente relacionados con los efec-
tos del tratamiento. Este análisis estableció vínculos entre las alteraciones en las
características de la HRV y las modificaciones en variables polisomnográficas di-
rectamente asociadas con la severidad de la AOS y su resolución. Todos los me-
diadores considerados demostraron tener un impacto causal en al menos uno de
los parámetros de la HRV evaluados. De todas las características analizadas, la
variación de potencia en la banda BW2 fue el único parámetro que mostró un
efecto causal estadísticamente significativo en todos los mediadores, y presen-
tando el nivel más alto de significancia estadística en la mayoría de esos efectos.
Además, entre los parámetros que mostraron efectos de causalidad con la resolu-
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ción de AOS, solo la potencia en la banda BW2 permitió distinguir la actividad de
la HRV entre niños que resolvieron la enfermedad y aquellos que no lo hicieron,
proponiéndose por lo tanto como un biomarcador potencial de la resolución de
la AOS pediátrica.

Con el fin de completar la caracterización exhaustiva de las alteraciones de la
HRV que ocurren en presencia de AOS en niños, en Martín-Montero et al. (2023)
se llevó a cabo un análisis a nivel de segmento que examinó tanto la influencia
de las fases del sueño como la presencia de eventos apneicos. Este enfoque re-
veló que, aunque la mayoría de los eventos apneicos suelen ocurrir durante la
fase REM, la activación simpática basal inherente a esta etapa del sueño parece
inhibir la activación simpática resultante de los eventos típicos de la AOS. Por lo
tanto, la activación simpática inducida por la AOS es más discernible durante la
fase NREM, destacando la importancia de considerar tanto las fases del sueño co-
mo la presencia de eventos apneicos para lograr una caracterización completa del
comportamiento de la HRV en presencia de AOS. Además, la evaluación de la im-
portancia de las características reveló que la caracterización en dos de las nuevas
bandas espectrales de HRV específicas de la AOS, BW2 y BWRes, tienen la mayor
relevancia para el diagnóstico de la AOS pediátrica y la clasificación automática
de las fases del sueño, respectivamente. Estos hallazgos vuelven a destacar la im-
portancia de las características de HRV específicas de la AOS desarrolladas en el
marco de la presente Tesis Doctoral.

En virtud de estas consideraciones, podemos afirmar que los diversos enfo-
ques metodológicos aplicados en el transcurso de esta Tesis Doctoral han per-
mitido caracterizar las alteraciones que ocurren en el SNA, obteniendo nuevos
parámetros que ofrecen información relevante relacionada con la AOS en niños.
En cuanto a la evaluación clínica de la utilidad de la caracterización de la HRV pa-
ra el diagnóstico de la AOS, la Tabla C.3 muestra los resultados más relevantes de
los diferentes estudios para la clasificación de sujetos utilizando tres umbrales de
severidad de IAH (1, 5 y 10 e/h) (Martín-Montero et al., 2023, 2021a,b). En gene-
ral, se observa que los modelos MLP construidos con características biespectrales
superaron el rendimiento diagnóstico de los modelos de LDA que utilizaban ca-
racterísticas espectrales, alcanzándose el mayor rendimiento diagnóstico en los
umbrales de IAH de 5 y 10 e/h de toda la Tesis Doctoral. Sin embargo, el mejor
rendimiento general en el umbral de 1 e/h se obtuvo con el modelo de LSBoost
en términos de sensibilidad, precisión, valor predictivo positivo, área bajo la cur-
va receiver-operating characteristics, y F1-score, lo que demuestra el alto potencial
del modelo de LSBoost para la detección de la AOS pediátrica en su grado de se-



B.5. Resultados y discusión 137

Tabla B.3. Rendimiento diagnóstico alcanzado por los diferentes modelos de machine-
learning a través de los estudios de la presente Tesis Doctoral en los tres umbrales de
severidad de IAH. Todos los resultados se obtuvieron en el grupo de test de cada estu-
dio, es decir, el subgrupo nonrandomized de la base de datos CHAT en Martín-Montero
et al. (2021b) y Martín-Montero et al. (2021a), y un subgrupo formado por sujetos de los
distintos grupos de la base de datos de CHAT en Martín-Montero et al. (2023).

Umbral: IAH = 1 e/h

Estudio Modelo S E P VPP VPN RV+ RV− AUC F1-score

Martín-Montero
et al. (2021b)

LDAClassic 25.70 81.30 44.50 72.90 35.90 1.37 0.91 0.559 0.326
LDASpeci f ic 37.70 80.10 52.00 78.80 39.70 1.89 0.778 0.597 0.437

Martín-Montero
et al. (2021a)

MLP1Classic 52.30 59.40 54.70 71.58 38.87 1.29 0.80 0.600 0.535
MLP1Speci f ic 76.30 38.30 63.40 70.74 45.16 1.24 0.62 0.627 0.693

Martín-Montero
et al. (2023) LSBoost 90.76 23.40 80.07 86.26 32.35 1.18 0.39 0.651 0.885

Umbral: IAH = 5 e/h

Estudio Modelo S E P VPP VPN RV+ RV− AUC F1-score

Martín-Montero
et al. (2021b)

LDAClassic 46.40 72.20 68.40 22.50 88.60 1.67 0.74 0.633 0.553
LDASpeci f ic 48.20 80.80 76.00 30.30 90.00 2.51 0.64 0.696 0.590

Martín-Montero
et al. (2021a)

MLP5Classic 50.90 86.20 81.00 39.04 91.00 3.69 0.570 0.774 0.625
MLP5Speci f ic 62.50 84.20 81.00 40.70 92.82 3.96 0.45 0.791 0.706

Martín-Montero
et al. (2023) LSBoost 66.67 61.17 63.18 49.66 76.16 1.72 0.54 0.677 0.569

Umbral: IAH = 10 e/h

Estudio Modelo S E P VPP VPN RV+ RV− AUC F1-score

Martín-Montero
et al. (2021b)

LDAClassic 50.70 75.30 73.10 17.10 93.80 2.05 0.65 0.685 0.599
LDASpeci f ic 62.30 84.30 82.30 28.50 95.70 3.97 0.45 0.774 0.709

Martín-Montero
et al. (2021a)

MLP10Classic 43.50 96.50 91.70 55.56 94.45 12.43 0.59 0.847 0.590
MLP10Speci f ic 66.70 91.60 89.30 44.23 96.48 7.94 0.36 0.841 0.764

Martín-Montero
et al. (2023) LSBoost 40.00 92.03 84.12 47.37 89.53 5.02 0.65 0.742 0.434

IAH: índice de apnea-hipopnea, S: sensibilidad ( %), E: especificidad ( %), P: precisión ( %), VPP: valor predictivo po-
sitivo ( %), VPN: valor predictivo negativo ( %), RV+ : razón de verosimilitud positiva, VR− : razón de verosimilitud
negativa, AUC: area bajo la curva receiver-operating characteristic, LDA: análisis discriminante lineal, MLP: perceptrón
multicapa, LSBoost: least-squares boosting.

veridad más leve. Además, al contrastar nuestros resultados con estudios previos
de la literatura que emplearon exclusivamente medidas cardiovasculares para el
diagnóstico de la AOS en niños, nuestras metodologías propuestas demostraron
un rendimiento similar o superior, particularmente para detectar la presencia de
la AOS. En cuanto a la utilidad clínica para la clasificación automática de las fases
del sueño, el modelo de AdaBoost obtuvo los mejores resultados de clasificación
en la fase NREM, con un valor predictivo positivo del 94.55 % y una sensibilidad
del 72.08 %. Estos resultados son consistentes con la mayor capacidad discrimi-
natoria entre los segmentos con distinto grado de presencia de eventos apneicos
observada en la caracterización de la HRV durante la fase NREM. Por tanto, en
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base a estos resultados, podemos concluir que la caracterización de la HRV rea-
lizada es útil tanto para la ayuda en el diagnóstico de la AOS infantil, así como
para la clasificación de las fases de sueño en niños con AOS.

B.6 Conclusiones

La evaluación minuciosa y la posterior discusión de los resultados obtenidos du-
rante la realización de la presente Tesis Doctoral han permitido la extracción de
las principales conclusiones derivadas de la misma, las cuales se presentan a con-
tinuación:

1) La nueva banda de HRV específica de la AOS pediátrica BW1 (0.001 – 0.005
Hz) está relacionada con las macro interrupciones del sueño causadas por
la AOS. El tratamiento de la enfermedad produce cambios dentro de este
rango espectral, los cuales pueden atribuirse a las alteraciones en el IAH
obstructivo y en el índice de despertares.

2) La nueva banda de HRV específica de AOS pediátrica BW2 (0.028-0.074
Hz) se encuentra asociada de forma robusta con la duración de los even-
tos apneicos. Las intervenciones para tratar la AOS generan modificaciones
dentro de este rango de frecuencia, principalmente debido a cambios en la
severidad de la enfermedad, lo que resulta en una disminución en la activi-
dad de esta banda espectral si la severidad se reduce. Además, esta banda
fue la única que mostró efectos de causalidad con la resolución de la AOS,
permitiendo diferenciar la actividad de la HRV entre niños que resuelven la
enfermedad y niños que no. En consecuencia, BW2 se ha propuesto como
un potencial biomarcador de la resolución de la AOS pediátrica. Además,
empleando únicamente la señal de HRV, esta banda de frecuencia específica
de la AOS ha demostrado ser de gran utilidad para ayudar en el diagnóstico
automático de la enfermedad.

3) La nueva banda de HRV específica de AOS pediátrica BWRes (0.04 Hz al-
rededor del pico respiratorio individual) está relacionada con las desatura-
ciones de oxígeno y las micro interrupciones del sueño. El tratamiento de
la enfermedad provoca cambios dentro de este rango frecuencial, debido
principalmente a las variaciones en el índice de despertares. Además, es-
ta banda de frecuencia de HRV específica de AOS ha demostrado ser de
gran utilidad a la hora de clasificar fases del sueño en el contexto de la AOS
pediátrica mediante el empleo de la señal HRV.



B.6. Conclusiones 139

4) Los hallazgos del análisis biespectral revelaron que la AOS pediátrica está
asociada con incrementos en la linealidad y la Gaussianidad de la HRV a
frecuencias muy bajas. Además, la repetición de eventos apneicos da lugar
a un desplazamiento del foco de acoplamiento en el HRV nocturno hacia
frecuencias relacionadas con la duración de los eventos. Por otro lado, la
presencia de AOS provoca una disminución en la irregularidad de la HRV
en componentes frecuenciales asociadas con las bandas BW2 y LF, mientras
que hay un descenso de irregularidad en aquellas componentes frecuencia-
les vinculadas a la respiración.

5) La AOS pediátrica provoca un aumento en la actividad simpática, lo cual se
refleja en los patrones de la HRV durante la noche. En principio, se podría
esperar que la actividad simpática fuera mayor durante la fase REM debido
a que es cuando ocurren con mayor frecuencia los eventos apneicos. Sin
embargo, la excitación simpática causada por los eventos apneicos parece
enmascararse debido a la actividad simpática basal inherente a esta fase
del sueño. Como resultado, se vuelve más viable distinguir las alteraciones
asociadas con la AOS en el HRV al analizar información extraída durante
la fase NREM. Por lo tanto, se resalta la importancia de considerar tanto la
presencia de eventos apneicos como la fase del sueño de forma conjunta al
evaluar el HRV en el contexto de la AOS pediátrica.

6) Los métodos de análisis de HRV desarrollados en la presente Tesis Doctoral
han demostrado su utilidad para ayudar en el diagnóstico de la AOS pe-
diátrica. Los modelos MLP, construidos usando subconjuntos óptimos de
características biespectrales, alcanzaron el mejor rendimiento diagnóstico
en los umbrales de severidad de IAH de 5 (P = 81 %, AUC = 0,791) y 10
e/h (P = 91,70 %, AUC = 0,847). Por otro lado, el modelo de LSBoost mos-
tró el mayor rendimiento diagnóstico para el punto de corte de severidad
de IAH de 1 e/h (P = 80,07 %, AUC = 0,651), resaltando la efectividad de
la caracterización de HRV a nivel de segmento para detectar la presencia de
AOS, incluso en los casos más leves.

Basándonos en las consideraciones expuestas, se puede concluir que la ca-
racterización de la HRV mediante los nuevos índices desarrollados durante la
realización de la presente Tesis Doctoral, y calculados en las nuevas bandas de
frecuencia específicas de la AOS pediátrica, permiten una evaluación más precisa
de las alteraciones en el SNA a causa de la AOS. Además, estos descubrimientos
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tienen el potencial de contribuir a la simplificación del diagnóstico de la enferme-
dad en niños.
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