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Abstract: There is a pressing need for more precise biomarkers of chronic kidney disease (CKD).
Plasma samples from 820 subjects [231 with CKD, 325 with end-stage kidney disease (ESKD) and
264 controls] were analyzed by liquid chromatography with tandem mass spectrometry (LC-MS/MS)
to determine a metabolic profile of 28 amino acids (AAs) and biogenic amines to test their value as
markers of CKD risk and progression. The kynurenine/tryptophan ratio showed the strongest correla-
tion with estimated glomerular filtration rate values (coefficient = −0.731, p < 0.0001). Models created
with orthogonal partial least squares-discriminant analysis (OPLS-DA) containing the metabolic sig-
nature showed a high goodness of fit and predictability for controls/CKD (R2X:0.73:R2Y:0.92:Q2:0.92,
p < 0.0001) and lower values for CKD/ESKD (R2X:0.56:R2Y:0.59:Q2:0.55, p < 0.0001). Based on
generated VIP scores, the most relevant markers for segregating samples into control/CKD and
CKD/ESKD groups were citrulline (1.63) and tryptophan (1.47), respectively. ROC analysis showed
that the addition of the metabolic profile to a model including CKD classic risk factors improved the
AUC from 86.7% (83.6–89.9) to 100% (100–100) for CKD risk (p < 0.0001) and from 63.0% (58.2–67.8) to
96.5% (95.3–97.8) for the risk of progression from CKD to ESKD (p < 0.0001). Plasma concentrations
of AAs and related amines may be useful as diagnostic biomarkers of kidney disease, both for CKD
risk and for progression of CKD patients to ESKD.

Keywords: chronic kidney disease; end-stage kidney disease; amino acids; metabolites

1. Introduction

Chronic kidney disease (CKD), defined by abnormalities of renal function and/or
structure over 3 months with clinical consequences, is a global healthcare issue that has
been predicted to become one of the leading global causes of death by 2040 [1]. Furthermore,
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its prevalence has significantly increased in the last decades, so much so that up to 10–15%
of adults worldwide are affected. The main burdens of CKD are not, as it is perceived by
many, dialysis and kidney transplant; rather, accelerated aging and premature death, often
associated with increased cardiovascular risk, are the most prominent concerns [2].

One specific aspect of CKD, particularly in early stages, is that often times patients
do not show overt clinical symptoms; therefore, laboratory tests are crucial to monitor the
disease. In this regard, the assessment of glomerular filtration rate (GFR) is key to evaluate
renal function and is usually estimated (eGFR) based on serum creatinine concentrations
using different equations, of which CKD-EPI is presently recommended. However, crea-
tinine levels begin to stand out only when the disease is well under way and have been
shown to be less accurate under special circumstances. In addition, eGFR is of little help in
assessing the risk of progression to end-stage kidney disease (ESKD). In fact, even though
CKD prevalence based on eGFR measurements is very similar in Western countries, the
incidence of patients requiring renal replacement therapy is very different among them [3].
Available clinical evidence strongly indicates that patients could greatly benefit from novel
biomarkers that are able to identify patients at risk at an early stage.

Renal function affects the levels of metabolites in blood; hence, it is likely that some
metabolites could be helpful in estimating kidney function. In this regard, the kidney plays
a crucial role in the metabolism of proteins and amino acids (AAs), which are constantly
filtered and reabsorbed [4]. Quantitative analysis of free AAs in blood and urine has been
shown useful for the diagnosis and management of metabolic disturbances as well as for
the assessment of nutritional status, tissue damage and renal function [5]. In this regard,
mass spectrometry (MS)-based methods have been applied to the study of CKD with great
success [6]. The development of nondestructive methods for protein ionization was the
critical milestone that allowed the determination of biomolecules with MS. Electrospray ion-
ization (ESI), which is used in the present study, is one of such methods that is compatible
with proteins dissolved at typical concentration ranges of 10−6 to 10−15 M [7]. As described
in the Section 2, the methodology used for this study was based on liquid chromatography
coupled with tandem mass spectrometry (LC-MS/MS). Early studies focused on the sig-
nal response of proteins in complex mixtures have shown a linear correlation of protein
concentrations with MS-MS spectral values [8]. These studies have set the framework for
efficient quantitative analysis of LC-MS/MS such as that presented herein.

The advent of metabolomics, which identifies and quantitatively compares small-
molecule metabolites between different groups, has allowed the identification of several
circulating AAs and related compounds that may be associated with CKD [9–11]. However,
results are mostly based on small cohorts of renal patients, and oftentimes a comparison
between different stages of the disease is lacking.

The goal of this work was to determine plasma concentrations of AAs and biogenic
amines in a large group of healthy subjects, CKD patients, and patients with ESKD to
identify differences in their metabolic profiles and analytes with the potential to become
biomarkers of renal disease.

2. Materials and Methods
2.1. Subjects

Between 2017 and 2022, 820 Caucasian Spanish subjects were recruited, namely
(i) 231 patients diagnosed with different CKD stages [45 (19.5%) with stage 1–2, 69 (29.9%)
with stage 3, and 117 (50.6%) with stage 4] at the Nephrology Service of the Badajoz Univer-
sity Hospital (Spain); (ii) 325 patients with end-stage kidney disease (ESKD,
eGFR < 15 mL/min/1.73 m2), who were enrolled at the Advanced CKD Unit of the Badajoz
University Hospital and at three Dialysis Units (Fresenius clinic and Llerena and Zafra
hospitals in Badajoz, Spain); and finally, (iii) 264 healthy volunteers who were recruited
from primary care clinics in Soria, Spain. Transplantation, pregnancy or breastfeeding,
active infection, cancer, or acute kidney injury were all considered exclusion criteria. All
patients were over 18 years of age and gave written consent for their participation in the
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study, which was approved by the Ethics Committees of the Badajoz University Hospital
(21 April 2022) and was carried out in accordance with the Declaration of Helsinki and its
subsequent revisions.

Diagnostic and prognostic stratification of renal patients was conducted with the
KDIGO classification and table of progression risk and the CONSORTIUM-CKD equation.
Kidney function was assessed using the CKD-EPI equation. Clinical records were examined
to retrieve clinical, demographic, and biochemical data.

2.2. Sample Collection and Amines Analyzed

Blood samples (3 mL) were drawn in EDTA tubes from each participant, and plasma
was immediately obtained by centrifuging 10 min at 3000 rpm. Plasma samples were then
aliquoted (500 µL) and stored at −80 ◦C until analysis. Essential AA (EAAs), including
histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and
valine, and non-essential AA (NEAAs), including alanine, arginine, asparagine, aspartic
acid, citrulline, glutamic acid, glutamine, glycine, proline, L-serine, and tyrosine, were
determined. In addition, eight other related metabolites and biogenic amines, namely
kynurenic acid, kynurenine, asymmetric dimethyl arginine (ADMA), D-serine, serotonin,
gamma aminobutyric acid (GABA), acetylcholine, and creatine, were also analyzed.

Ten different ratios involving AAs were calculated as described by Duranton et al. [12].
EAA/NEAA, Val/Gly, and alanine/branched-chain amino acid (BCAA) ratios are used
to assess the overall nutritional state; the kidney’s ability for interconversions of AAs is
measured using Tyr/Phe, Ser/Gly, and Arg/Cit ratios. The relative importance of both the
kynurenine pathway and ADMA was assessed with the kynurenine/tryptophan ratio and
the Arg/ADMA ratio. Finally, the Fisher’s ratio (defined as the sum of BCAAs, Leu, Ile, and
Val divided by the sum of aromatic AAs, Tyr, and Phe) and the GSG index [Glu/(Ser + Gly)]
were also calculated, as they have been observed to be altered in several pathologies and
metabolic dysfunctions [13,14].

2.3. Chemical and Reagents

All chemical reagents were purchased from Sigma Aldrich (St. Louis, MO, USA). The
water, methanol, and acetonitrile (J.T. Baker, Innovagen SL, Madrid, Spain) used for the
mobile phases were all LC-MS grade. The stock solutions of asparagine, aspartate, glycine,
and serine (300 µM); alanine, citrulline, glutamate, glutamine, histidine, kynurenic acid,
kynurenine, methionine, phenylalanine, proline, threonine, tryptophan, and valine (50 µM);
GABA, arginine, ADMA, leucine, isoleucine, lysine, serotonin, tyrosine, and acetylcholine
(5 µM); and 20 mM isotopically labeled d4-acetylcholine were prepared in LCMS grade
water (0.2 µm microfilter and bottled under nitrogen atmosphere). Then, a standard mixture
was diluted from stocks with artificial cerebrospinal fluid, which consisted of 145 mM
NaCl, 2.68 mM KCl, 1.4 mM CaCl2, 1.0 MgSO, 1.55 mM Na2HPO4, and 0.45 mM NaH2PO4
pH 7.4 at −80 ◦C (adjusted with NaOH).

2.4. Sample Preparation and LC/MS/MS Analysis

The procedure to prepare the samples and the calibration standards, listed in Supple-
mental Table S1, was the same, except that the samples started with a volume of 20 µL and
the calibration standard with 5 µL. Cold acetonitrile (1:4) was added to precipitate proteins,
and, with no need for incubation, samples were immediately centrifuged at 13,000 rpm for
10 min. Subsequently, 20 mL of the supernatant was derivatized by the sequential addition
at room temperature of 10 µL of 100 mM Na2CO3, 10 µL of BzCl (2% v/v in acetonitrile),
and 10 µL of the corresponding internal standard, as described by Wong et al. [15]. To
balance the concentration of organic content, 50 µL of water was added. The calibration
standards and the internal standard were frozen at −20 ◦C in aliquots to prevent multiple
freeze/thaw cycles. An aliquot of the internal standard was thawed on the day of use, and
a fresh benzoyl chloride (BzCl) solution was made daily.
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Amines were analyzed using LC/MS/MS. The technique was based on the method
described by Wong et al. [15]. BzCl-derivatized samples were analyzed with LC-MS/MS
using multiple reaction monitoring (MRM) dynamics with an Agilent 6410 TQ equipment.
MRM conditions for all the metabolites are shown in Supplemental Table S2. Briefly, 5 µL
of sample (by triplicate) was injected into a HiP-ALS automatic injection module at room
temperature. An ACE Excel 2 SuperC18 column (15 cm × 2.1 mm ID, 2 µm, 90 Å) kept
at 27 ◦C was used for the separation of metabolites. Mobile phase A consisted of 10 mM
0.15% formic acid ammonium formate, and mobile phase B was acetonitrile. The flow was
set to 0.2 µL/min. The elution gradient was as follows: 5%; 0.0 min, 15% B; 0.01 min, 17%
B; 0.5 min, 55% B; 14 min, 70% B; 14.5 min, 100% B; 18 min, 100% B; 19 min, 5% B; 19.1 min,
5% B; 24 min. An additional 10 min period of column equilibration at 0% B was required
to achieve reproducible chromatography. The required pressure over the gradient ranged
from 117 to 254 bar. ESI was used in positive mode at 4000 V. The gas temperature and
flow were 350 ◦C and 11 L/min, respectively, with the nebulizer set to 15 psi. Automated
peak integration was performed using Agilent MassHunter Quantitative Analysis for QQQ,
version B.04.01. All peaks were visually inspected to ensure proper integration (Figure 1).
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2.5. Statistical Analyses

Chi-square tests were utilized to compare categorical variables. Quantitative variables
were compared between groups either using the t-test/Mann–Whitney test (2 groups) or
ANOVA/Kruskal–Wallis test (>2 groups), depending on the normality of data distribution.
Post-hoc tests were applied to examine differences between group pairs. Correlations
between quantitative variables were assessed using the Spearman’s test. IBM SPSS v.22.0
(SPSS Inc., Chicago, IL, USA v.22.0) was utilized for the statistical analyses. Bonferroni cor-
rection for multiple testing was applied, resulting in a significance threshold of p < 0.0016.

In order to evaluate the impact of the different metabolic signatures, multivariate
analyses were conducted with Umetrics SIMCA 18 software v. 18.0.0.372 (Umeå/Malmö,
Sweden) to create orthogonal partial least squares-discriminant analysis (OPLS-DA) mod-
els, which were evaluated for fitness (R2) and predictive ability (Q2). This is a supervised
dimension reduction analysis that allows visualization of how individuals within a group
cluster with regard to their data-compressed principal components, i.e., it permits stratifi-
cation of samples based on differences in profiles rather than individual variables. After
removing outliers identified with principial component analysis (PCA), OPLS-DA models
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were then constructed based on 80% of the population and validated in the remaining 20%
(training and test sets). These models were then utilized to identify the most significantly
altered metabolites between groups by calculating the variable importance in the projection
(VIP) score (values > 1 are considered relevant).

To assess the potential use of these metabolites as biomarkers to discriminate either
between controls and CKD patients or between CKD and ESKD, areas under receiving
operating characteristic (ROC) curves (AUCs) were calculated with R Studio for Windows
v. 4.2.3 (pROC package). AUCs for models containing traditional risk factors before and
after the addition of the metabolic signatures were compared using the De Long’s test.

3. Results

The study participants’ characteristics are summarized in Table 1.

Table 1. Demographic and clinical characteristics of the population of study stratified by renal status.

CTRL (n = 264) CKD (n = 231) ESKD (n = 325)
Mean/n SD/% Mean/n SD/% pa Mean/n SD/% pb

Age 75.92 7.10 65.91 12.83 <0.001 68.79 13.20 0.004
Sex <0.001
Men 125 47.3% 151 65.4% 205 63.1% 0.321

Women 139 52.7% 80 34.6% 120 36.9%
BMI 27.64 4.01 30.14 5.54 <0.001 28.44 5.89 <0.001

Serum creatinine (g/dL) 0.93 0.25 2.09 0.91 <0.001 5.50 1.93 <0.001
eGFR (mL/min/1.73 m2) 71.47 40.32 <0.001 11.36 <0.001

Proteins, 24 h Na 839.17 1404.27 1989.02 2053.95 <0.001
Albumin, 24 h Na 574.87 1107.30 1387.46 1460.12 <0.001

Creatinine, 24 h Na 1267.56 1072.39 863.01 350.54 <0.001
ACR Na 520.14 951.91 1634.86 1601.60 <0.001

Calcium (mg/dL) 9.47 0.36 9.73 4.21 0.913 9.28 5.61 <0.001
Phosphorus (mg/dL) 3.25 0.50 3.51 0.66 <0.001 4.35 1.12 <0.001

PTH (pg/mL) 66.84 31.94 173.88 143.61 <0.001 333.64 244.53 <0.001
DM
No 220 0.83 114 0.49 <0.001 152 47.6% 0.379
Yes 44 0.17 117 0.51 167 52.4%

Hypertension
No 139 52.7% 48 20.8% <0.001 68 21.3% 0.483
Yes 125 47.3% 183 79.2% 251 78.7%

Hyperlipidemia
No 174 65.9% 129 55.8% 0.014 146 45.2% 0.009
Yes 90 34.1% 102 44.2% 177 54.8%

Smoking
Nonsmoker 188 72.9% 102 44.2% <0.001 166 51.9% 0.002

Smoker 14 5.4% 52 22.5% 36 11.3%
Former smoker 56 21.7% 77 33.3% 118 36.9%

CTRL, control group; CKD, chronic kidney disease; ESKD, end-stage kidney disease; BMI, body-mass index;
Na, not available; ACR, albumin-to-creatinine ratio. pa, comparisons between control and CKD groups; pb, com-
parisons between CKD and ESKD groups.

The observed eGFR values ranged from 5.0 to 140.56 mL/min/1.73 m2. The percentage
of males was higher in the CKD and ESKD group than in controls (p = 0.001). In addition,
participants without renal impairment were older than CKD and ESKD patients (74.63 vs.
68.47 years, p < 0.0001). As expected, the incidence of diabetes mellitus (DM), hypertension
and hyperlipidemia was much higher in CKD or ESKD patients than in controls (p < 0.0001
in all cases).

3.1. Quantification of Amino Acids and Amines in Plasma

Plasma concentrations (mmol/L) of the AAs and other amines analyzed are shown
in Table 2. In univariate analyses and after Bonferroni correction for multiple testing,
the differences among the three study groups were statistically significant for all the
metabolites (p < 0.0001 in all cases). Post-hoc analyses were carried out to determine
differences regarding metabolites levels between group pairs. Whilst differences between
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controls and CKD patients were also statistically significant for all metabolites, only 12
out of the 28 analytes assayed displayed significantly different levels between ESKD and
CKD (Table 2). Next, multivariate linear regression models accounting for age, sex, BMI,
diabetes, hypertension, smoking, and renal function were created to explain the observed
metabolites concentrations. Supplemental Table S3 shows the resulting p-values and
regression coefficients for the effect of renal status (control—CKD—ESKD) on the levels of
each metabolite. Renal status was the main explanatory variable in all instances except for
glutamine (beta coefficient = 0.073, p = 0.059), histidine (−0.283, p < 0.0001), acetylcholine
(0.156, p < 0.0001) and kynurenine (−0.018, p = 0.755), for which diabetes had a higher
regression coefficient.

Table 2. Plasma concentrations (mmol/L) of the amino acids and amines assayed. CTRL, control
subjects; CKD, chronic kidney disease patients; ESKD, end-stage kidney disease patients.

CTRL CKD ESKD p-Value
Mean SD Mean SD Mean SD CKD/ESKD

Alanine 527.24 397.88 279.59 112.52 150.17 88.45 <0.0001
Arginine 96.28 73.09 58.40 19.49 41.51 20.77 <0.0001

Asparagine 23.34 27.69 1.23 0.55 0.77 0.31 1.000
Aspartate 32.90 50.38 3.18 1.96 2.12 1.05 1.000
Citrulline 27.33 11.49 93.45 42.29 70.09 48.87 <0.0001
Glycine 49.60 56.69 101.82 58.36 101.62 78.18 1.000

Glutamate 150.35 133.99 57.01 36.94 37.73 23.87 0.016
Glutamine 226.53 123.81 769.87 393.51 415.60 254.99 <0.0001
Histidine 71.72 59.13 108.59 42.72 54.26 34.46 <0.0001
Isoleucine 110.40 131.03 74.14 29.25 50.62 19.27 0.001
Leucine 743.67 989.98 86.89 30.38 54.23 19.26 1.000
Lysine 134.94 165.88 50.36 24.83 30.67 16.16 0.051

Methionine 11.15 19.13 6.05 3.75 3.52 6.93 0.041
Phenylalanine 318.80 1232.85 60.20 19.32 43.20 19.31 1.000

Proline 301.09 266.91 238.12 107.00 194.28 225.01 0.054
L-Serine 59.21 61.87 2.81 3.02 1.63 1.38 1.000
Tyrosine 527.33 718.83 54.80 29.97 23.05 16.99 1.000

Threonine 240.18 226.74 52.20 13.80 40.39 13.11 0.865
Tryptophan 139.90 65.27 80.57 35.99 40.62 13.71 <0.0001

Valine 462.07 482.30 268.64 135.06 125.82 78.09 <0.0001
Acetylcholine 0.76 0.43 1.15 0.42 1.15 0.49 1.000

D-Serine 0.66 0.35 0.29 0.30 0.70 0.29 <0.0001
Kynurenine 1.98 0.78 2.44 1.20 3.38 1.39 <0.0001

Kynurenic acid 1.96 0.81 1.52 1.01 1.03 0.19 <0.0001
ADMA 0.84 0.33 0.38 0.19 0.26 0.19 <0.0001
Creatine 20.52 10.92 11.91 9.40 9.03 10.62 0.004
GABA 0.22 0.09 0.05 0.11 0.04 0.03 0.739

Serotonin 0.63 0.25 0.16 0.17 0.14 0.03 0.762

SD, standard deviation.

3.2. Total Concentrations and Ratios of Amino Acids

With regard to total AA values, healthy subjects always displayed statistically signif-
icant higher plasma levels of EAAs, NEAAs, BCAAs and proteinogenic AAs than CKD
patients, who in turn showed higher concentrations than ESKD patients (Figure 2). After
correction for multiple testing, differences between the CKD and ESKD groups for both
EAAs and BCAAs were reduced (p < 0.05; Figure 2A,C), whilst NEAAs and proteinogenic
AAs maintained statistical significance (Figure 2B,D). We also analyzed 10 standard plasma
AA ratios that were plotted against eGFR values to evaluate correlations in those partici-
pants who were not dialyzed. All correlations were significant (p < 0.0001). Three ratios
displayed high coefficients between 0.65 and 0.70, namely EAA/NEAA (0.650), Val/Gly
(0.676), and the GSG index (0.654), whilst the kynurenine/tryptophan ratio showed the
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strongest correlation with eGFR (coefficient = −0.731) (Figure 3). Data for the remaining six
ratios are shown in Supplemental Figure S1.
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3.3. Metabolic Profiles in the Study Groups

PCA analyses were performed to identify outliers who were removed before creating
the OPLS-DA model. Figure 4A shows the OPLS-DA scores plot (R2X: 0.75; R2Y: 0.67;
Q: 20.65, p < 0.0001) for the three study groups (validated sets), which revealed a good
clusterization of the control samples based on the obtained metabolic profiles. However,
these did not segregate CKD and ESKD patients as efficiently. The best five markers for
segregation of the three groups were first glutamine, followed by D-serine, tryptophan,
serotonin, and histidine (VIP scores from 1.35 to 1.26). A robust model with high predictive
capability was obtained for the Controls vs. CKD comparison (R2X: 0.70; R2Y: 0.91; Q2: 0.90,
p < 0.0001; Figure 4B). In contrast, the model for CKD vs. ESKD yielded more modest results
(R2X: 0.56, R2Y: 0.47, Q2: 0.44, p < 0.0001; Figure 4C). The top five metabolites in decreasing
order of importance for Controls/CKD were citrulline, serotonin, glutamine, GABA, and
ADMA (VIP scores from 1.63 to 1.29); only citrulline and glutamine were upregulated in
CKD (coefficients = 0.103 and 0.119, respectively). With regard to CKD/ESKD, tryptophan,
valine, tyrosine, leucine, and histidine were the top five metabolites involved (VIP scores
from 1.47 to 1.36). All of them were downregulated in the ESKD group, with tryptophan
showing the highest coefficient (−0.158).
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3.4. Amino Acids and Amines as Biomarkers of Renal Impairment

Finally, we evaluated the potential role as biomarkers of renal disease of these iden-
tified relevant metabolites using ROC analysis. Figure 5A shows that the addition of the
metabolic signature containing all 28 analytes to a model made up of classic risk factors
for CKD (age, sex, BMI, diabetes, and hypertension) significantly increased its AUC from
86.7% (83.6–89.9) to 100% (100–100), p < 0.0001. The increase to maximum AUC was
maintained when only the aforementioned top-five metabolites were added (Figure 5C;
p < 0.0001). With regard to the risk of progression from CKD to ESKD, the addition of the
whole metabolic profile (Figure 5B) to the classic risk model elevated the AUC from 63.0%
(58.2–67.8) to 96.5% (95.3–97.8), p < 0.0001; however, when only the top-5 metabolites were
included (Figure 5D), the increase was still significant (p < 0.0001) but markedly lower
[final AUC = 88.9% (86.2–91.6)].
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line corresponds to models with classic risk factors only, the green line belongs to the same model
after adding the metabolic profiles, and the red line denotes the predictive ability of the metabolic
profiles on their own.
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4. Discussion

CKD is a major public health concern for which the burden has not declined at the
same rate as other important non-communicable diseases [16]. Early diagnosis of CKD
would allow reducing cardiovascular complications as well as preventing fast progression
to ESKD, whose patients are 100 times more likely to die of cardiovascular disease than
the general population [17]. It has been suggested that in many patients a low eGFR may
reflect a variety of age-related coexisting comorbid conditions and therefore be a better
predictor of global health outcomes rather than CKD progression outcomes [18]. In this
context, adding new biomarkers, such as AA and biogenic amines profiling, to the current
evaluation of CKD could be useful to improving our existing prognostic tools.

In our study, the raw comparison of plasma levels showed great differences for all
28 compounds assayed between controls and CKD patients. The OPLS-DA models show
that citrulline had the highest VIP score for the discrimination between them, being up-
regulated in CKD. Two large longitudinal studies, one American [19] and one Korean [10],
including subjects without CKD at baseline, measured plasma metabolite concentrations
during an 8-year follow-up. Both these studies also highlighted citrulline as being sig-
nificantly associated with incident CKD. Citrulline metabolism occurs preferentially in
proximal tubular cells [20]; therefore, renal injury could very well translate into the ob-
served accumulation of plasma citrulline in CKD patients [12,21,22]. In this regard, it
has been shown that reduced kidney function is also associated with greater citrulline
excretion, suggesting that elevated citrullinemia is due to metabolic causes and not just
retention [12]. This deficient citrulline biotransformation in the kidney may easily lead to
decreased renal function as seen in animal models [23] since it would imply a reduction of
arginine bioavailability, an AA that is necessary for endothelial nitric oxide synthesis [24].

Our findings revealed that the kynurenine/tryptophan ratio showed the strongest
correlation with the eGFR. This ratio, which has also been associated with CKD in the
past [10,25], reflects the activity of indoleamine dioxygenase (IDO), which is the first
step of the kynurenine pathway of tryptophan metabolism. The mechanism by which
kynurenine accumulation and declining tryptophan plasma concentrations (higher ratios)
may be associated with reduced kidney function is discussed below in the context of ESKD.
The potential of this ratio to be a good measure of early CKD risk, a pressing need in
this pathology, has been previously stressed by Lee et al., who reported an OR of 12.65
(6.55–24.44) for CKD prevalence and 3.20 (1.57–6.51) for CKD incidence [10].

In general, differences in the measured metabolites between CKD and ESKD pa-
tients were less marked than those observed between controls and CKD patients. This
could be partly explained by the large number of patients with CKD stage 4 in our
population (n = 117, 50.6% of the CKD group), who display eGFR values lower than
30 mL/min/1.73 m2 and therefore could be more similar to ESKD patients. In any case, the
addition of our metabolic profile to a predictive model based on demographic, clinical, and
physiological characteristics improved its ability to discriminate CKD from ESKD by up to
96.5% with an AUC value that is in the same range as that recently reported for a similar
model with 100 metabolites (99.9%) [21].

Despite the aforementioned low average eGFR in the CKD group, our findings showed
12 metabolites that were still significantly altered between ESKD and CKD. Interestingly, 10
of these, namely alanine, arginine, citrulline, glutamine, histidine, isoleucine, serine, trypto-
phan, valine, and ADMA, had also been shown to be able to discriminate between CKD
and dialysis in a previous small study [12]. Another recent metabolomic study reported
that BCAA metabolism was downregulated in ESKD compared to CKD patients [21]. We
did not measure BCAA metabolites; however„ in line with this report, levels of two of the
three BCAAs, valine and isoleucine, were also significantly reduced in our ESKD sample.
In addition, our findings show that valine and leucine were the second and fourth most
important metabolites, respectively, to discriminate CKD from ESKD according to their VIP
scores. There are several explanations for this finding. BCAAs are anabolic, essential AAs,
and their levels have been shown to decrease with metabolic acidosis, which worsens with
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CKD progression to ESKD because of enhanced proteolysis and BCAA catabolism [26].
Moreover, the levels of BCAAs and other essential AAs have also been shown to be lower
in ESKD patients due to hemodialysis and reduced protein intake [27].

The most relevant metabolite for CKD/ESKD discrimination in our study was tryp-
tophan, which showed the highest VIP score and the highest negative coefficient in the
OPLS-DA model. Tryptophan catabolism by IDO leading to kynurenine is known to
increase with CKD progression and dialysis [28,29]. The upregulation of this pathway
is supported by our aforementioned observation that the kynurenine/tryptophan ratio
displayed an inverse high correlation with eGFR. In the same line, two other metabolomic
studies, although with only 32 and 77 patients [12,21], have also reported the increase in
similar ratios (using different metabolites in the kynurenine pathway) in ESKD patients.
Kynurenine is further biotransformed into several metabolites that play a relevant role
in chronic inflammation, oxidative stress, and apoptosis [30,31], which could explain the
increased inflammatory response and cell damage present in advanced CKD. Indeed,
modification of the kynurenine pathway via inhibition of kynurenine hydroxylase has
been shown to attenuate surgical complications in rodents [32], which suggests that the
downregulation of tryptophan catabolism to kynurenine might be a promising therapy to
delay progression to ESKD.

This study has a number of strengths and limitations. A clear strong point was the
sample size, which was far higher than that reported by the vast majority of studies an-
alyzing biological concentrations of AAs in renal patients, and that allowed capture of
the true variability of the population in terms of the concentrations of these compounds.
Among the limitations, urine samples were not available for the control group, and, hence,
proteinuria values could not be obtained for these subjects. In the same manner, protein
intake of participants was not assessed. However, even though a higher risk of malnu-
trition was observed for patients with advanced CKD (significantly lower Val/Gly and
EAA/NEAA ratios), multivariate models showed how eGFR was a far better predictor of
AA plasma concentrations than albumin values, indicating that nutrition status by itself
would not explain our findings. Another limitation was the lack of a validation cohort for
the reported observations.

In summary, we have shown how in a large population of healthy subjects and
renal patients with a wide range of eGFR values, the use of a LC/MS-based targeted
metabolomics approach may be useful to identify prognostic biomarkers of CKD risk
and progression. Our results taken together indicate that plasma concentrations of AA
and related amines have a high degree of predictive ability regarding renal function. In
particular, citrulline and the tryptophan metabolic route to kynurenine showed the greatest
potential as biomarkers, and the addition of these factors to the current evaluation of CDK
risk and progression might improve the accuracy of the existing prognostic methods largely
based on creatinine alone.
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ing status, and diabetes; Figure S1: Correlation of amino acid ratios with the estimated glomerular
filtration rate in patients with different degrees of CKD and healthy volunteers.
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