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Abstract: As people get older, living at home can expose them to potentially dangerous situations
when performing everyday actions or simple tasks due to physical, sensory or cognitive limitations.
This could compromise the residents’ health, a risk that in many cases could be reduced by early
detection of the incidents. The present work focuses on the development of a system capable of
detecting in real time the main activities of daily life that one or several people can perform at the same
time inside their home. The proposed approach corresponds to an unsupervised learning method,
which has a number of advantages, such as facilitating future replication or improving control and
knowledge of the internal workings of the system. The final objective of this system is to facilitate
the implementation of this method in a larger number of homes. The system is able to analyse the
events provided by a network of non-intrusive sensors and the locations of the residents inside the
home through a Bluetooth beacon network. The method is built upon an accurate combination of
two hidden Markov models: one providing the rooms in which the residents are located and the
other providing the activity the residents are carrying out. The method has been tested with the data
provided by the public database SDHAR-HOME, providing accuracy results ranging from 86.78% to
91.68%. The approach presents an improvement over existing unsupervised learning methods as it is
replicable for multiple users at the same time.

Keywords: smart home; IoT; HAR; HMM; sensors; SDHAR-HOME

1. Introduction

Human activity recognition (HAR) has become a major field of research in the health-
care sector over the last two decades due to its application in domains such as entertain-
ment, security and wellbeing improvement [1]. HAR is usually accompanied by the use of
Internet-of-Things (IoT) technologies [2], such as sensors, images or smartphones [3], in
order to extract information from the environment and converge towards a specific activity
of daily life [4]. However, identifying patterns of behaviour and actions performed by indi-
viduals is a challenge due to the speed and duration of certain activities, the variability and
different ways of performing a given activity or the spatial distribution of the household
itself [5]. All this requires the creation of a generalist model that can be applicable to the
great diversity of cases that may occur when carrying out HAR [6].

Moreover, the percentage of older people has been increasing in recent years, thus
creating a need for assistance due to their natural loss of autonomy [7]. As people grow
older, the probability of mental [8,9] and physical decline increases [10,11]. This may result
in dangerous situations, such as accidental falls, malnutrition or sleeping problems, among
others [12]. For this reason, a correct recognition of activities in real time is important for an
appropriate intervention, when required [13]. All these circumstances represent the need
to establish a mechanism that monitors the behaviour patterns of this group of people [14]
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through activity recognition technologies and algorithms [15]. Detecting an absence of
activity is also very important as it can provide very important information about the user.
This can be an indication that the user is down or has had a problem [16].

An HAR system is composed of three functional subsystems [17]: (i) a sensing mod-
ule responsible for continuously collecting information from the environment [18], (ii) a
processing module responsible for extracting the main features from the sensor signals to
discriminate between activities [19] and (iii) a classification module to identify the activity
from the key features extracted by the previous module [20]. Concerning (i), the use of
computer vision technology has been proposed [21,22] due to its high reliability [23]. A
large amount of temporal information about the development of an activity can be ex-
tracted by studying the person’s postures and movements, the objects he/she is using
or the environment where the activity is taking place [24]. Sensor-based methods [25,26]
through discrete event analysis represent a valuable alternative that can be advantageous
because it is not perceived as intrusive [27]. These methods provide information about
the environment and home conditions at the time the activity takes place [28] or about the
person’s postural parameters [29,30].

Concerning (ii) and (iii), information can be extracted from sensors by applying
machine learning (ML) methods [31,32]. These learning methods can be supervised or
unsupervised. Supervised learning methods need to have labelled outputs corresponding
to the inputs crossing the model [33]. This requirement is necessary when using neural net-
works, such as convolutional neural networks (CNN) [34,35] or recurrent neural networks
(RNN) [36]. For example, there are networks based on different cascading CNN layers,
which can be combined with other DL modules, such as attention modules [37]. Learning
is performed by tagging the user’s activities, which has to be performed manually by the
user or a collaborating expert. This can be costly and tedious because it usually requires
collecting data over an extended period of time to achieve successful learning (weeks or
even months). So, while this learning method is possible in theory and has been used in
previous research, it can be difficult to implement in practice. Moreover, when the system
is moved to another house, with other people and other sensors, a retraining process is
usually required. The situation is further complicated in the case of more than one user
living in the same house, as the sensors are not able to collect information inherent to a
particular user. In contrast, unsupervised methods only need input data, and, by means
of different classification and clustering algorithms, the system is able to generate a set
of outputs [38]. An example of unsupervised methods could be hidden Markov models
(HMM) [39]. The application of unsupervised methods is computationally more complex
than the application of supervised methods (regardless of training) [40]. Other methods
are known as semi-supervised learning methods. These methods perform learning by
combining a small set of labelled data (typical of supervised learning) with a larger set
of unlabelled data (typical of unsupervised learning). For example, the broad learning
system (BLS) is a semi-supervised learning method with high computational efficiency that
presents good feature extraction behaviour [41]. The main problem with supervised meth-
ods is the need to have a specific output for a set of inputs, and this does not occur in real
cases where real-time learning is desired [42]. Moreover, in HMMs, more precise control
over the system’s operation is available compared to neural network-based methods, where
knowledge is diffused throughout the system. This advantage facilitates the adaptation
of HMMs for a larger number of residents. HMMs are also advantageous over rule-based
models [43] or decision trees [44], which are stricter and less flexible methods. Moreover,
the case of two people living together is frequent and should be addressed. However, it is
challenging since, on many occasions, both users are in close proximity within the home,
doing similar activities, which hinders HAR. Likewise, the system has to be fast enough to
anticipate possible dangerous situations, which represents a further challenge.

The main purpose of this paper is the development of an unsupervised learning
method for recognising, with high reliability, the activities being performed by several
people inside a house. Although supervised learning methods usually offer better results,



Electronics 2023, 12, 4772 3 of 24

their implementation in real environments is much more complex than unsupervised
methods due to labelling during the training phase. The paper aims to perform HAR
by analysing discrete events provided by sensors distributed around the home, through
the use of an unsupervised method based on HMMs. In order to validate the proposed
approach, it is tested on a public database obtained from a two-month real case of two
people living together. Likewise, the learning model is intended to be as generalist as
possible in order to be applicable in homes other than the one under analysis.

The main contributions of the paper are the following: (i) A method for recognising
activities carried out by several people simultaneously inside a house is developed by
applying unsupervised learning methods. (ii) The system is able to distinguish between
a total of 16 different activities inside a house (e.g., sleeping, eating or taking medicine).
(iii) The technology chosen to detect the activities does not compromise the privacy of
the users of the house. Sensors collect the events that occur in the house. For this reason,
the use of cameras and microphones has been avoided [45], since this type of technology
captures information linked to the residents. (iv) The system predictions are carried out in
real time, minimising the time required to execute a response action (e.g., if the user has
taken more medication than recommended, the health services should be notified as soon
as possible). (v) The predictions are independent of the actual time, which gives greater
flexibility to the solution. (vi) Models of the inhabitants are linked through behavioural
patterns, reinforcing the effectiveness of the system.

The article is structured as follows: Section 2 gives an overview of the main existing
learning methods to perform HAR, both supervised and unsupervised, looking at hit rates
and databases used to verify the approach reliability. Section 3 addresses an overview of the
method and the system developed to perform HAR (Section 3.2) and a description of the
database chosen to evaluate it (Section 3.1). Section 4 details the different experiments that
have been carried out to verify the validity of the system developed in this paper. Section 5
describes the evidence obtained during the experimentation stage. Finally, Section 6
summarises the main strengths of the developed system as well as possible future lines
of research.

2. Related Work

In this section, the latest technologies used to perform activity recognition by super-
vised and unsupervised methods are discussed.

2.1. Summary of the Main HAR Supervised Learning Methods

In recent years, activity recognition has become a target of study for many research
collectives due to its multiple fields of application. Within activity recognition and DL
systems, one group widely used is supervised methods. These methods can reach high
recognition accuracy given that the model learns as it analyses the input data, knowing
the output it has to generate. In [46], the authors developed a system capable of analysing
the main joints of users and their movements using computer vision during different
daily activities. To build the prediction model, the authors used an Inception-ResNet
neural network [47]. Moreover, they evaluated the approach against three public databases:
UTD_MHAD [48], HDM05 [49] and NTU RGB+D 60 (NTU60) [50], obtaining accuracies
between 85.45% and 98.13%. In general, computer-vision-based approaches can achieve
high recognition rates, but may compromise users’ privacy significantly. Other studies,
such as the one carried out by [51], also analyse video sequences to obtain the postures
performed during gymnastics sessions recorded by themselves, obtaining an accuracy
rate of over 98%. To achieve these results, the authors used a model based on multilayer
perceptron (MLP) networks [52], integrated with an unsupervised HMM model. In [53],
the authors present a system capable of analysing signals provided by MEMS inertial
sensors by applying long short-term memory (LSTM) RNNs [54]. The effectiveness of their
system was evaluated with two open-access databases, WISDM [55] and PAMAP2 [56],
obtaining accuracies over 97%. In [57], the authors developed a robust classification model
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to perform HAR by analysing signals from wearable sensors. For this purpose, they used
CNN networks combined with bidirectional LSTM (BiLSTM) layers in order to extract
the main features of the signals before converging to the resulting activities. The authors
obtained their results by applying their model to three databases: UCI-HAR [58], WISDM
and PAMAP2, resulting in hit rates ranging from 94% to 96%. The same databases were
used in the work by [59]. In this case, the authors combined CNN networks with gated
recurrent unit (GRU) networks [60], giving results that reach 97% accuracy. The work
by [61] also used bidirectional LSTM networks to obtain a set of 16 activities with an
accuracy of 95.42%. In this case, the authors used the Milan [62] database, which is a subset
of the CASAS [63] database group. Other authors proposed the use of supervised support
vector machine (SVM) models [64], such as the work developed by [65]. The authors
managed to detect six ambulation activities (e.g., walking, climbing stairs or sitting) with
an accuracy of 94.66%. The work carried out by [66] presents the development of a skeleton-
based action recognition model by applying a semantics-guided neural network (SGN)
composed of the combination of CNNs with graph convolutional networks (GCNs) [67].
The model was tested against three different databases: NTU RGB+D 60 (NTU60), NTU
RGB+D 120 (NTU120) [68] and SYSU 3D Human-Object Interaction Dataset (SYSU) [69],
with results ranging from a 79.2% to 90.6% hit rate. Another work using environmental
sensors is the one developed by [70], in which they created an HAR algorithm based on
CNN networks to analyse the main features of the time domain combined with a series of
dense layers [71]. The authors used the CASAS database (Cairo, Milan, Kyoto7, Kyoto8 and
Kyoto11) to obtain an accuracy between 86.68% and 97.08%. In [72], the authors developed
a database (SDHAR-HOME) with a total of 18 activities, whose measurements correspond
to signals from environmental sensors located in a real home inhabited by two people. The
authors applied three DL approaches: RNN [73], LSTM and GRU, obtaining a hit rate of
90.91%. Finally, there is the work by [74], in which they used a novel DL method known as
Transformer models [75]. One of the main objectives of a Transformer model is to reduce
the computational load by applying temporal inference algorithms to the information that
contributes most value to the model while spending less time and load on less important
information. The authors applied this model to three databases: Penn-Action [76], NTU60
and NTU120, obtaining results above 90%. A summary of all the works presented is given
in Table 1.

Table 1. Overview of the main HAR supervised learning methods.

Development DL Method Database Activities Accuracy

[46] Inception-ResNet
UTD_MHAD 27 98.13%

HDM05 130 90.67%
NTU RGB+D 60 60 85.45%

[51] MLP + HMM Own development 19 98.05%

[53] LSTM WISDM 6 97.32%
PAMAP2 18 97.15%

[57] CNN + BiLSTM
UCI-HAR 6 96.37%
WISDM 6 96.05%

PAMAP2 18 94.29%

[59] CNN + GRU
UCI-HAR 6 96.20%
WISDM 6 97.21%

PAMAP2 18 95.27%

[61] BiLSTM Milan 16 95.42%

[65] SVM Own development 6 94.66%

[66] SGN -> GCN + CNN
NTU RGB+D 60 60 89%
NTU RGB+D 120 120 79.20%

SYSU 12 90.60%
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Table 1. Cont.

Development DL Method Database Activities Accuracy

[70] CNN

Cairo 13 91.99%
Milan 15 95.35%

Kyoto7 13 86.68%
Kyoto8 12 97.08%

Kyoto11 25 90.27%

[72] RNN , LSTM and GRU SDHAR-HOME 18 90.91%

[74] Transformer
Penn-Action 15 98.7%

NTU RGB+D 60 60 92%
NTU RGB+D 120 120 90.3%

2.2. Summary of the Main HAR Unsupervised Learning Methods

Unlike the supervised methods discussed in Section 2.1, unsupervised methods do
not require prior knowledge of the output to be generated by the model during the training
stage [77]. This is an advantage when the model is implemented in real environments,
since in many cases there is no set of outputs in accordance with a set of inputs. This
advantage improves the replicability of the system, giving the possibility of using the same
model in different residences with different users and different living habits. The work
developed by [78] proposes the use of statistical methods to extract the main characteristics
of the signals generated by the sensors of a smartphone from the WEKA database [79]. The
chosen method is the application of fast Fourier transform (FFT) [80]. Another unsuper-
vised algorithm for HAR is the HMM method [81]. This algorithm is used in the work
developed by [82] to perform a regression with respect to the information from a set of nine
accelerometers. The authors were able to recognise a total of 12 activities with a hit rate
of 89%. Another system implemented upon HMM is the one elaborated by [83]. In this
case, the authors previously extracted the characteristics of the input signals by means of a
micro-Doppler method [84]. The method was tested against a database generated during
experimentation, with five wandering activities and an accuracy of 69% was obtained.
In [85], the authors propose the use of an unsupervised method known as the variational
autoencoder (VAE) [86]. This method takes care of compressing the input data vector into a
representation vector and, in subsequent steps, decompressing it back into an output data
vector with the same dimensions, thus exploiting the truly useful information in the input
data [87]. The authors evaluated their method against an unlabelled database known as
HHAR [88], obtaining a hit rate of 87%. The work carried out by [89] presents a comparison
of three unsupervised methods: k_Means [90], Gaussian mixture models (GMM) [91] and
HMM. The authors developed their own database from information provided by a series of
accelerometers distributed over the users’ bodies, resulting in a hit rate of between 75% and
84%. They compared the results of these unsupervised methods with supervised methods,
such as SVM, obtaining a hit rate of 95.55%. This comparison shows that supervised
learning methods usually tend to be more accurate although less replicable [92]. Another
development that works with the accelerometers of wearable sensors is the one carried out
by [93]. In this work, the authors designed a method called unsupervised deep learning
(DL)-assisted reconstructed coder (UDR-RC). This algorithm is based on feature extraction
methods using FFT. The authors used the WISDM database to analyse a total of six activities
and obtained a hit rate of around 97.28%. In [94], the authors developed an algorithm
known as MaxGap, which is based on the implication of the input signals to the model in
the generation of a given output, and the algorithm computes a positive or negative effect
depending on the weight it has on the output. To test its veracity, the authors compared
the results against an experimental database and a known algorithm, such as HMM. As a
result, they obtained a hit rate for MaxGap of 91.4% versus 93.5% for HMM. This reflects
the fact that the algorithm converges well, but the HMM still gives better results. Other
authors have opted to apply rule-based approaches to recognise activities [95]. In [96],
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the authors have developed a deep rule-based method (DRB). A total of 50 activities can
be analysed using 1000 images from the UCF50 database. Several authors have opted to
use decision-tree-based mechanisms to perform HAR [97]. In [98], the authors have used
decision trees to analyse the database “Activity of Daily Living” (ADL) [99] obtaining an
accuracy of 88.02% for 8 activities. A summary of all the work presented is given in Table 2.

Table 2. Overview of the main HAR unsupervised learning methods.

Development DL Method Database Activities Accuracy

[78] FFT WEKA 5 79.98%

[82] HMM Own development 12 89%

[83] HMM Own development 5 69%

[85] VAE HHAR 9 87%

[89]
k_Means

Own development 12
72.95%

GMM 75.60%
HMM 83.89%

[93] UDR-RC WISDM 6 97.28%

[94] MaxGap Own development 17 91.40%
HMM 93.50%

[96] DRB UCF50 50 82.00%

[98] Decision trees ADLs 8 88.02%

Proposed Proposed SDHAR-HOME 18 91.68%

The contributions reviewed in Section 2.1 have the advantage of a high hit rate in
HAR applications. However, it is costly to bring these models to a real environment due to
their low replicability. These models are strict in terms of the training conditions in which
they are carried out, giving worse results if the observed conditions are modified (e.g.,
if it is decided to take the model to another house). In contrast, the papers reviewed in
Section 2.2 are more easily replicable and applicable in real life. They have the advantage
that they do not require the activities performed by household residents to be labelled at
all times, which facilitates implementation in a larger number of households. However,
unsupervised models often give worse results. Therefore, the approach proposed in this
paper aims to obtain an unsupervised method that provides a high hit rate and can be
replicated in households other than the one analysed.

3. The Proposed HAR Approach

In this section, a description of the unsupervised model developed to perform activity
recognition is given. First, the structure of the database chosen for the study is explained.
Finally, the mathematical principle of the approach and its application are described.

3.1. SDHAR-HOME Dataset: Analysis and Description

The database chosen to perform the study is SDHAR-HOME [72]. It was built in a real
home where two people live together. This fact represents a challenge to be solved with
HMMs, since it is necessary to take into account the activity that each resident is carrying
out at all times. This database has the recorded data of 18 activities over a two month period,
giving a wide time margin to incorporate different situations and scenarios to deal with the
approach developed in this paper. This database has the following technology groups:

1. Non-intrusive sensor network: The database has real-time measurements of the events
provided by a sensor network implemented in the house. This network is composed
of the following sensors: 8 motion sensors, 8 door contact sensors, 2 temperature and
humidity sensors, 11 vibration sensors, 2 power consumption sensors and 2 lighting
sensors. This sensor network provides low-power Zigbee signals that are collected
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by a central hub, which is responsible for storing the information and managing
the devices.

2. Bluetooth beacon triangulation: Each resident wears a smart band, and by using a
network of beacons deployed in the house (one beacon in each room), the power of
the Bluetooth signal is continuously measured to each of the smart bands in order to
locate the user within the home. This information helps to differentiate which user is
performing a specific activity.

3. Wearable devices: As mentioned in the previous section, each resident wears a smart
band to be able to locate him or her in the house. This smart band is able to provide
information linked to the physical activity of each user (e.g., heart rate, calories, steps
or data from the device’s gyroscopes).

The occurrence of events collected by the sensors is asynchronous, which represents a
challenge for the data processing. This database contains discrete signals, such as those
provided by a motion sensor, and signals with a temporary inertia typical of temperature
or humidity sensors.

During the two month period, there were moments in which the users were not
performing any actions, even though some events were provided by the sensors. These
events may correspond, for example, to transitions between rooms or periods between two
activities that are not close in time. In the dataset, these periods of inactivity are labelled
under the activity “Other”.

3.2. Mathematical Principles and Application

The mathematical principles used for the approach development are based on HMMs.
HMM models correspond to an unsupervised learning method commonly used in the
field of ML based on dynamic Bayesian networks. This type of model is typically used for
speech recognition, natural language processing and image processing [100]. For this work,
HMMs have been chosen because of their advantages in terms of replicability and setup
effort. This type of model, because it is unsupervised, can be implemented in any home
without the need for a training stage, avoiding the need for manual labelling of activities.
This facilitates its acceptance in a larger number of homes [101].

HMMs can be divided into two hierarchical levels [102]:

1. Hidden states S: These correspond to the system variables that are unknown and
that are desired to be recognised. In the case being addressed, they correspond to the
activities carried out by the users within the household. These hidden states can be
represented as follows:

S = {s1, s2, s3, ..., sN}. (1)

In (1), N corresponds to the total number of hidden states of the system and each si
refers, in this case, to each of the activities analysed.

2. Observations O: The sequence of observations corresponds to the observable (and
measurable) facts from which information can be extracted from the environment
in which the system is located. In the case under consideration, this sequence of
observations corresponds to the information provided by the technology with which
the household is equipped (e.g., sensors or imagery). The sequence of observations
can be represented as follows:

O = {o1, o2, o3, ..., oT}. (2)

In (2), each observation oi is related to the time at which it occurs. T corresponds
to the total number of observations to be analysed. The sequence of observations O
includes all possible measurements obtained from the environment where the model
is located. Thus, the total set of possible observations V can be represented as follows:

V = {v1, v2, v3, ..., vM}. (3)
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In (3), M represents the total number of different signals entering the system and each
vi represents each of the sensors.

Once the hidden states S that the Markov network includes and the observations O
that trigger the state changes have been defined, it is necessary to introduce the probability
matrices that parameterise the model:

1. State transition matrix A: This corresponds to the probability matrix of transitions
between the different hidden states of the previously defined Markov network. For
this reason, it is an N × N matrix (4). Moreover, the sum of all transition probabilities
in the same row is equal to one (5). The probability of remaining in the same state
corresponds to the values on the diagonal, while the probabilities of moving from one
hidden state to another correspond to the remaining probabilities.

A =




a11 a12 a13 ... a1N
a21 a22 a23 ... a2N
a31 a32 a33 ... a3N
... ... ... ... ...

aN1 aN2 aN3 ... aNN




. (4)

N

∑
j=1

aij = 1, ∀ i ∈ [1, N]. (5)

2. Emission matrix B: This corresponds with the probability matrix of change to a certain
hidden state depending on the concrete observation entering the system. For this
reason, it is a matrix whose dimensions are N ×M (6).

B =




b1(1) b1(2) b1(3) ... b1(M)
b2(1) b2(2) b2(3) ... b2(M)
b3(1) b3(2) b3(3) ... b3(M)

... ... ... ... ...
bN(1) bN(2) bN(3) ... bN(M)




. (6)

3. Initial probability vector: At the beginning of the execution of a Markov network, the
different hidden states must start with an output probability (πi). This probability is
given by (7).

π = {π1, π2, π3, ..., πN}. (7)

Since the database contains information on two users cohabitating in the home simulta-
neously, a scenario has been considered where two HMMs are running in parallel (one
network for each user). Another aspect to be taken into account is the nature of the informa-
tion provided by each sensor in the database. For this purpose, the non-intrusive sensors
have been categorised into two groups:

1. Event sensors: These sensors provide information about the different events that occur
in the house. For example, an event could be the opening of a cupboard, the vibration
of a chair or the presence of a user in a specific room. For this reason, the sensors that
belong to this set are the following: presence, contact and vibration sensors.

2. Environmental sensors: These sensors provide information about the conditions of
the home over time. Therefore, their activation is not enough to establish a transition
between activities unless they are accompanied by an action provided by an event sen-
sor. For example, recognising that the TV is powered on upon its energy consumption
does not imply that any user is actually watching it at that moment, as he or she may
be wandering around the room or in another room. For this reason, it is necessary
to complement this energy consumption with an event sensor, such as vibration on
the sofa, in order to know that the user is actually watching TV. The sensors that
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belong to this group are the following: temperature and humidity, consumption and
luminosity sensors.

From this division into two sensor groups, it is possible to say that the event sensors are
the sensors that influence the emission matrix B. On the other hand, for the environmental
sensors, it is necessary to create another matrix, called the Environmental Matrix C:

C =




c1(1) c1(2) c1(3) ... c1(E)
c2(1) c2(2) c2(3) ... c2(E)
c3(1) c3(2) c3(3) ... c3(E)

... ... ... ... ...
cN(1) cN(2) cN(3) ... cN(E)




. (8)

The structure of the C matrix can be seen in (8). It is an N× E matrix, where N corresponds
to the total number of hidden states and E to the total number of environmental sensors.

Regarding the data provided by the Bluetooth beacons for positioning the users, a
study has been carried out on the quality of the signals. Due to the precision of the Bluetooth
signal, the signals can be affected by the walls of the house or electromagnetic noise that can
occur at any given moment. This has an impact on possible transition moments between the
different house rooms without the user making that movement. With all this, the following
conclusions can be drawn: it is impossible to make a transition between rooms that are
not connected to each other, and it is impossible to change rooms without the movement
sensors sending the presence event. Due to these two particularities, a Markov network
has been developed to filter out impossible transitions between rooms. In this case, the
hidden states correspond to the seven different rooms of the house.

Figure 1 shows a schematic graphic of the SDHAR-HOME house morphology. As
can be seen, it is not possible to make a transition between rooms without first passing
through the hall. For this reason, in the A matrix of this Markov network, the probability
of transition between rooms that are not interconnected is close to 0 (e.g., bedroom–lounge
transition). With respect to the emission matrix B, the observations O taken into account
are the motion sensors in the rooms and the data provided by the positioning beacons.

BATHROOM

BEDROOM STUDY

LOUNGE KITCHEN

HALL

NOT HOME

Figure 1. Generic scheme of the house morphology.
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Figure 2 shows the structure of the Markov network developed for indoor positioning.
Figure 2a shows the possible relationships between the different hidden states and the
probabilities associated with the transition matrix A. In the figure, the nodes correspond
to the possible rooms that the system is able to detect. Furthermore, Figure 2b shows the
relationship between the chain of hidden states and an example of possible observations,
together with the probabilities associated with the emission matrix B. Motion sensor nodes
are shown in yellow, the wristband signals are shown in blue, while room nodes are shown
in green.
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Figure 2. Hidden Markov model for indoor positioning.

Once the correct rooms where the users are when an event occurs in the home are
known, a new matrix can be defined that relates the room to the possible activity that is
taking place. For example, the probability that a resident is eating in the bathroom is very
low. On the other hand, the probability that the resident is sleeping in the bedroom is high.
For this reason, it is necessary to create the matrix M:

M =




m1(1) m1(2) m1(3) ... m1(R)
m2(1) m2(2) m2(3) ... m2(R)
m3(1) m3(2) m3(3) ... m3(R)

... ... ... ... ...
mN(1) mN(2) mN(3) ... mN(R)




. (9)

In (9), the structure of the M matrix is reflected. This matrix has dimensions N ×
R, where R is the number of the possible rooms of the house provided by the indoor
positioning Markov network.

Figure 3a shows the different relationships between the hidden states of the activity
recognition Markov network. In the figure, the nodes correspond to the possible activities
that the system is able to detect. Figure 3b shows how the different event sensors affect the
Markov network. Sensor nodes are shown in yellow, while activity nodes are shown in
green. In both figures, the approximate probabilities defined in the A and B matrices are
also shown.

Figure 2. Hidden Markov model for indoor positioning.

Once the correct rooms where the users are when an event occurs in the home are
known, a new matrix can be defined that relates the room to the possible activity that is
taking place. For example, the probability that a resident is eating in the bathroom is very
low. On the other hand, the probability that the resident is sleeping in the bedroom is high.
For this reason, it is necessary to create the matrix M:

M =




m1(1) m1(2) m1(3) ... m1(R)
m2(1) m2(2) m2(3) ... m2(R)
m3(1) m3(2) m3(3) ... m3(R)

... ... ... ... ...
mN(1) mN(2) mN(3) ... mN(R)




. (9)

In (9), the structure of the M matrix is reflected. This matrix has dimensions N × R,
where R is the number of the possible rooms of the house provided by the indoor position-
ing Markov network.

Figure 3a shows the different relationships between the hidden states of the activity
recognition Markov network. In the figure, the nodes correspond to the possible activities
that the system is able to detect. Figure 3b shows how the different event sensors affect the
Markov network. Sensor nodes are shown in yellow, while activity nodes are shown in
green. In both figures, the approximate probabilities defined in the A and B matrices are
also shown.
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Figure 3. Hidden Markov model for HAR.

Having defined and parametrised the system architecture, it is time to develop and
apply the algorithm responsible for obtaining the paths within the system where the highest
probability is obtained. We have chosen a forward–backward approach [103].

1. Forward algorithm: The forward algorithm is in charge of calculating the different
activities and rooms successively each time a new event sensor record or beacon
position arrives. Therefore, it has a progression in favour of the timeline. Hidden
state probabilities are calculated by combining propagation stages (applying the A
matrix) and update stages (applying the B matrix) in a similar way to the behaviour
of Bayesian filters [104]. The algorithm for the user’s location system is the following
(see Algorithm 1):

Algorithm 1 Location system: forward algorithm

Input: HMM and Observations sequence O = o1...oT
Output: δt(si) = P(Xt = sj, O) ∀ si

1: if t = 1 then
2: δ1(si) = bi(o1) · πi, i ∈ [1, n]
3: else
4: for k = 2 to t do
5: for j = 1 to n do
6: δk(sj) = bj(ok)∑n

i=1(aij · δk−1(sj))
7: end for
8: end for
9: end if

10: return δt(si), i ∈ [1, n]

In this and the following algorithms, the parameter n corresponds to the total number
of different hidden states. In addition, the parameter t refers to the instant at which
the algorithm is applied. This algorithm is the one used for the Markov network
that is responsible for locating users within the home. In contrast, for the Markov
network that performs activity recognition, a variant has been created to implement
the environmental sensors. The variant is as follows (see Algorithm 2):
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1. Forward algorithm: The forward algorithm is in charge of calculating the different
activities and rooms successively each time a new event sensor record or beacon
position arrives. Therefore, it has a progression in favour of the timeline. Hidden
state probabilities are calculated by combining propagation stages (applying the A
matrix) and update stages (applying the B matrix) in a similar way to the behaviour
of Bayesian filters [104]. The algorithm for the user’s location system is the following
(see Algorithm 1):

Algorithm 1 Location system: forward algorithm

Input: HMM and Observations sequence O = o1...oT
Output: δt(si) = P(Xt = sj, O) ∀ si

1: if t = 1 then
2: δ1(si) = bi(o1) · πi, i ∈ [1, n]
3: else
4: for k = 2 to t do
5: for j = 1 to n do
6: δk(sj) = bj(ok)∑n

i=1(aij · δk−1(sj))
7: end for
8: end for
9: end if

10: return δt(si), i ∈ [1, n]

In this and the following algorithms, the parameter n corresponds to the total number
of different hidden states. In addition, the parameter t refers to the instant at which
the algorithm is applied. This algorithm is the one used for the Markov network
that is responsible for locating users within the home. In contrast, for the Markov
network that performs activity recognition, a variant has been created to implement
the environmental sensors. The variant is as follows (see Algorithm 2):
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Algorithm 2 HAR: forward algorithm with environmental sensors

Input: HMM, Observations sequence O = o1...oT and Environment sequence E = e1...eT
Output: αt(si) = P(Xt = sj, O, E) ∀ si

1: if t = 1 then
2: α1(si) = bi(o1) · πi, i ∈ [1, n]
3: else
4: for k = 2 to t do
5: for j = 1 to n do
6: αk(sj) = bj(ok)∑n

i=1(aij · αk−1(sj))
7: if ek 6= 0 then
8: αk(sj) = cj(ek) · αk(sj)
9: end if

10: end for
11: end for
12: end if
13: return αt(si), i ∈ [1, n]

2. Backward algorithm: The backward algorithm is in charge of calculating the different
β as successive sensor events arrive at the system. For this reason, the flow of this
algorithm goes against the timeline, reinforcing the value provided by the forward
algorithm with information from subsequent events. A total of k = 2 subsequent
events has been chosen so that the system does not become too slow. This part of the
proposed system is shown in Algorithm 3.

Algorithm 3 Backward algorithm

Input: HMM and Observations sequence O = o1...oT
k ∈ [1, t]

Output: βk(si) = P(ok+1, ..., ot|Xk = si) ∀ si
1: if t = k then
2: βt(si) = 1, i ∈ [1, n]
3: else
4: for r = t− 1 to k do
5: for j = 1 to n do
6: βr(sj) = ∑n

i=1 bi(or+1)βr+1(si)aji
7: end for
8: end for
9: end if

10: return βk(si), i ∈ [1, n]

A study of the activities performed by both users throughout the database has been
carried out. From this study, it has been deduced that there are activities whose probability
of being executed jointly is higher than the rest. For example, when user 1 is sleeping, it is
very likely that user 2 is also sleeping. Another example could happen with the activity of
eating, since both users are used to eating at the same time. For this reason, an implemented
R matrix aims to relate the outputs of both users’ Markov networks in order to reinforce
the activities that are performed jointly (see (10)).

R =




r1(1) r1(2) r1(3) ... r1(N2)
r2(1) r2(2) r2(3) ... r2(N2)
r3(1) r3(2) r3(3) ... r3(N2)

... ... ... ... ...
rN1(1) rN1(2) rN1(3) ... rN1(N2)




. (10)

γ(U1) = R · (αi(U2) · βi(U2) · δi(U2)). (11)
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Equation (11) shows the way the γ parameter is calculated, which is used to collect
the information from the output of the other resident’s network and then to apply it in its
own inference engine.

Finally, once the parameters α, β, δ and γ of each user are known, the activity that
each user performs at a specific time t can be obtained as:

ACT(si) = α(si) · β(si) · γ(si) · δ(si). (12)

In (12), the inference process is shown, from which a vector of probabilities ACT(si)
is obtained for each of the possible system activities. Once this vector is known, it is only
necessary to select the activity with the highest probability to know the activity being
performed by the chosen user.

The overall HAR system architecture is summarised in Figure 4. This diagram shows
the two HMMs implemented in the proposed method: on the left (HMM HAR) is the model
that recognises the activity and on the right (HMM LOCATION) is the model that provides
the room in which the user is located. It can be seen that HMM HAR has been implemented
using a combination of forward and backward algorithms, while HMM LOCATION has
only a forward stage. It can also be deduced that each algorithm is accompanied by its
corresponding probability distribution matrices. The inputs of the HMM HAR forward
stage are the activity distribution for the previous time t− 1, the action provided by an
event sensor and the home conditions provided by the environmental sensors. In contrast,
the backward stage relies only on the signals from the subsequent event sensors t + 1 and
t + 2. The inputs of the HMM LOCATION forward algorithm are the signals provided by
the Bluetooth beacons and the events from the motion sensors (together with the probability
distribution of the user’s position in the house at the previous time t− 1). All outputs are
multiplied in the inference block, together with the influence of the other user’s activity, to
produce the most likely activity at time t.

FORWARD BACKWARD

. . .
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B
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B

C

ENVIRONMENTAL
SENSORS

EVENT SENSORS

1

ACTIVITIES

A

B

FORWARD

USER BEACONS

α β

M

γ δ

FROM USER 2

x x x

HMM HAR HMM LOCATION

INFERENCE ACTIVITY OUTPUTR

Figure 4. Generic scheme of the solution for HAR.
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4. Experiments

In order to evaluate the efficiency and accuracy of the unsupervised system presented
in Section 3.2, data from the SDHAR-HOME database have been used, in conjunction with
the system, in order to obtain the corresponding activities and compare them with the real
activities from the database. Since the frequencies of the predicted and real activities are
different (as the system provides predictions every time data arrive from the event sensors),
an output sampling module has been used to compare them every second. Concerning
error, it must be considered that a short time delay in recognising an activity is acceptable.
There are activities with a certain temporal inertia, such as the “Shower” activity. When
one of the users labels “Shower”, he/she takes some time to get into the shower and turn
on the water, and it takes some time for the humidity in the room to increase. This time
interval is not considered an error if the system has finally recognised the “Shower” activity
with some delay. This happens with other activities, as the labelling of an activity does not
coincide exactly with the start of the activity. For this reason, a module has been developed
to analyse the time interval that the system takes to recognise the activity. If this time
interval is less than 5 min, the prediction is considered correct. “Make Simple Food” and
“Cook” have been grouped together as the sensors involved in the recognition are the
same. The computational total time duration is 70 s to proccess the entire database. All
activities labelled in the SDHAR-HOME database have been evaluated (16 activities in
total). All the tests and experiments were conducted on an Intel(R) Core(TM) i7-10875H
CPU @ 2.30 GHz/16 Gb with NVIDIA GeForce RTX 2060 GPU.

In Figure 5, two examples of the system’s operation can be observed. For instance,
in Figure 5a, presence is detected within the living room. With this information, the
probabilities of carrying out any possible action in the living room become equal. Shortly
thereafter, presence on the sofa is detected and the television is turned on, leading the
system to deduce that the user is currently watching TV. A similar scenario unfolds in the
example in Figure 5b. The motion sensor detects presence in the bedroom, resulting in the
equalization of probabilities for all possible bedroom activities. Upon detecting that the
light is off and someone is lying in bed, the system infers that the user is sleeping.
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Figure 5. Examples of activity detection based on sensor signals.

In Figures 6 and 7, the confusion matrices of the hidden Markov networks can be
observed for each user. In these confusion matrices, the percentage and distribution of the
system’s success can be observed, since the equivalence between the real activities and
the activities predicted by the system can be seen. The hit rates can be observed along the
diagonal of the matrices, while the off-diagonal probabilities correspond to system failures.

BA
TH

RO
OM

 A
CT

IV
IT

Y

CH
OR

ES

CO
OK

DI
SH

W
AS

HI
NG

DR
ES

S

EA
T

LA
UN

DR
Y

OU
T 

HO
M

E

PE
T

RE
AD

RE
LA

X

SH
OW

ER

SL
EE

P

TA
KE

 M
ED

S

W
AT

CH
 T

V

W
OR

K

Predicted

BATHROOM ACTIVITY

CHORES

COOK

DISHWASHING

DRESS

EAT

LAUNDRY

OUT HOME

PET

READ

RELAX

SHOWER

SLEEP

TAKE MEDS

WATCH TV

WORK

Re
al

0.77 0.03 0.01 0.01 0.01 0.01 0 0.01 0 0 0 0.01 0.01 0.12 0.01 0

0.01 0.65 0.03 0 0.18 0 0 0 0 0.06 0.01 0 0.01 0 0.03 0.01

0 0.01 0.83 0.05 0.01 0.08 0 0 0 0 0.01 0 0.01 0 0 0

0 0.03 0.08 0.71 0 0.18 0 0 0 0 0 0 0 0 0 0

0.03 0.07 0.02 0 0.78 0 0 0 0 0 0 0.01 0.07 0 0 0.01

0 0 0.03 0.06 0 0.82 0 0 0 0 0.01 0 0.01 0 0.06 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0.01 0.01 0 0 0 0 0.97 0 0 0 0 0.01 0 0 0

0.01 0 0 0 0 0 0 0.02 0.86 0 0 0 0.03 0.03 0.04 0

0.03 0 0 0 0.07 0.02 0 0.05 0 0.54 0 0 0.21 0 0.07 0

0.02 0.04 0.02 0 0.02 0.03 0 0 0 0 0.69 0.01 0.03 0 0.13 0

0.09 0 0 0 0.01 0 0 0.02 0 0 0 0.88 0 0 0 0

0.01 0.01 0 0 0.04 0 0 0.01 0 0.01 0 0 0.92 0 0 0

0.01 0 0.01 0.02 0.1 0 0 0 0 0 0 0.02 0 0.83 0 0

0.02 0.01 0.01 0 0 0.01 0 0 0 0 0.12 0 0.01 0 0.82 0

0.01 0.01 0 0 0.02 0 0 0 0 0 0.01 0 0 0 0 0.94
0.0

0.2

0.4

0.6

0.8

1.0

Figure 6. HMM User 1: Confusion matrix.

Figure 5. Examples of activity detection based on sensor signals.
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diagonal of the matrices, while the off-diagonal probabilities correspond to system failures.
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Figure 7. HMM User 2: Confusion matrix.

From the confusion matrices, the most accurate activities of the system are deduced.
For example, the “Sleep” activity or the “Out of Home” activity have the highest accuracy
rate (both are over 88% accurate). On the other hand, the system may confuse different pairs
of activities. For example, the “Cook” activity is focused on the use of the glass–ceramic
hob, and this behaviour is analysed by a temperature and humidity sensor. These two
variables have a high inertia, so the activity may be sustained longer than it should be.
Another pair of activities that can be faulty is “Read” with “Sleep”. Both activities take
place in the bed, the only difference is whether the light is on or off. Finally, the “Chores”
activity can fail because it is a very generic activity that takes place all over the house. This
results in a large number of sensor events, which leads to a decrease in the probability of
“Chores” due to the forward propagation effect.

In Table 3, the average duration of each of the activities in the database are shown. All
durations in the table are reported in seconds (s). From this table, a substantial variability in
duration between each activity can be deduced. In addition, activities with longer durations
have a greater number of events provided by the sensors. During the experimentation,
the HAR approach obtained an average response time of around 6 min. Although the
forwarding stage is immediate, as it takes place at the moment an event arrives from
a sensor, the backtracking effect needs to rely on nearby future signals to infer activity.
Moreover, the experimentation was carried out continuously for two months.

In order to evaluate the robustness of the system, the following set of metrics has been
analysed from the confusion matrices: precision, recall, F1-score and accuracy [105].

Precision =
TP

TP + FP
. (13)

Recall =
TP

TP + FN
. (14)
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F1Score =
2

1
Recall +

1
Precision

. (15)

Accuracy =
TP + TN

TP + TN + FP + FN
. (16)

From (13)–(16), the calculation methods of the previously mentioned metrics can
be observed. TP is true positive, FP is false positive, TN is true negative and FN is
false negative.

Table 3. Average duration of SDHAR-HOME activities for both users.

Bath.
Act. Chores Cook Dish Dress Eat Laundry Out of

Home

User 1 505 1594 630 723 268 1649 224 24,003
User 2 914 1887 604 631 607 2213 832 27,261

Pet Read Relax Shower Sleep Take
Meds

Watch
TV Work

User 1 146 1997 1960 634 25,268 103 4319 5202
User 2 304 8924 3788 1602 28,907 60 4262 4244

Table 4 shows the precision, recall and F1-score values for each of the SDHAR-HOME
activities for each user.

Table 4. Summary table of results by activity (User 1–User 2).

Activity Precision Recall F1-Score

Bathroom Activity 0.81–0.63 0.77–0.6 0.79–0.61
Chores 0.28–0.25 0.65–0.57 0.39–0.35
Cook 0.68–0.37 0.83–0.6 0.75–0.46

Dishwashing 0.24–0.15 0.71–0.79 0.36–0.25
Dress 0.12–0.19 0.78–0.61 0.21–0.29

Eat 0.91–0.65 0.82–0.64 0.86–0.64
Laundry 0.85–0.11 1.0–0.54 0.92–0.18

Out of Home 0.99–0.99 0.97–0.91 0.98–0.95
Pet 0.82–0.11 0.86–0.55 0.84–0.18

Read 0.64–0.58 0.54–0.67 0.59–0.62
Relax 0.42–0.76 0.69–0.63 0.52–0.69

Shower 0.87–0.47 0.88–0.73 0.87–0.57
Sleep 0.96–0.94 0.92–0.94 0.94–0.94

Take Meds 0.09–0.09 0.83–0.96 0.16–0.16
Watch TV 0.89–0.79 0.82–0.8 0.85–0.79

Work 0.99–0.57 0.94–0.77 0.96–0.66

Accuracy 0.92–0.87
Macro avg. 0.66–0.48 0.81–0.71 0.69–0.52

Weighted avg. 0.94–0.9 0.92–0.87 0.93–0.88

Figure 8 shows the different receiver operating characteristic (ROC) [106] curves
obtained from the experimentation stage for both users. In both figures, the ROC curves
for all possible activities can be observed. Furthermore, the value of the area under the
curve (AUC) [107] for each of the activities can be checked. The ROC curves and the AUC
value represent the sensitivity of the system to false detections, showing the degree of
randomness of the predictions. From the AUC values, it can be concluded that the system
is robust as the majority of activities are over 90%.
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5. Discussion

From Table 4, it can be deduced that the precision of the Markov network of user
1 is 91.68%, while the precision of user 2 is slightly lower with a value of 86.78%. This
accuracy difference may be due to a few different factors. For example, it may be due to
the fact that each user has made a different labelling of the actual activity. It may also be
due to the adjustment of the system matrices (A, B, C, M and R) on which the probability
apportionment is based. The adjustment of the system matrices can be performed easily
with a little prior knowledge from the sensors that affect each activity. For example, the
“Take Meds” activity is closely linked to the medicine drawer. Therefore, the contact sensor
located in this drawer must have a high probability value within the B matrix. Another
example could be the humidity sensor in the bathroom, whose measurement is linked
to the “Shower” activity. Therefore, this humidity sensor must have a high probability
value within the matrix C. There is a possibility that both users are in the same room. In
addition, both may be doing the same activity (e.g., sleeping) or different activities (e.g.,
user 1 sleeping and user 2 reading). In the second case, the system cannot infer which
activity each user is doing, as there is not enough information available to discriminate
which of the two users is performing the action.

The possible weaknesses in the HAR system could be due to the fact that the system
itself is not able to distinguish which of the two users is performing the action, even though
the activity is being recognised satisfactorily. For this reason, a prediction metric has
been extracted regardless of the user to whom the activity is granted. The system has a
recognition capability of 95.51%. This metric indicates that the system is able to recognise
activities with good accuracy but may fail to identify the user.

From the results obtained, the following deductions can be drawn:

1. Unsupervised models based on HMMs can be used to process time series data
provided by discrete event and environmental sensors together with indoor positioning
signals.

2. The results obtained with our HMM-based model are close to results obtained using
supervised methods, such as RNN, LSTM or GRU [72].

Figure 8. One-vs.-All ROC curves resulting from the experimentation stage and AUC values.

5. Discussion

From Table 4, it can be deduced that the precision of the Markov network of user 1 is
91.68%, while the precision of user 2 is slightly lower with a value of 86.78%. This accuracy
difference may be due to a few different factors. For example, it may be due to the fact
that each user has made a different labelling of the actual activity. It may also be due
to the adjustment of the system matrices (A, B, C, M and R) on which the probability
apportionment is based. The adjustment of the system matrices can be performed easily
with a little prior knowledge from the sensors that affect each activity. For example, the
“Take Meds” activity is closely linked to the medicine drawer. Therefore, the contact sensor
located in this drawer must have a high probability value within the B matrix. Another
example could be the humidity sensor in the bathroom, whose measurement is linked
to the “Shower” activity. Therefore, this humidity sensor must have a high probability
value within the matrix C. There is a possibility that both users are in the same room. In
addition, both may be doing the same activity (e.g., sleeping) or different activities (e.g.,
user 1 sleeping and user 2 reading). In the second case, the system cannot infer which
activity each user is doing, as there is not enough information available to discriminate
which of the two users is performing the action.

The possible weaknesses in the HAR system could be due to the fact that the system
itself is not able to distinguish which of the two users is performing the action, even though
the activity is being recognised satisfactorily. For this reason, a prediction metric has
been extracted regardless of the user to whom the activity is granted. The system has a
recognition capability of 95.51%. This metric indicates that the system is able to recognise
activities with good accuracy but may fail to identify the user.

From the results obtained, the following deductions can be drawn:

1. Unsupervised models based on HMMs can be used to process time series data provided
by discrete event and environmental sensors together with indoor positioning signals.

2. The results obtained with our HMM-based model are close to results obtained using
supervised methods, such as RNN, LSTM or GRU [72].

3. The system obtained in the present paper is highly generalist, since the internal
parameters that determine the model can be freely modified to analyse another
household, with other residents and in other circumstances than those used in the
present experimentation.

4. False positives obtained during the testing phase are mainly due to failures between
activities of a similar nature or failures between activities within the same room.
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5. The use of beacon installation for indoor positioning is unavoidable in cases where
two or more people cohabit within the same house, as the system needs to know
where the residents are located for probability allocation. In the case where there
is only one person, the position could be determined from the signals of the PIR
motion sensors.

6. Results obtained using an unsupervised method such as HMMs are high compared to
the previous work discussed in Section 2.2 using similar unsupervised methods.

The code containing the HMM developed in this paper and the experimental method
is available at the following link: https://github.com/raugom13/Unsupervised-Human-
Activity-Recognition-approach-in-Multi-User-Households, accessed on 24 November 2023.

6. Conclusions

In this paper, a novel unsupervised method has been proposed that is able to recognise
in real time the activities that two people perform simultaneously in the same house.
This method is based on HMMs, with a number of relevant adaptations to improve its
performance and adaptability to several simultaneous users. The scenario that has been
analysed corresponds to the public database SDHAR-HOME, which provides information
on the activities performed by two users in parallel to the collection of information from
three technological groups: non-intrusive sensor events, indoor positioning using Bluetooth
beacons and physiological data provided by activity bracelets. The method developed in
this paper corresponds to a probabilistic method that takes into account the events captured
by the non-intrusive sensor network and the positions of both users inside the house.

The structure of the developed method consists of the following two subsystems: an
HMM that is responsible for reliably providing the room in which each person is located
during the whole experimentation from the house’s motion sensors and beacon data,
together with another HMM that takes into account all the events happening inside the
house (using the forward–backward algorithm), the room in which the user is located and
the task that the other resident of the house is performing. The output of this method is
compared second by second with the corresponding real activity in order to establish an
accuracy metric to report on the accuracy and reliability of the system. The architecture
of the system is easily replicable for a larger number of users, as it would be necessary to
incorporate as many Markov models as users in the house.

The prediction system is able to recognise a total of 16 activities of daily living with
an overall accuracy of 91.68% for user 1 and 86.78% for user 2. These accuracy values are
considered satisfactory compared to the results obtained using RNNs in previous studies
for the same SDHAR-HOME database [72]. Moreover, these results are high in comparison
with the values obtained by other authors using unsupervised learning methods with other
databases (see Section 2.2). The drawback of HMMs lies a priori in their effectiveness
compared to supervised methods, such as neural networks. Supervised methods may
perform more effective and optimised learning for the input data set [108]. However,
our exeperiments have shown that our method provides highly satisfactory results and
improves the replicability of the system.

The system proposed in this paper is useful for the non-intrusive monitoring of elderly
people living alone in order to establish an alarm mechanism if there are conditions or
situations that are dangerous to their health. Furthermore, as an unsupervised method,
the system is replicable for use in other homes with different residents and behavioural
patterns. This is an improvement on supervised methods that use DL approaches, such
as RNNs, as these systems are more strict and rigid, and their internal model cannot be
manipulated. An advantage of the model presented in this paper is that it allows new
residents to be incorporated into the model, as the internal probability distribution is
fully controlled.

As future research, it is proposed to infer risk situations, such as lack of nutrition or
hygiene, with greater accuracy, as well as to detect anomalous behaviours, such as night
wandering or an excessively sedentary life. A further proposal is to reduce the time range

https://github.com/raugom13/Unsupervised-Human-Activity-Recognition-approach-in-Multi-User-Households
https://github.com/raugom13/Unsupervised-Human-Activity-Recognition-approach-in-Multi-User-Households
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taken into account in the experimentation phase (see Section 4), as it would be interesting
to reduce the 5 min that have been used to increase the speed of the model in the case
of certain events (e.g., falls). Finally, another suggested future line corresponds to using
the output information of the model to elaborate a set of rules so as to determine which
actions are recommended based on the behaviour patterns of the residents (e.g., by means
of supervised learning by an expert).
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