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Abstract
In this work, we intersect data on size-selected particulate matter (PM) with
vehicular traffic counts and a comprehensive set of meteorological covariates to
study the effect of traffic on air quality. To this end, we develop an M-quantile
regression model with Lasso and Elastic Net penalizations. This allows (i) to
identify the best proxy for vehicular traffic via model selection, (ii) to investigate
the relationship between fine PM concentration and the covariates at different
M-quantiles of the conditional response distribution, and (iii) to be robust to
the presence of outliers. Heterogeneity in the data is accounted by fitting a B-
spline on the effect of the day of the year. Analytic and bootstrap-based variance
estimates of the regression coefficients are provided, together with a numerical
evaluation of the proposed estimation procedure. Empirical results show that
atmospheric stability is responsible for the most significant effect on fine PM
concentration: this effect changes at different levels of the conditional response
distribution and is relatively weaker on the tails. On the other hand, model selec-
tion allows to identify the best proxy for vehicular traffic whose effect remains
essentially the same at different levels of the conditional response distribution.
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1 INTRODUCTION

Between 2012 and 2015, an innovative system for urban air-quality monitoring was put in place in Perugia (Italy). Aerosol
and gas measurements with very high spatiotemporal resolution were obtained through proper instruments integrated
on one of the cabins of a public conveyance of the town: the Minimetro. The Minimetro path, about 3 km long, starts
from a large suburban parking area, crosses various heavy traffic roads, passes through an urban park, residential areas,
tunnels, and climbs a hill to finally reach the old town centre. The different urban scenarios located along the path provide,
therefore, information about different environmental situations, while the constant and low speed of the cabins allows
for an easy and precise monitoring. Castellini et al. (2014) provide a thorough description of the PMetro project, while
Ranalli et al. (2016), Del Sarto, Ranalli, Bakar, et al. (2016), and Del Sarto, Ranalli, Cappelletti, et al. (2016) use functional
data analysis and Hierarchical Bayesian spatiotemporal modeling, respectively, to analyze these high-frequency data.
In this paper, we integrate the fine particulate matter (PM) concentration measurements coming from the Minimetro

mobile stationwith data coming from a traffic sampling equipment positioned at one of the intersections of theMinimetro
path counting the number of vehicles every 5 min, 24 h/day. We also collect hourly weather conditions data (such as
temperature, wind speed, and rainfall) coming from fixed monitoring stations of the Regional Environmental Protection
Agency placed in the surrounding of the path, and merge them with the other two data sets. Since data are collected at
different time frequency, we convert values to hourly data. Moreover, we reduce the spatial resolution of the data using
information from only one point given by the crossroad intersecting the Minimetro path.
For the same data set, Crocchianti et al. (2020) investigate the effect of weather conditions and vehicular traffic bymeans

of additive mixed models while Del Sarto et al. (2019) apply a finite mixture of M-quantile regression models (Alfò et al.,
2017). In both papers, an intensive model selection procedure is put in place to select the variable that best measures the
effect of vehicular traffic. In fact, traffic can be measured in terms of the number of vehicles passing at the crossroad every
hour, at different lag hour or by cumulating them at ℎ hours before the current time point with ℎ ranging on a defined
interval. To this end, several models are estimated in Crocchianti et al. (2020) and in Del Sarto et al. (2019), each one
with a different traffic-related covariate (all other things being unchanged). The model fitting is evaluated using classical
information criteria such as the Bayesian information criterion (BIC), and the model with the lowest BIC is retained. In
particular, in Del Sarto et al. (2019) the variable selection step is preliminary and the best proxy for traffic is retained in all
subsequent model selection analyses and for all levels (quantiles and M-quantiles) of the conditional distribution of the
response given the covariates. This can be a limitation as the effect of traffic can change at different levels of the conditional
distribution. In addition, results in Crocchianti et al. (2020) show that the effect of vehicular traffic changes for different
fractions of PM, with a larger number of cumulation hours needed to better trace the vehicular effect on smaller particles
with respect to larger (coarse) ones. Finally, results from previous analyses are not clear-cut and may be influenced by
the hour of the day which is not accounted for in those papers. For all these reasons, in this paper we are interested in
investigating how meteorological conditions and vehicular traffic levels affect fine PM concentrations at different levels
of the conditional response distribution. Furthermore, we conduct model selection and estimation at the same time, by
including all traffic-related variables and the hour of the day as covariates in the model.
When dealing with a problem where the data set contains a large number of covariates, the selection of predictors is

a crucial goal. Recently, there has been an active research production on sparse representation of regression problems
starting from the work of Tibshirani (1996). In his paper, he introduces the least absolute shrinkage and selection operator
(Lasso) as a penalization technique which can simultaneously perform variable selection and parameter estimation. In
particular, Lasso estimation represents an 𝐿1-regularized least squares estimate of the parameters of the model. When
categorial predictors are present in the regression model, Lasso may not be completely satisfactory since it only selects
individual dummy variables instead of the whole predictor. Moreover, it fails to do grouped selection. In fact, it tends to
select one variable from a group and ignore the others. To overcome these problems, several solutions and extensions are
proposed in the literature such as the Elastic Net of Zou and Hastie (2005), having an improved performance in particular
for correlated predictors. TheElasticNet uses both the𝐿1- and the𝐿2-norms to penalize themodel andusually outperforms
the Lasso regularization while enjoying a similar sparsity of representation. In addition, it encourages a grouping effect,
where strongly correlated predictors tend to be in or out of the model together.
In this paper, we introduce M-quantile regression shrinkage and selection via the Lasso and Elastic Net to analyze

PMetro data. This allows (i) to identify the best proxy for vehicular traffic via model selection and fitting at the same
time, while accounting for the hour of the day, (ii) to investigate the relationship between fine PM concentration and the
covariates at different M-quantiles of the conditional response distribution, and (iii) to obtain estimates that are robust to
outliers. In addition, to account for the clustered-time structure of the data, we introduce in the model a smooth function
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of time (day of the year) and we estimate it using penalized B-splines (Eilers &Marx, 1996). This should account for social
and generally unmeasured confounders on the distribution of fine PM as proposed also in Bertaccini et al. (2012).
Regularization has been introduced and investigated in the quantile regression framework (Belloni & Chernozhukov,

2011; Koenker, 2004; Li & Zhu, 2008; Petrella & Raponi, 2019; Slawski, 2012; Tang & Lian, 2016; Wang et al., 2012; Yan
& Song, 2019; Zhang et al., 2017), also from a Bayesian perspective (Aghamohammadi & Mohammadi, 2017; Alhamzawi
et al., 2012; Bernardi et al., 2018; Kyung et al., 2010; Li et al., 2010; Tian et al., 2019). In this paper, we focus on M-quantiles
(Breckling & Chambers, 1988). These extend the ideas of M-estimation to a different set of location parameters of the
response conditional distribution that lie between quantiles and expectiles. M-quantile regression can be considered as
a robustification to outliers of expectile regression (Kneib, 2013; Newey & Powell, 1987) based on influence functions.
Moreover, although M-quantiles have a less intuitive interpretation than standard quantiles (Jones, 1994), M-quantile
regression offers a number of specific advantages: (i) it allows to trade robustness for efficiency by allowing to select a
tuning constant in the influence function; and (ii) it offers computational stability as a wide range of continuous influence
functions can be used (Tzavidis et al., 2016).
With respect to existing literature on M-quantile regression, we introduce the Lasso and the Elastic Net regularization

for shrinkage and model selection. In fact, Spiegel et al. (2017) propose the use of nonnegative garrote for semiparametric
expectile regression; Zhao and Zhang (2018) propose variable selection in expectile regression using the SCAD (smoothly
clipped absolute deviation) penalty function, while Xu et al. (2021) introduce the Elastic Net penalty into expectile regres-
sion; Waldmann et al. (2017) perform variable selection for covariates with linear effects in Bayesian expectile regression
using Bayesian regularization priors. Yi and Huang (2017) introduce Elastic Net penalization to quantile regression and to
Huber loss regression. Our approach is similar to Yi and Huang (2017) as we also consider Huber loss regression, but the
latter considers only the central M-quantile. Up to our knowledge, our paper is the first attempt to consider regularized
M-quantile methods for the whole set of location parameters and fills in a gap in the literature. In addition, we include a
nonparametric term to model departures from linearity of the effect of a covariate on the response and we model it using
penalized B-splines. This can be easily extended to additive modeling. To avoid issues in combining the Lasso with penal-
ized predictors (Marra&Wood, 2011), we propose to estimate the coefficients of the B-splines with a penalized least-square
procedure similar to that in Pratesi et al. (2009) and outside the Lasso estimation procedure.
The paper is organized as follows. Section 2 describes the data used in the application and Section 3 introduces the

methodology. In particular, we introduce the M-quantile with Lasso regularization in Section 3.2, and then we extend the
method to the use of Elastic Net in Section 3.3. In Section 3.4, we account for nonlinearities through B-splines. The results
of the proposed model to the PMetro data are reported in Section 4. Conclusions and directions for future research are
provided in Section 5.

2 DATA

Data come from the project PMetro, which ran between 2012 and 2015 in order to assess air quality in the town of Perugia
(Italy). The response variable is collected through an optical particle counter (OPC) placed on one of the cabins of the
Minimetro transportation system (formore details on the performance of the OPC, see Castellini et al., 2014). These cabins
travel on a monorail built 5 m above the road level and are driven by a wire rope running at a low speed of about 4–7 m/s.
There are seven stations along the path and a single travel is about 20 min long, which is repeated about 40 times per day.
Since PM gravimetric and chemical measurements require long times to achieve reliable results, the OPCmeasures the

particle size distribution in terms of the number of particles in a range of selected aerosol bins. In particular, the concen-
tration measure collected by the OPC is divided into 22 dimensional bins according to the particle diameter, expressed in
micrometers (μm, 10−6m), from 0.28 to 10 μm, and we focus on concentration of particles with a diameter lower than 1.10
μm, obtained by summing the first nine dimensional bins.
The predictor variables are used tomeasure traffic and weather conditions. The latter aremeasured by fixedmonitoring

stations of the Regional Environmental Protection Agency while the former are obtained by traffic sampling equipment
installed by theMunicipality. In particular, the fixedmonitoring stations are located along theMinimetro path and provide
data about temperature, wind speed, rainfall, total solar radiation, and radon concentration. Traffic is measured by the
number of vehicles. These data are collected with different time frequencies and in different locations. In order to exploit
all sources of information, the measurement of the variables has been referred to the same time frequency, that is the
hour, and to the same location, that is the intersection between the Minimetro path, the fixed monitoring station and the
crossroad with traffic equipment. The period considered goes from March 2014 to February 2015, for a total of 201 days
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TABLE 1 Descriptive statistics of the data.

Variable Unit Range Mean SD
Particle concentration count/m3 (1968; 615,434) 82,579.99 82,003.59
Particle concentration (log) - (7.59; 13.33) 10.93 0.89
Radon concentration count/min (2; 2410) 353.49 298.37
Temperature C (−4.10; 33.60) 15.28 7.80
Wind speed m/s (0; 6.50) 0.74 0.81
Total solar radiation mW/m2 (0.20; 77.10) 16.49 18.81
Rainfall mm (0; 11) 0.06 0.40
Vehicular traffic count (349; 3719) 2414.78 725.93

and 2,608 hourly observations. We use data for a whole year in order to account for seasonal trends. In Table 1, we provide
a summary of the variables. Other descriptive statistics of the data are provided in the Supporting Information Appendix
(Table A.7) and in Del Sarto et al. (2019).

3 THE PROPOSEDMODELING APPROACH

3.1 Quantile versus M-quantile regression

When investigating the relationship between a response variable 𝑦 and 𝑝 predictors 𝐱, quantile regression (Koenker &
Bassett, 1978; Koenker & D’Orey, 1987) allows to analyze the 𝜏th quantile of the conditional distribution of 𝑦 given 𝐱. This
is particularly useful when the average behavior of 𝑦 given 𝐱, investigated by means of the classical regression analysis,
does not give a complete picture of the distribution. In particular, quantile regression assumes that the 𝜏th quantile of 𝑦

is a linear function of the predictors, in other words

𝑄𝜏 (𝑦|𝐱) = 𝛽0𝜏 + 𝐱𝑇𝜷1𝜏,

where 𝛽0𝜏 is the intercept and 𝜷1𝜏 is the vector of regression coefficients. This model leads to a family of hyperplanes
indexed by the value of the corresponding quantile coefficient 𝜏 ∈ (0, 1). Given a sample of 𝑛 observations (𝑦𝑖, 𝐱𝑖) for
𝑖 = 1, … , 𝑛, the vector 𝜷𝜏 = (𝛽0𝜏, 𝜷𝑇

1𝜏
)𝑇 is estimated by minimizing

𝑛∑
𝑖=1

|𝑟𝑖(𝜷𝜏)| {(1 − 𝜏) 𝐼 (𝑟𝑖(𝜷𝜏) ≤ 0) + 𝜏𝐼 (𝑟𝑖(𝜷𝜏) > 0)} ,

with respect to 𝜷𝜏 through linear programming methods, where 𝑟𝑖(𝜷𝜏) = 𝑦𝑖 − 𝛽0𝜏 − 𝐱𝑇
𝑖
𝜷1𝜏.

M-quantile regression (Breckling&Chambers, 1988) generalizes the quantile (Koenker&Bassett, 1978) and the expectile
regression idea of Newey and Powell (1987) through the use of influence functions. Specifically, the M-quantile regression
line of order 𝑞 is defined as the solution

𝑀𝑄𝑞

(
𝑦|𝐱; 𝜓𝑞

)
= 𝛽𝜓0𝑞 + 𝐱𝑇𝜷𝜓1𝑞

to

∫ 𝜓𝑞

(
𝑦 − 𝑀𝑄𝑞

)
𝑑𝐹(𝑦|𝐱) = 0,

where 𝐹 denotes the distribution of 𝑦 given 𝐱 underlying the data and 𝜓𝑞 denotes the influence function associated to
the 𝑞th M-quantile. The general M-estimator of 𝜷𝜓𝑞 = (𝛽𝜓0𝑞, 𝜷

𝑇
𝜓1𝑞)𝑇 is obtained by solving the following set of estimating

equations:

𝑛∑
𝑖=1

𝜓𝑞(𝑟𝑖(𝜷𝜓𝑞))(1, 𝐱𝑇
𝑖
)𝑇 = 𝟎 (1)
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with respect to 𝜷𝜓𝑞. It is assumed that

𝜓𝑞(𝑟𝑖(𝜷𝜓𝑞)) = 2𝜓{𝜎−1
𝑞 𝑟𝑖(𝜷𝜓𝑞)}{(1 − 𝑞)𝐼

(
𝑟𝑖(𝜷𝜓𝑞) ≤ 0

)
+ 𝑞𝐼

(
𝑟𝑖(𝜷𝜓𝑞) > 0

)
},

where 𝑟𝑖(𝜷𝜓𝑞) = 𝑦𝑖 − 𝛽𝜓0𝑞 − 𝐱𝑇
𝑖
𝜷𝜓1𝑞 and 𝜎𝑞 is the scale.

We consider throughout the paper the Huber (Huber, 1981) influence function, given by 𝜓(𝑢) = 𝑢, if −𝑐 ≤ 𝑢 ≤ 𝑐, and
𝜓(𝑢) = 𝑐 sign(𝑢) otherwise, where 𝑐 is a cutoff constant. For ease of notation, we will drop 𝜓 and use simply 𝜷𝑞 instead of
𝜷𝜓𝑞.
The role of the cutoff constant 𝑐 is relevant. In particular, robustness is increased as 𝑐 decreases, while efficiency is

increased as 𝑐 increases. Note that expectile regression is a particular case ofM-quantile regressionwith 𝑐 → ∞, so that for
𝑞 = 0.5, the solution to (1) coincides with ordinary least squares. In this sense, M-quantiles can be seen as a robustification
of expectiles. Also, quantile regression can be seen as a particular case ofM-quantile regressionwhen the tuning constant 𝑐
tends to 0. In practice, the tuning constant 𝑐 is set by the data analyst in order to provide a trade-off between robustness and
efficiency. Huber (1981, p. 18) suggests that “good choices are in the range between 1 and 2, say, 1.5.” The default value for 𝑐

in the rlm function of the R package MASS is 1.345, as suggested by Holland andWelsch (1977), which corresponds to 95%
of efficiency of the estimates under normality.When the errors are normally distributed, the best choice is to set the tuning
constant equal to a large value such as 100, since in this case using a smaller value, such as 1.345, will offer unnecessary
robustness at the cost of reduced efficiency of the estimates. If in the diagnostic analysis some outliers are identified,
a low value for the tuning constant, such as 1.345, is preferred because resistance against outliers is necessary. Bianchi
et al. (2018) propose a data-driven method to select the tuning constant in the Huber loss function using the Generalized
Asymmetric Least Informative density. Otto-Sobotka et al. (2019) replace the value of 𝑐 with a function that represents
the changes of the error distribution along the covariates to handle heteroskedastic errors and obtain an estimate of this
function from the data.

3.2 M-quantile regression shrinkage and selection via the Lasso

Suppose we collect sample data on predictors in matrix 𝐗 ∈ ℝ𝑛×𝑝 and sample data on the response variable in vector
𝐲 ∈ ℝ𝑛. The Lasso-type estimator for M-quantile regression coefficients at 𝑞 ∈ (0, 1) can be defined as

𝜷̂𝑞 =
(

𝛽0𝑞, 𝜷̂
𝑇

1𝑞

)𝑇

= arg min
𝜷

𝑞

{𝐿
(

𝐗, 𝐲; 𝜷𝑞

)
∶ 𝛽0𝑞 ∈ ℝ, 𝜷1𝑞 ∈ ℝ𝑝} subject to

𝑝∑
𝑗=1

|𝛽𝑗𝑞| ≤ 𝑡𝑞, (2)

where the loss function 𝐿 is given by

𝐿
(

𝐗, 𝐲; 𝜷𝑞

)
=

𝑛∑
𝑖=1

𝜓𝑞

(
𝑟𝑖(𝜷𝑞)∕𝜎𝑞

)
(3)

with 𝑟𝑖(𝜷𝑞) = 𝑦𝑖 − 𝛽0𝑞 − 𝐱𝑇
𝑖
𝜷1𝑞, and 𝜎𝑞 is the scale of the residuals that can be estimated by MAD (mean absolute devi-

ation). Here, 𝑡𝑞 ≥ 0 is the tuning parameter that controls the amount of shrinkage applied to the estimates. Setting the
derivatives of (3) with respect to 𝜷𝑞 to zero yields the following system of equations:

[𝟙𝑛 𝐗]𝑇𝐖𝑞

(
𝐲 − 𝛽0𝑞𝟙𝑛 − 𝐗𝜷1𝑞

)
= 𝟎1+𝑝, (4)

that can be written also as

(
[𝟙𝑛 𝐗]𝑇𝐖𝑞𝐗

)
𝜷1𝑞 = [𝟙𝑛 𝐗]𝑇𝐖𝑞

(
𝐲 − 𝛽0𝑞𝟙𝑛

)
, (5)

where 𝟙𝑛 is an 𝑛 vector of ones, 𝟎1+𝑝 is a 𝑝 + 1 vector of zeros, 𝐖𝑞 = diag(𝑤𝑖𝑞), and 𝑤𝑖𝑞 = 𝜓𝑞(𝑟𝑖(𝜷𝑞))∕2𝑟𝑖(𝜷𝑞). As it is
customary inM-quantile regression, the weighted normal equations (4) and (5) require an iterative procedure because the
weights depend on the regression coefficients. In particular, the iterative procedure can be summarized as follows:
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1. Start with an initial value for 𝜷𝑞, compute residuals 𝑟𝑖(𝜷𝑞) and weight matrix 𝐖𝑞;
2. Given 𝛽0𝑞 and 𝐖𝑞, estimate 𝜷1𝑞 from Equation (5);
3. Recompute 𝐖𝑞 and estimate 𝛽0𝑞 from Equation (4);
4. Alternate steps 2 and 3 until convergence.

Note that through this procedure we obtain a solution for the unconstrained case, that is, to (3) only without satisfying
constraints on the sum of the absolute values of the coefficients in (2). In order to get the Lasso estimates, let 𝜹𝓁, 𝓁 =

1, 2, … , 2𝑝 be the 𝑝-tuples (±1, ±1, … , ±1). Then, condition
∑𝑝

𝑗=1
|𝛽𝑗𝑞| ≤ 𝑡𝑞 is equivalent to 𝜹

𝑇
𝓁𝜷1𝑞 ≤ 𝑡𝑞, ∀𝓁. For a given

𝜷1𝑞, let 𝐸 = {𝓁 ∶ 𝜹
𝑇
𝓁𝜷1𝑞 = 𝑡𝑞} and 𝑆 = {𝓁 ∶ 𝜹

𝑇
𝓁𝜷1𝑞 < 𝑡𝑞}, and denote by 𝐆𝐸 the matrix whose rows are 𝜹𝓁 for 𝓁 ∈ 𝐸. Now

the previous unconstrained procedure can be updated in order to find a solution to the system of equations subject to the
Lasso constraint. In particular, step 2 should be modified as follows:

2. Given 𝛽0𝑞 and𝐖𝑞, estimate 𝜷1𝑞 from Equation (5) subject to 𝐆𝐸𝜷1𝑞 ≤ 𝑡𝑞𝟙𝑒 where 𝑒 denotes the number of rows of 𝐆𝐸 ,
by using the constrained M-quantile procedure proposed by Fabrizi et al. (2012); if

∑𝑝

𝑗=1
|𝛽𝑗𝑞| > 𝑡𝑞, add 𝓁 to the set 𝐸

where 𝜹𝓁 = sign(𝜷1𝑞).

Note that the procedure must always converge in a finite number of steps since one element is added to the set 𝐸 at
each step, and there is a total of 2𝑝 elements. For 𝑞 = 0.5, Yi and Huang (2017) consider a semismooth Newton coordinate
descent algorithm to obtain parameter estimates.We compare the final estimates obtainedwith this alternative estimation
procedure in a simulation study in Supporting Information Appendix A.2. The Lasso parameter 𝑡𝑞 can be estimated by
cross-validation or generalized cross-validation (GCV).
The covariancematrix of the Lasso estimates of the regression coefficientsmay be approximated following the approach

in Tibshirani (1996). In particular, by writing the penalty
∑𝑝

𝑗=1
|𝛽𝑗𝑝| as∑𝑝

𝑗=1
𝛽2

𝑗𝑝
∕|𝛽𝑗𝑝|, the Lasso estimate in (3) may be

approximated by a ridge regression of the type

𝜷𝑞 =
(
[1𝑛𝐗]𝑇𝐖𝑞[1𝑛𝐗] + 𝜆̂𝑞𝐂

)−1
[1𝑛𝐗]𝑇𝐖𝑞𝐲, (6)

where 𝐖𝑞 is the diagonal matrix with weights from the last iteration, 𝜆̂𝑞 is that value for which
∑𝑝

𝑗=1
|𝛽𝑗𝑝| = 𝑡𝑞, and

𝐂 = diag[0, 1∕|𝛽1𝑞|, … , 1∕|𝛽𝑝𝑞|] is the penalty matrix. Then, a sandwich-type estimator can be written as
𝑉̂(𝜷𝑞) =

(
[1𝑛𝐗]𝑇𝐖𝑞[1𝑛𝐗] + 𝜆̂𝑞𝐂

)−1
[1𝑛𝐗]𝑇𝐖𝑞[1𝑛𝐗]

(
[1𝑛𝐗]𝑇𝐖𝑞[1𝑛𝐗] + 𝜆̂𝑞𝐂

)−1
𝜎̂2

𝑞, (7)

where 𝜎̂2
𝑞 is an estimate of the scale, such as theMAD 𝜎̂𝑞 = median|𝑟𝑖(𝜷̂𝑞)|∕0.6745. Note that by construction this method

provides zero variance estimateswhen the estimated coefficients are exactly shrunk to zero. In addition, variance estimates
in (7) do not account for the variability due to the selection of the tuning parameter. We investigate the magnitude of
the underestimation for these variance estimates in simulated data sets. In particular, we compare them with bootstrap-
based variance estimates, as this issue becomes more relevant as we extend the methodology to Elastic Net penalization
and penalized B-splines. Bootstrap overcomes both above-mentioned issues, but can be much computationally intensive,
particularly for a relatively large data set as the one we deal with. See Supporting Information Appendix A.1.

3.3 Extension to Elastic Net

In the previous section, we have introduced M-quantile regression with Lasso regularization, which allows us to do con-
tinuous shrinkage and automatic variable selection simultaneously. Nevertheless, there are some situations in which the
Lasso does not perform well. In particular, (i) when 𝑛 < 𝑝, it selects at most 𝑛 variables; (ii) in case of a group of highly
correlated variables, Lasso selects just one of them; (iii) when 𝑛 > 𝑝 and there is high correlation between predictors, the
prediction performance is poor compared to ridge regression (Zou & Hastie, 2005). In order to improve in such scenarios,
Zou andHastie (2005) propose the Elastic Net, which introduces a new penalization given by a convex linear combination
between the Lasso and the Ridge penalization. We extend these concepts here to M-quantile regression.
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7 of 16 RANALLI et al.

We define the Elastic Net estimator for M-quantile regression coefficients at 𝑞 ∈ (0, 1) as

𝜷𝑞 =
(

𝛽0𝑞, 𝜷𝑇
1𝑞

)𝑇

= argmin
𝜷𝑞

{ 𝐿
(
𝐗, 𝐲; 𝜷𝑞, 𝜆1𝑞, 𝜆2𝑞

)
∶ 𝛽0𝑞 ∈ ℝ, 𝜷1𝑞 ∈ ℝ𝑝}, (8)

where the loss function is given by

𝐿
(

𝐗, 𝐲; 𝜷𝑞, 𝜆1𝑞, 𝜆2𝑞

)
=

𝑛∑
𝑖=1

𝜓𝑞

(
𝑟𝑖(𝜷𝑞)∕𝜎𝑞

)
+ 𝜆1𝑞

𝑝∑
𝑗=1

|𝛽𝑗𝑞| + 𝜆2𝑞

𝑝∑
𝑗=1

𝛽2
𝑗𝑞

. (9)

Solution to (8) can be achieved by a Lasso-type optimization problem. In fact, following lemma 1 of Zou andHastie (2005),
we define a new augmented data set of dimension 𝑛∗ = 𝑛 + 𝑝 by

𝐗∗
(𝑛+𝑝)×𝑝

=
(
1 + 𝜆2𝑞

)−1∕2
[

𝐗√
𝜆2𝑞𝐈𝑝

]
and 𝐲∗

(𝑛+𝑝)
=

[
𝐲

𝟎𝑝

]
,

where 𝐈𝑝 is an identity matrix of dimension 𝑝. Let 𝛾𝑞 = 𝜆1𝑞∕
√

1 + 𝜆2𝑞 and 𝜷
∗
𝑞 =

√
1 + 𝜆2𝑞𝜷𝑞. Then, the solution to (9) can

be obtained equivalently using

𝐿
(

𝐗∗, 𝐲∗; 𝜷
∗
𝑞, 𝛾𝑞

)
=

𝑛∗∑
𝑖=1

𝜓𝑞

(
𝑟∗
𝑖

(
𝜷

∗
𝑞

)
∕𝜎𝑞

)
+ 𝛾𝑞

𝑝∑
𝑗=1

|𝛽∗
𝑗𝑞
| (10)

with 𝑟∗
𝑖
(𝜷

∗
𝑞) = 𝑦∗

𝑖
− 𝛽∗

0𝑞
− 𝐱∗𝑇

𝑖
𝜷

∗
1𝑞. In this way, we can solve the Elastic Net penalization as a Lasso-type problem and find

𝜷∗
𝑞 = argmin

𝜷∗
𝑞

{ 𝐿
(
𝐗∗, 𝐲∗; 𝜷∗

𝑞 , 𝛾𝑞

)
},

by means of the iterative procedure illustrated in the previous section on the augmented data set. We can approximate
the covariance matrix of the estimated coefficients 𝜷∗

𝑞 with Elastic Net penalization in (8) using the equivalence in (10),
so that

𝑉̂(𝜷∗
𝑞 ) =

(
[1𝑛+𝑝𝐗∗]𝑇𝐖∗

𝑞[1𝑛+𝑝𝐗∗] + 𝛾̂𝑞𝐂∗
)−1

[1𝑛+𝑝𝐗∗]𝑇𝐖∗
𝑞[1𝑛+𝑝𝐗∗]

(
[1𝑛+𝑝𝐗∗]𝑇𝐖∗

𝑞[1𝑛+𝑝𝐗∗] + 𝛾̂𝑞𝐂∗
)−1

𝜎̂2
𝑞, (11)

where 𝟙𝑛+𝑝 is an 𝑛 + 𝑝 vector of ones,𝐖∗
𝑞 is the 𝑛 + 𝑝 diagonal matrix with weights from the last iteration, 𝛾̂𝑞 is the final

estimate of the shrinkage factor, and 𝐂∗ = diag[0, 1∕|𝛽∗
1𝑞
|, … , 1∕|𝛽∗

𝑝𝑞|] is the penalty matrix.
A first set of final estimates 𝜷1qn, which we call naive estimates, is given by

𝜷1qn =
1√

1 + 𝜆̂2𝑞

𝜷∗
1𝑞

. (12)

Naive estimates in (12) can suffer from double shrinkage (Zou & Hastie, 2005). For this reason, as it is suggested in Zou
and Hastie (2005), we will use as final estimates

𝜷1𝑞 =
(
1 + 𝜆̂2𝑞

)
𝜷1qn. (13)

The estimate of the covariance matrix of the final estimates in (13) can be obtained simply by

𝑉̂(𝜷1𝑞) = (1 + 𝜆̂2𝑞)𝑉̂(𝜷∗
1𝑞

).
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RANALLI et al. 8 of 16

The shrinkage parameter 𝜆2𝑞 can be selected by cross-validation or by means of GCV if the data set is very large. In
particular, the GCV criterion can be written as

𝐺𝐶𝑉(𝜆2𝑞) =
||(𝐼 − 𝑯∗

𝜆2𝑞
)𝐲∗||2

1 − 𝜃tr{𝑯∗
𝜆2𝑞

}∕𝑛∗
, (14)

where

𝑯∗
𝜆2𝑞

= [𝟙𝑛+𝑝 𝐗∗]
(
[𝟙𝑛+𝑝 𝐗∗]𝑇𝐖∗

𝑞[𝟙𝑛+𝑝 𝐗∗] + 𝛾̂𝑞𝐂∗
)−1

[𝟙𝑛+𝑝 𝐗∗]𝑇𝐖∗
𝑞

is similar to a hat matrix based on an approximated ridge regression-type estimator like that in (6) so that its trace provides
an approximated value for the effective number of degrees of freedom used. Traditional GCV is obtained when parameter
𝜃 is set equal to 1. Values of 𝜃 larger (smaller) than one penalize more (less) complex fits and, therefore, provide more
(less) shrinkage.

3.4 Accounting for nonlinearities via B-splines

So far we have assumed a linear M-quantile regression model, that is,

𝑀𝑄𝑞

(
𝑦𝑖|𝐱𝑖; 𝜓𝑞

)
= 𝛽0𝑞 +

𝑝∑
𝑗=1

𝛽𝑗𝑞𝑥𝑖𝑗. (15)

In some circumstances, we can face nonlinear relationships between the response and one or more predictors. Therefore,
we introduce the possibility to handle nonlinearities. For ease of notation, we treat the case in which only one covariate is
included in the model nonparametrically. Extension to the case where more variables are included nonparametrically is
straightforward. In particular, we allow a predictor 𝑧 to have a nonlinear relationship with the response 𝑦 and we extend
model (15) to the following model:

𝑀𝑄𝑞

(
𝑦𝑖|𝐱𝑖, 𝑧𝑖; 𝜓𝑞

)
= 𝛽0𝑞 +

𝑝∑
𝑗=1

𝛽𝑗𝑞𝑥𝑖𝑗 + 𝑓𝑞(𝑧𝑖),

where 𝑓𝑞(𝑧𝑖) represents the unknown functional relationship between 𝑦 and 𝑧 at M-quantile 𝑞. Here, we assume that the
latter can be well approximated by means of the following polynomial spline of degree 𝑙,

𝑓𝑞(𝑧𝑖) =

𝐾∑
𝑘=1

𝛼𝑘𝑞𝐵
(𝑙)

𝑘
(𝑧𝑖), (16)

where 𝐵
(𝑙)

𝑘
(𝑧𝑖) are 𝐵-splines basis functions (Eilers & Marx, 1996), 𝛼𝑘𝑞 are the corresponding coefficients, and 𝐾 is the

number of knots. If the number of knots𝐾 is sufficiently large, the class of functions in (16) can approximate most smooth
functions. Using a large number of knots, however, can lead to an unstable fit. In order to overcome this problem, the
influence of the number of knots is limited by choosing 𝐾 to be reasonably high and by putting a constraint on the
variation of the spline coefficients. Using 𝐵-splines, a penalty of differences with order 𝑙 is applied to all of the neigh-
boring parameters. Let 𝐃(𝑙) denote a difference matrix of order 𝑙, then the penalty matrix is 𝐏 = 𝐃(𝑙)𝑇𝐃(𝑙) and provides a
penalty made of squared 𝑙th order differences in the sequence of coefficients. Let 𝐁 be the 𝑛 × 𝐾 matrix of basis functions
with 𝐁𝑖 = (𝐵

(𝑙)
1

(𝑧𝑖), … , 𝐵
(𝑙)
𝐾

(𝑧𝑖))
𝑇 on its 𝑖th row, and 𝜶𝑞 = (𝛼1𝑞, … , 𝛼𝑘𝑞)𝑇 be the𝐾-vector of corresponding coefficients, then

we can extend the Elastic Net loss function in Equation (9) to encompass penalized splines through the following loss
function:

𝐿
(

𝐗, 𝐁, 𝐲; 𝜷𝑞, 𝜶𝑞, 𝜆1𝑞, 𝜆2𝑞, 𝜆3𝑞

)
=

𝑛∑
𝑖=1

𝜓𝑞

(
𝑟𝑖(𝜷𝑞, 𝜶𝑞)∕𝜎𝑞

)
+

+ 𝜆1𝑞

𝑝∑
𝑗=1

|𝛽𝑗𝑞| + 𝜆2𝑞

𝑝∑
𝑗=1

𝛽2
𝑗𝑞

+ 𝜆3𝑞𝜶𝑇
𝑞 𝐏𝜶𝑞, (17)
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9 of 16 RANALLI et al.

where 𝑟𝑖(𝜷𝑞, 𝜶𝑞) = 𝑦𝑖 − 𝛽0𝑞 − 𝐱𝑇
𝑖
𝜷1𝑞 − 𝐁𝑇

𝑖
𝜶𝑞 and 𝜆3𝑞 is a parameter that controls the level of smoothness of the spline part

of the model. Of course, Lasso regularization can be seen as a particular case in which 𝜆2𝑞 is set to zero.
The solution can be obtained again as a Lasso-type optimization problem using the augmented data set introduced in

the previous section and introducing

𝐁∗
(𝑛+𝑝)×𝐾

=

[
𝐁

𝟎

]
.

Then the solution to (17) can be obtained using

𝐿
(

𝐗∗, 𝐁∗, 𝐲∗; 𝜷
∗
𝑞, 𝜶∗

𝑞, 𝛾𝑞, 𝜆3𝑞

)
=

𝑛∗∑
𝑖=1

𝜓𝑞

(
𝑟∗
𝑖

(
𝜷

∗
𝑞

)
∕𝜎𝑞

)
+ 𝛾𝑞

𝑝∑
𝑗=1

|𝛽∗
𝑗𝑞
| + 𝜆3𝑞𝜶∗𝑇

𝑞 𝐏𝜶∗
𝑞 (18)

with 𝑟∗
𝑖
(𝜷

∗
𝑞, 𝜶∗

𝑞) = 𝑦∗
𝑖

− 𝛽∗
0𝑞

− 𝐱∗𝑇
𝑖

𝜷
∗
1𝑞 − 𝐁∗𝑇

𝑖
𝜶∗

𝑞. Now, consider the following unconstrained version of (18):

𝐿
(

𝐗∗, 𝐁∗, 𝐲∗; 𝜷
∗
𝑞, 𝜶∗

𝑞, 𝜆3𝑞

)
=

𝑛∗∑
𝑖=1

𝜓𝑞

(
𝑟∗
𝑖

(
𝜷

∗
𝑞

)
∕𝜎𝑞

)
+ 𝜆3𝑞𝜶∗𝑇

𝑞 𝐏𝜶∗
𝑞. (19)

Setting its derivatives with respect to 𝜷
∗
𝑞 and 𝜶∗

𝑞 to zero yields the following equivalent two systems of equations:

[𝟙𝑛+𝑝 𝐗∗ 𝐁∗]𝑇𝐖∗
𝑞

(
𝐲∗ − 𝛽∗

0𝑞
𝟙𝑛+𝑝 − 𝐗∗𝜷

∗
1𝑞 − 𝐁∗𝑇𝜶∗

𝑞

)
+ 𝜆3𝑞

[
𝟎1+𝑝

𝑷𝜶∗
𝑞

]
= 𝟎1+𝑝+𝐾, (20)

and

[𝟙𝑛+𝑝 𝐗∗ 𝐁∗]𝑇𝐖∗
𝑞𝐗∗𝜷

∗
1𝑞 = [𝟙𝑛+𝑝 𝐗∗ 𝐁∗]𝑇𝐖∗

𝑞

(
𝐲∗ − 𝛽∗

0𝑞
𝟙𝑛+𝑝 − 𝐁∗𝑇𝜶∗

𝑞

)
. (21)

We propose the following procedure to obtain estimates for the two sets of parameters 𝜷
∗
𝑞 and 𝜶∗

𝑞:

1. Start with an initial value for 𝜷∗
𝑞 and 𝜶̂∗

𝑞 ; compute residuals 𝑟∗
𝑖
(𝜷∗

𝑞 , 𝜶̂∗
𝑞 ) and weight matrix 𝐖∗

𝑞;
2. Given 𝛽∗

0𝑞
, 𝜶̂∗

𝑞 , and 𝐖∗
𝑞, estimate 𝜷∗

1𝑞
from Equation (21) subject to 𝐆𝐸𝜷

∗
1𝑞 ≤ 𝑡𝑞𝟙𝑒 by using the constrained M-quantile

procedure proposed by Fabrizi et al. (2012); if
∑𝑝

𝑗=1
|𝛽∗

𝑗𝑞
| > 𝑡𝑞, add 𝓁 to the set 𝐸 when 𝜹𝓁 = sign(𝜷∗

1𝑞
);

3. Recompute 𝐖∗
𝑞 and update estimates for 𝛽∗

0𝑞
and 𝜶̂∗

𝑞 from Equation (20);
4. Alternate steps 2 and 3 until convergence.

Note that in this case rescaling the vector 𝜶̂∗
𝑞 is not needed because the last 𝑝 rows of matrix 𝐁∗

(𝑛+𝑝)×𝐾
are all zeros.

The tuning parameter 𝑡𝑞 is selected at step 2 by means of cross-validation, while the smoothing parameter 𝜆3𝑞 is cho-
sen at step 3 via GCV as proposed in Pratesi et al. (2009). Note that Elastic Net regularization pertains only x-variables,
while penalization for 𝐵-splines is conducted outside the Elastic Net shrinkage. For this reason, the estimation procedure
alternates step 2 (Elastic Net shrinkage) and step 3 (penalized spline estimation) to obtain the overall fit. Simple truncated
splines can be accommodated by changing the basis functions in matrix B and the penalization to ridge shrinkage as
𝜶𝑇

𝑞 𝐏𝜶𝑞 =
∑𝐾

𝑘=1
𝛼2

𝑘𝑞
.

When looking at the Elastic Net estimate in the presence of a spline, we can approximate the variance of 𝜷∗
𝑞 and 𝜶̂∗

𝑞 as
follows. Let 𝑼∗ = [𝟙𝑛+𝑝 𝐗∗ 𝐁∗], then these estimates may be approximated by a ridge regression type-estimator such as

[
𝜷∗

𝑞

𝜶̂∗
𝑞

]
=
(
𝐔∗𝑇𝐖∗

𝑞𝐔∗ + 𝐆
)−1

𝐔∗𝑇𝐖∗
𝑞𝐲∗, (22)

where 𝐆 = blockdiag{𝛾̂𝑞𝑪
∗
, 𝜆̂3𝑞𝑷}, then

𝑉̂(𝜷∗
𝑞 , 𝜶̂∗

𝑞 ) =
(
𝐔∗𝑇𝐖∗

𝑞𝐔∗ + 𝐆
)−1

𝐔∗𝑇𝐖∗
𝑞𝐔∗

(
𝐔∗𝑇𝐖∗

𝑞𝐔∗ + 𝐆
)−1

𝜎̂2
𝑞. (23)
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RANALLI et al. 10 of 16

F IGURE 1 Correlation between meteorological and
vehicular traffic variables.

The GCV criterion for the smoothing parameter can be written similarly to (14) as

𝐺𝐶𝑉(𝜆3𝑞) =
||(𝐼 − 𝑯∗

𝜆3𝑞
)𝐲∗||2

1 − 𝜃tr{𝑯∗
𝜆3𝑞

}∕𝑛∗
, (24)

where

𝑯∗
𝜆3𝑞

= 𝑼∗
(

𝑼∗𝑇𝐖∗
𝑞𝑼∗ + 𝑮

)−1

𝑼∗𝑇𝐖∗
𝑞

is a combination of a hat and a smoother matrix based on the same approximated ridge regression-type estimator in (22)
so that its trace provides an approximated value for the effective overall (covariate and spline components) number of
degrees of freedom used.

4 APPLICATION

The proposed modeling approach has been applied to the PMetro data presented in Section 2. Indeed, we are interested
in investigating how meteorological conditions and vehicular traffic levels affect fine PM concentrations in Perugia at
different levels of the conditional response distribution. Since a large number of traffic predictors is available and mul-
ticollinearity can be envisioned among them (see Figure 1), Elastic Net regularization is employed in order to perform
variable selection and estimation at the same time. In particular, the response variable is given by fine PM concentration
on the log scale, while predictors can be grouped into two sets: meteorological data and vehicular traffic data. The first
group includes radon concentration on the log-scale, temperature, wind speed, total solar radiation on log-scale and rain-
fall; the second group includes a set of 25 count variables, 𝑐𝑎𝑟0 – 𝑐𝑎𝑟24, that measure the number of vehicles that passed
at that hour, 𝑐𝑎𝑟0, 1 hour before, 𝑐𝑎𝑟1, 2 hours before, 𝑐𝑎𝑟2, up to 24 hours before, 𝑐𝑎𝑟24. These variables are included on
the log-scale. The log-transformation is used to obtain an approximately equal spread of the variables in the model and an
approximately linear relationship with the response when possible. Moreover, a set of 13 dummy variables is also added to
control for the hour of the day of the observation, ℎ7 – ℎ20, where ℎ7 denotes 7 a.m. and ℎ20 denotes 8 p.m. The reference
hour is 6 a.m. Finally, in order to capture unobserved heterogeneity among days, a smooth function of the Julian day is
added to themodel as in Bertaccini et al. (2012).We expect this variable to have a nonlinear relationship with the response,
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while for the other variables a linear relationship is adequate (see results in Crocchianti et al., 2020; Del Sarto et al., 2019).
Temperature is the only variable for which some curvature has been detected in similar data sets, but a quadratic term is
not found to be significant in this context.
The model can be summarized as follows:

𝑀𝑄𝑞{log(𝑃𝑀)} = 𝛽0𝑞 + log(𝑟𝑎𝑑𝑜𝑛)𝛽1𝑞 + 𝑡𝑒𝑚𝑝𝛽2𝑞 + 𝑤𝑖𝑛𝑑𝛽3𝑞 + log(𝑠𝑜𝑙𝑎𝑟)𝛽4𝑞 + 𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝛽5𝑞

+ log(𝑐𝑎𝑟0)𝛽6𝑞 + log(𝑐𝑎𝑟1)𝛽7𝑞 + log(𝑐𝑎𝑟2)𝛽8𝑞 + ⋯ + log(𝑐𝑎𝑟24)𝛽30𝑞

+ ℎ7𝛽31𝑞 + ℎ8𝛽32𝑞 + ⋯ + ℎ20𝛽44𝑞 + 𝑓𝑞(𝐽𝑢𝑙𝑖𝑎𝑛 𝑑𝑎𝑦).

The model is fitted at different levels of 𝑞 = {0.1, 0.2, … , 0.9}. The cutoff constant 𝑐 is set to 1.345 to grant robustness with
respect to a few outlying observations. At each level of 𝑞, the penalization parameter of the ridge part of the model 𝜆2𝑞 is
selected by GCV, the tuning parameter for Lasso is selected by means of cross-validation, and the smoothing parameter
𝜆3𝑞 for B-splines is selected using GCV, as illustrated in Section 3. For each level of 𝑞, the estimation procedure requires
3.5 h on a Intel Xeon CPU E5-2420 @ 1.90 GHz server. In particular, the following estimates are obtained for 𝜆2𝑞 at each
value of 𝑞, 𝜆̂2𝑞 = {0.00, 0.20, 0.25, 0.35, 0.30, 0.30, 0.30, 0.20, 0.05}.
Variance estimates are obtained by means of the analytic formula in (23) and by means of bootstrap. In particular, we

draw a nonparametric bootstrap sample of the same size randomly with replacement from our original data set. Then,
using the bootstrap sample we estimate the model again by using the same configuration as for the original model. That
is, we use the final estimates of the tuning parameters 𝑡𝑞, 𝜆̂2𝑞, and 𝜆̂3𝑞 of the original model. We repeat the procedure
1000 times. We follow this approach to save computing time (Spiegel et al., 2021, also use this type of bootstrap for flexible
expectile regression with large data sets). Estimating the tuning parameters in each bootstrap sample would allow to
consider also the uncertainty of those. However, with the current algorithm on the original data set, optimizing 1000
times the tuning parameters is prohibitive. Moreover, for B-splines, it cannot be ensured that the estimated curve of the
main model always lays inside the bootstrap interval. Numerical illustrations in Supporting Information Appendix A.1
show that the underestimation due to keeping the tuning parameters fixed is acceptable, so that this approach is a viable
option when dealing with large data sets.
In Table 2, we report the estimated coefficients at 𝑞 = 0.5, together with standard error estimates obtained using boot-

strap and the analytic formula. The meteorological predictors play an important role on fine PM concentration; the sign
andmagnitude of the estimated coefficients are in line with those from the literature and those obtained in Del Sarto et al.
(2019). In particular, radon concentration accounts for the most impact. Radon concentration can be used as a proxy of
the planetary boundary layer (PBL), which represents the lowest part of the atmosphere. Its height is important in dis-
persion of pollutants and particles, since the lower the PBL, the higher the particle concentration. Radon products can be
considered as natural tracers of the low PBL layers mixing properties: the higher the radon concentration, the lower the
PBL. The estimate of radon concentration takes value 1.059; this implies that if it increases (and hence the PBL decreases)
by 10%, then the𝑀-median fine PM concentration increases by approximately 11% (se 3%). Wind is inversely related while
total solar radiation is positively related to fine PM, as expected. Rainfall and temperature are discarded from the model.
Estimates of the effect of the hour of the day are all retained in the model and all positive, with values that increase over
the course of the day, by this providing evidence of an accumulation phenomenon. Finally, we can notice that the model
performs heavy selection of vehicular traffic variables. Indeed, among all the 25 vehicular traffic predictors, only seven
are retained—log(𝑐𝑎𝑟0), log(𝑐𝑎𝑟5), log(𝑐𝑎𝑟8), log(𝑐𝑎𝑟11), log(𝑐𝑎𝑟17), log(𝑐𝑎𝑟20), and log(𝑐𝑎𝑟24)—with a positive effect in all
cases but for log(𝑐𝑎𝑟24). Indeed, only the association with the concurrent number of vehicles, 𝑐𝑎𝑟0, is strong enough (sig-
nificant also looking at the corresponding standard error). The negative association detected with 𝑐𝑎𝑟24 is only marginally
significant and can be likely due to a cyclical effect coming from the day of the week.
Figure 2 displays the B-spline estimate of the effect of the day of the year together with bootstrap-based and analytic 95%

confidence bounds. The estimated function follows a seasonal pattern for which there are relatively higher levels of fine
PM concentrations during wintertime, reflecting confounders like social processes such as heating, and then decreasing
in summertime. In the case in which the data covered a multiyear period, then a periodic spline, such as those illustrated
in Eilers and Marx (2010) should be considered to describe the trend within each solar year.
Figure 3 provides estimated coefficients for meteorological covariates at different levels of 𝑞, together with the corre-

sponding 95% confidence intervals. Figures A.5 and A.6 in the Supporting Information Appendix show similar plots for
vehicular traffic and hour-of-the-day covariates, respectively. The value of the intercept is increasing with 𝑞, temperature
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RANALLI et al. 12 of 16

TABLE 2 Parameter estimates and corresponding estimated standard errors by bootstrap (𝑠𝑒𝑏) and analytic formula (𝑠𝑒𝑎𝑛) at 𝑞 = 0.50.
Note that the analytical s.e. estimates are by definition zero when the estimated coefficient is zero.

Predictor Estim. 𝒔𝒆𝒃 𝒔𝒆𝒂𝒏 Predictor Estim. 𝒔𝒆𝒃 𝒔𝒆𝒂𝒏

Intercept 11.218 0.128 0.079 log(𝑐𝑎𝑟17) 0.232 0.119 0.065
log(𝑟𝑎𝑑𝑜𝑛) 1.059 0.033 0.024 log(𝑐𝑎𝑟18) 0.000 0.095 -
temp 0.000 0.001 0.000 log(𝑐𝑎𝑟19) 0.000 0.106 -
wind −0.165 0.044 0.022 log(𝑐𝑎𝑟20) 0.134 0.139 0.091
log(𝑠𝑜𝑙𝑎𝑟) 0.147 0.038 0.024 log(𝑐𝑎𝑟21) 0.000 0.132 -
rainfall 0.000 0.063 0.000 log(𝑐𝑎𝑟22) 0.000 0.126 -
log(𝑐𝑎𝑟0) 0.193 0.103 0.049 log(𝑐𝑎𝑟23) 0.000 0.123 -
log(𝑐𝑎𝑟1) 0.000 0.100 - log(𝑐𝑎𝑟24) −0.160 0.091 0.066
log(𝑐𝑎𝑟2) 0.000 0.072 - ℎ7 0.151 0.095 0.125
log(𝑐𝑎𝑟3) 0.000 0.061 - ℎ8 0.261 0.119 0.148
log(𝑐𝑎𝑟4) 0.000 0.047 - ℎ9 0.189 0.111 0.177
log(𝑐𝑎𝑟5) 0.076 0.056 0.037 ℎ10 0.231 0.124 0.208
log(𝑐𝑎𝑟6) 0.000 0.050 - ℎ11 0.156 0.106 0.241
log(𝑐𝑎𝑟7) 0.000 0.052 - ℎ12 0.185 0.122 0.264
log(𝑐𝑎𝑟8) 0.062 0.077 0.036 ℎ13 0.276 0.130 0.278
log(𝑐𝑎𝑟9) 0.000 0.053 - ℎ14 0.316 0.142 0.282
log(𝑐𝑎𝑟10) 0.000 0.056 - ℎ15 0.407 0.157 0.270
log(𝑐𝑎𝑟11) 0.068 0.057 0.044 ℎ16 0.635 0.161 0.264
log(𝑐𝑎𝑟12) 0.000 0.048 - ℎ17 0.975 0.163 0.257
log(𝑐𝑎𝑟13) 0.000 0.050 - ℎ18 1.306 0.178 0.249
log(𝑐𝑎𝑟14) 0.000 0.049 - ℎ19 1.557 0.211 0.264
log(𝑐𝑎𝑟15) 0.000 0.064 - ℎ20 1.675 0.258 0.285
log(𝑐𝑎𝑟16) 0.000 0.074 -

F IGURE 2 Estimate of the effect of the Julian day and corresponding 95% confidence interval at 𝑞 = 0.5. Dashed red: bootstrap-based
confidence interval; dashed black: analytic formula.

and rainfall remain nonsignificant along all the values of 𝑞. Wind speed is always negative and significantly different from
zero, and decreases in absolute value with 𝑞. This implies that higher M-quantiles of the distribution of fine PM counts
depend less strongly on wind speed.
Radon concentration is always significantly positive and displays an inverse U-shape, with a peak at 𝑞 = 0.4. This,

implies that central M-quantiles of the distribution of fine PM counts, between 0.3 and 0.7, depend more strongly on
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13 of 16 RANALLI et al.

F IGURE 3 Estimated coefficients for the
meteorological predictors at different levels of 𝑞, with 95%
confidence intervals obtained by analytic standard error
(SE) estimates.

radon concentration than the lower and the upper tails. The effect of concurrent vehicular traffic, 𝑐𝑎𝑟0, is estimated to be
zero for 𝑞 = 0.1, and is significantly positive at all other values of 𝑞. The estimates display a relatively constant pattern
with respect to 𝑞. This implies that the relative impact of an increase in vehicular traffic remains the same for lower and
for higherM-quantiles of the distribution of fine PM. The features observed at 𝑞 = 0.5 for the other traffic-related variables
remain similar also at the other values of 𝑞.
Supporting Information Appendix A.4 reports a set of figures that compare the estimates obtained with the proposed

procedure with those obtained using the Elastic Net quantile regression estimates as proposed by Yi andHuang (2017) and
implemented in the hqregR function with method = “quantile” for 𝜏 = {0.1, 0.2, … , 0.9}. Results appear to be different
for some effects and these differences are due to at least two main reasons. First, note that Yi and Huang (2017) approach,
as implementedwith hqreg, method = “quantile”, models the quantiles of the conditional distribution of the response,
which can be very different from the M-quantiles, which are essentially robust expectiles. Second, hqreg does not allow
for nonparametric regression, that is, to approximate the effect of one or more covariates via B-splines. Therefore, for
the effect of the calendar day we have included a polynomial term of order 4 in hqreg, but the final approximation is
essentially linear (see Figure A.7 in the Supporting Information Appendix) and this, of course, changes the effect of the
other covariates, such as temperature (see Figure A.8 in the Supporting Information Appendix) and the effect of vehicular
traffic (see Figure A.9 in the Supporting Information Appendix). The latter in particular, seems to be better captured by
the proposed method as the approach of Yi and Huang (2017) sets the effect of concurrent vehicular traffic, 𝑐𝑎𝑟0, always
equal to zero and this is less coherent with PM dynamics and previous results on the same data.

5 CONCLUSIONS

In this paper, we analyze data on air quality measured by concentration of fine PM in order to assess the contribution
associated with vehicular traffic. Vehicular traffic can be measured by different variables and can have a different effect
at different locations of the response distribution. For this reason, we introduce M-quantile regression models with Lasso
and Elastic Net penalizations in order to conduct model estimation and selection at the same time for different levels of
the distribution of fine PM and to be robust to outlying observations. We use data for a whole year in order to account for
seasonal trends and include meteorological covariates and other confounders to try and isolate the effect of traffic. The
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RANALLI et al. 14 of 16

effect of the day of the year is included nonparametrically and estimated from the data by means of penalized B-splines
in order to enhance flexibility of the predictive part of the model.
The effect of traffic for this type of data has usually been evaluated in two steps: first, the best proxy is detected via

model selection by including one variable at a time, then the effect of such a detected variable is included in the model,
and often left unchanged at different locations of the distribution of fine PM concentration. See, for example, Del Sarto
et al. (2019). Introducing Lasso and Elastic Net forM-quantile regression allows to perform these two steps simultaneously
and to detect possible differences at different levels of 𝑞. In addition, using Elastic Net allows to handle predictors that
display a relevant collinearity, as it is the case with the data at hand. Including all traffic-related variables, we identify a
major driver given by the number of concurrent vehicles. The relative effect of traffic is essentially invariant across values
of 𝑞, that is, traffic affects equally the low and highM-quantiles of fine PM concentration. As PM concentration ismodeled
on a log-scale, this implies that the effect is higher in absolute terms for the upper tail of the distribution of fine PM.
With respect to the existingmethodological literature, our paper fills in a gap: Yi andHuang (2017) introduce Elastic Net

for theHuber loss function for 𝑞 = 0.50, our paper extends it to any value of 𝑞. In addition, to bettermodel the data at hand,
we allow for the possibility of including covariates nonparametically via B-splines. Finally, we provide bootstrap-based and
analytical variance estimates for regression coefficients and for B-splines function approximations.
Despite the wide range of topics covered in this paper, some research problems remain open. For example, our proposed

toolkit use an extension of the algorithm proposed by Tibshirani (1996). Developing algorithms for Lasso and Elastic Net
estimators for M-quantile regression coefficients based on gradient descent such as that used in Yi and Huang (2017)
for robust regression at 𝑞 = 0.5 remains an open research problem that would improve on computational time consid-
erably. Finally, an efficient implementation of the proposed procedures could be provided in a R package, which could
include a main function for model fitting, and a variety of auxiliary functions for summary and plotting. This is left for
future research.
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