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A B S T R A C T

Successful post-fire management depends on accurate burn severity maps that are increasingly derived from satel-
lite data, replacing field-based estimates. Post-fire vegetation and soil changes, besides modifying the reflected
and emitted radiation recorded by sensors onboard satellites, strongly alters water balance in the fire affected
area. While fire-induced spectral changes can be well represented by fraction images from Multiple Endmember
Spectral Mixture Analysis (MESMA), changes in water balance are mainly registered by evapotranspiration (ET).
As both types of variables have a clear physical meaning, they can be easily understood in terms of burn severity,
providing a clear advantage compared to widely-used spectral indices. In this research work, we evaluate the po-
tential of Landsat-derived ET to estimate burn severity, together with MESMA derived Sentinel-2 fraction images
and important environment variables (pre-fire vegetation, climate, topography). In this study, we use the random
forest (RF) classifier, which provides information on variable importance allowing us to identify the combination
of input variables that provided the most accurate estimate. Our study area is located in Central Portugal, where
a mega-fire burned >450 km2 from 17 to 24 June 2017. We used the official burn severity map as ground ref-
erence. The RF algorithm identified ET as the most important variable in the burn severity model, followed by
MESMA char fractions. When both ET and MESMA char fraction image were used as RF inputs, burn severity
estimates reached higher accuracy than if only one of them was used, which suggests their potential synergetic
interaction. In particular, when environmental variables were used in addition to ET and char fraction, the high-
est accuracy for burn severity was reached (κ = 0.79). Our main conclusion is that post-fire fine resolution ET
is a useful and easily understandable indicator of burn severity in Mediterranean ecosystems, in particular when
used in combination with a MESMA char fraction image. This novel approach to estimate burn severity may help
to develop successful post-fire management strategies not only in Mediterranean ecosystems but also in other
ecosystems, due to ease of generalization.

1. Introduction

Wildfire causes important socioeconomic and ecological changes in
forest ecosystems (Pausas et al., 2008). Forest fires remove vege-
tation cover increasing soil erosion (Shakesby, 2011). Furthermore,
vegetation structure, composition and regeneration dynamics may be
modified (Calvo et al., 2008; González-de Vega et al., 2018).
Knowledge of the different levels in which fire affects an ecosystem
is a key factor for a successful post-fire strategy that promotes nat-
ural regrowth, and prevents soil erosion (Lentile et al., 2006). Thus,
accurate post-fire burn severity estimates are a critical

tool for forest managers (Key and Benson, 2006), including both short
and long-term effects (Jain et al., 2004).

Remote sensing provides an affordable alternative to field mea-
sures to obtain reliable burn severity estimates at short and long time
scales, in particular when fire affects large and topographically com-
plex areas (Pérez-Cabello et al., 2009). A large amount of research
focused on the analysis of fire damage is based on remotely sensed
data. Most of this research uses Landsat data (Epting et al., 2005;
Mitsopoulos et al., 2019; Soverel et al., 2010; Stambaugh et
al., 2015), although an increasing number of them are based on Sen-
tinel-2 MSI data (Amos et al., 2019; O. Fernández-Manso et al.,
2016; A. Fernández-Manso et al., 2016, García-Llamas et al.,
2019a; Mallinis et al., 2017). Spectral indices,
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specifically differenced Normalized Burn Ratio (dNBR) and its deriva-
tives are the basis of most of these studies (e.g. Hudak et al., 2007;
Key and Benson, 2006; Miller et al., 2009; Miller and Thode,
2007; Soverel et al., 2010). However, other authors (Lewis et al.,
2017; Roy et al., 2006) have called attention to limitations of these
indices: (see Lentile et al., 2009 for a detailed explanation).

Fraction images, in particular the char fraction image, are an effec-
tive alternative to spectral indices in fire damage studies (Lentile et
al., 2006; Lewis et al., 2012; Tane et al., 2018; Veraverbeke and
Hook, 2013). The key to their success is the mixture of dead and rem-
nant vegetation, burned soil and ash that typically defines the conditions
of the short-term post-fire scene (Meng et al., 2017; Quintano et al.,
2013). Additional advantages are: 1) fraction images are easier to inter-
pret than spectral indices due to their physical meaning (Quintano et
al., 2012), 2) they are typically derived using all spectral bands instead
of just two or three bands (Veraverbeke et al., 2018) and, 3) they do
not require calibration to field data (Somers et al., 2012). Typically
fraction images are obtained by using spectral mixture analysis (SMA,
Shimabukuro and Smith, 1991). In SMA, each pixel of an image is
modeled as a linear combination of endmembers (spectra of pure com-
ponents present in the scene), weighted by the abundance of the end-
member in the pixel (Roberts et al., 1993). Although previous studies
have shown that SMA based fraction images outperform spectral indices
for fire damage assessment (Fernández-Manso et al., 2009; Lentile
et al., 2006, 2009; Quintano et al., 2006), SMA does not account
for endmember variability (i.e. different spectra could correspond to the
same material) (Somers et al., 2011). Conversely, multiple endmem-
ber SMA (MESMA, Roberts et al., 1998) was designed to account for
this endmember variability by using different spectra for each endmem-
ber class. Fraction images based on MESMA have already demonstrated
their usefulness to estimate burn severity from satellite data (Lewis et
al., 2017; Meng et al., 2017; Quintano et al., 2017, 2019; Tane et
al., 2018; Veraverbeke et al., 2014).

In addition to modifying reflected and emitted radiation captured
by sensors onboard of satellites, vegetation changes due to wildfires
also alter evapotranspiration (ET, latent heat flux) (Atchley et al.,
2018; Fang et al., 2018; Lentile et al., 2006; Montes-Helu et al.,
2009). All of the variables of the energy balance equation, and par-
ticularly latent heat flux, are affected by the alterations in vegetation
(both structure and species composition) due to wildfires (Randerson
et al., 2006). Immediately following fire, ET decreases, which can be
observed several years after fire (e.g. Atchley et al., 2018; Clark
et al., 2012; Häusler et al., 2018; Li et al., 2018b; Rocha and
Shaver, 2011; Roche et al., 2018; Sánchez et al., 2015). Variations
in ET directly affect water balance (Cai et al., 2019), climate (Elli-
son et al., 2017) and hydrological and biogeochemical cycles (Alkama
and Cescatti, 2016, Li et al., 2018a). Surface energy balance based
models are the most widely used alternative to estimate ET from re-
motely sensed data (de la Fuente-Sáiz et al., 2017); in particular
Mapping EvapoTranspiration at high Resolution with Internalized Cali-
bration model (METRIC, Allen et al., 2007). However, very few algo-
rithms are able to estimate ET at fine spatial resolution due to the large
quantity of parameters required to achieve an adequate accuracy (van
der Tol and Norberto-Parodi, 2011). Some examples are: the Earth
Engine Evapotranspiration Flux (EEFlux) model (based on METRIC),
and designed and implemented on the Google Earth Engine (GEE) plat-
form (Allen et al., 2015) or the Simplified Two-Source Energy Balance
(STSEB) model proposed by Sánchez et al. (2008). In this context,
ET is a fundamental variable of ECOsystem Spaceborne Thermal Ra-
diometer Experiment on Space Station (ECOSTRESS) mission (Fisher et
al., 2014, 2017), although currently it only records data over the con

terminous United States (CONUS) and key biomes and agricultural zones
with selected FLUXNET (Baldocchi et al., 2001) validation sites.

Burn severity is also influenced by pre-fire vegetation structural pa-
rameters such as tree density and size, canopy cover, and fine fuel ac-
cumulations (Kuenzi et al., 2008; Lentile et al., 2006). Different
studies about drivers of fire severity highlighted the influence of topog-
raphy, weather and pre-fire vegetation characteristics (e.g. Agee and
Skinner, 2005; Dillon et al., 2011; Estes et al., 2017; Fang et al.,
2018; Kane et al., 2015; Storey et al., 2016). Despite the impor-
tant effect of these drivers on burn severity, there are few studies that
use them as additional information to complement the spectral informa-
tion from satellite data to quantify burn severity. However, these factors
may characterize different aspects of changes due to fire (Parks et al.,
2019). Burn severity models that include different potential factors are
likely to provide more relevant and accurate characterization of burn
severity (Parks et al., 2019). In this context, Fernández-Manso et al.
(2019) accurately modeled burn severity from MESMA fraction images,
and showed that topographic and pre-fire vegetation information con-
tributed around 25% to the final burn severity model.

Fire damage assessments may be improved using machine learning
models instead of parametric ones, as they can include multiple factors
as input variables (Parks et al., 2019). Accordingly, random forest (RF)
(Breiman, 2001) is the classifier chosen to estimate burn severity in our
study. Non-parametric supervised classifiers (RF is one of them) show a
higher efficiency and accuracy than parametric classifiers (Mather and
Tso, 2016). RF is being increasingly used in remote sensing applications
(Belgiu and Drăguţ, 2016). Since its proposal in 2001, RF has shown
its high performance as classifier in many studies on land use/land cover
mapping (e.g. Camargo et al., 2019; Gislason et al., 2006; Mellor et
al., 2015; Rodriguez-Galiano et al., 2012; Wang et al., 2019), tree
species/plant species/crops classification (Mahdianpari et al., 2017;
Naidoo et al., 2012; Teluguntla et al., 2018), and forest parame-
ter estimation (Ahmed et al., 2015; Hudak et al., 2008). Some stud-
ies have used RF to map wildfire damage as well (e.g. Collins et al.,
2018; Hultquist et al., 2014; Meddens et al., 2016; Ramo and
Chuvieco, 2017). RF is based on a large number of decision trees and
includes bootstrap aggregation (bagging). The combination of multiple
trees increases its predictive capacity and bagging prevents overfitting
usually present in a single tree (Cutler et al., 2007). Advantages of the
RF algorithm can be summarized highlighting its short calculation time,
its powerful performance in different applications, and the information
provided about the input variables importance and the accuracy in the
classification process (Rodriguez-Galiano et al., 2012; Wang et al.,
2019). Additionally, RF provides information about the relevance of in-
put variables in the classification process.

Our study aims to estimate burn severity from post-fire Sentinel-2
MESMA fractions, fine spatial resolution-ET and environmental vari-
ables, testing which combination of these input variables leads to the
estimate with highest accuracy. For the first time to our knowledge the
performance of ET in mapping burn severity is being tested. Our hy-
pothesis is that the combination of ET and char fraction image is syn-
ergetic and that a higher accuracy can be achieved than these vari-
ables are used individually. Fraction images would reflect the spec-
tral change that fire causes, and ET provides information on water
balance alteration. Specifically, our research questions can be sum-
marized as: 1) Can an accurate burn severity estimate be obtained
from post-fire fine spatial resolution ET?; 2) If yes, what would be
the relative importance of post-fire ET versus post-fire MESMA char
fraction when used together to estimate burn severity?; and 3) What
would be the relative importance of environmental
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variables (in particular: pre-fire vegetation, climatic and topographic
variables) to estimate burn severity when used together to post-fire ET
and MESMA fractions?

2. Study area and materials

2.1. Study area

We studied the Pedrogão Grande mega-fire in central Portugal. This
fire burned 458.93 km2 between the 17th and 24th of June 2017
(ADAI/LAETA, 2017) (Fig. 1). Due to the high loss of lives (66), in-
juries (>200) and buildings (263) (Ribeiro et al., 2018), Pedrogão
Grande mega-fire was included in the annual report of the Joint Re-
search Centre of the European Commission (San-Miguel-Ayanz et al.,
2018). On the day of ignition (17th June 2017), almost all of the region
was in severe drought as declared by the Instituto Português do Mar e
da Atmosfera (IPMA) (www.ipma.pt).

The study area is located in the transition zone between typical
and humid Mediterranean Köppen-Geiger climatic classes (Köppen,

1936). The typical Mediterranean (Csa class) has rainy winters and hot
and dry summers. It's annual precipitation ranges from 400 to 750 mm,
whereas the humid Mediterranean (Csb class) displays higher annual
precipitation (from 750 to 2000 mm) and milder summers (see Fig. 1,
left upper). Elevation varies from slightly >1000 m in the north and
northwest of the affected area to 100 m on the banks of the Zêzere
River, although moderate elevations (approximately 400 m) predom-
inate around Pedrógão Grande (see Fig. 1, right lower). Similarly,
the north and northeast areas have steep slopes (around 40%–60%),
whereas the areas in the Basin of Zêzere River are flatter (0%–15%
slope) (see Fig. 1, right lower). Pedrógão Grande and the surround-
ing counties affected by fire are included in the Interior North Pin-
hal Zone, the largest European forest before the fire. Plantations of
Eucalyptus blue gum (Eucalyptus globulus Labill.), and pine forest (Pi-
nus pinaster Ait.) are the dominant vegetation. Other vegetation in the
region includes the chestnut (Castanea sativa Mill.), cork oak forests
(Quercus suber L.) and strawberry trees (Arbutus unedo L.). Shrubs con-
sisted mainly of red heather (Erica aus

Fig. 1. Location of study area. Left: Köppen climatic classes (upper), and location in world map (lower); right: post-fire Sentinel 2 color composite RGB: 11 8a 12 (upper), and altitude and
slope maps (lower).
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tralis L.), white heather (Erica arborea L.), gorse (Ulex europaeus L.), and
broom (Cytisus scoparius L.). Some small agricultural lands are situated
close to villages (CTI, 2017).

2.2. Materials

Fraction images were calculated from a post-fire Sentinel-2 Multi-
spectral Instrument (MSI) image acquired on 4th July 2017 that was
downloaded from Copernicus Open access Hub. This image was the clos-
est to the fire event without clouds. It had a processing level 2A, produc-
ing bottom-of-atmosphere reflectance in UTM/WGS84 projection (ESA,
2015). Only one tile was needed to cover the study area. We resampled
the visible spectral bands to a spatial resolution of 20 m by using the
nearest neighbor resampling algorithm of the Sentinel-2 Toolbox inte-
grated on Sentinel Application Platform (SNAP) provided by the Euro-
pean Spatial Agency (ESA). A post-fire daily ET image of 1st July 2017
with a spatial resolution of 30 m was obtained from University of Ne-
braska-Lincoln (EEFlux application Allen et al., 2015).

Pre-fire vegetation was characterized by using fuel model and tree
cover density (TCD) maps. The fuel model map was provided by the
Instituto da Conservação da Naturaleza e das Florestas (Nature and
Forest Conservation Institute) of Portugal (http://www2.icnf.pt/portal/
florestas/dfci/cartografia-dfci). It was based on the Northern Forest Fire
Laboratory (NFFL) fuel model and on the national fuel model linked to
the Farsite code, using the official Portuguese Land Cover Map (Carta
de Ocupação do Solo, COS15) as cartographical base: a minimum car-
tographic unit of 1 ha and a minimum distance between lines of 20 m
(DGT, 2018). For TCD, we used the High Resolution Layer Forest layer
provided by the Copernicus Land Monitoring Service (CLMS), coordi-
nated by the European Environment Agency (EEA). This layer is based
mainly on Sentinel-2A data from ESA as well as Landsat 8 data from
the United States Geological Survey (USGS) for the 2015 year and has
a spatial resolution of 20 m. We assumed that only small changes in
cover density happened in the study area between 2015 and 2017. The
TCD layer was compared to a 50 cm 2015 orthophotograph provided by
the Portuguese Directorate General for the Territory and the Agriculture
and Fisheries Finance Institute. Very high concordance between both of
them was observed.

Climate was characterized by using the Köppen-Geiger climatic
classes (Köppen, 1936). In our study, the climatic classes were ex-
tracted from the updated world map of the Köppen-Geiger climate clas-
sification (Peel et al., 2007). Thus, the Köppen-Geiger map had a spa-
tial resolution of 5 arc minutes (~ 7.75 km) (Rubel et al. (2017), that
is fine enough to distinguish the two climatic classes of the study area.
Finally, we used a 30 m Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) Global Digital Elevation Model Version
2 (GDEM V2) provided by USGS (https://search.earthdata.nasa.gov) to
calculate the three topographic variables (elevation, aspect and slope)
used in the study.

The Portuguese Study Center of Forest Fires provided the official
burn severity (three severity levels) and fire perimeter maps that were
used as ground reference. They were based, respectively, on the grad-
ing map and fire perimeter map distributed by the Copernicus - Emer-
gency Management Service of the European Union, and were built us-
ing SPOT 6 and 7 imagery. The Portuguese Study Center of Forest
Fires verified them and corrected some mistakes (especially in the north
of the burned area, and in unburned areas within the fire perime-
ter). Its work was based on fieldwork and photointerpretation of Sen-
tinel 2 MSI data. Their estimated geometric accuracy is 5 m CE90 or
better (ADAI/LAETA, 2017). Those maps helped as well to define
spectra of char endmember; although we mainly relied on a post-fire
SPOT 7 image acquired on 21st June 2017 to build the

spectra library required by the MESMA procedure. COS15 also assisted
us in digitizing polygons over the SPOT 7 image to obtain spectra of veg-
etation endmember.

3. Methods

We used a RF classifier to estimate burn severity while analyzing the
contribution of each input variable to the final estimation. We tried dif-
ferent input databases: 1) post-fire char fraction, pre-fire vegetation, cli-
matic and topographic variables; 2) post-fire ET, pre-fire vegetation, cli-
matic and topographic variables; 3) post-fire char fraction, post-fire ET,
pre-fire vegetation, climatic and topographic variables; 4) post-fire char
fraction and post-fire ET.

3.1. RF input variables

Three main steps are distinguished in the MESMA procedure used
to obtain the fraction images: 1) spectral library building; 2) spectral
library optimization; and 3) spectral unmixing. A spectral library used
to unmix an image should include the different land covers present in
the study area (Roberts et al., 1998). Endmember spectra to form our
spectral library may be extracted from the image to be unmixed (image
endmembers) or from an external spectral library that may include spec-
tra obtained from the field, other images or laboratory (reference end-
members). However, an accurate endmember definition is key factor for
a successful unmixing (Tompkins et al., 1997). In our study, image
endmembers were used to build the spectral library (Fernández-Manso
et al., 2012; Quintano et al., 2017) to unmix the post-fire Sentinel-2
MSI image. As in previous studies (Quintano et al., 2013, 2017), we
considered as endmembers to unmix the image: char, green vegetation
(GV), non-photosynthetic vegetation (NPV), soil, and shade. Because our
study area includes rivers and a dam, we also included water as a end-
member to minimize the potential confusion between char and water.
Based on Roth et al. (2012) and Dudley et al. (2015), we delin-
eated georeferenced polygons over the SPOT 7 image to characterize
the classes included in the study with the help of the official Portuguese
Land Cover Map. Char endmembers were defined from polygons inside
the fire perimeter. From these polygons we obtained all of the endmem-
bers that constituted the potential spectral library.

However, it is necessary to determine those spectra that are most
representative of a particular class, and least possible to be confused
with spectra from a different class (Roberts et al., 2019). We selected
the optimal spectra using two approaches. The first was a semi-auto-
matic procedure based on three indices: 1) Count-based Endmember
Selection (CoB, (Roberts et al., 2003) that selects the endmembers
that model the maximum quantity of endmembers within their class;
2) Endmember Average RMSE (EAR, Dennison and Roberts, 2003);
that selects the endmembers that produced the minimum RMSE within
a class; and 3) Minimum Average Spectral Angle (MASA, Dennison et
al., 2004), that selects the endmembers that showed the minimum av-
erage spectral angle. The second procedure followed the Iterative End-
member Selection method (IES) proposed by Schaaf et al. (2011), and
updated by Roth et al. (2012). IES includes (and removes) iteratively
endmembers from a spectral library to a spectral library subset to max-
imize the classification accuracy measured by κ statistic. It is also possi-
ble to force the inclusion of rare endmembers (Roth et al., 2012).

Once the spectral library has been optimized, the input images
can be unmixed. There are many unmixing possibilities depending on
how the spectra are grouped. Models of different complexity (1, 2,
3, 4 or more endmembers) can be run, though 4-endmember mod-
els have been commonly used in burn severity studies (Lewis et al.,
2017; Meng et al., 2017; Quintano et al., 2013, 2019), in par-
ticular: char, GV, NPV and soil (NPVS), and shade. In this work, we
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enabled different levels of complexity for each pixel by using the
multi-level fusion approach proposed by Roberts et al. (2003). The
higher level of complexity is used when the RMSE decrease (due to the
complexity increase) exceeds a threshold that was empirically fixed at
0.002. As in previous studies (O. Fernández-Manso et al., 2016; A.
Fernández-Manso et al., 2016; Fernández-Manso et al., 2019), we
used the following constraint values: maximum and minimum admissi-
ble fraction values, 1.10 and −0.10 respectively; minimum and maxi-
mum allowable shade fraction values, 0.00 and 0.85, respectively; and
maximum allowed root mean square error (RMSE), 0.025. Additionally,
the minimum number of classified pixels considered acceptable for an
unmixing process to be valid was fixed at 95% of the image (Quin-
tano et al., 2013). If this last requirement was not fulfilled, we varied
the components of a model, the members of a class, and/or the level of
complexity of the models and repeated the unmixing process. Finally,
fraction images were shade normalized before using them as RF inputs.
Shade normalization removes the contribution of the shade endmem-
ber and results in stressing the contribution of non-shade endmembers
(Rogan and Franklin, 2001). All operations to unmix the Sentimel-2
post-fire image were completed by the Visualization and Image process-
ing for Environmental Research (VIPER) tools software (Roberts et al.,
2019) developed at the Department of Geography at University of Cali-
fornia Santa Barbara (https://sites.google.com/site/ucsbviperlab/viper-
tools).

A post-fire Landsat-derived daily ET image based on the EEFlux
model (Allen et al., 2015) was also used as a RF input. This model
is derived from the surface energy balance equation (see Allen et al.,
2007; and Irmak et al., 2011, for detailed information).

(1)
where LE is latent heat flux, expressed in W/m2; Rn, is net radiation es-
timated from reflectance and LST; G, soil heat flux, estimated from Rn,
LST, and vegetation indices; and H, air heat flux, estimated from LST
ranges, surface roughness, and wind speed.

Instantaneous ET (ETi, expressed in mm/h) is computed for each
pixel by dividing LE by the latent heat of vaporization, which is depen-
dent on land surface temperature. From it, daily ET is calculated by ex-
trapolating ETi to a 24-hour period using reference ETi of a tall crop (al-
falfa) as the reference.

Pre-fire vegetation, climatic, and topographic variables were also in-
cluded as RF input variables. Four classes represented the pre-fire fuel
model: 1) Pastures and meadows (<0.5 m, fine fuel load: 1–1,5 t/ha).
This class is represented as “V-Hb” using the Portuguese fuel code (Fer-
nandes et al., 2009), and corresponds to a fuel model 1 using NFFL
code (Anderson, 1982); 2) Eucalyptus forest (Eucalyptus foliage with
dense underbrush with a height <0.6 m, fine fuel load: 9–18 t/ha). This
class is represented as “M-EUC” using the Portuguese fuel code, and cor-
responds to a fuel model 5 using NFFL code; 3) Pinus pinaster forests
(Medium to long needle pine litter – 5 cm or less- with shrub understory,
fine fuel load: 8–18 t/ha). This class is represented as “M-PIN” using the
Portuguese fuel code, and corresponds to a fuel model 9 using NFFL
code; and 4) Continuous pastures with the presence of young shrubs,
(under 3 years old since last fire, height <1 m), and green shrubs, of-
ten discontinuous. This class is represented as “V-MH” using the Por-
tuguese fuel code, and corresponds to a fuel model 2 using NFFL code.
These four classes constituted 96% of area inside the fire perimeter (in
particular: V-Hb: 8.42%, M-EUC: 49.56%, M-PIN: 31.99%, and V-MH:
6.51%). Two Köppen climatic classes were taken into account in the
study: Csa (Mediterranean climate) and Csb (humid Mediterranean cli-
mate). Regarding topographic factors, both elevation and slope were
included as continuous variables in the RF classifier, but aspect was
categorized in to eight classes: North (0°-22.5° and 337.5°-360°),

Northeast (22.5°-67.5°), East (67.5°-112.5°), Southeast (112.5°-157.5°),
South (157.5°-202.5°), Southwest (202.5°-247.5°), West (247.5°-292.5°),
and Northwest (292.5°-337.5°).

Before using these variables as RF inputs, we resampled the
shade-normalized char fraction (char_sn) and the TCD to 30 m using
nearest neighbor resampling. Similarly, fuel model and climatic maps
were rasterized using 30 m as spatial resolution. Once all input vari-
ables had the same spatial resolution (30 m), a mean 3 × 3 filter was
applied to all continuous variables (shade-normalized char fraction, ET,
TCD, elevation and slope) and a mode 3 × 3 filter to every categorical
variable (fuel model, climatic class, aspect) to minimize positional er-
rors (Key and Benson, 2006). We adopted a stratified random sam-
pling (Congalton and Green, 2009), taking a number of samples for
each burn severity level related to its area on the reference map: 2357
samples for high burn severity, 1694 for moderate burn severity and 661
for low burn severity level. 1140 sampling points from the zone outside
fire perimeter defined the unburned class. Correlation among all RF in-
puts was very low except between ET and shade-normalized char frac-
tion (partial correlation coefficient, 0.66). This value is, however, not
too high. Thus ET and char may contribute with different information to
the final burn severity model.

3.2. RF based classification

Random Forest (Breiman, 2001) is a machine learning approach
that builds a large number of binary decision threes that are not statis-
tically pruned. The combination of such number of trees increases the
predictive capacity and decreases overfitting usually present in a single
tree (Cutler et al., 2007). Each tree is built using bootstrap aggregation
(bagging), that randomly selects, with replacement, two-thirds of the
input samples to train the tree (referred as in-bag samples) (Breiman,
1996). The randomness to build a tree due to bagging is complemented
by the random approach used to choose a subset of input variables to de-
fine each tree split (Liaw and Wiener, 2002). The samples that are not
selected are used in an internal cross-validation technique for assessing
the accuracy of the final classification. As they are referred as out-of-bag
(OOB) samples, a common measure of the RF accuracy is the OOB error.
In RF the average vote of the trees is what determines the final result
(Hastie et al., 2009). In particular, in the RF training, RF determines
the final class assignment by using the arithmetic mean of the class as-
signment from each tree, whereas in the classification step, RF assigns
to each pixel the class that achieves the majority value among the votes
of every tree (Breiman, 2001).

There are two user-defined parameters needed to build random
forests: number of trees to be grown and number of variables used to
split a node. We fixed the number of trees at 500, as we verified that the
error rate was not sensitive to the number of trees over this value. More-
over, this is the number that a majority of RF studies used (Belgiu and
Drăguţ, 2016). The number of splitting variables in each node was set
to its default value (the square root of the number of input variables) as
previous works recommended (e.g. Gislason et al., 2006; Naidoo et
al., 2012; Wang et al., 2015).

RF also provides individual variable importance. The variable im-
portance measures the contribution of a variable in the final model,
enabling the identification of the variable or set of variables most rel-
evant for the final classification. Most of studies based on RF evalu-
ated the importance of each variable by measuring the reduction in
accuracy observed (increase in OOB error), when the observed val-
ues of this variable are randomly exchanged in the OOB samples (Bel-
giu and Drăguţ (2016). Mean decrease in Gini index, a measure
of node impurity, is another alternative (Schmidt et al., 2014). In
our study, the relative importance of each variable was
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measured by the mean decrease in accuracy criterion. Specifically, OOB
error is computed for each tree. After permuting each variable the OOB
error is calculated again. Next, the difference between these two OOB
error values is averaged over all trees, and, finally, normalized by the
standard deviation of the differences (Breiman, 2001). The most im-
portant variables reach higher decrease in accuracy.

Another important advantage of using RF classification is that avail-
ability of OOB error may omit the requirement for a post-classification
accuracy assessment (Chrysafis et al., 2017; Lawrence et al., 2006;
Zhong et al., 2014). Rodriguez-Galiano et al. (2012) highlighted
that each tree has a different subset of OOB samples, and that the OOB
samples that were not used for training of the tree are classified to pro-
vide a measure of the RF performance. In our study, the RF classifier
had a relative high number of initial samples. Consequently, we de-
cided to assess the classification accuracy by the OOB samples exclu-
sively. Confusion matrixes were calculated from them and Overall Ac-
curacy (OA), Producer's Accuracy (PA), User's Accuracy (UA), and κ sta-
tistic were computed as well (Congalton and Green, 2009). To com-
pare the accuracy of the obtained burn severity classifications from each
input database, a Ζ-test based on the κ statistics was used (Congalton
and Green, 2009). Note that zc = 1.96 at the 95% confidence level,
and that the null hypothesis H0: (κ1-κ2) = 0 is rejected when Z > zc.
XLSTAT v.19.3.2 software (Addinsoft, 2019) together to Scikit-learn
v0.21.3 (Pedregosa et al., 2011) were used to implement the RF clas-
sifier and obtain the graphical outputs.

4. Results

After different trials varying the hierarchical level of spectral library,
the endmember optimization approach and the model complexity, we
achieved adequate post-fire Sentinel-2 MSI fraction images. Three hier-
archical levels were established in the spectral library. The level 3 classi-
fied the highest percentage of pixels of Sentinel-2 MSI image. However,
slight differences were found using the level 2. The hierarchical level
3 grouped NPV, soil and water in just one category NPVSW, with the
other two categories consisting of GV and char at this level. Table 1
summarizes the hierarchical structure of the spectral library used. The
semi-automatic approach based on CoB, EAR and MASA indices (EMC
approach) was finally used to unmix the post-fire image as it classified
a higher number of pixels than the IES-based approach, although the
difference was not very large. Multi-level fusion was used in this work.
Thus, models with different levels of complexity may unmix each pixel
of the inputs images. In particular, we used 44 2-endmember models,
569 3-endmember models and 2376 4-endmeber models to unmix the
post-fire image. Table 1 includes a summary of the unmixing results,
showing how many pixels of the image were unmixed by models of 2-,
3- and 4- endmembers, respectively.

Fig. 2 shows the shade-normalized fraction images derived from
the MESMA procedure. Char and GV fraction images (Fig. 2, left and
center) clearly discriminate burned form unburned areas, while level
differences within the burned area suggest differences in burn sever-
ity levels. In the shade-normalized NPVSW fraction, the Zêzere River
is evident although there is some confusion with the char fraction. Ex-
amples of the endmember spectra used to unmix the Sentinel-2 are
also included in Fig. 2. Fig. 3 compares (comprising both burned and
unburned areas) RGB color composites of the shade normalized frac-
tion images and of the visible bands of SPOT 7 image used to iden-
tify the endmembers for four locations. We observed a high level of
agreement between both RGB compositions in all locations; burned ar-
eas are clearly and correctly identified. Additionally, from locations 1
and 2 we observed how MESMA fraction images clearly distinguished
the main road and the small villages, from the burned and unburned
areas. In location 3, discrimination of the

Table 1
Hierarchical levels of MESMA spectral library and summary of unmixing results.

Hierarchical levels of spectral library

Level 1 Level 2 Level 3

Eucalyptus
globulus
Labill.

GV GV

Pinus pinaster
Ait.
Quercus suber
L.
Castanea
sativa Mill.
Non irrigated
lands

NPV NPVSW

Dry
grasslands
Forest
clearcuttings
Open mine Soil
Urban areas
Roads
River Water
High burn
severity

Char Char

Moderate
burn severity

Summary of unmixing results

Model complexity
Hierarchical
level 3

Post-fire image
classified

#pixels

%
over
total
pixels

2-endmember models CHAR - shade 173,767 3.19
GV – shade 462,825 8.48
NPVSW -
shade

199,220 3.65

Total
2-endmember

835,812 15.32

3-endmember models CHAR – GV -
shade

131,447 2.40

CHAR –
NPVSW -
shade

658,615 12.07

GV - NPVSW -
shade

3295,318 60.41

Total
3-endmember

4084,855 74.88

4-endmember models CHAR – GV –
NPVSW
–shade

491,334 9.01

Total
4-endmember
TOTAL 5412,001 99.21

GV: green vegetation; NPV: non-photosynthetic vegetation, NPVSW: non-photosynthetic
vegetation, soil and water.

Zêzere River, in particular of the Cabril dam, can be observed in both
RGB color compositions. Finally, location 4 also revealed the identi-
fication of the main river (Castelo de Bode dam) and small villages.
Similarly clear differences between burned and unburned areas in the
immediately post-fire ET image are evident (Fig. 4). The
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Fig. 2. Upper: Shade normalized MESMA fraction images: char (left), green vegetation (center), non-photosynthetic vegetation, soil and water (right). Lower: examples of endmember
spectra used to unmix the Sentinel-2 MSI image: char (left), green vegetation (center), non-photosynthetic vegetation, soil and water (right).

post-fire ET image distinctly identified the Zêzere River with Cabril and
Castelo de Bode dams. The affluent Unhais was clearly discriminated
only in its last part, similarly to NPVSW fraction image. The profile over
the image shows the variations in ET values inside the burned area sup-
posedly related to burn severity.

Variables of each input database were ranked by their importance
in the final classification using the mean decrease in accuracy when the
variable was excluded from a classification (Table 2). Char fraction ex-
hibited a predominant contribution when used together with the envi-
ronmental variables used in this work (input database 1). Fuel model,
climate class and elevation followed as the next most relevant variables.
Similarly, ET was the most important variable when used solely as the
input in database 2. In this case, fuel model and aspect were the next
most relevant variables with similar mean decreases in accuracy values,
followed by climate class, elevation and slope. When all of the variables
tested in this study were used (input data base 3), ET was the variable
that most contributed to the final model, followed by the char fraction
image. Fuel model, climate class elevation and aspect, also had a no-
ticeable contribution though not so relevant as ET and char. ET also
had a higher importance than char fraction when only these two vari-
ables were used as inputs (input database 4), though the relative impor-
tance of char fraction increased versus its relative importance when in-
put database 3 was used.

Fig. 5 displays the importance of each variable in the final clas-
sification of each burn severity level, when all the input variables
were used (input data base 3). From this figure, it is evident that
the char fraction contributed more to classification of the high burn

severity level than to low and moderate levels. Conversely, ET helped
most to discriminate unburned areas, although its importance for classi-
fying the high burn severity level was also appreciable. Fuel model also
showed relatively high importance distinguishing high and low burn
severity levels.

Accuracy parameters based on the confusion matrices provided by
the RF classifier are displayed in Table 3. κ statistic of burn severity es-
timates using the input databases 1 and 2 were quite similar (κ = 0.72
and κ = 0.71, respectively), and the Ζ-test based on their κ statistics
showed no statistically significant difference between these two model
inputs (Ζ = 0.43 < 1.96). Burn severity estimate based on input data-
base 3 showed the highest κ statistic value (κ = 0.79) followed by the
estimate from input database 4 (κ = 0.76). Classifications based on
databases 1 and 2 were statistically significantly different from classifi-
cations based on input databases 3 and 4. Similarly, the Ζ-test showed
there was statistical differences between κ statistic values of the classifi-
cations from input databases 3 and 4 (Ζ = 1.99 > 1.96). Regarding PA
and UA values for each burn severity class, the low burn severity level
had the lowest values. Unburned and high burn severity classes reached
the higher values, and the moderate level displayed medium values. The
burn severity map based on the RF classification with the highest accu-
racy (input database 3) is included in Fig. 6.

5. Discussion

MESMA unmixed a high percentage of the Sentinel-2A image
(99.21%) using char, GV, NPVSW and shade endmembers. One of the
main reasons for this high value was a satisfactory endmember
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Fig. 3. Detailed comparison between RGB compositions of shade normalized MESMA fraction images (R:char, G:green vegetation, B:non-photosynthetic vegetation, soil and water) and
visible bands of SPOT 7 image (R:3, G:2, B:1).

choice to build the spectral library (based on CoB, EAR and MASA
indices). A slight difference in the percentage of classified pixels was
found using endmembers selected by IES approach. Similarly, some
MESMA based studies (Dennison et al., 2019; He et al., 2019;
Quintano et al., 2013, 2019) have successfully used CoB, EAR and
MASA indices to define the final endmembers, whereas others (Quin-
tano et al., 2017; Roberts et al., 2012, 2017) used the IES pro-
cedure. In our study, NPV, soil and water formed just one category
(NPVSW), in the hierarchical level 3 of the spectral library finally
used to unmix the Sentinel-2A image. GV and char were the other
two categories. This pattern of endmember grouping was also

used in previous fire damage studies based on MESMA
(Fernández-Manso et al., 2019; Quintano et al., 2019).

RF ranked the importance of the different tested variables to model
burn severity. Char fraction showed the maximum importance when
using the input database 1 (char_sn, fuel model, TCD, climate, eleva-
tion, slope and aspect), particularly in unburned and high burn sever-
ity classes. Burn severity estimation from database 1 (that mainly re-
lied on MESMA char fraction) had a moderate-high level of accuracy
(κ = 0.72). That result agrees with previous studies (Fernández-Manso
et al., 2009; Lentile et al., 2006, 2009; Veraverbeke and Hook,
2013) that proved that reliable burn severity estimates can be based
on char fraction image, and more specifically
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Fig. 4. Post-fire ET image with spatial profile.

on MESMA char fraction image (Fernández-Manso et al., 2019;
Lewis et al., 2017; Quintano et al., 2013, 2017; Veraverbeke
et al., 2014). Conversely, when char fraction was used as input to-
gether with ET (input databases 3 and 4), the char fraction was the
second most important variable following ET. Burn severity esti

mates based on those input databases (including both char fraction im-
age and ET as variables) displayed the highest accuracy level. When
the input database included ET but not char fraction (input database
2) burn severity estimate reached similar accuracy than the burn sever-
ity estimate based on input database 1 (κ = 0.71). These
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Table 2
Variable importance in the final classification represented by the mean decrease in accuracy when the variable is excluded of a classification.

Variables Input database 1 Input database 2 Input database 3 Input database 4

μ σ μ σ μ σ μ σ

Char_sn 172.87 0.001 – – 53.53 0.001 56.06 0.002
ET – – 266.60 0.001 165.41 0.002 124.94 0.002
Fuel model 24.81 0.001 21.69 0.001 19.54 0.001 – –
TCD 11.60 0.001 2.94 0.002 4.10 0.001 – –
Climate 23.11 0.001 14.40 0.003 17.26 0.000 – –
Elevation 25.93 0.000 13.90 0.001 12.09 0.000 – –
Slope 5.28 0.001 12.63 0.001 6.87 0.001 – –
Aspect 8.97 0.001 23.79 0.001 14.15 0.000 – –

μ: mean value; σ: standard deviation; Char_sn: shade normalized char fraction; ET: evapotranspiration; TCD: tree cover density; input data base 1: char_sn, fuel model, TCD, climate, ele-
vation, slope and aspect; input data base 2: ET, fuel model, TCD, climate, elevation, slope and aspect; input data base 3: char_sn, ET, fuel model, TCD, climate, elevation, slope and aspect;
input data base 4: char_sn, ET.

Fig. 5. Variable importance in each burn severity level represented by the mean decrease
in accuracy when the variable is excluded from a classification. Top: grouped by input
variable; bottom: grouped by burn severity level.

facts suggest synergies between ET and char fractions to estimate burn
severity. Fraction images are based on post-fire spectral information
of all Sentinel-2 reflective wavelengths. They are a more scalable al-
ternative to the standard dNBR –based method to assess burn severity
(Veraverbeke and Hook, 2013). In addition, they have a more ro-
bust biophysical base and are easier to interpret than field burn sever-
ity indices as Composite Burn Index (CBI) (Lewis et al., 2017). ET
contains information about water balance alteration due to fire (Cai
et al., 2019). Similar to fraction images, ET has a clearly physi-
cal meaning related to fire damage. As char fraction and ET provide
different information about the induced changes by fire, we suggest
that they are complementary generating the highest accuracy when
used in combination. There are no previous studies (to

our knowledge) that use ET as a basis to model burn severity, though
availability of ET at fine scale may lead to use it as an appropriate index
of burn severity in the future. Different research studies have, however,
shown the strong relationship between ET and fire damage showing a
reduction in ET after fire (Dore et al., 2010; Poon and Kinoshita,
2018; Rocha and Shaver, 2011; Sánchez et al., 2015). Focusing on
Eucalyptus dominated forests, Häusler et al. (2018) observed in an
area close to our study area a strong decrease in ET immediately after a
fire event (mainly in moderate and high burn severity levels) that was
not noticed two years later. Nolan et al. (2014) reported as well an
important decrease in ET after fire in Australian Eucalyptus forests. Sim-
ilarly, in our study areas dominated by Eucalyptus and maritime pines
also showed a reduction in ET after fire (see profile of Fig. 4).

Pre-fire vegetation, climate and topographic variables caused a mod-
erate increase in accuracy of burn severity estimates (κ statistic grew
from 0.76 -input database 4- to 0.79 –input database 3-). Environmental
variables influence fire occurrence, development and extent, although
their effect on burn severity is still unclear (Birch et al., 2015; Mit-
sopoulos et al., 2019). In our study, RF ranked fuel model class (as-
sociated to pre-fire vegetation characteristics) as the third most impor-
tant variable, which indicates the relevance of this parameter in burn
severity. Inclusion of maps of vegetation type, structure and fuel to
improve burn severity estimates has been previously recommended by
Dillon et al. (2011). Both composition and structure of pre-fire veg-
etation (linked in fuel model class) are an important bottom-up con-
trol of fire severity (Estes et al., 2017). For that reason, fuel is in-
creasingly viewed as a relevant factor among environmental controls
of fire severity (Kraaij et al., 2018). As summarized by García-Lla-
mas et al. (2019b), fuel structure and moisture influence fire spread
and behavior, which mainly regulates fire severity (Harris and Taylor,
2017). Fuel amount and composition (directly related to fuel model)
alter heat flux of the burning process, which largely influences the
spatial structure of fire severity (Fang et al., 2018). Some studies
(Kraaij et al., 2018; Lydersen et al., 2017) showed that burn sever-
ity was clear linked to fuel attributes, in particular in low severity
regimes (Finney et al., 2005). Other studies (Dillon et al., 2011;
Estes et al., 2017), however, indicated that other environmental vari-
ables (as topography and weather) had a higher influence on burn
severity than fuel characteristics. Another variable related in our study
to pre-fire vegetation was TCD. According to RF variable importance
analysis, it had a low relevance when using the input database 1, be-
ing even lower when ET variable was included (databases 2 and 3).
Turner et al. (1999) have also found that the relationship between
burn severity and pre-fire tree density was not significant. By contrast,
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Table 3
Summary of accuracy parameters.

Accuracy parameters

Input database 1 Input database 2 Input database 3 Input database 4

κ statistic 0.72 0.71 0.79 0.76
σκ 0.0003 0.0003 0.0002 0.0002
Margin of Error (CI) 0.0319 0.0326 0.0304 0.0308
Lower Bound 0.68 0.67 0.76 0.72
Upper Bound 0.75 0.74 0.83 0.78
PA 0.75 0.73 0.81 0.80
UA 0.77 0.75 0.82 0.79
OA 0.80 0.80 0.86 0.83

PAclass UAclass PAclass UAclass PAclass UAclass PAclass UAclass
Unburned 0.85 0.91 0.89 0.92 0.90 0.94 0.87 0.93
Low 0.61 0.45 0.54 0.36 0.65 0.54 0.63 0.59
Moderate 0.72 0.76 0.71 0.80 0.81 0.82 0.77 0.79
High 0.87 0.88 0.87 0.84 0.92 0.93 0.91 0.87

Ζ-test

Input database 1 Input database 2 Input database 3 Input database 4

Input database 1 0.43 3.89 1.98
Input database 2 0.43 4.13 2.32
Input database 3 3.89 4.13 1.99
Input database 4 1.98 2.32 1.99

Input data base 1: char_sn, fuel model, TCD, climate, elevation, slope and aspect; input data base 2: ET, fuel model, TCD, climate, elevation, slope and aspect; input data base 3: char_sn,
ET, fuel model, TCD, climate, elevation, slope and aspect; input data base 4: char_sn, ET; PA: producer's accuracy; UA: user's accuracy; OA: overall accuracy.

Birch et al. (2015) found the percentage of vegetation cover as a rel-
evant factor of burn severity. TCD had a low variability in our study
area as all forested areas showed a high cover density. That is likely the
reason for its low influence. It is presumed that in areas with higher
TCD variability, this variable may exert a potentially higher influence
on burn severity.

Climate was ranked by RF as the fourth most important variable in
our study. Köppen climatic classes included information on average pre-
cipitation level and mean temperature range that have important im-
pact on vegetation characteristics. Pre-fire precipitation and tempera-
ture have an established strong influence on fire severity, especially un-
der extreme conditions (Bigler et al., 2005; Nunes et al., 2005).
However, under more moderate climatic conditions, the influence of cli-
mate was lower than the influence of topography and fuels (Bradstock
et al., 2010).

Topographic variables also had a relevant contribution to burn sever-
ity in our study. RF ranked elevation as the second most important vari-
able when used in database 1 (although its importance was very simi-
lar to fuel model and climate). Aspect was the second important vari-
able when database 2 was used (it was very close in importance to fuel
model), but elevation and slope were also relevant contributors to burn
severity. When using input database 3, aspect and elevation had moder-
ate importance on burn severity as well (fifth and sixth positions). Many
studies (e.g. Estes et al., 2017; Lee et al., 2009; Mitsopoulos et al.,
2019; Viedma et al., 2014) have pointed out the strong influence of
topography on burn severity. Wind patterns and microclimate are influ-
enced by topographic attributes (Mitsopoulos et al., 2019). In partic-
ular, slope and aspect have an effect on fuel moisture, which directly
influences fire intensity (Rothermel, 1972) and on fuel composition
and availability (Holden et al., 2009). Level of topographic complex-
ity of terrain may define, however, the level of influence of topography
on burn severity (Estes et al., 2017). A complex topography exerts a
strong influence on burn severity (Bradstock et al., 2010; Oliveras
et al., 2009; Wimberly and Reilly, 2007). Whereas little relation

ship between burn severity and topography has been found in regions
with low variability in topographic attributes (Collins et al., 2007;
Turner et al., 1999). The moderate association between topographic
characteristics and burn severity found in our study area is in correspon-
dence with its moderate level of topographical complexity.

Although low and moderate burn severity levels had lower PA and
UA values than high burn severity and unburned classes, the RF clas-
sifier accurately mapped burn severity using three burn severity levels
(κ = 0.79). This agrees with Collins et al. (2018) who highlighted the
capability of RF to discriminate low and moderate burn severity levels,
enabling an accurate burn severity estimate with three levels of sever-
ity. In the same study area, Brown et al. (2018) estimated three burn
severity from Sentinel spectral indices using Artificial Neural Networks
(ANN's) (κ = 0.66) and Support Vector Machines (SVMs) (κ = 0.71).
They also observed lower PA and UA accuracy in low and moderate
classes. RF has already been successfully used to estimate burn sever-
ity in previous studies: Collins et al. (2018) reached accuracy val-
ues higher than 95% for unburned, and high burn severity classes and
higher than 74% for low burn severity classes using a RF trained with
multiple Landsat-derived pre- and post-fire spectral indices in sixteen
fires located in south-eastern Australia. Parks et al. (2019) imple-
mented RF in Google Earth Engine and modeled CBI in 263 fires both
in USA and Canada, reaching a R2 of 0.72. As inputs they used spectral
indices, climatic and geographic data. Meng et al. (2017) used as RF
inputs modified soil-adjusted vegetation index difference (dMSAVI) and
MESMA fraction images. Their aim was to estimate burn severity with
three levels in a Pine Barrens region in Long Island (USA). They obtained
a κ statistic value of 0.77 at sub-crown level and of 0.76 at crown level.

Regarding our initial research questions, we can affirm that it is
possible to obtain an accurate burn severity estimate from fine-res-
olution post-fire ET, in particular, with similar accuracy to MESMA
char fraction based one (e.g. Meng et al., 2017; Quintano et al.,
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Fig. 6. Burn severity map based on RF classification of input database 3: (char_sn, ET, fuel model, TCD, climate, elevation, slope and aspect).

2019; Tane et al., 2018) (question 1). The combination of ET and
MESMA char fraction image enabled a burn severity estimate with
higher accuracy. We found a synergetic interaction between these two
variables when both were used to modeling burn severity with the
RF classifier (question 2). Moreover, the physical meaning of both
MESMA char fraction and fine resolution ET facilitated the understand-
ing of their relationships to burn severity, especially when it was com-
pared to the difficult to interpret relationship among burn severity
and spectral indices (Morgan et al., 2014). Adding envi

ronmental variables, particularly fuel model, climate class, elevation
and aspect, as inputs to the RF classifier increased the accuracy of
burn severity estimate (κ = 0.79) (question 3). Our research work pro-
posed a novel and promising procedure that should be validated in
more fire events. However, although we studied only one fire, it was
one of the most important wildfires in size and damage (vegetation,
buildings and people) happened in European Mediterranean countries
(San-Miguel-Ayanz et al., 2018). In addition, our study area was
located in the transition zone of two Mediterranean Köppen
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climactic classes (Csa and Csb), Future research should test this method-
ology in other Mediterranean ecosystems around the world. Moreover,
in spite of the fact that our study area corresponded to a Mediterranean
ecosystem, we believe the proposed methodology could be applied suc-
cessfully in other ecosystems as well.

6. Conclusions

Fire has a great impact on ET, affecting water balance as well. Our
study verified the usefulness of Landsat-derived post-fire ET to estimate
burn severity in Mediterranean ecosystems using a RF classifier. The ac-
curacy of the ET-based estimate was similar to the accuracy of the esti-
mate based on MESMA Sentinel-2 char fraction (κ = 0.71 and κ = 0.72
respectively). MESMA compressed all spectral information contained in
a post-fire Sentinel-2 image into three fraction images with physical
meaning. The accurate burn severity estimation based on char fraction
image would not have been possible without an organized and care-
ful building of the spectral library used to unmix the Sentinel-2 image.
Spectra of all land covers present in the study area were included in the
library and grouped as char, GV and NPVSW. Moreover, we observed
that the combined use of fine-resolution ET and MESMA char fraction
as RF inputs increased the accuracy of burn severity estimate (κ = 0.76
and κ = 0.79, if pre-fire vegetation, climate and topographic variables
were included as well as RF inputs). In these cases, char fraction image
would incorporate the fire-induced change on spectral information, and
ET would contribute with information on water balance alterations due
to fire. A clear advantage of these two input variables versus the com-
monly used spectral indices is their easier interpretation in relation to
burn severity as both of them have a clear physical meaning. Addition-
ally, the use of RF as classifier allowed us to evaluate the contribution of
each input variable to the modeling process of burn severity. ET was the
variable with the highest contribution, followed by MESMA char faction
image. Fuel model, climate and topographic variables also had a notice-
able contribution, although lower than ET and char fraction image. Sum-
marizing, our study proved the potential use of fine resolution ET to esti-
mate burn severity, especially when it was used together to MESMA char
fraction, as synergetic interactions between these two variables were ob-
served for modeling burn severity. The novel proposed methodology en-
ables analyzing fire impact on vegetation, which in turn may help to im-
prove post-fire management policies. Though the study was located in
Mediterranean ecosystem, the proposed method may be generalized to
fires happened in other ecosystems. In addition, it might take advantage
of the new ECOSTREES mission that will provide fine-resolution ET im-
ages worldwide.
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