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Abstract: Temperature, as one of the most important factors in meteorological data analysis, is
a variable parameter with severe changes in different periods. The trend of temperature changes
over time is also particularly important to investigating climate change. In this research, using the
data from the TRY Project, which includes meteorological data with an accuracy of 1 km grid and
a time accuracy of 1 hour, the temperature parameter of the city of Berlin is selected and the average
temperature of the urban area of Berlin was calculated at different temporal scales. In addition
to finding the linear regression trend of average annual temperature increase, Fourier transforms
analysis and the least squared error fitting method was used to investigate harmonic temperature
fluctuations to find the main sinusoidal period. Further, with the statistical analysis of data in daily
averages and 1 h intervals by considering medians of data as the benchmark for classification, months
from April to October were determined as the hot months of the year, and hours from 9 to 19 were
determined as daytime. Based on the mentioned classification, it was found that while the median
difference between hot and cold months is more than 12 ◦C, the median difference between days and
nights for the hot and cold months’ data is 5.2 ◦C and 2.1 ◦C, respectively. With this classification, the
probability distribution of temperature was studied for each group, and the degree of similarity of
this distribution with probability distribution functions such as normal, beta, gamma, and cosine,
were investigated. The separate analysis of the data categorized by this method had the highest
degree of similarity with beta and normal functions.

Keywords: temperature trend; harmonic analysis; statistics; distribution functions

1. Introduction

Meteorology and the analysis of meteorological data has become important in the last
two centuries, by evolving new laws of physics and mathematical, statistical, and data
analysis methods [1] (pp. 1–75). This importance includes a variety of approaches and
methods to study, analyze, and predict weather and climate change studies and seasonal
climate prediction [2] based on historical data, and different spatial scales are used to
describe and predict weather on local, regional, and global levels. Air temperature, one of
the most important factors in meteorological data analysis, is a variable parameter with
severe changes in different periods of the year cycle depending on geographical location.
The trend of temperature changes over time is also particularly important to investigating
climate change, has a significant effect on different aspects of human life, and also is the
main study for analyzing the UHI effect. This current study is concerned with the statistical
analysis of temperature historical data for a particular region of Berlin city in Germany
data grids [3]. Similar studies are performed for analyzing the temperature of the Berlin
region with different approaches [4–6].
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2. Materials and Methods
2.1. Data Source

In this research, the data used from the freely available data of the DWD Climate Data
Centre, the hourly grids of air temperature for Germany (project TRY Advancement) [3],
which includes meteorological data with spatial coverage of Germany, temporal coverage of
01.01.1995–31.12.2012 with a total volume of 200 GB, the spatial resolution of 1 km × 1 km,
hourly temporal resolution, and projection of “ETRS89/ETRS-LCC, ellipsoid GRS80, EPSG:
3034”, in NetCDF file format, with air temperature parameter [1/10 ◦C] in 2 m above ground
in the data. Link to data: https://opendata.dwd.de/climate_environment/CDC/grids_
germany/hourly/Project_TRY/air_temperature_mean/ (accessed on 20 February 2023).

The temperature parameter for the urban area of Berlin city in Germany was se-
lected from these coordinates: 12.87◦ E, 52.24◦ N to 13.96◦ E, 52.78◦ N. For this region,
a 70 × 60 array of data points from the dataset was extracted and the average value of each
array was calculated. These average temperatures for the Berlin region are the reference
data for calculations and analysis in this study at different temporal scales including daily,
monthly, and yearly.

2.2. Materials

To visualize and analyze the data, the Python computer program, and NetCDF4,
Matplotlib, Pandas, Numpy, and Scipy modules were used widely. General tools for data
visualization for this dataset were the matplotlib basemap toolkit from Cartopy for plotting
2D data on maps in Python, contour plots, bar graphs, boxplots, and line plots. Other
tools included mean, median, inter quantile range, histogram, rfft from Numpy, and signal,
fftpack, norm, Gaussian, beta, optimize, and leastsq from Scipy were used for data analysis
and other calculations [7–12].

2.3. Methodology

The first approach to the time-frequency analysis of temperate fluctuations and de-
termining the main periodicity was the Fast Fourier Transform (FFT) [13], and the fft tool
from the Python Numpy module was used. Spectral analysis characterizes the important
timescales of the variability of the data, and FFT gives very substantial speed improvements,
especially as the length of the data series increases, although it does not use the phase
information from the Fourier transform of the data implying that the locations of these
variations in time cannot be represented [1]. To reconstruct the data by inverse Fourier
transform, the Numpy ifft module was used.

In addition to finding the linear regression trend of average annual temperature in-
crease, the least squared error fitting method was used to investigate harmonic temperature
fluctuations to find the main sinusoidal period, and the correlation of the fitted function
and original data was calculated. Furthermore, Inter Quantile Range (IQR), Histogram,
and probability distribution analysis were used for the graph and the classification of data
divided by seasons and daytime. The choice of bin size used when plotting a bar chart can
have a significant effect on the appearance of the final graph and the location of peaks [1,14]
and also on fitting functions. Fitting on distribution probability was used to determine the
best fitting among normal, gamma, beta, and cosine functions by calculation of sum square
error (SSE).

3. Results

The statistical average values of the Berlin region temperature for original hourly and
daily average data are presented in Table 1.

https://opendata.dwd.de/climate_environment/CDC/grids_germany/hourly/Project_TRY/air_temperature_mean/
https://opendata.dwd.de/climate_environment/CDC/grids_germany/hourly/Project_TRY/air_temperature_mean/
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Table 1. Statistics for average values of the Berlin region temperature for hourly and daily aver-
age data.

Data Mean Max Min Median Variance Standard Deviation

hourly 9.62 36.96 −20.61 9.61 70.05 8.37
daily avg. 9.62 29.42 −16.38 9.95 61.55 7.85

3.1. FFT

The absolute values of Fast Fourier Transform (FFT array) for hourly data, demonstrate
the main frequency of 1 year and 1 day, respectively, shown in Figure 1 by a logarithmic
timescale due to the length of data and large frequencies.
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The IFFT (reconstructed data), alongside the residual deviations from the original data,
are plotted in Figure 2.

The statistical results of IFFT and residuals are presented in Table 2.

Table 2. Statistical results of IFFT reconstructed data and residuals for hourly data.

Data Mean Median Correlation
Coefficient Variance Standard

Deviation

IFFT 9.62 9.34 0.867 52.66 7.26
Residuals 0.00 −0.03 0.498 17.38 4.17

By assuming the IFFT as the signal (with two main frequencies) and the residuals as
noise, the signal-to-noise ratio (SNR) is equal to 3.03.

3.2. Linear Regression & Harmonic Function

Linear regression and harmonic fitted function analysis for the daily averages and
hourly data are presented in Figure 3 with a detailed result in Table 3. Both analyses show
a linear trend increase of temperature equal to 0.0398 ◦C per year.
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Figure 3. Linear Trend and harmonic function fitted data. (a) daily averages data; (b) hourly data
Fitting equation: y = a + b × t + c × sin(w1 × t + d) + e × sin(w2 × t + f).

Table 3. Linear regression and harmonic function fitting results.

Data a b c W1 d e W2 f Correlation
Coefficient

hourly 9.2596 4.54 × 10−6 9.7036 0.00071 4.4319 −3.0584 0.2618 0.9036 0.860
daily avg. 9.2613 0.00011 −9.7026 0.01720 7.5820 0.2481 0.2606 2.6463 0.876

3.3. Classification & IQR & Boxplot

The IQR analysis of data in daily averages and monthly intervals assumed medians of
data as the benchmark for seasonal and daytime classification, months with a median above
the average of medians are considered as summer months, and the months with a median
below the average of medians as winter. With the same method for hourly intervals, the
data was labeled by day and night. The initial boxplot classified data for the month and
of the year is demonstrated in Figure 4, and the related result for the hour of the day is
demonstrated in Figure 5.
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3.4. Distribution & Fitting

The histograms of the daily averages are presented in Figure 6, and probability distri-
bution and fitting functions for hourly data are presented in Figure 7.
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4. Discussion

This investigation draws upon relevant studies such as the work on precipitation
and temperature trends in Ottawa, Canada [15], which provides valuable insights into
long-term weather data analysis. Additionally, another study focusing on change point
detection in European air temperature series [16] contributes methodologies for identifying
shifts in temperature patterns. Furthermore, Lemoine-Rodríguez et al. [17] shed light
on Intraurban heterogeneity in land surface temperature trends within diverse climate
cities, Kunz et al. [18] extended their analysis back to 1779 in the Karlsruhe temperature
time series. Lastly, the research by Golechha et al. [19] emphasizes the significance of
temperature trend analysis for early warning systems in Indian cities. Further studies are
possible to use different methods for analyzing meteorological time-series data such as
machine learning and wavelet analysis, also for a statistical study of extreme temperatures
and other variables.

5. Conclusions

Without predefinition of season, months numbered 4 to 10 were determined as summer,
and hours from 9 to 19 were determined as day hours, by considering medians of data
as the benchmark for classification. While the mean temperature in this period is 9.62 ◦C
with a range of −20.61 ◦C to 36.96 ◦C, the median difference between the summer and
winter months is 12.32 ◦C, and the ratio of the median difference between days and nights
for these seasons is 2.46. The highest degree of similarity of the probability distribution
with the minimum SSE is with the beta function by a range of 0.00126 and 0.00135. The
result is beneficial to understanding the natural behavior of temperature cycles, seasonal
classification, and to predict its further trends.
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