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Abstract
Aim of study: The main objective is to determine the best machine-learning algorithm to classify the stand types of Monteverde 

forests combining LiDAR, orthophotography, and Sentinel-2 data, thus providing an easy and cheap method to classify Monteverde 
stand types.

Area of study: 1500 ha forest in Monteverde, North Tenerife, Canary Islands.
Material and methods: RF, SVML, SVMR and ANN algorithms are used to classify the three Monteverde stand types.  Before 

training the model, feature selection of LiDAR, orthophotography, and Sentinel-2 data through VSURF was carried out.  Comparison 
of its accuracy was performed.

Main results: Five LiDAR variables were found to be the most efficient for classifying each object, while only one Sentinel-2 index 
and one Sentinel-2 band was valuable.  Additionally, standard deviation and mean of the Red orthophotography colour band, and ratio 
between Red and Green bands were also found to be suitable.  SVML is confirmed as the most accurate algorithm (0.904, 0.041 SD) 
while ANN showed the lowest value of 0.891 (0.073 SD).  SVMR and RF obtain 0.902 (0.060 SD) and 0.904 (0.056 SD) respectively.  
SVML was found to be the best method given its low standard deviation.

Research highlights: The similar high accuracy values among models confirm the importance of taking into account diverse 
machine-learning methods for stand types classification purposes and different explanatory variables.  Although differences between 
errors may not seem relevant at a first glance, due to the limited size of the study area with only three plus two categories, such 
differences could be highly important when working at large scales with more stand types.

Additional keywords: RF algorithm, SVML algorithm, SVMR algorithm, ANN algorithm, LiDAR, orthophotography, Sentinel-2.  
Abbreviations used: ANN, artificial neural networks algorithm; Band04, Sentinel-2 band 04 image data; BR, brezal; DTHM, 

digital tree height model; DTHM-2016, digital tree height model based on 2016 LiDAR data; DTM, digital terrain model; DTM-2016, 
digital terrain model based on 2016 LiDAR data; FBA, fayal-brezal-acebiñal; FCC, canopy cover; HEIGHT-2009, maximum height 
based on 2009 LiDAR data; HGR, height growth based on 2009 and 2016 LiDAR data; LA, laurisilva; NDVI705, Sentinel-2 index 
image data; NMF, non-Monteverde forest; NMG, non-Monteverde ground; P95-2016, height percentile 95 based on 2016 LiDAR 
data; RATIO R/G, ratio between Red and Green bands orthophotograph data; RED, Red band orthophotograph data; Red-SD, standard 
deviation of the Red band orthophotograph data; RF, random forest algorithm; SVM, support vector machine algorithm; SVML, linear 
support vector machine algorithm; SVMR, radial support vector machine algorithm; VSURF, variable selection using random forest.
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Introduction

During the second half of the 20th century traditio
nal forestry practices used in the Monteverde forest in 

Canary Islands changed dramatically.  Moreover, the 
beginning of this century is marked by a shift in the 
preferences of society as regards the ecosystem services 
provided by the Monteverde forest from traditional forest 
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resources to conservation orientated services, especially 
as part of one of the current areas of Macaronesia and 
the importance of its relict flora (Arozena & Panareda, 
2013). Nowadays, Monteverde conservation is explained 
by its uniqueness and the need for monitoring Laurisilva 
dynamics which lead to spot new and innovative 
classification tools. Recent remote sensing technologies 
can help to improve its management, providing easy and 
cheap classification of its stand types reducing cost and 
time consumption from traditional forest management 
procedures based on expensive field studies. 

Data derived from active and passive remote sensors 
are of great interest in forestry. In particular, the 
combination of LiDAR information with Sentinel-2 
multispectral images provides a powerful tool for 
classifying forests with high densities and stocking 
rates, thus reducing the cost of the estimation process 
(Zhu et al., 2017). In addition, the volume of data we 
are dealing with is constantly growing, including the aim 
at retrieving a wide variety of geographic and ecological 
characteristics. Consequently, the analyses can only be 
tackled using computational methods.

From the wide range of algorithms used to find the 
rules for object classification in forest sciences, the 
random forest algorithm (RF) has shown high rates of 
accuracy. Nevertheless, the Linear and Radial Support 
Vector Machine (SVML, SVMR) and Artificial Neural 
Networks (ANN) algorithms are increasingly being 
taken into consideration in this area (Nitze et al., 2012; 
Valbuena et al., 2016; Vega Isuhuaylas et al., 2018; Xu et 
al., 2018). Although its accuracy is not always taken into 
account, its effectiveness could be easily increased only 
keeping in mind the most suitable one.

The main objective of this work is to determine the 
best machine-learning algorithm to classify the three 
Monteverde stand types, Canary Islands, combining 
LiDAR, orthophotography and Sentinel-2 data.

Material and Methods 

Study area

The study area is located in a 1500-ha evergreen 
forest in the North of the island of Tenerife in the Canary 
Islands, between 200-1300 m.a.s.l Fig. S1 [suppl.]).  The 
ecosystem is highly valuable in economic terms but also 
as regards ecosystem services, characterised by a wide 
variety of species.

Field data

A total number of 259 objects were measured during 
May of 2017. The objects were irregular in shape, 

collecting homogenous remote information. Each 
of ones included visual information about stand type 
(main species and GPS coordinates). Objects were 
selected with the aim of picking up the highest spectral 
variability of stand types in Monteverde, three forest 
categories were defined according to its relevance in 
management (Arozena & Panareda, 2013): (i) Brezal 
(BR), composed by Erica arborea shrubby stands with 
variable cover and occasional presence of scrub; (ii) 
Fayal-Brezal-Acebiñal (FBA), composed by shrub or 
tree stands with a high density and average diameter 
of saplings 5-10 cm; the proportion of E. arborea in 
the specific composition of the stand varies and stands 
may be dominated by other species such as Morella 
faya, Laurus novocanariensis, or Viburnum rigidum 
and other companion species at different stand types 
of development; (iii) Laurisilva (LA), mixed stands 
with a significant presence of L. novocanariensis and V. 
rigidum with average diameter greater than 10 cm and 
the rare presence of E. arborea. In addition, two more 
stand types were included in the database: (iv) Non-
Monteverde ground (NMG), defined as bare ground 
or scrub less than 2 m high; and (v) Non-Monteverde 
forest (NMF) defined as stand cover composed by other 
species. The number of samples set out in each category 
were 32 for BR, 143 for FB, 27 for LA, 6 for NMG, and 
51 for NMF, respectively.

LiDAR data

The island of Tenerife was scanned using a LiDAR 
sensor in 2009 and 2016, with an average nominal 
point density of 0.5 pulses m2 (PNOA project, Spanish 
Government). Data from the study area were provided 
in digital files of 2x2 km extension.  Point clouds 
were automatically classified and coloured, taking 
RGB orthophotos as a reference.  LiDAR data was 
processed using FUSION software (McGaughey, 2007) 
and several raster variables (5 m resolution) were 
generated: digital tree height model (DTHM), digital 
terrain model (DTM), canopy cover (FCC), height 
percentile 95 (P95), height percentile 25 (P25), height 
growth between 2016 and 2009 (HGR), along with 
standard deviations for all these variables.

Multispectral imagery data sources

European Space Agency Sentinel-2 satellite images 
(10 m and 20 m resolution) of the study area captured 
in December 2015 and January 2017 were employed in 
order to avoid clouds and deciduous tree reflectance.  
These orthorectified and atmospherically corrected 
images were downloaded from Copernicus Open Access 
Hub (https://scihub.copernicus.eu/).  Several vegetation 
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indexes were calculated based on imagery data: NDVI, 
RNDVI, GNDVI, SAVI, LAI-SAVI, SR, and EVI (10 
m resolution), and NDVI705, NDWI, RNDWI, NDII, 
NDI45, NBR, MSI (20 m resolution) (Henrich et al., 
2012).  In addition, aerial orthophotograph images were 
provided by CNIG-PNOA (Spanish Government), with 
a resolution of 25 cm in the official reference geodetic 
system, REGCAN95 - UTM zone 28N projection.  
Medium value and standard deviation of each of its 
bands, and the ratio between Red and Green bands, were 
calculated.  All these spectral indices were included as 
potential predictors in the classification model.

Segmentation process

To define object segmentation in the study area, 
we executed an Object Based Image Analysis which 
created an image-object through the aggregation of 
pixels by image segmentation from the Orfeo Tool Box 
(OTB Development Team, 2017).  The two variables 
we worked with are: (i) the spatial resolution and (ii) 
range domains, which is the allowable spectral range 
within each segment for each band at a minimum scale 
of 40 m2. 

Data features from each source of information were 
assigned to the generated objects from segmentation 
using QGIS Zonal Statistics Plugin (QGIS Development 
Team, 2017).

Data analysis

Prior to model training, feature selection using the 
Variable Selection Using Random Forest (VSURF) was 
performed (Genuer et al., 2015).  In order to conduct 
a useful comparison between RF, SVML, SVMR, and 
ANN, caret package in R Software was run using the rf, 
svmLinear, svmRadial and nnet methods with default 
parameters (Kuhn et al., 2018). Furthermore, the 
‘overfitting’ problem was reduced by Cross Validation 
using 10 folds with three repetitions.

Results and discussion

The application of VSURF procedure selected 10 
features (Fig. 1). Five LiDAR variables were found 
as the most efficient for classifying each object, while 
only one Sentinel-2 index and one Sentinel-2 band was 
valuable. Additionally, standard deviation and mean 
of the Red orthophotography colour band, and ratio 
between Red and Green bands were also found to be 
suitable.

When the data dispersion was analysed, selected 
LiDAR features showed differences according to the 

classification factor variable. The feature DTHM-2016 
reveals importance at its clear boundaries between the 
different forest typologies and it shows the difference 
between forest typologies stage, together with P95-
2016 and HGR variables (Fig. 1). The rest of the LiDAR 
data support distinction and split soil from the other 
types. The selection of Sentinel-2 NDVI705 reflects 
red edge radiation and its usefulness with very high 
spectral resolution reflectance data (Sinergise, 2018). 
In contrast, the average and the standard deviation of 
Red orthophotography colour band showed a crucial 
disjunction among NMF and Monteverde. 

From the Cross Validation results, most of the 
models reached 0.90 mean accuracy (Table 1). SVML 
was confirmed as the most accurate method while ANN 
presented the lowest accuracy value. SVMR and RF 
obtained the intermediated accuracy values of 0.902 
and 0.904 respectively. Simultaneously, Cohen Kappa 
values did not vary from the achieved accuracy values. 
Given its low standard deviation, SVML was found as 
the best method thanks to the variable influence shown 
in Table 2 for Monteverde stand classification types. 
Usefulness of LiDAR variables in the classification of 
this case study is demonstrated by the fact that four 
(DTMH-2016, P95-2016, HEIGHT-2009, and DTM-
2016) out of ten selected variables have the highest 
accuracy, being the one LiDAR variable remaining 
(HGR) the sixth one (Table 2). 

Obtained results differ with other previous ones 
in the literature. For instance, Valbuena et al. (2016) 
found that the best machine learning algorithm to 
determine Mediterranean forest development stages 
are RF and ANN, and Vega Isuhuaylas et al. (2018) 
met with SVM and RF to classify Andes mountain 
forests and shrubland land cover classes.

The high accuracy values confirm the importance 
of taking into account diverse machine-learning 
methods for stand classification purposes and different 
explanatory aspects. Notwithstanding the small devia
tion between accuracy values, our work proves that 
SVML is the best algorithm for the Monteverde forest 
classification due to the minimal results’ scattering. 
Over 90% of cases Monteverde stand type (BR, FBA, 
LA, NMG, or NMF) determined from remote sensing 
data are correct, though small size of the study area 
and the only three, plus two, stand types considered 
here should not be forgotten. Our results confirm 
machine learning classification is a suitable tool to 
optimize classification in Monteverde forest and, thus, 
its management. 

Boost of machine learning algorithms applied 
to classify forest is broadly enough demonstrated.  
Although differences between errors in accuracy and 
scattering may not seem significant at a first glance, 
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Figure 1. Distribution of selected features as a result of variable selection applying 
random forest (VSURF) according to Monteverde typologies. Values under 
normalization from minimum ‘0’ to maximum value ‘1’. Abbreviations should be 
checked at the ‘abbreviations used’ section.

Table 1.	Accuracy, Accuracy Standard Deviation, Kappa 
Value and Kappa Value Standard Deviation resulted from 
each model.

  Accuracy Accuracy 
SD Kappa Kappa 

SD

ANN 0.891 0.073 0.817 0.129

SVML 0.904 0.041 0.842 0.070

SVMR 0.902 0.060 0.836 0.106

RF 0.904 0.056 0.841 0.092

such differences are highly important when working at 
large scales.  Errors may be higher when classifying 
larger areas with more stand types.  So, comparisons 
between algorithms should be considered when stand 
classification analyses are performed owing to different 
behaviour of algorithms relying on stand types, features 
and size of the study area.
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