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ABSTRACT At present, with the growing number of Web 2.0 platforms such as Instagram, Facebook,
and Twitter, users honestly communicate their opinions and ideas about events, services, and products.
Owing to this rise in the number of social platforms and their extensive use by people, enormous amounts
of data are produced hourly. However, sentiment analysis or opinion mining is considered as a useful
tool that aims to extract the emotion and attitude from the user-posted data on social media platforms by
using different computational methods to linguistic terms and various Natural Language Processing (NLP).
Therefore, enhancing text sentiment classification accuracy has become feasible, and an interesting research
area for many community researchers. In this study, a new Fuzzy Deep Learning Classifier (FDLC) is
suggested for improving the performance of data-sentiment classification. Our proposed FDLC integrates
Convolutional Neural Network (CNN) to build an effective automatic process for extracting the features
from collected unstructured data and Feedforward Neural Network (FFNN) to compute both positive and
negative sentimental scores. Then, we used the Mamdani Fuzzy System (MFS) as a fuzzy classifier to
classify the outcomes of the two used deep (CNN+FFNN) learning models in three classes, which are:
Neutral, Negative, and Positive. Also, to prevent the long execution time taking by our hybrid proposed
FDLC, we have implemented our proposal under the Hadoop cluster. An experimental comparative study
between our FDLC and some other suggestions from the literature is performed to demonstrate our offered
classifier’s effectiveness. The empirical result proved that our FDLC performs better than other classifiers
in terms of true positive rate, true negative rate, false positive rate, false negative rate, error rate, precision,
classification rate, kappa statistic, F1-score and time consumption, complexity, convergence, and stability.

INDEX TERMS Deep learning, convolutional neural network (CNN), sentiment analysis, feedfor-
ward neural network (FFNN), fuzzy logic, Hadoop framework, MapReduce, Hadoop Distributed File
System (HDFS).

I. INTRODUCTION
Social network platforms like Instagram, Twitter, Youtube,
LinkedIn, and Facebook have been considered essential and
indispensable in our daily activities. Day-to-day, billions of
social media users disseminate billions of personal or pro-
fessional posts [1]. For example, Marketers use social media
to spread professional posts that endeavor to present, pro-
mote, advertise, and market their products, services, events,
and brand names. On the other hand, the customers interact
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with the marketers’ posts by express their feelings, opinions,
ideas, attitudes about the presented products or services [2].
Further, the marketers gather the customer’s feedback, study,
and analyze it using the sentiment analysis tool. The main
objective from they are doing these operations is to improve
the quality of their products and services, enhance their
offerings by adding other privileges, and improve their brand
performance [1], [2].
Sentiment Analysis (SA) plays a significant role in Busi-

ness Intelligence (BI). In BI, it uses to get responses for
questions such as, ‘Why is product sales so low?’, ‘Have cus-
tomer’s needs are fully satisfied by utilizing our products?’,
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‘What did they like the most about our services?, What
did they dislike the most?’,‘Are our customers pleased by
using our products/services or require more?’. We employ
sentiment mining tools and techniques to find the rele-
vant answers to these questions [3]. Such as NLP methods
for data pre-processing like word stemming, word lemma-
tization, and effect of negation. Machine Learning (ML)
methods for sentiment classification like Support Vector
Machines (SVM) [4], K-Nearest Neighbors (KNN) [5], Ran-
dom Forest (RF) [6], Logistic Regression (LR) [7], Naive
Bayesian (NB) [8] or Decision Tree (DT) classifier [9]. Deep
Learning (DL) methods like Convolutional Neural Network
(CNN) [10], Feedforward Neural Network (FFNN) [11],
Long Short-Term Memory (LSTM) [12], Gated Recurrent
Unit (GRU) [13], or Recurrent Neural Network (RNN) [14]
which are used for automatically extracting features from the
given text and for performing the sentiment classification.
and vectorization methods like word embeddings (word2vec,
glove) [15], tf-idf [16], bag-of-words [17], fast-text, n-gram
or character-level [18], which are used for representing the
given text by numerical values.

SA is also termed opinion mining and pursues to recognize
people’s moods or emotions toward an entity like events,
products, individuals, services, or topics. At present, SA has
been mainly deemed a sentiment classification task in the
context of ML, that is to say, each expressed sentiment in
the given text is classified as positive, neutral, or negative.
Data-driven techniques, involving ML and DL methods, are
considered as one accurate and efficient solution to carry
out the sentiment classification task. The application of ML
methods has proved that they are a powerful tool for clas-
sifying expressed sentiments in the given text. In particular,
SVM, NB, DTs, RF, and LR methods, etc. which are used
extensively with high accuracy in wide application fields
that include sentiment analysis, such as cyberhate detec-
tion [19] movie and product reviews [20], [21], abusive lan-
guage detection [22], cyberbullying identification [23], and
social media [24]. In addition to classical ML algorithms as
presented earlier, there are likewise DL algorithms such as
CNN, FFNN, LSTM, GRU, and RNN, which are presently
preferred for sentiment classification.

Over the ages, several methods have been proposed to
supply users with an effective process for classifying senti-
ments. These methods have evolved from dictionary-based
approaches to ML techniques and presently to DL models.
According to past comparative studies and analyses that are
carried out on SA using bothML andDL.DL ismore efficient
than ML in sentiment classification issues due to massive
data [25]. Fig. 1 proves that the accuracy of conventional ML
algorithms is better for a lesser size of data. As the volume
of data rises beyond a particular number, the accuracy of
conventional ML algorithms becomes constant. In contrast,
the accuracy of DL algorithms raises with respect to the rise
in the volume of data.

A principal difference between ML approaches and DL
models is in the manner that the features are extracted.

FIGURE 1. The accuracy of ML approaches compared to the accuracy of
DL models with respect to data size.

As known that the accuracy of a DL or ML approach is
extremely dependent on a good feature extraction process
from given data. ClassicalML techniques utilize hand-crafted
engineering features by employing many feature extraction
methods, and thence apply the learningmethods. This process
takes high time-consuming and extracts incomplete features.
In contrast, the features are extracted automatically in the case
of DL, which is the powerful point of DL models against ML
techniques. Due to the fast-growing size of data in this era
and to the good performance of DL models on the massive
size of data, we decide to combine both CNN and FFNN
in order to build an effective automatic process for extract-
ing the features from the given social media dataset. But
although the use of the most progressing DL models, there
is ingrained ambiguity in NLP that needs more solutions.
Based on several studies [26], [27], the fuzzy logic theory
is deemed the most effective solution to deal with vagueness
data. Beer [26] demonstrates in his paper that the fuzzy logic
theory’s strength is its resemblance to human reasoning and
natural language. One substantial property of the fuzzy logic
theory is the used technique for computing with terms. This
technique serves to transform the terms into numerical values
for reasoning, inference, and computing. Fuzzy logic supplies
us with an eligible manner to handle linguistic issues at
fuzziness data. Zadeh et al. [27] discuss in their work that no
other technique resolves these linguistic issues. Accordingly,
to advantages introduced in [27] about fuzzy logic theory in
the area of fuzziness data, we decide to employ this theory in
our work to deal with the inherent uncertainty in the social
media data.

The fuzzy logic theory is deemed as an ameliorated version
of the deterministic logic theory. i.e., in fuzzy logic theory,
the linguistic variable takes a real value between 0 and 1
instead of, in deterministic logic, each variable takes either
0 or 1. The principal purpose of the fuzzy logic theory is
transforming awhite and black issue into a grey problem [28].
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In the descriptions of set theory, deterministic or conventional
logic assumes that the set of linguistic variables as the crisp
linguistic variables, which signifies that each linguistic vari-
able’s measured membership degree in the crisp collection is
equal to 1. In other words, the linguistic variable ultimately
belongs to the crisp set. In contrast, fuzzy logic is regarding
the collection of linguistic variables as the fuzzy collection,
which indicates that each linguistic variable’s membership
value in a fuzzy group is varied from 0 to 1. In other words,
each linguistic variable belongs partially to the fuzzy col-
lection. The membership degree is measured by a particular
Membership Function (MF) such as triangular MF, Gaussian
MF, and trapezoidal MF [2], [3].

In order to enhance the classification rate of the
sentence-level classification and to overcome the previously
discussed shortcomings as best as we can, we introduce a
new Fuzzy Deep Learning Classifier (FDLC) to recognize
the polarity (negative, positive, neutral) of sentiment sen-
tences. Our methodology mainly contains five parts: One
part is the data-preprocessing steps in order to reduce the
noisy data and enhance the data quality; The second part
is the application of word embedding methods to convert
the text-based data to numerical-based data. The third part
is the proposed hybrid DL model that combines CNN and
FFNN in order to build an effective automatic process for
extracting the features from collected unstructured-data and
compute both Positive Sentimental Score (PSS) and Negative
Sentiment Score (NSS), and the four-part is the MFS which
is used as a fuzzy classifier to classify the outcomes of the
two used deep (CNN+FFNN) learning models into three
classes Neutral, Negative and Positive. Finally, we use the
Hadoop framework to parallelize our FDLC to overcome the
long execution time problem. In addition–to prove the per-
formance of our suggested FDLC– an experimental compar-
ative study between our model and some other models from
the literature is carried out, and the practical result proved
that our FDLC performs better than other models in terms
of true positive rate, true negative rate, false positive rate,
false negative rate, error rate, precision, classification rate,
kappa statistic, F1-score and time consumption, complexity,
convergence and stability. The contribution of our work is
fundamentally incarnated into six aspects.

1) Data preprocessing techniques are employed to
enhance the text based-data quality of the given dataset
by removing the existing noise data.

2) Word embeddings methods like word2vec, glove, and
fast-text are applied on the given dataset to transform
texts into numerical data.

3) DL methods FFNN and CNN with various parameters
are employed for computing the NSS and PSS.

4) Fuzzy logic theory (MFS) is applied as the fuzzy
classifier on the outcomes of the previous step (NSS
and PSS) in order to classify the sentences of the
used dataset into three labels negative, neutral and
positive. An elevated accuracy has been accomplished
because the suggested FDLC elicits more accurate

features automatically and various entities from the
given dataset.

5) Hadoop framework is used to parallelize our introduced
FDLC in order to avoid the long execution time issue.

6) Multiple experiments are carried out to prove the effec-
tiveness of our introduced FDLC, and this FDLC is
compared with several selected classifiers from the
literature. The experimental results indicate that the
suggested model achieves a better classification rate
than the other classifiers on the given dataset.

The rest of this work is arranged as follows: Section 2
introduces some similar works selected from the literature
in detail. Section 3 explains the basic concepts of MFS,
FFNN and CNN in brief. Section 4 describes our suggested
FDLC. Section 5 presents the experimental outcomes and
comparative study results to demonstrate the effectiveness
classification of the proposed classifier, and Section 6 intro-
duces the conclusions and future work.

II. LITERATURE REVIEW
The objective of the SA process is to extract the emotional
polarity included in the given sentence. Because of that,
Many researchers proposed various sentiment classification
approaches based on ML, DL, or hybrid methods. This
section presents recently published models in the literature.

Authors of the paper [29] proposed a new approach that
combines the multi-scale CNN and LSTM, in order to raise
the classification rate and decrease the error rate of the SA.
They handle the review text of various commodities in a dif-
ferent manner, while preserving the shared features between
each review data, and integrates the global extracted features
and local founded features of the review data to enhance
the effectiveness of the classification process. Their sug-
gested classifier is based on two principal phases: Firstly,
a multi-task training system is applied to detect private, and
shared features from a review data of different kinds of
commodities. The second phase is the sentence representation
using the word embedding methods [30]. A comparative
study is carried out by the authors to compare their pro-
posed model with other approaches like LR, RF, NB, KNN,
SVM, XGBoost, and Gradient Boosting DT. The experimen-
tal results of the comparative study prove that the SA effec-
tiveness of their suggested approach is more accurate than
other selected methods from the literature with the accuracy
equal to 86.25%.

Lan et al. [31] introduced a new deep learning system
called SRCLA that combines the cross-layer attention pro-
cess and the stacked residual RNN and in order to extract
more numerous linguistic features then use it for the SA task.
The primary purpose of SRCLA is to construct a stacked
RNN to identify and filter various kinds of semantic features
and then use the new designed cross-layer attention system
in order to ameliorate the filtering task. Based on SRCLA,
more linguistic features can be identified, and hence the effec-
tiveness of sentiment classification can be enhanced. The
authors of this work applied both models Stacked-BiLSTM,
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and their model SRCLA on four datasets TREC, SST-1,
MR, and SST-2. The experimental outcomes proved that
SRCLA attains 3.0% amelioration over SST-1 dataset, 2.0%
refinement over SST-2 dataset, 2.5% amelioration over MR
dataset, and 1.5% refinement over TREC dataset, compared
with Stacked-BiLSTM.

Lin et al. [32] developed a new model in order to enhance
the effectiveness of SA. The proposed classifier incorporates
the capability of Bi-LSTM to select local series of features
and the power of multi-Head Attention to identify thorough
features. They use a comparative study to improve the pro-
posed model and enhances its performance.

Liu et al. [33] proposed a hybrid approach that incorpo-
rates the DL models with ML methods to perform better
sentiment classification. The proposed model is a bilingual
sentiment classification model that is applied to Turkish and
Chinese language datasets. This proposed method combines
RNN, LSTM, NB, SVM, and word embedding. Their exper-
imental results proved that the accuracy of their suggested
approach could attain 89% and performs better than any other
ML or DL approach individually.

Jain et al. [34], the tweets about renewable energy were
classified to be positive, neutral, or negative using five dif-
ferentML algorithms, which are SVM,KNN, NB, AdaBoost,
and Bagging. The authors of this work choose the informa-
tion gain function and CfsSubsetEvaluation [34] to extract
the features from the given datasets. They implement their
proposed approach using WEKA Tool and R-Studio. Due to
the experimental outcomes, they are deduced that the SVM
Algorithm outperforms other ML algorithms when integrated
with the CfsSubsetEvaluation function.

Alecet al. [35] developed a novel deep learning classi-
fier to sentiment classification through the combination of
LSTM with CNN at the kernel level. Their incorporation
of LSTM and CNN schema generated a new hybrid deep
learning model with elevated accuracy when they applied
it on the Internet Movie Database. In addition, the authors
present in this paper multiple scheme variations of their sug-
gested model in order to demonstrate their attempts to raise
accuracy while decrease overfitting. They performed many
experiments with various regularization methods, kernel size
and network architectures, to design five models with high
performance for comparing with other approaches in the
literature. These models achieved 89% in the accuracy metric
when they used to predict the polarity score of reviews from
the Internet Movie dataset.

Xing et al. [36] applied a novel neural network architec-
ture for SA of the market review dataset. They combined
the evolving clustering method with LSTM deep learning
model. Experimental results of the application of the pro-
posed methodology on sentences from StockTwits prove that
the suggested framework achieves good accuracy compared
with other existing methods from the literature.

In [37], the authors propose a novel methodology for SA.
This methodology combines the CNN, word embedding,
RNN, and polarity lexicons. In addition, the proposed system

is composed of three CNNs in order to extract high-level
features from noisy word embedding representations. The
outcome of these three CNNs is aggregated and employed
as an entering variable of a fully-connected Multilayer Per-
ceptron. Experimental results accomplished by their classifier
were more competitive in several subtasks.

Wang et al. [38] proposed a growing deep belief network
with transfer learning (TL-GDBN), which is an improved
version of the traditional deep belief network (DBN). Their
suggested model’s objective is to overcome a shortcoming
of DBN, which is it is difficult to determine the DBN’s
optimal structure fastly. Their contribution is carried out in
four aspects. First, a simple DBN architecture consists of
one hidden layer is implemented and then pre-trained, and
the obtained weight parameters after the pre-trained pro-
cess are kept. Second, They applied TL to transfer the data
from the kept weight parameters in the previous step to
newly attached units, and hidden layers. The learning process
is repeated until achieved the stopping criterion; hence a
growing DBN architecture is constructed. Third, the weight
parameters obtained after the pre-training process of the pro-
posed TL-GDBN are fine-tuned by applying layer-by-layer
partial least square regression from top to bottom. Finally,
The experimental results prove that their proposed model
gives good performance compared to other models in the
literature.

In [39], the authors developed a new hybrid model for
binary SA. They combine the global pooling mechanism and
one bidirectional long short-term memory (BiLSTM) layer
along. They evaluate their work using three widely practiced
datasets based on public opinions about movies. Their pro-
posedmodel achieved an accuracy of 80.500%, 85.780%, and
90.585% on MR, SST2 and IMDb datasets, respectively.

Fuzzy logic is proposed to handle uncertainty and vague-
ness data. The strength of fuzzy logic is its resemblance to
human reasoning and natural language. The use of fuzzy
logic in the SA gives good classification accuracy in sev-
eral works from the literature. Therefore, the effectiveness
of fuzzy logic in the sentiment classification area is based
on the methodology adopted in the classification problem
by popular fuzzy logic systems. The adopted methodology
deems a classification issue to be a ‘degree of grey’ issue
rather than a ‘black and white’ issue [40], which is similar
to the sentiment analysis problem, because the sentiment
analysis is considered a ‘degree of grey’ problem. For that,
we found various works in the literature using the fuzzy logic
systems for resolving sentiment classification problems.

Wu et al. [41] proposed a fuzzy logic-based method for
SA. Their suggested model is summarized in five stages,
which are the phase in which the data is collected, manually
data labelling and examination, text pre-preprocessing, The
four-phase that severs to extract the essential features, and the
final step is the application of the fuzzy classifier. The fuzzy
classifier consists of three parts, which are the fuzzification
process, IF-THEN fuzzy rules, and the defuzzification pro-
cess. The authors of this work have compared their proposed
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approach with the keyword search approach. The experimen-
tal result demonstrates that their fuzzy logic-based method
achieved good performance compared to the keyword search
techniques in terms of correctness rate and extracted tweets.

Biltawi et al. [3] suggested a lexicon-basedmethod to com-
pute the emotional score of Arabic text employing a fuzzy
logic theory. The suggested method be composed of two pri-
mary parts. Firstly, Arabic sentences are given weight value.
Secondly, the fuzzy logic classifier is used to determine the
sentiment score to the classified Arabic review. The proposed
model has experimented on a massive dataset that contains
reviews about Arabic book, and which is a sentiment analysis
dataset that contains over 63000 book reviews (8224 negative
reviews, 12201 neutral reviews, and 42831 positive reviews).
The experimental results displayed 84.04%, 94.87%, 89.13%,
and 80.59% for precision, recall, F1-measure, and accuracy,
respectively.

In [42], the authors have developed a novel fuzzy
rule-based model for SA problems. The novelty of their
contributions are i) the suggested method is unsupervised
and can be applied to any dataset and to any dictionary.
ii) the creation of nine fuzzy rules to classify the sentiment
sentences. They have implemented their suggested approach
employing three different dictionaries: AFINN, VADER, and
SentiWordNet. The proposed method was tested on nine twit-
ter datasets. The experimental result showed that the approach
which employs the VADER dictionary takes the least time in
execution than the process which employ the SentiWordNet
dictionary. For the recall and precisionmeasures, the methods
which use the VADER or AFINN dictionary achieved better
performance compared to the SentiWordNet dictionary.

Abdul-Jaleel et al. [43] introduced a new model to solve
the SA issue. This model combines a genetic algorithm with
fuzzy logic theory. The incomes to this suggested classi-
fier are a collection of extracted features from a sentiment
sentence, and the outcome of this classification model is
the classification’ decision for classified sentiment sentence.
They compared their proposed classification system with the
keyword search method by computing both accuracy and
incremental rates. In terms of the accuracy, the introduced
model performed better than this method, where the accuracy
of the proposed system is equal to (98.75%), but the accuracy
of this method is equal to (95.7%). For the incremental rate,
the suggested approach is capable of extracting sentiment
sentences more than the keyword search approach.

Wang et al. [44] developed a new model to improve the
training speed, modelling efficiency and robustness of the
Deep belief network. Their proposed model incorporates
Fuzzy Neural Network and Sparse Deep Belief Network.
A FuzzyNeural Network is implemented for supervisedmod-
elling in order to reduce the gradient spread. The sparse deep
belief network is deemed a pre-training model to achieve
weight parameter-initialisation fast and get feature vectors.
The empirical outcomes reveal that their proposed model
gives good performance compared to other existing tech-
niques in the literature.

Motivated by the strengths of DL and fuzzy logic tech-
niques in the SA field, in the present work, we develop a new
hybrid fuzzy-deep learning approach, that basically integrates
the CNN, FFNN deep learning networks with the MFS fuzzy
logic system. In the next section, I will briefly explain the
concept of CNN, FFNN and MFS.

III. BASIC CONCEPTS
In this section, firstly, we introduce the basic notion of the
CNN, especially CNN, with one convolution layer [45],
which is recognized as a simplified version. Subsequently,
the architecture of the FNN is described in detail [46]. Finally,
a general overview of the MFS [47] is introduced in brief for
further accurate SA.

A. CONVOLUTIONAL NEURAL NETWORK
The CNN structure was first suggested in 1988 by
Fukushima [48], which is one of the most common and effec-
tive deep convolutional learning networks. Fukushima has
designed the architecture of CNN based on the conventional
LeNet approach. In the past, CNN is only used for hand-
writing recognition and image recognition. At present, this
network architecture is also used for text classification tasks
(include sentiment analysis). Therefore, The use of CNN in
all artificial neural networks presented previously achieved
good results in terms of classification rate and execution time
accordingly to multiple works from the literature. The secret
behind these great successes is the structure of CNN, which is
designed to become similar to the cat’s visual cortex. Indeed,
the cat’s visual cortex is composed of a complicated arrange-
ment of neurons. These neurons are responsible for covering
small sub-areas of the visual area, named the receptive area.
Then, the receptive areas are tiled to detect the overall visual
area [49]. Hence, receptive areas are deemed as filters in
the CNN deep learning model. In summary, the main aim
behind CNNs is to innovate a solution for diminishing the
total number of parameters and constructing a deeper neural
network with fewer parameters. Fig. 2 depicts the overall
structure of CNNs, which comprises of three fundamental
layers: convolution layer, pooling layer, and fully connected
layer.

FIGURE 2. Overall structure of the CNN.

As we said previously and as clarified in Fig. 2 CNN
architecture consists of three principal layers, unlike classical
artificial neural networks. These layers are the Convolution
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layer, Pooling layer, and Fully connected layer as described
below:

1) CONVOLUTION LAYER
is the essential block in CNN and is always the premier layer
in the overall structure of CNN. The major target of this layer
is to detect and capture the features from an obtained matrix
by applying one of the word embedding methods on the
given input sentence. The convolution layer uses a slid filter
over the embedding matrix and produces a convolved feature.
Multiple filters are applied over the embedding matrix to
obtain multiple features maps. These obtained feature maps
are activated (that is to say transform the linear feature
maps to non-linear feature maps) using the Rectified Linear
Unit (ReLU) activation function in the intermediate task
that linked convolution layer and the pooling layer. Finally,
the obtained non-linear featuremaps are passed to the pooling
layer. In summary, the ReLU is the most popular activation
function used with the convolution layer. It merely calculates
using the following formula (1) :

f (y) = max(0; y) (1)

In substance, the activation function ReLU outputs 0 if it
gets a negative value as input, and if it gets a positive value
as input, the ReLU will output the same positive value [50]
as shown in Fig. 3.

FIGURE 3. Graphic representation of the ReLU activation function.

The advantages of the ReLU function are its ability to
overcome the vanishing gradient issue, its convergence is
faster due to its simple math formula, and its execution time is
relatively short unlike other activation methods such as tanh
or sigmoid.

2) POOLING LAYER
After convolving the embedding matrix with multiple filters
in the first stage (convolution layer), the second phase is the
application of the pooling layer to reduce the dimensionality
of obtained feature maps in the first step. Thence the total
number of CNN parameters is diminished; the computational
cost is decreased, and the overfitting problem is restrained.
Two popular pooling functions are average and max pool-
ing operations. The average-pooling method determines the
pooling feature as the average of all values in the convolved
feature map. The max-pooling method selects the maximum

FIGURE 4. Illustration of average-pooling and max-pooling functions.

element in the convolved feature map as a pooling feature
and discards the rest. These both operations are described
in Fig. 4. In this work, we have applied the max-pooling
method. Generally, the pooling layer transforms the con-
volved feature maps to a single column, which is further
passed to a fully connected layer [51].

3) FULLY CONNECTED LAYER
is also termed a dense layer, which used in this work to cal-
culate the sentimental scores of each input sentence (PSS and
NSS) from the obtained single column from a pooling layer
in the previous phase. We can summarize its functionality as
a linear process in which each input is linked to all output by
different weight [51]. The fully connected layer calculates the
sentimental values using the equation (2) as follows:

Sv = f (Wm ∗ Cp+ Bi) (2)

where Sv is the calculated sentimental value, f is softmax
activation method, Wm is the used weight matrix, Cp is the
single column obtained from the pooling layer, and Bi is the
bias.

FIGURE 5. Graphic representation of the softmax activation function.

The softmax activation function (or a normalized exponen-
tial function) is applied in the intermediate learning process
between the fully connected and output layers. This activation
function converts the received numerical values from the fully
connected layer to probable values, which are in the interval
[0,1], and the sum of these probable values be equal to 1,
as represented in Fig. 5.
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Here, in this research work, we applied the softmax func-
tion into the received vector of z real values through the last
hidden layer of FFNN to calculate two values: positive senti-
mental and negative sentimental scores. A softmax activation
function is denoted as in equation (3):

f (y) =
eyi∑K
k=1 e

y
i

(3)

where f is softmax activation method, y is the input value, eyi
is the standard exponential function of the input value, and K
is the number of classes in the given dataset.

B. FEEDFORWARD NEURAL NETWORK
FFNN is an artificial intelligence model, which is broadly
used in several applications due to its capability and com-
petence to act like the human brain. The simple version of
FFNN includes three layers which are: input layer, hidden
layer, and an output layer. The other versions of FFNN differ
in the number of hidden layers. FFNNwith two hidden layers
is illustrated in the Fig. 6. In this artificial neural network,
the data is only transferred in one direction, from the input
neurons to the hidden neurons and from the hidden neurons
to the output neurons nodes. An FFNN can decrease the
error for non-linear input nodes and possesses the capability
to discover the relationship that connected input nodes and
the output nodes without using any complex mathematical
theories. The easy application of FFNNs and its flexibility are
outstanding advantages compared to other neural networks.

FIGURE 6. The overall architecture of the feedforward neural network.

As Fig. 6 illustrated, the FFNN contains four layers, which
are: the input layer, two hidden layers, and the output layer.
The former layer of the FFNN is the input layer. It is utilized
to provide the input text/image data to the FFNN. This input
layer is to be followed by both hidden layers. These hidden
layers are utilized to augment the non-linearity and modify
the representation of the received data from the input layer
for good generalization over the applied activation function.
The most widely applied activation method on the hidden
layer is the ReLU. The last hidden layer is to be followed
by the output layer, which is the latter layer in the FFNN,
which outputs the class label predictions. In our work, this
layer produces positive and negative sentimental scores of

the input sentence. The activation function to be applied in
this output layer is different for different issues. In the binary
classification issue, we used the sigmoid activation function
because we need the output of the layer to be either 0 or 1.
For a multiclass classification issue, we applied the softmax
activation function. In our work, we want the outcomes of the
output layer to be in the interval [0,1]; thus, we have applied
the softmax activation function. Generally, each hidden layer
in the FFNN contains many nodes called neurons. Each neu-
ron node is related to the input layer and the output layer
through the connectors. And every link has multiple weights,
which are modifiable. Therefore, the operations carried out
at the level of each neuron are described by the schematic
diagram shown in Fig. 7.

FIGURE 7. An illustration graphic of a neuron depicting the inputs
(y1 − yn) which are the neurons of the former layer, their corresponding
weights (w1 −Wn), a bias (b) and the f is the applied activation
procedure on the weighted sum of the inputs.

C. MAMDANI FUZZY SYSTEM
MFS is one of the most popular Fuzzy Inference Systems
(FISs), which are also called fuzzy rule-based systems. The
essential objective behind these kinds of systems is the
decision-making process. FISs are considered as a novel
version of Classical Rule-Based Models (CRBMs). Further-
more, in FIS, the variable’s value takes a numerical value
between 0 and 1. In contrast, the variable’s value takes
either ‘0’ or ‘1’ in CRBM. Therefore, the FISs serve to
convert a black and white decision-making issue into a
grey decision-making issue. MFS consists of a fuzzifica-
tion process, a knowledge base (rule base+ database) unit,
a decision-making process, and finally a defuzzification
process.

1) FUZZIFICATION PROCESS
which converts the crisp set into the fuzzy set using Triangu-
lar, Trapezoidal, or Gaussian MF. In other words, each value
in the crisp set is transformed into linguistic value.

2) KNOWLEDGE BASE UNIT
The knowledge base has consisted of two parts; which are
a rule base and a database, wherein the rule base includes a
collection of IF-THEN fuzzy rules, and the database includes
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the parameters information about the employed membership
function and a simple definition of the fuzzy set.

3) DECISION-MAKING UNIT OR INFERENCE ENGINE
it carries out the inference steps on the IF-THEN fuzzy rules
stocked in the rule base and obtains a fuzzy output.

4) DEFUZZIFICATION PROCESS
which transforms the fuzzy outputs of the inference mech-
anism into a crisp output using one of these methods
Max-membership procedure, Weighted average approach,
Centroid technique, Mean-maxmembership, First of maxima
or last of maxima method, Centre of largest area, and Cen-
tre of sums. The overall architecture of a FIS is illustrated
in Fig. 8.

FIGURE 8. The components of the fuzzy inference systems.

In the literature, there are three well-known FISs, which
are Mamdani, Sugeno, and Tsukamoto. Both Tsukamoto and
Sugeno systems are applied in the case of regression issues,
unlike the Mamdani, which is utilized in the case of system
classification problems [28]. The major distinction between
the MFS and the Sugeno fuzzy system lies in the manner that
each system defines the consequent block of its fuzzy If-Then
rules. Mamdani model employs fuzzy sets as a consequent
block of the fuzzy If-Then rule. At the same time, the Sugeno
model employs a linear equation as a consequent block of the
fuzzy If-Then rule. Basically, the primary goal of our work is
the resolution of a sentiment classification problem; for that,
we have used theMamdani fuzzymethod as a fuzzy classifier.
The foundation of the MFS is introduced as crisp output
elements which are deduced from crisp input elements using
a collection of fuzzy If-Then rules stocked in the fuzzy rule
base and passing through the fuzzification and defuzzifica-
tion processes; Therefore, in this work, to calculate the crisp
output (class label of the sentiment sentence) of this MFS
giving consideration to the crisp inputs, we have followed six
steps as described below:
1 Defining a set of If-Then fuzzy rules.
2 Fuzzifying the crisp input variables by applying one of

the membership functions, which are triangular, trape-
zoidal, or gaussian membership function.

3 Integrating the fuzzified input variables based on the
fuzzy If-Then rules in order to create a If-Then rule
strength.

4 Determining the consequence of the rule by integrating
the outcome of the applied membership function and the
created rule strength in the previous step.

5 Integrating all consequences obtained in step 4 to
acquire an output distribution.

6 Applying the defuzzification function on the output dis-
tribution to get the crisp output.

D. PERFORMANCE METRICS
To evaluate the text classification process, we mainly cal-
culate ten performance metrics: True Positive Rate (TPR),
True Negative Rate (TNR) or Specificity, False Positive Rate
(FPR), False Negative Rate (FNR), Error Rate (ER), Pre-
cision (PR), Classification Rate or Accuracy (AC), Kappa
Statistic (KS), F1-score (FS) and Time Consumption (TC).
These performance metrics are calculated using the confu-
sion matrix for binary or multi-class classification as given
in Fig. 9 and 10.

FIGURE 9. Confusion matrix for a binary classification issue.

The abbreviations False Negative (FN), True Positive (TP),
True Negative (TN), and False Positive (FP) in the simple
confusion matrix for binary classification in Fig. 10 are
defined as follows [9], [28]:

. True Positive (TP): Number of instances that are
actually positive and predicted to be positive

. False Negative (FN): Number of instances that are
actually positive and predicted to be negative

. True Negative (TN): Number of instances that are
actually negative and predicted to be negative

. False Positive (FP): Number of instances that are
actually negative and predicted to be positive

Recall, Specificity, False Positive Rate, False Negative
Rate, Error Rate, Precision Rate, Accuracy, Kappa Statistic
and F1-score evaluation metrics are calculated in the case
of binary classification using the confusion matrix described
in Fig. 10 as follows:

Recall measures the performance and efficiency of a clas-
sifier to predict the number of instances that have a positive
class label. This metric is calculated by using (4), where tp is
the number of predicted positive instances, and tp+fn is the
total number of positive instances in the dataset.

Recall =
tp

tp+ fn
(4)

Specificity measures how a classifier is an efficacy to iden-
tify the number of instances that have negative class labels.
This metric is computed by using (5). Where tn corresponds
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FIGURE 10. Confusion matrix for a multi-class classification issue.

to the number of samples that have negative class labels, and
tn+fp is the total number of instances that are negative class
labels in the used dataset.

Specificity =
tn

tn+ fp
(5)

False Positive Rate is the rate to detect the inefficiency
and ineffectiveness of a classifier and to measure the mis-
classification rate by calculating the number of instances,
which are actually negatives but the classifier predicted it to
be positives. False Positive Rate is computed by using (6).
Where fp corresponds to the number of instances which are
actually negatives but the classifier classified it as positives,
and fp+tn is the total number of negative instances.

FalsePositiveRate =
fp

fp+ tn
(6)

False Negative Rate is the rate to detect the inefficiency
and ineffectiveness of a classifier and to measure the mis-
classification rate by calculating the number of instances,
which are actually positives but the classifier predicted it to be
negatives. This evaluation metric is calculated by using (7).
Where fn corresponds to the number of instances which are
actually positives but the classifier classified it as negatives,
and fp+tn is the total number of positive instances.

FalseNegativeRate =
fn

fn+ tp
(7)

Error rate metric serves to measure the misclassification
rate, that is to say, this metric computes the number of mis-
classification instances over all instances in the used dataset.
Basically, its objective is to measure the classifier’s ability to
restrain false classification. The error rate is defined as (8)
presents. Where fp+fn corresponds to the total number of
incorrectly classified instances, and tp+fn+tn+fp is the total
number of instances in the given dataset.

Error =
fp+ fn

tp+ fn+ tn+ fp
(8)

Precision performancemetricmeasures howmany samples
retrieved as positive class labels are, in fact, positives. The
precision rate is useful for assessing brittle classifiers, which
are applied to classify all instances of the used dataset. This
evaluation metric is determined as (9) describes. Where tp
corresponds to the number of instances which are actually
positives and the classifier classified it as positives, and tp+fp
is the total number of instances that are predicted as positive.

Precision =
tp

tp+ fp
(9)

Accuracy rate is an overall metric for estimating the effec-
tiveness, and correctness of learning classifiers. The accuracy
is computed utilizing a test set that is detached from the
training set. This rate is measured using equation (10). Where
tp+tn is all true classifier examples and tp+fn +tn+fp is the
overall instances in the used dataset.

Accuracy =
tp+ tn

tp+ fn+ tn+ fp
(10)

F1-Score or F-measure is the harmonic mean between pre-
cision rate and recall rate gives a good idea about the average.
The value of F1-Score is ranged from 0 to 1. it measures
how the used classifier is accurate and robust. If F1-Score
increases the performance of the used classifier will be better.
In other words, to get an extremely accurate performance,
the precision must be higher, and the recall must be lower.
This metric is calculated by using (11). Where Precision is
computed using the formula (9), and Recall is calculated
using the formula (4).

F1− score =
2 ∗ Precision ∗ Recall
Precision+ Recall

(11)

Kappa statistic is a performance criterion that compares
an observed accuracy and an expected accuracy (random
chance). It is used not only to estimate one classifier but also
to inspect classifiers amongst themselves. The kappa statistic
is computed by utilizing (12).

Kappa-Statistic =
P0 − Pe
1− Pe

(12)

where: P0 =
tp+tn
100 ; and Pe = [ tp+fn100 ∗

tp+fp
100 ]+ [ fp+tn100 ∗

fn+tn
100 ].

Recall, Specificity, False Positive Rate, False Negative
Rate, Error Rate, Precision Rate, Accuracy, Kappa Statis-
tic and F1-score performance metrics are computed in the
case of multi-class classification using the confusion matrix
illustrated in Fig. 10. The first step to calculate these met-
rics is to compute the measurements TN, FN, TP, FP,
as described in Fig. 9 for each class in the multi-class
confusion matrix. For example, if we take the class Pos-
itive the values of these measurements are determined as
follows: TP=5; TN=(4+1+6+8)=19; FN=(7+3)= 10;
FP=(2+9)=11. In the case of Negative class these met-
rics will be TP=4; TN=(5+9+3+8) =25; FN=(2+6)=8;
FP=(1+7)=8. and in the case of Neural class these mea-
surements are computed as follows: TP=8; TN=(5+2+
4 +7)=18; FN=(3+6)=9; FP=(1+9)=10 after the calcu-
lation of these measurements, we compute the previously
evaluation metrics as follows.
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Computation of the recall for multi-class classification is
made according to (13). Where tpi is the number of predicted
instances are labeled class i,i is the index of the class, l is the
total number of class labels, and tpi + fni is the total number
of instances labeled class label i in the given dataset.

Recall =

∑l
i=1

tpi
tpi+fni

l
(13)

Specificity metric is measured for multi-class classifica-
tion using (14).Where tni is the number of predicted instances
which are not labeled class i,i is the index of the class, l is the
total number of class labels, and tni + fpi is the total number
of instances are not labeled class i in the given dataset.

Specificity =

∑l
i=1

tni
tni+fpi

l
(14)

False positive rate measure is calculated as described
in (15). Where fpi is the number of instances which are not
actually labeled class i but the classifier predicted it to be class
label i,i is the index of the class, l is the total number of class
labels, and tni + fpi is the total number of instances are not
labeled class i in the used dataset.

FalsePositiveRate =

∑l
i=1

fpi
fpi+tni

l
(15)

False negative rate evaluation criterion is computed by
using (16). Where fni is the number of instances which are
actually labeled class i but the classifier predicted it not to be
class label i,i is the index of the class, l is the total number of
class labels, and fni + tpi is the total number of instances are
actually labeled class i in the used dataset.

FalseNegativeRate =

∑l
i=1

fni
fni+tpi

l
(16)

Error rate for multi-class classification is measured by
employing (17). Where fpi+ fni is the number of all instances
which are predicted incorrectly,i is the index of the class, l is
the total number of class labels, and fni+ tpi+ fpi+ tni is the
total number of instances in the given dataset.

Error =

∑l
i=1

fpi+fni
tpi+fni+tni+fpi

l
(17)

Precision measure is calculated in the case of multi-class
classification as illustrated in (18). Where tpi is the number of
instances which are actually labeled the class i and predicted
by the used classifier correctly,i is the index of the class, l
is the total number of class labels, and tpi + fpi is the total
number of instances labeled the class i in the given dataset.

Precision =

∑l
i=1

tpi
tpi+fpi

l
(18)

The accuracy measure in the case of multi-class classifi-
cation is calculated according to (19). Where tpi + tni is the
number of all instances which are predicted correctly,i is the
index of the class, l is the total number of class labels, and

fni + tpi + fpi + tni is the total number of instances in the
given dataset.

Accuracy =

∑l
i=1

tpi+tni
tpi+fni+tni+fpi

l
(19)

Another metric, F1-Score, is employed to integrate the
precision and recall rates in a single measure. The value of
this metric is ranged from 0 to 1 as we present previously,
and if the evaluated classifier properly classifies all instances,
this metric will take the value 1. The F1-Score is computed by
applying (20) for multi-class classification. Where Precisioni
is computed using the formula (18), and Recalli is calculated
using the formula (13).

F1− score =

∑l
i=1

2∗Precisioni∗Recalli
Precisioni+Recalli

l
(20)

Kappa statistic is computed utilizing equation (21)in the
case of multi-class classification.

Kappa-Statistic =

∑l
i=1

P0i−Pei
1−Pei

l
(21)

where: P0 =
tp+tn
100 , and Pe = [ tp+fn100 ∗

tp+fp
100 ]+ [ fp+tn100 ∗

fn+tn
100 ].

IV. METHODOLOGY OF OUR PROPOSED APPROACH
In the subsequent sections, we will discuss the motivations
that pushed us to develop this work proposal. The basic archi-
tecture of our suggested hybrid model is composed of the
data collection phase, text pre-processing steps for reducing
the noisy data, word embeddingmethods for transforming the
text-based data into numerical-based data, CNN for extract-
ing the features automatically, FFNN for calculating both PSS
and NSS values, and MFS for classifying their input into
negative or positive or neutral class.

A. MOTIVATION
As mentioned in the introduction section, our proposal
endeavors to improve SA effectiveness. The primary goal
of this contribution is to classify each sentence in the used
dataset into a positive or negative or neutral class with
high-performance and efficiency in terms of ten evaluation
criteria, which are presented in the previous section, and also
in terms of convergence, stability, and complexity.

In the literature, multiple categories of approaches have
been applied to perform the sentiment classification. Among
these techniques, we find DL models, ML methods, and
dictionary-based procedures. The performance of ML and
dictionary-based approaches is lower than DL models if we
applied them on the enormous dataset. The studies demon-
strate that classical ML methods and dictionary-based tech-
niques are better for a lesser size of data. As the volume of
data rises beyond a particular number, the accuracy of classi-
cal ML algorithms becomes constant. In contrast, the accu-
racy of DL algorithms raises concerning the raise in data
size. This difference in performance is due to the used man-
ner for extracting the features from the dataset. Conven-
tional ML techniques and dictionary-based approaches adopt
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hand-crafted engineering features by applying feature extrac-
tor approaches. They then apply the learning algorithms,
which extract incomplete features and take high time to pro-
duce the final result. Unlike DL models that adopt automatic
features extractor.

According to these studies that showed DL techniques’
strengths on the massive dataset, in this work, we have been
applied CNN deep learning model as an automatic feature
extractor. Because CNN possesses the higher power to detect
and extract relevant features at different local levels identical
to a human brain and compared to the conventional deep
learning models that cannot do the feature learning, another
advantage of CNN isweight sharing, whichmakes CNNmore
accurate and efficient in terms of complexity and used mem-
ory than traditional neural networks. Also, the CNN is char-
acterized by the optimized structure for handling text/image,
the ability to extract the abstraction features, the absorption
of shape variations by the application of the pooling layer,
The number of parameters is fewer, and the lower diminishing
gradient rate compared to the conventional neural network.

We also used FFNN to employ the outputs of CNN and
calculates two sentimental values: PSS and NSS sentimen-
tal scores. The PSS presents the percentage of the existing
positive opinion words in the given sentimental sentence,
and the NSS presents the percentage of existing negative
opinion words in the same sentence. Basically, FFNN is one
of the most effective neural networks presently preferred in
regression and classification tasks. FFNN be composed of an
input fully connected layer, one or more hidden layers, and
an output layer. Consequently, the changed number of hidden
layers aids in processing more and more complicated func-
tions. As presented previously in the basic concepts section,
this type of network can process data by itself and generates
outputs that are not restricted to the input variables provided
to it.

Furthermore, it can carry out multiple operations in a par-
allel manner without any negative influences on the network
model performance. Also, dropout regularization is applied at
the level of the fully connected layer to overcome the network
overfitting and enhance the generalization error. In summary,
we have incorporated CNN and FFNN as the third step of our
work to handle the collected unstructured data from social
media networks and compute both values PSS and NSS as
outputs of our deep learning model (CNN+FFNN).

As a result of social-media data holding considerable noise
and unpredictable vagueness, the notion of ambiguity and
uncertainty data elicits the attention of many researchers.
Such vagueness assesses a big challenge on the capability to
implement and to classify social-media data. First, the ability
to symbolize input social-media data is restricted as variables
react uncertainly. Second, CNN and FFNN deep learning
models are not always powerful when training social-media
data are irritated by the noise. The fuzzy logic theory has been
applied to overcome deep learning shortcomings and enhance
sentiment classification performance. Compared with classi-
cal logic representations, fuzzy logic representation builds a

set of IF-THEN fuzzy rules for eliminating the uncertainties
in social-media data and achieves higher accuracy in both
data symbolization and hardiness for handling the noisy data.
Motivated by the fuzzy logic theory’s strengths, in the fourth
step of our work, we have been usedMFS as a fuzzy classifier.
Simultaneously, the input variables of MFS are the PSS and
NSS values, and the output variable is the class label (Posi-
tive, Neutral, Negative).

As a short conclusion, this work’s essence is to increase the
classification effectiveness of sentiment analysis by integrat-
ing the power of MFS to deal with uncertainty and vagueness
data and the power of both deep learning models CNN and
FFNN to detect and capture the features automatically from
the given dataset. As depicted in Fig. 11, the overall structure
of our developed hybrid model consists of six phases, which
are Data collection, Data pre-processing, Word embeddings,
CNN, FFNN, and MFS.

B. PHASE I: DATA COLLECTION
In this paper, we have been chosen two datasets to prove
the performance of our develop FDLC approach. The first
dataset called sentiment140 dataset.Which is extracted using
twitter application programming interfaces (API). It consists
of 1,600,000 tweets in which the emoticons were removed.
The tweets have been labeled into two class negative and
positive, where (0 = negative, and 4 = positive). It includes
the following six attributes:
• Target: is the sentimental score of the tweet
(4 = positive, 0 = negative)

• Ids: is the identifier of the tweet (1467110309)
• Date: is the date when the tweet is posted (thr Mar 06
21:18:55 PDT 2007)

• Flag: represent The query (text of the query). If there
is no query, then this attribute takes the NO_QUERY’
value.

• User: is the username that tweeted (LionsLamb)
• Text: is the text posted by the user with the name
LionsLamb (He’s the reason for the teardrops on my
guitar, the only one who has enough of me to break my
heart)

In this work, we are interested in sentiment analysis. That
is to say, extract the sentiment expressed by the author in
the tweeted text. Thence the other attributes have not any
influence on the learning process. For that, we removed the
Ids, User, Flag, and Date attributes from the dataset. And
we kept the Text and Target attributes. The Target distri-
bution of the data in this dataset is balanced distribution,
such as 50% of the tweets are labeled negative, which are
ranged from 0 to 799999th index, and another 50% of the
tweets are labeled positive, which are ranged from 800000 to
1 600 000th index. The dataset is split into testing and training
subsets. Consequently, we have been used these subsets to
prove the classification performance of our designed FDLC
compared to other proposed methods which are selected from
the literature. Fig. 12 introduces the number of tweets in every
subset. Where a total of 1,440,000 tweets were utilized in the
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FIGURE 11. Architecture of our proposed approach.

training learning process, and 160,000 tweets were utilized in
the testing learning process.

The second dataset, called COVID-19_Sentiments,
it is also extracted using the twitter API. It consists
of 637978 tweets. The tweets have been labeled into three
class negative [−1,0[, neutral = 0, and positive ]0,1] [52].
it contains the following attributes:
• Target: the sentimental score of the tweet (negative
[−1,0[, neutral = 0, and positive ]0,1]) [52].

• Ids: The identifier of the tweet (1241032866567350000)
• Date: the date when the tweet is posted (Sun May 31
04:52:40 +0000 2020)

• Location: The location where the tweet is posted
(Ahmadabad City, India)

• Text: the text posted by the users.

The important attributes in our work are the text and
sentimental score attributes. For that, we removed all other
attributes. In addition, the Target distribution of the data in
this dataset is an unbalanced distribution with 259458 neutral
tweets, 120646 negative tweets, and 257874 positive tweets.
Fig. 13 depicts the number of tweets in both testing and train-
ing subset. A total number of 574,182 tweets were employed
in the training learning process, and 63,796 tweets were used
in the testing learning process. In other words, the testing
dataset represents 10% of the overall dataset.

C. PHASE II: DATA PRE-PROCESSING
Pre-processing tasks are deemed to be the first phase in
the text classification task, and picking out the right, and
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FIGURE 12. Number of negative and positive tweets for the
sentiment140 dataset.

FIGURE 13. Number of negative, neutral, and positive tweets for the
COVID-19_Sentiments dataset.

effective pre-processing techniques can enhance classifica-
tion performance. The primary goal of the text pre-processing
procedure is preparing, normalizing, removing, and cleaning
the noisy data from the given dataset that is going to be
classified. The noisy data is the data without any valuable
information for sentiment classification. The pre-processing
technique transforms the noisy data from high dimensional
attributes to the low dimensional features to get as much
accurate useful data as possible from the given dataset. The
text pre-processing phase can consist of multiple techniques
depending on the text-classification issue and the situation.
In this work, our classification issue is the sentiment clas-
sification of data collected from twitter. Twitter allows its
users to post only messages with 140 characters. Due to this
restricted rule, Twitter users have been employed the slang,
abbreviations, exclamation marks, links, repetitions, punctu-
ation signs to assert their attitudes and emotions in a short
tweet. In addition, Twitter users are vulnerable to spelling
and typographical mistakes. It is not essential to include all
expressions of the tweet in the learning process in our work,
andmultiple of them should be deleted, normalized, cleansed,
or replaced with others. Thus, it emerges the need to apply the
pre-processing techniques to the given data. Their free of the
noise is a crucial factor to increase the sentiment classification

effectiveness. The followed up pre-processingmethods in this
work are described below:

Remove number, URLs, hashtags, and username: It is
a popular tactic to eliminate numbers, URLs, hashtags, and
usernames from the pre-processing sentence because they do
not hold any emotions.

Eliminate punctuation,white-spaces, and special char-
acters: The first step to do is removed all existedwhite-spaces
in the tweet, followed up by removing the three punctua-
tion, which are the stop, question, and exclamation marks.
All found special characters are removed because they do
not have any positive or negative impact on expressed sen-
timent. after all these pre-processing techniques presented
previously, we kept only the lowercase and uppercase letters.

Lower-casing: From the previously described steps, all
special characters other than letters have been deleted. So the
next step is the lower casing. In other words, all the letters
kept in the tweet were transformed to lower case, which
reduce the dimensionality of words.

Replace elongated words: This operation serves to
remove the letter, which is repeating at least more than three
times in the elongated word like the word ‘‘haaaaaaappy’’.
after applying this operation, the word becomes ‘‘haappy’’
and normalized with at most two characters.

Remove stop-words: Stop-words are the words with high
occurrences in the posted tweet. They are removed because
they do not hold any emotions, and it is deemed needless to
handle them. Therefore in our work, all found stops-words
in the tweet are removed based on the stop-words list deter-
mined by the NLTK package in Python.

Correct contractions: One tactic that can be employed in
the pre-processing procedure is the correction of contractions.
For example, the words like ’isn’t’ its corrected word will be
’is not’, and ’weren’t’ its corrected word will be ’were not’.

Handle effect negations: This approach replaces the word
preceded by NOT by its antonym. The antonym means the
opposite meaning of the replaced word. The process of this
approach serves to search in each tweet the word preceded by
NOT, then to check if this word has an antonym in WordNet
dictionary if the case, it replaces this word with its unambigu-
ous antonym. For example, it replaces the word ‘‘not uglify’’
with ‘‘beautify’’.

Stemming: is the operation of reducing the size of words
by merging several words into one. This approach deletes the
endings of words to discover their word stem in a dictionary.
In this work, we used the Porter Stemmer of NLTK package
in Python.

Lemmatization: has the same role as Stemming. It is also
another approach that serves to determine the root forms
of words. The difference between both procedures is in the
followed process to detect the stem or lemma words.

Tokenization: is a process that splits sentences into words
called tokens. In its process, larger paragraphs of analysis data
can be split into sentences. Then these sentences obtained
can also be split into tokens. In this work, we used an NLTK
tokenizer provided by Python.
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All presented techniques previously are applied to the
used dataset in this work. Besides, we construct a lookup
table with 3000 words and phrases containing the words,
abbreviations, and slang words to replace the abbreviation
and slang words in the currently processed tweet with correct
words. For example, we find these slang and abbreviation
words ‘‘ab/abt’’, ‘‘B’’ and ‘‘B4’’, which respectively denote
and replace by ‘‘about’’, ‘‘be’’, and ‘‘before’’. In the twit-
ter platform, users are prone to spelling and typographical
mistakes that might make the learning procedure harder.
Therefore, for improving the learning process effectiveness,
we used Norvig’s spelling and typographical corrector, which
automatically corrects them.

We carried out multiple experiments to demonstrates
the effectiveness of the applied pre-processing techniques
on our dataset. From the experimental results, as shown
in Tables 1 and 2, we deduced that the pre-processing tech-
niques decrease the error rate. Where the error rate in the
Sentiment140 dataset decrease from 35.59% to 5.98%, and it
decrease from 29.04% to 3.61% in the COVID-19 Sentiments
dataset. Therefore, it is recommended to use pre-processing
techniques.

TABLE 1. Error Rate (ER%) without pre-processing techniques.

TABLE 2. Error Rate (ER%) with pre-processing techniques.

After the pre-processing step that serves to remove noisy
data from the used dataset, The next step is word embeddings,
as described in the following subsection. In other words, then
consequently, data from the application of all pre-processing
techniques will be the input of word embedding methods.

D. PHASE III: WORD EMBEDDINGS
CNN deep learning model can only process the numerical
data. Therefore, to make our proposal deals with text-based
data obtained after the pre-processing data phase using deep
learning models, these text-based data must be transformed
into numerical-based data. This operation is called vectoriza-
tion, which is one of the critical issues in NLP. Approaches
such as word2vec, glove [15], tf-idf [16], bag-of-words [17],
fast-text, n-gram or character-level [18] are the major of word
vectorization techniques. The most effective methods in the
case of the larger datasets are GloVe, Word2vec, and Fast-
text, which are introduced by Stanford, Google, and Face-
book respectively [53], [54]. Therefore–in this work–after
the pre-processing data phase, the next stage is the word

embeddings data using Word2vec and GloVe and Fast-text
techniques. This section presents these three different kinds
of word embeddings methods in detail.

1) GloVe
Global Vectors for Word Vectorization or GlobalVectors
(GloVe) was introduced by Jeffrey Pennington et al. [54], and
was supported by Stanford University. This learning model
is an unsupervised algorithm. Its objective is computing the
vector representation for distributed words. This operation
is made by finding the semantic similarity between words,
then generating the word-word co-occurrence count matrix.
e.g., how frequently these words seem together in the cor-
pus. For that, the GloVe was named the count-based model.
Word embedding of this model is obtained by aggregating
the created co-occurrence count matrix from a corpus, and
the resulting word embeddings show for each word in vec-
tor space important linear substructures. In summary, This
model integrates both methods, which are the local context
window model and the global matrix factorization method.
Experimentally, GloVe gives good results on word similarity,
named entity recognition, and word analogy tasks compared
to word2vec and Fast-text.

2) Word2Vec
Word2Vec was proposed by Tomas Mikolov et al. at
Google [55]. It employs the FFNNs with one hidden layer
to extract the word embeddings vector from the inputted
text/image data. This method integrates the Skip-Gram
model, Which predicts the current surrounding context words
based on target words, and the Continuous Bag-of-Words
(CBOW) model, Which predicts the current target words
based on the surrounding context words. Because of that,
it was named two-layer neural networks. Its objective is to
enhance the predictive ability for word vectorization. This
Word2vec takes a large corpus of text/image-based data as
inputs and generates a matrix as an output. Where each row in
the created matrix represents the vector with several hundred
dimensions. This produced vector is the word vectorization
of the one-hot vector of the input token (word or character).
In summary, Word2Vec is a simple FFNN with one hidden
layer. During the learning process, its main goal is to adjust
their weights for minimizing the error rate by decreasing the
loss function. These hidden weights are used as the word
embeddings. Word2vec gives better performance in senti-
ment polarities prediction, and its performance is better on
massive datasets.

3) FAST-TEXT
Fast-text is another word embedding techniques created by
the Facebook AI Research Team for effective learning of
word vectorization. This method is deemed as an exten-
sion of the Word2vec method; instead of training a set of
tokens (words) directly as in the Word2vec method, Fast-text
trains each token as an n-gram of characters. For example,
the representation of the word ’fuzzy’ using the Fast-text
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method with n-gram=2 is (f, fu, uz, zz, zy, y), where the
brackets denote the beginning and end of the represented
word. This allows to detect the sense of shorter words and
helps the embeddings to learn the suffixes and prefixes of
the word. So, once the inputted token has been divided by
applying the character n-grams, either skip-gram or CBOW
is used to learn the word embeddings. Fast-text works well
with unseen words and the words out-of-vocabulary. So, even
if the word is unseen in the previous training steps, this
method is broken down it into n-gram characters to compute
its embeddings.Word2vec andGloVemethods both fail to get
vector embedding for the unseen words, unlike Fast-text that
can learn the unseen words. This is the strong point of this
method compared to other techniques.

As we said previously, the next step of our work
after the data pre-processing step is the data vectoriza-
tion using Word2vec, GloVe, or Fast-text techniques. In the
data-processing process, each input sentence is split into a
set of words (Word2vec, and GloVe) or n-gram characters
(Fast Test). Subsequently, the word embedding methods take
this set of words or n-gram characters as its inputs. These
methods take as its inputs the one-hot vectors that represent
the sentence’s words or n-gram characters. We symbolize
a sentence as S= [Wv1; Wv2; . . . .; Wvn], where Wvi is
the word or character vector, which is the one-hot vectori
represent the wordi or characteri. the the one-hot vector’
dimension is equal to the number of characters or words
in the pre-processing sentence. In this case equals to N.
a pre-trained method applied its weight matrix (Wm) to
matrix S and obtained low-dimensional matrix representation
Mr= [x1; x2; . . . .; xn] with xi ∈ Rm.This operation can be
written as follows:

Mr = Wm.S (22)

where Wm ∈ Rm.n indicates the weight matrix, Mr ∈ Rm.n

symbolizes the low-dimensional matrix representation of a
sentence, and S is the one-hot matrix.
After theWord embedding phase that aims to transform the

text-based data into numerical data. It takes a pre-processing
text as inputs, and it outputs an embedding matrix. The next
stage is the application of CNN, as described in the following
subsection.

E. PHASE IV:CONVOLUTION NEURAL NETWORK
After the Word embedding phase, our proposed system is
trained to employ the CNN deep learning model, which be
formed by four layers.

The first layer is called Embedding layer or input layer,
which demands word embedding as an input, i.e., a set of
vector representations of the learned sentence as explained in
the previous section, where each vector vw ∈ R1∗di represent
either character or word accordingly to the used word embed-
ding method.Where di is the vector dimension, and it must be
inferior to the size of vocabulary in the embedding dictionary.
In our work, Word2vec, GloVe, and Fast-text have been used,
which are eligible to discover the semantic and syntactic

properties of characters and words in the used dataset. In the
previous experiment, which is carried out with the used
word embedding methods and Hadoop framework. These
parallelized word embedding methods have been pre-trained
on 90% of the used dataset. After this operation, we get a
pre-trained model employed to map each word or character
onto its own vector representation. We have then computed
the error rate of these word embedding methods by employ-
ing (17). The computed error rate indicates that the Fast-text
is the most efficient word embedding. Accordingly to these
experimental results, we will use the Fast-text word embed-
ding method in the rest of this work. So, the high-dimensional
vectors set are computed for every n-gram character by com-
puting softmax probability for every n-gram character by
using (3). The produced vector representation dimension is
equal to the number of hidden neuron nodes in the Skip-Gram
hidden layer. The number of hidden neuron nodes has been
set to 200. Each tweet is padded with a vector of zeros. The
padding aims to guarantee that all the tweets in the used
dataset have the same dimension. All the obtained vectors
representation is the rows of the embedding matrix Em con-
sisting of all n-gram character in the dictionary D. These
n-gram characters are noted into indices 1...|D| to speedily
lookup the vector representation of the n-gram character in
Em Then, for each tweet with t n-gram characters, a embed-
ding matrix M = Vnc1;Vnc2; . . . ;Vnci; . . . ;Vnc|t| has been
built. Where Vnci is the vector representation of the ith n-gram
character.Therefore, M is passed to the convolutional layer.

The second layer is called Convolutional layer, which
is applied to the word embedding matrix M obtained in the
previous layer. In other words, each convolution operation
comprises one filter matrix (F), which is applied to every
n-gram character’s window (CW ) in the word embedding
matrix M , and one feature map is generated as an outcome.
Therefore, the convolutional layer consists of many convo-
lution operations. Thus several filters with ranging window
sizes are applied to M , and a set of feature maps is created.
we have the CW = [x1; x2; . . . .; xn] with xi ∈ Rm, a feature
ki is produced from a CW which its size is Xi : i + v − 1 by
using the following formula:

ki = ReLU (Fi.Xi:i+l−1 + b) (23)

where ReLU is a non-linear activation method as described
in (1); b ∈ R is the used bais and l is the length of the used
filter F. Therefore, a feature map = [k0, k1, . . . , ki+l−1] is
produced by the application of (23) in all possible CW of
the word embedding matrix M . Multiple filters Fi:1→h are
applied to produce multiple feature maps FMj:1→h. Fig. 14
illustrates a simple example of applying a filter f into the
n-gram character of the word ‘‘Fuzzy’’ to compute the feature
map based on (23).

As a summarize, the convolution layer takes an embed-
ding matrix M as input and produces a set of feature maps
as output. It is known for its efficiency and capability to
extract local features automatically. Then, the third layer is
max-pooling layer which is applied over every obtained
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FIGURE 14. Example of the application of one filter in the n-gram character of the word fuzzy.

feature map in FMj:1→h and extracts the maximum value of
the feature map pv = max[ki]. In this layer, the number
of its output (L) will be similar to the number of its input
features maps(L). Accordingly to the max-pooling layer,
the size of each dimension of the input features maps will
be miniaturized, and the outputs will be a set of columns,
where the number of these columns equal to the number
of inputted features maps. The miniaturization applied by
the max-pooling operation is depending on the dimension
size of the max-pooling kernel. Fig. 15 presents an example
of a max-pooling operation where we used 1 × 3 as the
max-pooling kernel.

FIGURE 15. Example of the application of pooling layer.

From Fig. 15 we note that a single column of value is
obtained as a result of the single max-pooling operation.
Therefore, this operation aims to find and save the essential
optimum feature by aggregating the data and diminishing
the representation size. Finally, the fourth layer is the fully
connected layer, which is the commune point between CNN
and FFNN. At the same time, the fully connected layer is
deemed as the outcome of CNN and as the income of FFNN.
Furthermore, The value of each fully connected neuron is cal-
culated in the CNN phase using the following formula (24).

Vn = f (Wconnector ∗ Cpooling + B) (24)

where Vn is the computed neuron value, f is the ReLU
activation method, Wconnector is the weights of the connec-
tors that rely on pooling layer with the fully connected
layer,Cpooling is the set of the pooled column (or pooled
feature maps) in the preceding layer (Pooling layer), and B
is the used bias. The following algorithm (1) summarizes all
CNN’s steps.

The CNN deep learning model’s success is due to the three
factors: sparse connectivity, weight shared, and equivariant
representation. So, CNN different from the classical neural
networks, where the connection between the input and output
neuron is determined by multiplied the neuron value into the
connector weight plus the bias value, which causes the com-
putation burden. While CNN avoids this type of computation
burden based on sparse connectivity, i.e., the kernels’ size is
reduced to be smaller than the dimension of the inputs by
using the pooling layer. These kernels are considered in the
rest learning CNN process as the whole inputted text/image.
The weight shared parameter allows raising the learning
efficiency by diminishing the number of weights parameters
being learned. The main idea behind this operation is that,
in state of learning multiple set of weights parameters at each
neuron as in the classical neural network, CNN learn only one
set of them, which performs a good performance in terms of
classification rate and consumption time. The weight shared
parameters have also given the CNN deep learning model,
a new property named equivariant representation. i.e., if the
input alters, the output alters in an automatic manner and
follows the same way as the input changed. Thanks to these
three factors, CNN requires fewer weight parameters than
other neural network models, which minimizes the used size
memory and improves CNN efficiency.

Generally, our proposed deep learning model (CNN+
FFNN) is divided into two parts; the first part is applying
CNN to word embedding matrix M obtained in the previ-
ous word embedding phase to capture and extract the most
important features. In the second phase, we use an FFNN
deep learning network to calculate PSS and NSS. The FFNN
receives as inputs the outputs of the CNN and generates both
values PSS and NSS. The following subsection introduces in
detail the FFNN applied in this work.
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Algorithm 1: Our Convolutional Neural Network
Input : A given word embedding Matrix M described

by R rows and C columns, and the SF is the set
of filter with varying size.

Output: Set of features.
==Computing operations of convolutional layer====
for a← 1 to R do

for b← 1 to C do
for c← 1 to k do

for d ← 1 to k do
sum =0
for v← 1 to f do

for w← 1 to f do
sum = sum+
F[v][w]*M[ss*(c−1)+v]
[ss*(d−1)+w]: where ss is the
shifting stride

end for
end for
FM[a][c][d] = FM[a][c][d]+sum:where
FM is the feature map matrix.

if b==C then
FM[a][c][d] = F(FM[a][c][d]+B):
where B is the used bias, and f is the
ReLU activation function. FM[a][c][d]
= max(0; (FM[a][c][d]+B));

end for
end for

end for
end for
==Computing operations of pooling layer====
max-value = 0;
average-value= 0;
for a← 1 to R do

for c← 1 to C do
y = 0; for d ← 1 to k do

x= 0; max-value = max(value,FM[a][c][d]);
where the used operation is max-pooling
average-value = + FM[a][c][d]; where the
used operation is average-pooling

end for
Cpooling[a][y][x] = max-value; where the used
operation is max-pooling
Cpooling[a][y][x] = average-value/(r*c); where
the used operation is average-pooling
x++;

end for
y++;

end for

F. PHASE V: FeedForward NEURAL NETWORK
After the CNN phase, the next step is the FFNN. This
phase’s main goal is to take the obtained set of features in
the CNN phase and compute both values, which are nega-
tive and positive sentimental scores as described previously.

==Computing operations of fully connected
layer====
for a← 1 to R do

vartemp=0; for c← 1 to C do
for d ← 1 to k do

vartemp = vartemp+Wconnector [a][c][d] *
Cpooling[a][y][x]; where Cpooling is the
pooling feature maps andWconnector is the
connector’s weight

end for
end for
Y[a][c][d] = vartemp;

end for
return Set of features Y[a]

Our simple FFNN version consists of four layers: the input
fully connected layer, two hidden sigmoid layers, and the
softmax output layer. The input fully connected layer is the
same fully connected layer of the CNN deep learning model.
So this layer consists of multiple neurons that represent the
extracted features in the previous CNN phase. All neuron
nodes in the fully connected layer are linked to all neuron
nodes in the first hidden layer via the connections with dif-
ferent weights, which are adjustable. The hidden neuron value
is computed using the following equation (25):

Xh = σ (
m∑
i=1

Wi ∗ Xi) =
1

1+ e(
∑m

i=1Wi∗Xi)
(25)

where Xh is the value of the hidden neuron,Wi is the weight
of the connector i, Xi is the value of every neuron in the fully
connected layer, and σ is the sigmoid activation function,
which is calculated using the following equation:

σ =
1

1+ ex
(26)

where σ is the sigmoid function, and ex is the standard
exponential function of the input value x.
The sigmoid function is applied to neural networks as an

activation function and also known as a squashing function.
i.e., this function ensures the neuron’s output will be equal
value in the interval [0,1]. In practice, the sigmoid function
used at the level of the hidden layer is represented by the
graphic representation in Fig. 16:

The second hidden layer in this work has the same function
as the first hidden layer. It also uses the sigmoid activation
method to compute the value of its hidden neuron nodes.
The difference between both hidden layers is in the num-
ber of hidden neuron nodes. The second hidden layer has
fewer hidden neuron nodes compared to the first hidden
layer. Generally, In every neural network, the hidden layers
are situated between the input and the output layers of the
neural network model. At each hidden layer level, a weights
function is applied to the inputs and passed them via an
activation function as the output. i.e., the used hidden layers
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FIGURE 16. Graphic representation of the sigmoid activation function.

carry out the nonlinear conversion of the inputs that came
into the neural network. Hidden layers differ from neural net-
works to others due to the function of every neural network.
Also, the hidden layers may change, relying on their related
weights. In this work, we employ these both hidden layers
as squashing functions because the intended outputs of this
model are probability degrees that are to say the output value
will be in the interval [0,1].

The last layer of our used FFNN is the softmax output
layer. The inputs entered into this layer are the outcomes of
the second hidden layer multiplied by connections weights,
and the outcome is passed through the softmax activation
function at the level of the neuron nodes in the output layer.
This output layer produces two values, which are PSS and
NSS. The value of both is ranged between 0 no included,
and 1 no included. Therefore the following algorithm (2)
describes all FFNN’s steps.

In this work, we also used the operation dropout, which
indicates dropping out of a certain set of hidden and visi-
ble neurons in our FFNN in order to avoid the overfitting
problem. We mean these randomly dropping neurons are
not considered during the training phase in forwarding or
backward feed as shown in Fig. 17. At each round in the
training phase, every neuron is either inactive (dropout out)
of the total architecture of FFNN with probability degree 1-p
or active with probability degree p. A question arises why
do we shut down certain sets of neurons in all network lay-
ers ? the principal aim of the operation dropout is to prevent
overfitting, resulting from the co-dependency establishing
by neurons amongst each other at every round during the
training stage. In short, dropout is a regularization method in
FFNN, which leads to eliminating the interdependent training
amongst the nodes.

G. PHASE VI: MAMDANI FUZZY SYSTEM
After our deep learning phase (CNN+FFNN), the next stage
is the classification using the fuzzy classifier. Both outputs
NSS and PSS of the CNN+FFNN deep learning model
will be the inputs of our fuzzy classifier. The sentiments

Algorithm 2: Our FeedForward Neural Network
Input : A given set pooled features maps Cpooling
described by R rows and C columns, and b = 1 is the

used bias Output: Both values PSS and NSS.
Randomly initialize the weights of the neural network
using the following equation
W k
i = Ud [− 1

√

nk−1
;

1
√

nk−1
]; where Ud is the continuous

uniform distribution,nk−1 is the number of the neuron
on the (k-1)th layer, and i is the ith connector
do
==Computing operations of the input fully
connected layer====
for a← 1 to R do

vartemp=0; for b← 1 to C do
for c← 1 to k do

vartemp = vartemp+Wconnector [a][b][c]
* Cpooling[a][b][c]; where Cpooling is the
pooling feature maps andWconnector is
the connector’s weight

end for
end for
Y[a][b][c] = vartemp;

end for
==Computing operations of the first hidden
layer====

for a← 1 to R do
vartemp=0; for b← 1 to C do

for c← 1 to k do
vartemp = vartemp+Wconnector [a][b][c]
* Y[a][b][c]; where Y is the set of the
extracted feature by the CNN in the
precedent phase, andWconnector is the
connector’s weight

end for
end for
fh[a][b][c] = σ (vartemp+ B) = 1

1+evartemp+B ;
where σ is the sigmoid activation function.

end for
==Computing operations of the second hidden
layer====
for a← 1 to R do

vartemp=0; for b← 1 to C do
for c← 1 to k do

vartemp = vartemp+Wconnector [a][b][c]
* fh[a][b][c]; where fh is the output of
the first hidden layer, andWconnector is
the connector’s weight

end for
end for
sh[a][b][c] = σ (vartemp+ B) = 1

1+evartemp+B

end for
while lf < 0.000001

expressed by humans are vague and imprecision. So, it is
difficult to decide if their opinions are negative, neutral,
or positive about a particular topic. Our used deep learning
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FIGURE 17. Feedforward neural network without and with dropout.

==Computing operations of the softmax output
layer====
for a← 1 to R do

vartemp=0; for b← 1 to C do
for c← 1 to k do

vartemp = vartemp+Wconnector [a][b][c] *
fh[a][b][c]; where fh is the output of the
first hidden layer, andWconnector is the
connector’s weight

end for
end for
output[a][b][c] = f (vartemp+ B) = evartemp+B∑l

i=1 e
vartemp+B

end for
oo0 = output[0][0][0];
oo1= output[0][0][0];
Therefore, the adaptation of this neural network can be
performed by reducing (optimizing) the neural network
loss function lf. The loss function is given by the
following equation:
lf (w(i)) = 1

Nc
∗

∑Nc
i=1

∑N−on
j=1 (ro− ooj)2; where, lf(w(i))

is the error rate at the ith round, w(i) the actual weights
of the connectors at the ith round; ro the required output
neuron node; ooj, the obtained value of the jth output
neuron node; N − on, the number of output neuron
nodes; Nc, the number of connectors. NSS = oo0;
PSS = oo1;
return Both values NSS and PSS

model (CNN+FNN) is powerful for extracting the features
from the given dataset but is powerless to handle with vague-
ness and ambiguous data. To make our proposal more accu-
rate and more efficient, we have been applied the fuzzy
set theory to the outputs of the suggested deep learning
model (CNN+FFNN), mainly, we used the MFS as a fuzzy
classifier.

MFS is constructed using the fuzzy set theory introduced
by Zadeh [27]. The major aim of this theory is to handle
the imprecise and vagueness concepts as the human brain
is performing. According to multiple works in the literature,

this theory proved its efficiency to deal with ambiguous data,
and its ability to treat the data like the human brain. Thence,
this theory is growingly applied for resolving real-life prob-
lems that cannot be solved and dealt with the application of
classical set theory. Based on the Fuzzy set theory, multiple
fuzzy systems are proposed. We find amongst Mamdani,
Tsukamoto, and Sugeno fuzzy system [28]. Both later sys-
tems are applied in the regression problem, but the Mamdani
is used in the classification issue. So our work is serving
to resolve the classification issues. Therefore the suitable
system is Mamdani. MFS consists of three major phases,
which are the Fuzzification process, the Inference process,
and the Defuzzification process, as illustrated in Fig. 18.

FIGURE 18. The components of the MFS.

The first stage before the fuzzification procedure is the
definition of input and output linguistic variables and the
definition of the linguistic terms of each linguistic variable.
So, in this work, we have been applied the Mamdani as a
fuzzy classifier on both outputs NSS and PSS of our deep
learning model (CNN+FFNN). Thence the input linguistic
variables are NSS and PSS and each variable takes five
linguistic terms which are very low (is between 0.0 and 0.25),
low (is between 0.0 and 0.50), moderate (is between 0.25 and
0.75), high (is between 0.50 and 1), and very high (is between
0.75 and 1). The output variable is the decision classification
which has three linguistic terms neutral (is between 0.0 and
0.35), negative (is between 0.35 and 0.65), and positive (is
between 0.65 and 1.0). In short, the inputs of the MFS will
be the NSS and PSS, and the output will be the decision of
classification as depicted in Table 3. After the definition of
the linguistic variables and linguistic terms of our suggested
fuzzy system. The next phase is the fuzzification process
which is a substantial step in the MFS.
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TABLE 3. Input and output parameters of the used fuzzy system.

1) FUZZIFICATION PROCESS
After the definition of linguistic variables and linguistic
terms, the next phase is the fuzzification process. The fuzzi-
fication method is the operation that transforms the crisp
input set into a fuzzy input set by computing the membership
degree using one of the most popular MFs. Input variables
of the MFS are represented on the fuzzy sets by the employ
of MFs such as Triangular, Trapezoidal, or Gaussian, lin-
guistic terms like very low, low, moderate, high, very high;
and linguistic variables which are PSS, NSS, and DC. The
linguistic variables and terms are significantly the complete
phrases or the words of utilized NLP. When we are defining
the linguistic terms and variables, we are convinced suffi-
ciently that no numerical data are employed in the linguistic
variables and terms. The two important points in this phase
are the used MFs and the defined fuzzy sets because we are
employing them to get the fuzzified values. The transfor-
mation of crisp input sets into fuzzy sets is carried out by
utilizing of MFs, and this function of conversion is called
fuzzification. So, in this fuzzification method, the crisp input
variables are fuzzified by applying the used MF. In other
words, the membership degree of belonging each input vari-
able to each linguistic term (fuzzy set) is computed using a
particularMF. The literature existingMFs are trapezoidal, tri-
angular, Gaussian,2-D, Left-Right, Sigmoid and Generalized
Bell membership functions. In this contribution, we applied
the triangular, trapezoidal, Gaussian MFs, which are the most
popular used membership functions in the literature. These
functions are described below.

a: TRIANGULAR FUNCTION
is determined by Three parameters ll,v and ul. Where ll is
the lower limit, ul is the upper limit, and the value v, where
ll < v < ul as shown in Fig. 19.

µA(x) =



0 if x ≤ ll
x − ll
v− ll

if ll ≤ x ≤ v

ul − x
ul − v

if v ≤ x ≤ ul

0 if c ≤ x

(27)

FIGURE 19. Representation graphic of Triangular function.

where µA(x) is the triangular MF of the input value x, ll is the
lower limit, ul is the upper limit, and the median value v.

An alternative mathematical expression is obtained by
applying the min andmax functions on the previous equation.

µA(x; ll, v, ul) = max(min(
x − ll
v− ll

,
ul − x
ul − v

), 0) (28)

whereµA(x; ll, v, ul) is the triangularMF of the input value x,
ll is the lower limit, ul is the upper limit, and the median
value v.

b: TRAPEZOIDAL FUNCTION
is determined by four parameters ll, lsl, usl and ul. Where
ll is the lower limit, lsl is the lower support limit, usl is the
upper support limit, and ul is the upper limit, and ll < lsl <
usl < ul as illustrated in Fig. 20.

µA(x) =



0 if (x < ll)or(x > ul)
x − ll
lsl − ll

if ll ≤ x ≤ lsl

1 if lsl ≤ x ≤ usl
ul − x
ul − usl

if usl ≤ x ≤ ul

(29)

FIGURE 20. Representation graphic of Trapezoidal function.

An alternative mathematical expression is computed by
applying the min and max functions on the preceding
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equation:

µA(x; ll, lsl, usl, ul) = max(min(
x − ll
lsl − ll

, 1,
ul − x
ul − usl

), 0)

(30)

where µA(x; ll, lsl, usl, ul) is the rapezoidal MF of the input
value x, ll is the lower limit,lsl is the lower support limit, usl
is the upper support limit, and ulis the upper limit.

c: GAUSSIAN FUNCTION
is determined by two parameters c and s. Where c is the
central value, s is the standard deviation, and s > 0 as
depicted in Fig. 21.

µA(x) = e−
(x − c)2

2.s2
(31)

FIGURE 21. Representation graphic of Gaussian function.

2) DEFINING THE FUZZY RULES
After the fuzzification step, the next is the definition of fuzzy
IF-THEN rules. For MFS, defining rules is deemed as the
most important phase. Such IF-THEN fuzzy rules are usually
formulated in an appropriate manner utilizing linguistic terms
instead of employing numerical terms. They are mostly rec-
ognized as IF-THEN fuzzy rules, which are readily designed
by harnessing vague conditional statements. IF-THEN fuzzy
rules consist of two segments: a former block, which repre-
sents the inputs linguistic terms and variables, and a latter
or consequent block, which represents the decision of the
classification. All the Fuzzy IF-THEN rules that possess any
truth in their former blocks will release and participate in the
conclusion group. Each Fuzzy IF-THEN rule is released to
a degree, which is a function that represents the degree to
which its former block corresponds the input. This vague
identification makes a foundation for fulfillment between
probable input linguistic variables and aims to reduce the total
number of Fuzzy IF-THEN rules in demand to determine the
relationship between the input and the output. These Fuzzy
IF-THEN rules have an efficient ability to resolve several
real issues. Because they are similar to human knowledge,
and human reasoning which is often appeared in the form of

IF-THEN Fuzzy rules, at this phase, we employ empirical
expert knowledge to produce a set of the IF-THEN fuzzy
rules. As explained below, 25 rules are defined for the pro-
posed fuzzy classifier.

Rule1: IF NSS is veryLow AND PSS is veryLow THEN
DC is neutral

Rule2: IF NSS is veryLow AND PSS is low THEN DC is
neutral

Rule3: IF NSS is veryLow AND PSS is moderate THEN
DC is positive

Rule4: IF NSS is veryLow AND PSS is high THEN DC
is positive

Rule5: IF NSS is veryLow AND PSS is veryHigh THEN
DC is positive

Rule6: IF NSS is low AND PSS is veryLow THEN DC is
neutral

Rule7: IF NSS is low AND PSS is low THEN DC is
neutral

Rule8: IF NSS is low AND PSS is moderate THEN DC is
positive

Rule9: IF NSS is low AND PSS is high THEN DC is
positive

Rule10: IF NSS is low AND PSS is veryHigh THEN DC
is positive

Rule11: IFNSS is moderateAND PSS is veryLow THEN
DC is negative Rule12: IF NSS is moderate AND PSS is low
THEN DC is negative

Rule13: IFNSS is moderateAND PSS is moderateTHEN
DC is neutral Rule14: IF NSS is moderate AND PSS is high
THEN DC is positive

Rule15: IFNSS is moderateAND PSS is veryHighTHEN
DC is positive

Rule16: IF NSS is high AND PSS is veryLow THEN DC
is negative

Rule17: IF NSS is high AND PSS is low THEN DC is
negative

Rule18: IF NSS is high AND PSS is moderate THEN DC
is negative

Rule19: IF NSS is high AND PSS is high THEN DC is
neutral

Rule20: IF NSS is high AND PSS is veryHigh THEN DC
is neutral

Rule21: IFNSS is veryHighAND PSS is veryLow THEN
DC is negative Rule22: IF NSS is veryHigh AND PSS is low
THEN DC is negative

Rule23: IFNSS is veryHighAND PSS is moderateTHEN
DC is negative

Rule24: IF NSS is veryHigh AND PSS is high THEN DC
is neutral

Rule25: IFNSS is veryHighAND PSS is veryHighTHEN
DC is neutral

H. INFERENCE ENGINE
After, we fuzzified the crisp input set to a fuzzy set using the
fuzzification technique, and we defined the fuzzy IF-THEN
rules. The next phase is the inference engine. The fuzzy
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inference engine is exercised to incorporate the previously
described fuzzy sets with taking into consideration the pre-
defined fuzzy IF-THEN rules and the attached fuzzy zone
individually. Generally, the inference engine process con-
sists of three phases, which are application, implication,
aggregation phases. The Min-Max inference technique or
application technique is applied by the inference engine
procedure to compute the rule conclusions employing the
fuzzification results and determined Fuzzy IF-THEN rules.
The outcome of this operation is known as the fuzzy con-
clusion. In the Mamdani inference engine, the real value of
each Fuzzy IF-THEN rule is computed by the conjunction of
the antecedent’s blocks of the rules. With conjunction repre-
sented as t-norm = minimum in the logic connective ‘‘AND’’
case i.e. the process searches the rule with the minimum
antecedent block that is considered to be the truth value of
the fuzzy IF-THEN rule. This operation is expressed using
the following equation (32):

µA = µi(PSS) AND µii(NSS)

= min(µi(PSS), µii(NSS)) (32)

whereµi(PSS) is the membership degree of the variable PSS,
and µii(NSS) is the membership degree of the variable NSS.
In the case of the logic connective ‘‘OR’’, the t-norm =

maximum. i.e. the inference mechanism finds the rule with
the maximum antecedent block that is deemed to be the real
value of the fuzzy IF-THEN rule. This task is computed using
the below equation (33):

µA = µi(PSS) OR µii(NSS)

= max(µi(PSS), µii(NSS)) (33)

where µA is the membership degree obtained after the appli-
cation phase,µi(PSS) is the membership degree of the vari-
able PSS, and µii(NSS) is the membership degree of the
variable NSS.

In the application phase, the main goal is to extract the
firing strength of each activated rule via the application of
the conjunction of both computed membership degrees in the
previous fuzzification step respectively for both numerical
variables PSS and NSS.

At every fuzzy activated IF-THEN rule, an implication
operation I is applied between the fuzzy outcome obtaining
from the application stage and the classification decision
of the rule. The operation minimum is the most operation
used in the implication of Mamdani operation. The following
equation (34) describes this implication phase:

µI (DCt ) = min(µA, µi(DCt ) = 1) (34)

where µI (DCt ) the membership degree obtained after the
implication operation,µA is the membership degree obtained
after the application phase the membership degree of the
variable PSS, and µi(DCt ) = 1) is the membership degree
of the decision classification attribute.

In the implication phase, the firing strength of an IF-THEN
rule obtained in the previous phase (application) is employed

to define themembership degree of the decision classification
attribute ’DC’ to each linguistic term ’Negative’, ’Neutral’ or
’Positive’, based on the consequent block of the IF-THEN
fuzzy rule.

The ultimate phase in the inference engine mechanism
is the aggregation operation of the outcomes obtained from
the implication stage. i.e. all rule has the same classification
decision will be aggregated. There are multiple aggregation
operators, like geometric means, arithmetic mean, Max and
Min. A commonly used operator is the Max which is given
by the following equation (35):

µAg(DCt )=max(µI1(DCt ), µI2(DCt ), . . . , µIn(DCt )) (35)

where µI (DCt ) the membership degree obtained after the
aggregation operation,µIi(DCt )) is the membership degree of
the decision classification attribute DCt .

In the aggregation phase, the value of the decision classi-
fication attribute ’VDC ’ obtained from each Fuzzy IF-THEN
rule requires to compute its membership degree to the identi-
cal linguistic term (Positive, Neutral, or Negative) and deter-
mines the maximum membership degree among them.

I. DEFUZZIFICATION
After the inference engine process, the next phase is the
defuzzification process which is used to convert the final
fuzzy set obtained in the previous aggregation step into
a real number. Also, the defuzzification is the approach
that produces quantifiable outcomes in crisp logic which
is accomplished from defining the fuzzy sets and member-
ship techniques with proportionate degrees There are several
commonly used defuzzification methods such as Center of
Gravity Method (CGM), Bisector of Area Approach (BAA),
First of Maximum Procedure (FMP) Last of the Maximum
Technique (LMT), Mean of the Maximum Approach (MMA),
weighted Average Procedure (WAP), and the Center of Sums
(COS) Method. In this work, we applied six defuzzification
methods which are CGM, BAA, WAP, and COS. These used
defuzzification methods are described below:

1) CENTER OF GRAVITY METHOD
This approach converts the fuzzified value into a crisp output
value via computing the centre of gravity of the input fuzzy
set. The total zone of the MF spreading employed to monitor
the standard action, which is split into a certain number of
sub-zones. The zone and the centroid (centre of gravity) of
every sub-zone are computed and hence the integration of all
these sub-zones is calculated to get the defuzzified value for
a continuous input fuzzy set. Unlike the case of the discrete
fuzzy set, the summation of all these sub-zones is computed
to determine the defuzzified value. In this work, the fuzzy
sets take discrete values. Therefore the defuzzified value dv
is calculated using the summation instead of integration as
the below equation (36) describes:

dv =

∑n
i=1 zi.µ(zi)∑n
i=1 µ(zi)

(36)
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where zi indicates the instance element,µ(zi) is the member-
ship degree of the element zi, and n describes the number of
elements in the instance.

2) BISECTOR OF AREA APPROACH
The Center of the area defuzzification approach computes the
abscissa of the perpendicular line that splits the zone of the
obtained membership function into two sub-zones with an
equal surface. In other words, this method serves to compute
the position under the curve where the sub-zones have the
same surface, which is the crisp value corresponds to defuz-
ified value. It is one of the widely applied approaches. The
defuzzified value dv is computed using the Equation (37):∫ zBOA

α

µi(z).dz =
∫ β

zBOA
µi(z).dz (37)

where α = min{z; z ∈ Z }, β = max{z; z ∈ Z } and
z = zBOA is the vertical line that divides the area between
z=α, z=β v=0 and v=µi(z) into two areas with the same
region, µi(z) is the membership degree of the element z, and
dz is the derivative of the element z

3) WEIGHTED AVERAGE PROCEDURE
This approach is suitable for input fuzzy sets with identi-
cal output MFs and generates outcomes very close to the
centre of area approach. This technique used less compu-
tational resources. Every membership method is weighted
by its membership degree that has the maximum value. The
defuzzified value dv is determined as the below equation (38)
describes:

dv =

∑
µi(z).z∑
µi(z)

(38)

where
∑

indicates the algebraic summation, z is the element
that has the maximum membership degree, and µi(z) is the
membership function of the element zwhere i is the linguistic
term.

4) CENTER OF SUMS (COS) METHOD
It is a widely applied defuzzification method. In this
approach, the overlapping zone is computed twice. It is
faster compared to other defuzzification methods. It applies
algebraic sum on all output fuzzy sets. It is identical to the
weighted average approach; however, in this approach, the
weights are the zones, instead of membership degrees in
the weighted average approach. The defuzzified value dv is
calculated using the below equation (39):

dv =

∑n
ii=1 zii.

∑k
j=1 µij (zii)∑n

ii=1 .
∑k

j=1 µij (zii)
(39)

where n is the total number of used fuzzy sets, K is the total
number of fuzzy linguistic variables, µij is the membership
degree for the j-th fuzzy set.

a: OUTPUT OF THE DEFUZZIFICATION APPROACH
After the application of one of the defuzzification method
on the aggregated value obtained in the aggregation phase.
The applied defuzzification method transforms the fuzzy
aggregated input to the crisp output.which is obtained by
the application of all steps of the fuzzy inference engine
process. It consists of the different kinds of the decision of
the classification output variable, which are computed by
the defuzzified value. Therefore we employ defuzzification
rules to define the relationship between defuzzified value and
decision classification.

b: DEFUZZIFICATION RULES
Here are all possible rules of defuzzification where dv signi-
fies the defuzzified value while dc signifies the decision of
the classification. These rules are used to determine the final
crisp output, which is either negative, neutral, or positive.

if (0.0 ≤ dv ≤ 0.35 ), then dc = Negative
if (0.35< dv ≤ 0.65 ), then dc = Neutral
if (0.65 < dv ≤ 1.0 ), then dc = Positive

V. PARALLELIZATION OF OUR PROPOSAL USING
HADOOP FRAMEWORK
One of the most terrible shortcomings of our deep neural
networks (CNN+FNN) is the long execution time. Such a
time-consumption issue prevents the trained deep learning
models from speedily get more accurate information and
perform the required tasks. To curb this execution time prob-
lem, we have been applied the Hadoop framework [56] to
our proposed approach, which is a useful framework that
serves to improve the forecasting effectiveness and scalability
of our proposed fuzzy deep learning model. The Hadoop
platform parallelizes our FDLC between multiple computing
nodes. This framework utilizing its Hadoop Distributed File
System (HDFS) for stocking both used social-media datasets
in this work (sentiment140, and COVID-19 Sentiments) to be
classified and the decision of the classification, and MapRe-
duce programming model that processes and treats our fuzzy
deep learning tasks in a parallel manner using multiple map-
pers and reducers as illustrated in Fig. 22. Implementing
our FDLC on the MapReduce programming model mostly
consists of three stages: the Map phase, the Combining
stage, and the Reduce stage, introduced in brief details as
follows.

• Map phase: The map phase consists of four mappers;
each mapper read one or more data chunks from HDFS
as a different key-value pair’s inputs data. The mapper
applies the text-preprocessing to each chunk, then trans-
forms it to numerical data based on theword embeddings
phase, and passes it through our deep learning model
(CNN+FFNN), finally applies the fuzzy classifier to the
processed chunk. After dealing with all data chunks, The
outputs obtained by using our FDLC are turned into a set
of intermediate key-value pairs and write them on the
local disk.
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Algorithm 3: Our Fuzzy Classifier Based on Mamdani
Fuzzy System
Input : A obtained both sentimental scores NSS and

PSS in the deep learning phase. each variable
take five linguistic terms which are very low (is
between 0.0 and 0.25),low(is between 0.0 and
0.50),moderate(is between 0.25 and 0.75),high
(is between 0.50 and 1),and very high(is
between 0.75 and 1)

Output: Decision of classfication which is determined
in three label neural,negative or positive.

Phase 1: Definition of the input linguistic and output
linguistic variables and the definition of linguistic terms
of every linguistic variable.
Phase 2: Fuzzification process
2.1 Use Gaussian, Triangular, or Trapezoidal
membership function
2.2 Calculates the membership degree of each linguistic
term using the selected membership function.
2.3 Transform every crisp set to fuzzy set
Phase 3: Generates IF-THEN fuzzy rules based on our
expert knowledge
Phase 4:Inference engine process
4.1 Application phase
4.2 Implication phase
4.3 Aggregation phase
Phase 5: Defuzzification process
5.1 Use BOA, COA, WAM, or COS defuzzification
methods
5.2 Transform the obtained aggregated fuzzy value in
the aggregation phase to crisp or real value by the
application of one defuzzification method.
5.3 From the resulted crisp value, discovery the
classification decision.
if (0.0 ≤ dv ≤ 0.35 ), then dc = Negative
if (0.35< dv ≤ 0.65 ), then dc = Neutral
if (0.65 < dv ≤ 1.0 ), then dc = Positive
Where dv is the defuzzified value, and dc is the decision
of the classification.
return dc

• Group by keys: The MapReduce programming model
carries out this operation. Its main goal is aggregated
all obtained intermediate values in the Mapper with the
same intermediate key into an array list of values and
passed it to the Reducer.

• Reduce phase: In our work, the Reduce phase consists
of four Reducers; each reducer receives all intermediate
array list of values from all mapper. The reducer worked
on one key simultaneously and aggregated the list of
values associated with that key in a smaller set [56].
Finally, all reducers outputs are combined and merged
as one intermediate output and write this resulted output
as output key-value pair on HDFS as depicted in Fig. 22.

The advantage of Hadoop is its ability to prohibit the
problem of server failures by storing information redundantly
on several compute server, which aid to back up data auto-
matically. i.e the same piece of information is recorded on
multiple computing servers. If one of those compute servers
fails, the amount of data is still available on another comput-
ing server. MapReduce programming system is a software
that offers scalable and reliable conditions for the process
and implementation of distributed applications. To be more
accurate, this programming framework broken automatically
the computations into multiple parallelization tasks. Like if
one task fails to accomplish its processing work, it can be
refreshed without any negative influences to other running
tasks. MapReduce prevents the issue of network bottlenecks
by making the computation tasks close to stored data and
prohibits copying data around the network, and this reduces a
network bottleneck issue and leads to information and com-
putational load balancing. MapReduce Model also supplies
their users a very straightforward and straightforward model
which stashes the complications of all computing tasks of its
functioning.

In this contribution, we have used the Hadoop frame-
work in our proposal to minimize the execution time and
improve our FDLC. Our proposed method is involving both
used massive datasets (Sentiment140, and COVID-19 Sen-
timents). In the first step, we have employed the HDFS to
store and share the enormous dataset parallel between all
the computing servers in the cluster Hadoop. After we store
the dataset in HDFS, the next step is applying our FDLC.
In this second step, we used the MapReduce programming
model to parallelize our approach between all computing
nodes of the Hadoop cluster. The input in every round of
the MapReduce algorithm is a sentence to be classified, and
the outcome is a classified sentence with the classification’s
decision. The outcome of the classification of each sentence
will also be stored in HDFS. All these steps are described
in Fig. 22, and algorithm 4 presents theMapReduce algorithm
applied in our work to classify the sentences using our fuzzy
deep learning classifier.

VI. EXAMPLE OF THE APPLICATION
This section illustrates our FDLC approach with an exam-
ple i.e. in this section We will explain the followed steps
to classify each sentence S, according to three class labels
(Negative, Neutral, or Positive). The first step of our algo-
rithm is to check all words in each sentence S are written
in the English language. If not the case, we use the trans-
lated function to translate those words in other languages
into the English language. For example, we have S =‘‘The
deep neural networks are very efficienccccccccy to process
data; but they are inefficiency with the ingrained ambigu-
ity in NL que demande d’autre solutions.’’; The parts ‘‘que
demande d’autre solutions’’ of the sentence S is translated
to ‘‘that needs more solutions,’’ Then after the application of
pre-processing techniques, we obtained the sentence S as a
set of token (T) like Table 4 describes.
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FIGURE 22. Parallel architecture of our proposal using MapReduce.

TABLE 4. Set of token represents the sentence to be classified.

Algorithm 4: Our MapReduce Programming Model
Input : Data Chunks
Output: Decision of classfication
if (a word in sentence not in English) then
Translate(word into English)
T = Text-preprocessing(Data chunks)
W =Word-embedding(T)
C = CNN(W)
NSS = FFNN(C)
PSS = FFNN(C)
µ(NSS) = Fuzzification(NSS)
µ(PSS) = Fuzzification(PSS)
A = Application(µ(NSS),µ(PSS),IF-THEN rules)
I = Implication(A,µ(DCt )=1)
Ag = Aggregation(I)
dv = Defuzzification(Ag)
if (0.0 ≤ dv ≤ 0.35 ), then dc = Negative
if (0.35< dv ≤ 0.65 ), then dc = Neutral
if (0.65 < dv ≤ 1.0 ), then dc = Positive
Where dv is the defuzzified value, and dc is the decision
of the classification.
return dc

After we get the set of tokens, we have applied the Fast-text
word embedding approach to transform the text-based data to
numerical-based data, as shown in Fig. 23.

As illustrated in Fig. 23, The Fast-text word embedding
method applies the n-gram=2 characters to each word in

FIGURE 23. Word embedding matrix of sentence S.

the sentence S. for example the n-gram=2 for word ‘‘deep’’
will be (d,de,ee,ep,p). Then Fast-text uses either CBOW
or Skip-Gram to compute the word embedding for each
n-gram word and generates the word embedding matrix of
the sentence S. After the embedding matrix is obtained, CNN
automatically extracts the essential feature from this matrix.
So Fig. 24 describes CNN’s steps.
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FIGURE 24. Application of CNN’s steps.

FIGURE 25. Application of FFNN’s stages.

As seen in Fig. 24, CNN’s first step is the convolved oper-
ation, which serves to apply multiple filters to each n-gram
character windows CW. To clarity the convolved operation
in an accurate manner, Fig. 24 illustrates only the applica-
tion of one filter F to one n-gram character window CW,
and we obtain F.CW matrix. Then, we add the bias b equal
to 1, and we get the matrix F.CW+1. Finally, we applied
the ReLU activation function to F.CW+1 matrix, and we
obtain the first feature map. After the convolved operation,
the next stage is the pooling operation, in which we reduce
the feature map dimensionality. In this example, we use the
max-pooling with the shifting stride equal to 2. For that,
it must pad to zero the feature map to get its dimensionalities
divisible by 2. Then we apply the max-pooling to the padded
matrix, and we get the pooling column. Finally, we pass
the obtained pooling column to the fully connected layer.
After we extract the essential feature using CNN, the next
phase is the application of FFNN to compute both NSS
and PSS values. Therefore Fig. 25 presents the FFNN’s
steps.

As presented in Fig. 25, the first layer of our FFNN simple
version is the fully connected layer, followed by two hidden
layers and the output layer. We used at the level of both
hidden layers the sigmoid activation function, and at the level
of of each neuron node of the output layer, we applied the
softmax activationmethod. The input of this network is a fully
connected layer obtained in the CNN phase, and the outputs
are both PSS and NSS. The value of each hidden neuron Hnv
is computed by multiplying the all connected weights to this
hidden neuron into its value and add the bias b then calculated
the sigmoid activation function. In the following an example
of calculating the value of the first hidden neuron in the first
hidden layer:

Hnv = f ((wi1 ∗ v1 + wi2 ∗ v2 + wi3 ∗ v3 + wi4 ∗ v4)+ B)

= f ((1.72 ∗ 0.02+ 2.34 ∗ 0.15

+ 1.27 ∗ 0.39+ 1.29 ∗ 0.75)+ b)

= f (0.0344+1+0.351+1+0.4953+1+0.9675+ 1)

= f (5.85) =
1

1+ e5.85
=

1
1+ 347.23

=
1

348.23
= 0.00287

The same manner is used to calculate the value of each
neuron node in the output layer. The only difference is that
instead of using the sigmoid function for calculating the value
of each hidden neuron, we employ the softmax activation
function for computing the value of each neuron node in
the output layer. The following example explains how we
calculate the value of both neurons in the output layer:

ONv1 = wi1 ∗ v1 + wi2 ∗ v2)+ B

= (0.56 ∗ 0.25+ 0.96 ∗ 0.47)+ B

= 0.14+ 1+ 0.4512+ 1 = 2.60

ONv2 = wi3 ∗ v1 + wi4 ∗ v2)+ B
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FIGURE 26. Membership degree of each linguistic term.

= (0.56 ∗ 0.36+ 0.96 ∗ 0.10)+ B

= 0.2016+ 1+ 0.096+ 1 = 2.30

Therefore, both PSS and NSS values are calculated by
applying the softmax activation function on both values
ONv1, and ONv2 as follows.

PSS =
e2.60

e2.60 + e2.30
=

13.46
13.46+ 9.97

=
13.46
23.43

= 0.575

NSS =
e2.30

e2.60 + e2.30
=

9.97
13.46+ 9.97

=
9.97
23.43

= 0.425

After we compute both PSS=0.575 and NSS=0.425 values
using our proposed FDLC, the next phase is the application
of the MFS. So, The first stage of MFS is the application
of the fuzzification process into both NSS and PSS crisp
values, i.e., we use the triangular (or trapezoidal, or gaussian)
membership function to compute the membership degree of
belonging of the NSS and PSS to veryLow, low, moderate,
high, and veryHigh fuzzy sets. In this example, we have used
the triangular MF represented by Equation (27) and Fig. 19.
The calculating process is introduced as follows based on
Fig. 26.

For the linguistic term veryLow, and the optimal scalar
parameters are ll=0; v=0.125; and ul=0.25; then, we used
these parameters to calculate the membership degrees of both
linguistic variables NSS and PSS of belonging to the fuzzy set
veryLow. The results like the following:

• We have PSS=0.575 ≥ ul=0.25 Therefore;
µveryLow(PSS) = 0

• We have NSS=0.425 ≥ ul=0.25 Therefore;
µveryLow(NSS) = 0

Therefore, the values of each used membership function’s
parameters were determined experimental, and we take the
optimal values of these parameters that provide better classi-
fication performance.

For the linguistic term low, the optimal scalar parameters
are ll=0; v=0.25; and ul=0.5; then, we used these parameters

to calculate the membership degrees of both linguistic vari-
ables NSS and PSS of belonging to the fuzzy set low. The
results like the following:
• We have PSS=0.575 ≥ ul=0.5 Therefore;
µlow(PSS) = 0

• We have v=0.25 ≤ NSS=0.425 ≤ ul=0.5 Therefore;
µlow(NSS) = ul−NSS

ul−v =
0.5−0.425
0.5−0.25 = 0.3

For the linguistic term moderate, the optimal scalar param-
eters are ll=0.25; v=0.5; and ul=0.75; then, we used these
parameters to calculate the membership degrees of both lin-
guistic variables NSS and PSS of belonging to the fuzzy set
moderate. The results like the following:
• We have v=0.5≤ PSS=0.575≤ ul=0.75 Therefore;
µmoderate(PSS) = ul−PSS

ul−v =
0.75−0.575
0.75−0.5 = 0.7

• We have ll=0.25 ≤ NSS=0.425 ≤ v=0.5 Therefore;
µmoderate(NSS) = NSS−ll

v−ll =
0.425−0.25
0.5−0.25 =0.7

For the linguistic term high, the optimal scalar parameters
are ll=0.5; v=0.75; and ul=1; then, we used these parameters
to calculate the membership degrees of both linguistic vari-
ables NSS and PSS of belonging to the fuzzy set high. The
results like the following:
• We have ll=0.5≤ PSS=0.575 ≤ v=0.75 Therefore;
µhigh(PSS) = PSS−ll

v−ll =
0.575−0.50
0.75−0.50 =0.30

• We have NSS=0.425 ≤ ll=0.5 Therefore;
µhigh(NSS) 0

For the linguistic term veryHigh, the optimal scalar param-
eters are ll=0.75; v=0.875; and ul=1; then, we used these
parameters to calculate the membership degrees of both lin-
guistic variables NSS and PSS of belonging to the fuzzy set
high. The results like the following:
• We have PSS=0.575 ≤ ll=0.75 Therefore;
µveryHigh(PSS) = 0

• We have NSS=0.425 ≤ ll=0.75 Therefore;
µveryHigh(NSS) = 0

As we said earlier, the next step after the fuzzification
process is the application process of the 25 generated IF-Then
fuzzy rules. The primary objective of this operation is to
discover the firing strength of each activated fuzzy IF-THEN
rule via the application of the conjunction of both computed
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numerical variables PSS and NSS in the fuzzification phase.
The computing steps of this process are presented as follows:
• Rule1: IF (NSS is veryLow)= 0AND (PSS is veryLow)
= 0 THEN (DC is neutral)=Min(0,0)=0

• Rule2: IF (NSS is veryLow) = 0 AND (PSS is low)= 0
THEN (DC is neutral) = min(0,0)= 0

• Rule3: IF (NSS is veryLow)= 0AND (PSS is moderate)
= 0.7THEN (DC is positive)= min(0,0.7) = 0

• Rule4: IF (NSS is veryLow) = 0 AND (PSS is high) =
0.30 THEN (DC is positive)= min(0,0.30) = 0

• Rule5: IF (NSS is veryLow)= 0AND (PSS is veryHigh)
= 0 THEN (DC is positive) = min(0,0) = 0

• Rule6: IF (NSS is low)=0.3 AND (PSS is veryLow) =
0THEN (DC is neutral) = min(0.3,0)=0

• Rule7: IF (NSS is low)=0.3 AND (PSS is low)= 0
THEN (DC is neutral)= min(0.3,0) =0

• Rule8: IF (NSS is low)=0.3AND (PSS ismoderate)=0.7
THEN (DC is positive) = min(0.3,0.7)= 0.3

• Rule9: IF (NSS is low)=0.3 AND (PSS is high)=0.3
THEN (DC is positive) = min(0.3,0.3)= 0.3

• Rule10: IF (NSS is low)=0.3AND (PSS is veryHigh)=0
THEN (DC is positive) = min(0.3,0) =0

• Rule11: IF (NSS is moderate)=0.7AND (PSS is
veryLow)=0 THEN (DC is negative)=min(0.7,0)=0

• Rule12: IF (NSS is moderate)=0.7 AND (PSS is low)=
0THEN (DC is negative)=min(0.7,0)=0

• Rule13: IF (NSS is moderate)=0.7 AND (PSS is
moderate)=0.7 THEN (DC is neutral)=min(0.7,0.7)
=0.7

• Rule14: IF (NSS is moderate)=0.7 AND (PSS is
high)=0.375THEN (DC is positive)=min(0.7,0.3)=0.3

• Rule15: IF (NSS is moderate)=0.7 AND (PSS is
veryHigh)=0 THEN (DC is positive)==min(0.7,0)=0

• Rule16: IF (NSS is high)= 0AND (PSS is veryLow)=
0THEN (DC is negative)=min(0,0)=0

• Rule17: IF (NSS is high)= 0 AND (PSS is low)=
0THEN (DC is negative)=min(0,0)=0

• Rule18: IF (NSS is high)= 0 AND (PSS is moderate)=
0.7THEN (DC is negative)=min(0,0.7)=0

• Rule19: IF (NSS is high)= 0 AND (PSS is high)=0.3
THEN (DC is neutral)=min(0,0.3)=0

• Rule20: IF (NSS is high)= 0AND (PSS is veryHigh)=0
THEN (DC is neutral)=min(0,0)=0

• Rule21: IF (NSS is veryHigh)=0 AND (PSS is very
low)=0 THEN (DC is negative)=min(0,0)=0

• Rule22: IF (NSS is veryHigh)=0 AND (PSS is low)=0
THEN (DC is negative)=min(0,0)=0

• Rule23: IF (NSS is veryHigh)=0 AND (PSS is
moderate)=0.7 THEN (DC is negative)=min(0,0.7)=0

• Rule24: IF (NSS is veryHigh)=0 AND (PSS is
high)=0.3 THEN (DC is neutral)=min(0,0.30)=0

• Rule25: IF (NSS is veryHigh)=0 AND (PSS is
veryHigh)=0 THEN (DC is neutral)= min(0,0)=0

The following stage is the implication process. The main
goal of the implication phase, as we presented previously,
is the calculation of the membership degree of the decision

classification attribute ’DC’ to each linguistic term ’Nega-
tive,’ ’Neutral’ or ’Positive,’ based on the firing strength of
an IF-THEN rule obtained in the previous application phase,
and on the consequent block of the IF-THEN fuzzy rule. the
computing steps are presented below:
• Rule1:µ1(neutral)=min(0,1)=0
• Rule2:µ2(neutral)=min(0,1)=0
• Rule3:µ3(positive)=min(0,1)=0
• Rule4:µ4(positive)=min(0,1)=0
• Rule5:µ5(positive)=min(0,1)=0
• Rule6:µ6(neutral)=min(0,1)=0
• Rule7:µ7(neutral)=min(0,1)=0
• Rule8:µ8(positive)=min(0.3,1)=0.3
• Rule9:µ9(positive)=min(0.3,1)=0.3
• Rule10:µ10(positive)=min(0,1)=0
• Rule11:µ11(negative)=min(0,1)=0
• Rule12:µ12(negative)=min(0,1)=0
• Rule13:µ13(neutral)=min(0.625,1)=0.7
• Rule14:µ14(positive)=min(0.375,1)=0.3
• Rule15:µ15(positive)=min(0.625,1)=0
• Rule16:µ16(negative)=min(0,1)=0
• Rule17:µ17(negative)=min(0,1)=0
• Rule18:µ18(negative)=min(0,1)=0
• Rule19:µ19(neutral)=min(0,1)=0
• Rule20:µ20(neutral)=min(0,1)=0
• Rule21:µ21(negative)=min(0,1)=0
• Rule22:µ22(negative)=min(0,1)=0
• Rule23:µ23(negative)=min(0,1)=0
• Rule24:µ24(neutral)=min(0,1)=0
• Rule25:µ25(neutral)=min(0,1)=0
After the implication process, the next process is the

aggregation process, which aims to aggregate each class
label(Positive, Neutral, or Negative) among them and find
the maximum membership degree among the aggregated
values. Also, the computing steps are carried out as
follows:
• µ(positive)=µ3(positive)∨µ4(positive)∨µ5(positive)
∨ µ8(positive) ∨ µ9(positive) ∨ µ10(positive) ∨
µ14(positive) ∨ µ15(positive) = max(0,0,0,0.3,0.3,0,
0.3,0) = 0.3

• µ(negative)= µ11(negative) ∨ µ12 (negative) ∨
µ16(negative) ∨ µ17(negative) ∨ µ18(negative) ∨
µ21(negative) ∨ µ22(negative) ∨ µ23(negative) =
max(0,0,0,0,0,0,0,0) = 0

• µ(neutral)= µ1(neutral) ∨ µ2(neutral) ∨ µ6(neutral)
∨ µ7(neutral) ∨ µ13(neutral) ∨ µ19(neutral) ∨
µ20(neutral) ∨ µ24(neutral) ∨ µ25(neutral) = max(0,0,
0,0,0.7,0,0,0,0) = 0.7

Finally, and after the aggregation process, we use the Cen-
troid of Area defuzzification method to defuzzify the fuzzy
aggregated outputs to obtain one crisp result that indicates
the class label. This process is performed by following these
described steps below:

Step 1: Accordingly to Fig. 27 we compute the Cen-
troid of negative label that will be equal to (0.0+0.35)/
2 = 0.175, the Centroid of neutral label that will be equal to
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FIGURE 27. Membership degree of each class label.

FIGURE 28. Defuzzified value computed using rules review in Matlab.

(0.35+0.65)/2 = 0.5, and the Centroid of positive label that
will be equal to (0.65+1)/2 = 0.825

Step 2: Accordingly to Centroid of Area defuzzification
method introduced in equation (36). The defuzzfied value
dv is calculated using the computed Centroid in the first
step and the membership degree of each label as follows:
dv = 0∗0.175+0.7∗0.5+0.825∗0.3

0+0.7+0.3 = 0.60
Step 3: Accordingly to step 2 the defuzzified value

dv = 0.60 is between 0.35 and 0.65. Therefore; the decision
of classification of the sentence S is neutral

Accordingly to Fig. 28 we remark that the defuzzified
value is equal to 0.60 for PSS=0.575 and NSS=0.425. This
defuzzified value is is between 0.35 and 0.65. Therefore;
the decision of classification of the sentence S is neutral.
So we get the same conclusion as the performed manually
computing.

VII. THE EXPERIMENT AND THE RESULTS
This section describes the experimental results of our fuzzy
deep learning classifier (CNN + FFNN + MFS). These
experimental results are provided by applying our fuzzy
deep learning classifier and other literature methods on both
used datasets, as presented in the data-collection subsection.

Generally, in this study, we split the given dataset into
a training dataset, which represents 90% of the overall
dataset, and a testing dataset representing only 10% of the
comprehensive dataset. After that, we store both obtained
datasets(training and testing) into HDFS. Once the storage
is finished, we apply multiple text pre-processing techniques
on training and testing datasets to reduce and remove the
noisy data. Then we implement the most efficient word
embedding approach to transform the text-based data into
numerical-based data. Besides, we apply our proposed fuzzy
deep learning classifier on the testing dataset, and we stock
the classified data into HDFS. Also, we carry out the clas-
sification based on our proposed classifier in a parallel
manner by applying the Hadoop framework with its HDFS
and its MapReduce programming framework. In this work,
the Hadoop cluster consists of five computing nodes; one
master computing node and four salve computing nodes.
For assessing the experimental results, we have calculated
ten evaluation metrics exhibited in the performance metrics
subsection. The ten metrics comprise TPR, TNR, FPR, FNR,
ER, PR, AC, KS, FS, and TC.

In this work, we performed the experiments in five
steps. First, we kept the same parameters of our suggested
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TABLE 5. Parameters settings of our FDLC that we used to assess the word embedding approaches.

TABLE 6. ER and TC of each word embedding methods without applying the Hadoop framework.

fuzzy deep learning classifier. Then, we switched the word
embedding adopted approaches(Word2vec, GloVe, Fast-
text) to conclude the most effective approach to transform
the text-based data into numerical-based data. After we
obtained the most performant word embedding procedure
in terms of accuracy, we have utilized it in the rest of
this work.Second, we applied the efficiency word embed-
ding technique obtained in the preceding step, and we pre-
served the same parameters of our proposed deep learning
model(CNN+FFNN). Then, we changed the adopted fuzzi-
fication approach and the used defuzzification methods. This
experiment’s main objective is to determine themost effective
fuzzification approach and the most efficient defuzzification
method among all used methods in terms of accuracy. Third,
after determining the most efficient word embedding tech-
nique, the better fuzzification method, and the most effec-
tive defuzzification approach. We formed several fuzzy deep
learning classifiers (FDLC) using different parameters for
each layer. This experiment’s primary goal is to define the set
of parameters, which made our FDLC more accurate. Four,
we parallelize our proposed FDLC employing the Hadoop
framework with its HDFS and MapReduce programming
framework. Finally, we compared the most effective model
of our proposed FDLC with similar literature approaches and
demonstrating our suggested FDLC’s performance.

A. EXPERIMENT 1
In this experiment, we evaluated the effectiveness of the
Word2vec, GloVe, Fast-text in terms of the ER, and the TC.
We merged these studies word embedding methods with our
suggested FDLC to prove and to verify their performance.
This experiment serves to discover the more efficient one

among all employed word embedding processes in the case of
our work, in which we used both large datasets. So, we kept
the same parameters of our proposed FDLC, and we switched
the adopted word embedding method (Word2vec, GloVe, and
Fast-text), Then we applied each combination on both used
massive datasets as presented in Table 5.

Table 5 introduces the parameter settings of both used deep
learning model CNN and FFNN. Also, for theMFS classifier,
we used the Triangular membership function for performing
the fuzzification and the Centroid of the Area for carrying out
the defuzzification. Besides, the Hadoop framework is imple-
mented in our work, which parallelizes the learning word
embedding tasks between fivemachines; onemaster node and
four slave nodes. The Hadoop framework uses its HDFS for
stocking the dataset to be embedding and the set of repre-
sentation vectors (the obtained result by applying the word
embedding method), and MapReduce programming frame-
work for processing and treating our work [56]. The Hadoop
framework’s primary goal is to parallelize our embedding
process multiple machines to improve the AC and reduce the
TC. Table 6 shows the ER and TC of each word embedding
methods without applying the Hadoop framework.

From our experimental consequences, as revealed
in Table 6, we remarked that the GolVe method takes less
execution time than other techniques, which is equal to
7.32s, and 4.52s in the case of sentiment140 and COVID-19
Sentiments datasets, respectively. But it has a higher error
rate, which is equal to 35.68%, and 21.39% in the case of
sentiment140 and COVID-19 Sentiments datasets, respec-
tively. Fast-text has less error rate compared toWord2vec and
GloVe techniques, which is equal to 11.02%, and 8.66% in
the case of sentiment140 and COVID-19 Sentiments datasets,
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TABLE 7. ER and TC of each word embedding methods with applying the Hadoop framework.

TABLE 8. ER, AC, and TC of fuzzification method/defuzzification approaches without using Hadoop framework.

respectively. But it has a higher execution time, which is
equal to 20.15s, and 12.46s in the case of sentiment140 and
COVID-19 Sentiments datasets, respectively. In summary,
the Fast-text embedding method is the most efficient in terms
of the learning rate. And in order to overcome its execution
time shortcoming, we have employed the Hadoop framework
to parallelize the used embedding methods to minimize the
execution time and raise the learning rate. Table 7 depicts
the obtained results after the incorporation of the Hadoop
framework with word embedding methods.

From Tables 6 and 7, we deduce that the Hadoop frame-
work can decrease the execution time and raise the learning
rate. For example, it reduces the Fast-text method’s exe-
cution time from (20.15s,12.46s) to (3.03s,1.49s) for both
datasets sentiment140, and COVID-19 Sentiments, respec-
tively. Almost, we can say that Fast-text is the most efficient
method. Therefore, we will use only the Fast-text word
embedding method in the rest of this work.

B. EXPERIMENT 2
This second experiment’s main goal is to find the most
efficient fuzzification approach and better defuzzification
methods. In this experiment, the adopted word embed-
ding is the Fast-text, and the parameter settings of both
used deep learning model CNN and FFNN are the same
as those presented in Table 5. The renovated part of our
proposal is in the applied fuzzy classifier. As explained
earlier, In our fuzzy classifier, we use three MFs for the
fuzzification process, which are Triangular, Trapezoidal, and
Gaussian MFs, and four defuzzification approaches, which
are Centroid of Area, Bisector of Area, Weighted Aver-
age, and Center of Sums. Therefore in this experiment,

we combine each fuzzificationmethodwith different defuzzi-
fication methods, as illustrated in Table 8. This aggre-
gation generates 12 combinations, which are Triangular
MF/Centroid of Area, TriangularMF/Bisector of Area, Trian-
gular MF/Weighted Average, Triangular MF/Center of Sums,
Trapezoidal MF/Centroid of Area, Trapezoidal MF/Bisector
of Area, Trapezoidal MF/Weighted Average, Trapezoidal
MF/Center of Sums, Gaussian MF/Centroid of Area, Trape-
zoidal MF/Gaussian MF, Trapezoidal MF/Gaussian MF, and
Trapezoidal MF/Gaussian MF. Table 8 presents the obtained
ER, AC, and TC after applying our proposal on the Senti-
ment140 dataset without using the Hadoop framework.

As presented previously, in this experiment, we kept the
same parameters for the deep learning model, as detailed
in Table 5, and we applied the Fast-text word embed-
ding. Therefore at each time, we changed the fuzzifica-
tion/defuzzification methods in order to discover the most
efficient fuzzification method /defuzzification approaches.
FromTable 8, we perceive that the better fuzzificationmethod
is the Gaussian MF, and the most efficient defuzzification is
the Center of Sum approach compared to other approaches.
Furthermore, we used the Gaussian MF to fuzzify both NSS
and PSS values into veryLow, low, moderate, high, and very-
High fuzzy sets. After we get the output of the inference
engine process, we defuzzified this fuzzy output into the
crisp output using the Center of Sum method. This Gaussian
MF/Center of Sums aggregation raises the AC to 89.75% and
decrease the ER to 10.25%; also, this combination is better in
terms of consumption time that equal to 22.01s.

Table 9 describes the obtained result for the ER, AC, and
TC of applying fuzzification approaches and defuzzification
methods using the Hadoop framework. This step’s primary
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TABLE 9. ER, AC, and TC of fuzzification method/defuzzification approaches using Hadoop framework.

TABLE 10. Parameters settings of our proposed (CNN+FNN) deep learning model.

purpose is to demonstrate the effectiveness of applying
the Hadoop framework on the fuzzification techniques and
defuzzification process. Similarly, in this phase, the deep
learning hybrid model keeps the same parameters as dis-
played in Table 5; the Fast-text approach is used as the word
embedding technique, and at each time, the fuzzification
approach /defuzzification methods are changed.

From Table 9, we remark that the Hadoop framework
reduces the execution time of all 12 fuzzification method/
defuzzification approach. Also, it increases the AC and
decreases the ER. For example, in the case of Gaussian
MF/Center of Sums incorporation, the TC is reduced from
22.01s, as shown in Table 8, to 4.402s, as exhibited in Table 9.
The AC is increased from 89.75%, as illustrated in Table 8,
into 94.87%, as presented in Table 9. The ER is decreased
from 10.25%, as described in Table 8, to 5.13%, as depicted
in Table 9. Therefore, in this experiment, we have learned
two remarks. First, the Hadoop framework possesses a signif-
icant ability to improve our proposed FDLC’s performance.
Second, the Gaussian MF/Center of Sums combination is
proven its effectiveness compared to eleven other varieties.
For that, we have decided to use this Gaussian MF/Center of
Sums as a fuzzification approach/defuzzification method in
our proposed FDLC.

C. EXPERIMENT 3
In this experiment, several FDLCs have been constructed
harnessing different parameters for each layer. The param-
eter settings employed for our proposed deep learning
(CNN+FFNN) model such as the number of convolutional
layers, number of pooling layers, number of fully connected
layers, number of the hidden layers, the used activation
functions, filter size, regularizer, number of filters, dropout
options, window size, vocabulary size and number of epochs
are described in Table 10.

For evaluation of our proposal, in this experiment, we take
either 1,2,3,4,5,6, or 7 convolution layers, also we take either
1,2,3,4,5,6,or 7 pooling layers, then we vary the sizes of
filter such as 3 × 3,4 × 4,5 × 5,7 × 7,9 × 9,10 × 10,11 ×
11,12 × 12. The number of these used filters is varied from
15 to 135. Also, we take either 3,4,5,6,7 or 8 hidden layers.
For the other parameters such as embedding input matrix,
dropout option, the used activation functions, regularizer,
window size, vocabulary size, and the number of epochs have
been made steady along with the performed changes because
these parameters have not demonstrated any enhancement
in the accuracy of our proposal. In all constructed FDLCs,
the number of convolutional layers, number of pooling layers
has been changed along with other used parameters such
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TABLE 11. Parameters settings for our parallel FDLCs.

as the size of filters, number of hidden layers, number of
filters, the word embedding is set to Fast-text, and the fuzzi-
fication method/defuzzification approach is set to Gaussian
MF/Center of Sums method. The configuration of parameter
settings of all the 18 parallel FDLCs is illustrated in Table 11.

As presented in Table 11, the difference between
FDLC1 and FDLC2 is in the number of hidden layers, such as
the FDLC1 has three hidden layers and FDLC2 has four hid-
den layers, and in the size of filters such as the FDLC1 used
two filters of size 4 × 4 and 5 × 5, and FDLC2 applied two
filters of size 5×5 and 7×7. FromTable 12we remark that the
accuracy of FDLC1 is equal to 91.30% and those of FDLC2 is
equal to 94.04% So, there is a significant amelioration for
passing from FDLC1 into FDLC2.

Based on FDLC1 and FDLC2, we have been built two
novel models, which are called FDLC3 and FDLC4, in which
we fixed the number of hidden layers, and we varied the size
of the used filters to find the causes that make FDLC2 better
than FDLC1. From FDLC2 and FDLC4, we note that the fil-
ter 7×7 increases the classification rate by 0.74%.Also, From
FDLC1 and FDLC4, we remark that using four hidden layers
in FDLC4 instead of three hidden layers in FDLC1 raises the
classification by 4.74%.

At this point, the most efficient model among the four
constructed models is the FDLC2. So, based on this FDLC 2,
we will build two other models, which are called FDLC5 and
FDLC6. In FDLC5, we add a new filter size 9 × 9, and in
FDLC6, we boost the number of used filters to 45, and we
also append the filter size 9 × 9 to other used filters size.
Consequently, The filter 9 × 9 grows the classification rate
by 0.94%, and the increase in the number of used filters to
45 leads to an increase in the classification rate by 3.69%.

At this actual moment, the FDLC6 is better than all previ-
ously suggested models; likewise, we build two other models
based on FDLC6, which are called FDLC7 and FDLC8.
In FDLC7, we attach the filter 11 × 11 to different adopted
filters size in FDCL6, and in FDLC8, we also add the fil-
ter 11 × 11, and we boost the number of used filters to
90. According to a comparative study between FDLC7 and
FDLC8, we perceive that the classification rate is decreased
by 0.09%whenwe add the filter 11×11. Therefore in the next
experiment, we will use the filter 10× 10 and filter 12× 12
to discover the optimal filter among 9 × 9,10 × 10,11 × 11
and12 × 12. In FDLC8, the classification rate is increased
by 5.24%. We conclude that the raise in the number of used
filters leads to an increase in the classification rate.
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TABLE 12. ER, AC and TC of different proposed parallel FDLCs.

Presently, the most powerful model is FDLC8. Therefore,
based on this FDLC8 model, we have been constructed both
models FDLC9 and FDLC10. These novel models keep the
same configuration as FDLC8. The only difference is the
added filter size, such as in FDLC9, we remove the filter
11 × 11, and we adopt the filter with size 10 × 10, and
in FDLC10, we eliminate the filter with size 11 × 11, and
we add the filter with size 12 × 12. The filter 11 × 11 is
removed because it gives rise to a decreasing in the classifica-
tion performance, as presented in FDLC7. According to the
obtained result, as explained in Table 12, the filter 10 × 10
used in FDLC9 increases the classification performance by
1.03%, and the filter 12× 12 used in the FDLC10 decreases
the accuracy by 0.97% compared to the FDLC8. In this
experiment, we observe that the filter size, which starts by
3×3 to 10×10, gives rise to an increase in the classification
rate. Still, once we arrive at a filter size greater or equal to
11 × 11, the classification performance starts to decrease.
Thence, we deemed the size filter 10× 10 as an optimal size
value of our suggested FDLC.

Accordingly, to all previously performed experiments,
FDLC9 is the most efficient model. Thus, based on this
FDLC9 model, we form two different models: FDLC11 and

FDLC12. In FDLC11, we vary the number of hidden lay-
ers, and for FDLC12, we raise the number of filters. From
the empirical results, we notice that the augmentation in
the number of hidden layers leads to 0.86% augmentation
in the classification rate for the FDLC11 model. Also, for
the model 12, we observe that the rise in the number of
used filters increases the accuracy by 0.39%. Based on these
results, we build a novel FDLC13 that augments the number
of hidden layers and the number of employed filters at once.
The empirical outcome proves that the FDLC13 achieved the
best accuracy at this current time that equal to 96.89%.

Once again, we create two novel models, which are
FDLC14 and FDLC15. In FDLC14, we augment the number
of hidden layers to 6, and in FDLC15, we raise the number
of used filters to 360. Accordingly, to the empirical results,
we show that the FDLC14 increases the classification rate by
0.36% compared to FDLC13. But the augmentation in the
number of used filters made in FDLC15 provokes a signif-
icant decrease in classification rate compared to FDLC13.
In comparison, it reduced the accuracy from 96.89% in
FDLC13 to 78.29 in FDLC15. These considerable decreases
demonstrate that the optimal number of filters value is
close to 180.
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FIGURE 29. AC and ER of all evaluated FDLCs of our proposal.

Based on the previous experiment, we create four other
novel models, which are FDLC16, FDLC17, FDLC18, and
FDLC19. These models’ objective is to find the possible
interval in which the optimal value of the number of used
filters exists. In the FDLC16, we used 270 as the number
of adopted filters; for the FDLC17, we employed 225 as
the number of employed filters; In the FDLC18, we utilized
200 as the number used filters. Finally, in the FDLC19,
we used 190 as the number of applied filters. On the report
of experimental results, the classification rate augments when
the number of used filters is close to 180. So the optimal value
will be in the interval [180;190].

To determine the optimal value, we assemble three mod-
els, which are FDLC20, FDLC21, Model 22. In FDLC20,
we employed 185 as the number of filters.While, In FDLC21,
the number of used filters is 183. Also, for FDLC22, the num-
ber of applied filters is 187. The preliminary outcome proved
that the number of used filters’ optimal value would be in the
interval [183;185]. So, in the previous experiment, we com-
puted the classification rate for 183 and those of 185. In this
experiment, we will create a novel model called FDLC23,
in which the number of used filters equal to 184–acquired
experimental results of the FDLC20, which is utilized the
183 as a number of the used filters show that its classification
rate is equal to 97.25%. It is currently the highest classifica-
tion rate. So, we can deduce that the optimal value of the used
filters is 183.

Based on FDLC20, we change the number of hidden
layers to determine the most efficient number. To do that,

we develop four models, which are FDLC24, FDLC25,
FDLC26, and FDLC27. In FDLC24, we used the seven as
the number of hidden layers. Also, in FDLC25, we change the
number of convolutional layers to 2, and we alter the number
of pooling layer to 2. Then in FDLC26, wemodify at the same
time the number of convolutional, pooling, and hidden layers.
Also, in FDLC27, we change the number of hidden layers to
eight. Then. Consequently, FDLC24 augments the classifica-
tion rate by 0.78%. Thus, FDLC25 increases the classification
rate by 0.67% compared to FDLC20. Hence, the accuracy
in FDLC26 is raised to 99.17%. But in FDLC27 has less
accuracy compared to FDLC26, which is equal to 98.39%.
According to FDLC26 and FDLC27, we deduced that the
optimal number of hidden layers is seven.

Based on the previous empirical results, we construct five
models, in which we vary at the same time, the number of
convolutional and pooling layers. These models are FDLC28,
FDLC29, FDLC30, FDLC31, and FDLC32, as described
in Table 11. On the report of the experiment results for the
last five models, we remark that 6 is the optimal number of
the convolutional and pooling layers. Therefore, according
to the presented results in Table 12 and in Fig. 29, the most
efficient introduced FDLC in this work is the FDLC31 with
an accuracy equal to 99.83%. Fig. 30 illustrates the final
architecture of our proposed fuzzy deep learning classifier
after we carried out several experiments to find the optimal
values in each phase.

From Table 12 and Fig. 31, we remark that our pro-
posal has a higher classification rate but offers by higher
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FIGURE 30. TC of all evaluated FDLCs of our proposal.

FIGURE 31. The architecture of our proposal after multiple experiments.

execution time. So, to prevent this problem, we decide to
use more Hadoop computing nodes. Fig. 32 represents the
experimental result after the execution of our proposal on
several Hadoop computing nodes. Therefore, for this Fig. 32,
we observe that the execution time decreased from 25.97s
used five computing machine to 0.0089s used twelve com-
puting machines.

D. EXPERIMENT 4
We experimented with demonstrating the obtained experi-
mental results by applying our proposed fuzzy deep learn-
ing classifier. Its objective is to compare our proposal with
multiple other methods from the literature. The selected
works for these experiments are a ‘‘Multi-task learning

model based on Multi-scale CNN and LSTM for senti-
ment classification’’ suggested by Jin et al. [29]. This work
merges CNN and LSTM to improve sentiment analysis per-
formance. 86.25%. a ‘‘Stacked Residual Recurrent Neural
Networks With Cross-Layer Attention for Text Classifica-
tion’’ proposed by Lan et al. [31]. This approach integrates
the stacked residual RNN and cross-layer attention tech-
nique. Its objective is to capture and detect more linguistic
features, thus employ them for the sentiment analysis task
89%. A ‘‘Comparison Enhanced Bi-LSTM with MultiHead
Attention (CE-B-MHA)’’ developed by Lin et al. [32]. This
paper, called CE-B-MHA, combines multi-Head attention to
extracting global features and the strength of Bi-LSTM to
discover the local sequence features. A ‘‘hybrid method for
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FIGURE 32. The execution time of our proposal illustrates in Fig. 31.

bilingual text sentiment classification based on deep learn-
ing’’ implemented by Liu et al. [33]; this suggested method
integrates NB, SVM machine learning algorithm with RNN,
and LSTM deep learning model. And finally, ‘‘Intelligent
asset allocation via market sentiment views’’ designed by
Xing et al. [36]; also, this proposed method combines the
evolving clustering with LSTM deep learning model. Our
proposal and all these chosen approaches from the literature
are applied to both used datasets in this work, which are
Sentiment140 and COVID-19_Sentiments datasets. Fig. 33
depicted the obtained results in terms of classification rate
and consumption time by applying our proposal and other
selected methods on the Sentiment140 dataset.

FIGURE 33. Experimental result of the comparative study carried out
between our proposal and other works for the literature using
Sentiment140 dataset.

Fig. 34 illustrates the obtained results after the application
of our suggested FDLC and other selected techniques from
the literature on the COVID-19_Sentiments dataset

From Fig. 33 and Fig. 34, we observe that our pro-
posal based on the deep learning model (CNN+FFNN),
Hadoop framework, and Mamdani fuzzy system outperforms
the other used approaches (Jin et al. [29], Lan et al. [31],
Lin et al. [32], Liu et al. [33], and Xing et al. [36]) with
accuracy equal to 99.83%,99.99%, and execution time equal
to 0.0089s, and 0.00534 on Sentiment140 dataset and
COVID-19_Sentiments dataset respectively. Our proposal’s

FIGURE 34. Experimental result of the comparative study carried out
between our proposal and other works for the literature using
COVID-19_Sentiments dataset.

significant effectiveness and performance are due to the appli-
cation of fuzzy logic, integration of CNN and FFNN deep
learning models, and the utilization of twelve computing
nodes in the Hadoop cluster.

For more evaluation of our proposed fuzzy deep learning
classifier, we did another experiment that compares our pro-
posal with the other selected approaches from the literature
(Jin et al. [29], Lan et al. [31], Lin et al. [32], Liu et al. [33],
and Xing et al. [36]). But in this case, the evaluations used
criterion will be TPR, FNR, TNR, FPR, PR, KS, and FS,
as presented in the performance metrics subsection. This
comparative is performed using both datasets, which are
Sentiment140 and COVID-19_Sentiments. Its experimental
results are illustrated in Table 13.

Based on the experimental results depicted in Table 13,
we observe that our proposal (CNN+FNN+FuzzyLogic+
Hadoop) outperforms the other selected approaches from the
literature in both datasets (Sentiment140 and COVID-19_
Sentiments) and at the level of TPR(99.98%, 99.81%),
FNR(0.02%, 0.19%), TNR(98.61%,98.91%), FPR(1.39%,
1.09%) PR(98.55%,97.75%), KS(97.96%,98.96%) and
FS(98.35%,96.54%)

E. EXPERIMENT 5
In this last experiment, we have evaluated the effectiveness
of our proposed FDLC in terms of complexity, convergence,
and stability. This experiment serves to compare our pro-
posed FDLC, Jin et al. [29], Lan et al. [31], Lin et al. [32],
Liu et al. [33], and Xing et al. [36] and to discover the more
efficient method among all evaluated approaches in terms of
complexity, convergence, and stability.

F. COMPLEXITY
The complexity of a model is a measurement of the time
consumption and space used by a model. in this subsec-
tion we evaluated the time complexity and space complex-
ity of our proposed FDLC, Jin et al. [29], Lan et al. [31],
Lin et al. [32], Liu et al. [33], and Xing et al. [36]. Addition-
ally, Table 14 presents the experimental results obtained after
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TABLE 13. The Experimental outcome of TPR, FNR, TNR, FPR, PR, KS, and FS. of the our FDLC,Jin et al. [29], Lan et al. [31], Lin et al. [32], Liu et al. [33], and
Xing et al. [36] approaches.

TABLE 14. Space complexity of the our FDLC, Jin et al. [29], Lan et al. [31], Lin et al. [32], Liu et al. [33], and Xing et al. [36] approaches.

we measure the space complexity of our FDLC model and
other chosen models in terms of the number of executed
operations, and the number of the network parameters.

From Table 14, we note that our proposed FDLC
has performed multiple operations with a size equal
to (42M,102M) for COVID-19_Sentiments and Senti-
ment140 dataset, respectively. The size of our FDLC
parameters is equal to (21.76M,47.82M) for COVID-19_
Sentiments and Sentiment140 dataset, respectively. As the
experimental result shown, our proposed FDLC requires
much lower space computational complexity compared to
Jin et al. [29], Lan et al. [31], Lin et al. [32], Liu et al. [33],
and Xing et al. [36] approaches.

Table 15 shows the empirical results obtained after measur-
ing the time computational complexity of our FDLC model
and other chosen models in terms of training time consump-
tion and testing time consumption.

From Table 15, we observe that our proposed FDLC has
consumed a training time equal to (0.00534s,0.0089s) for
COVID-19_Sentiments and Sentiment140 dataset, respec-
tively. The testing time of our FDLC model is equal to
(0.00178s,0.00287s) for COVID-19_Sentiments and Sen-
timent140 dataset, respectively. As the empirical result
described, our proposed FDLC requires much lower time
computational complexity compared to Jin et al. [29],
Lan et al. [31], Lin et al. [32], Liu et al. [33], and
Xing et al. [36] approaches.

G. CONVERGENCE
Our proposed FDLC will be proved if it is convergent or
not according to the specific number of learning iterations,
which is useful to control the time-consuming. The fol-
lowing formula specifies the condition of the convergent
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TABLE 15. Time complexity of the our FDLC, Jin et al. [29], Lan et al. [31], Lin et al. [32], Liu et al. [33], and Xing et al. [36] approaches.

trend:

Errorformer − Errorcurrent ≥ T (40)

where Errorformer is our FDLC average error of the previous
training iteration, Error_current is our FDLC average error
of the present training iteration, and T is the threshold that
determinate the convergence rate value and after multiple
experiments, we set this threshold value to 0.0001.

FIGURE 35. Convergence rate of our proposed FDLC in both used
datasets.

Our FDLC average error is computed as follows:

Error =
1
2
∗

∑N
i=1

∑M
j=1(c− clabel)

2

N
(41)

where N is the total number of sentences in the given dataset,
M is the total number of FDLC output units, c is the required
output class label, and clabel the obtained output class label.
If the equation (40) is met, our proposed FDLC can be
deemed convergent, and the algorithm is trained until the
FDLC’s average error satisfied the condition. Otherwise, our
proposed FDLC is not convergent. Fig. 35 shows the con-
vergence rate of our proposed FDLC in both used datasets.
From Fig. 35, we note that our proposed FDLC converged
towards the threshold value 0.0001 after our FDLC reached
the iterations 200, and 400 for COVID-19_Sentiments and
Sentiment140 dataset, respectively.

TABLE 16. Convergence rate of our FDLC, Jin et al. [29], Lan et al. [31],
Lin et al. [32], Liu et al. [33], and Xing et al. [36] approaches.

TABLE 17. Stability of the our FDLC, Jin et al. [29], Lan et al. [31],
Lin et al. [32], Liu et al. [33], and Xing et al. [36] over five
cross-validations.

Table 16 represents the convergence rate of our FDLC,
Jin et al. [29], Lan et al. [31], Lin et al. [32], Liu et al. [33],
and Xing et al. [36] approaches. From Table 16, we deduce
that our proposed FDLC converges very fast compared to
other approaches.

H. STABILITY
We determine if our FDLC is stable or not by comput-
ing the mean standard deviation (MSD) corresponding to
the classification-based models’ accuracy on the different
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five cross-validations of the given dataset. Our FDLC is
trained with the same hyper-parameters and configurations
but with different five cross-validations dataset. Table 17,
shows the obtained average accuracy (AVA) and mean devi-
ation standard of our FDLC, Jin et al. [29], Lan et al. [31],
Lin et al. [32], Liu et al. [33], and Xing et al. [36] in the five
cross-validations of the both used datasets in this work.

FromTable 17, we note that our FDLC is practically always
capable of achieving higher average accuracy with a very
low mean standard deviation. This suggests that our FDLC
is more stable than other algorithms.

VIII. CONCLUSION
The diversity in social media platforms leads to massive
usage by the personals, and they deem these platforms as
an efficient tool of communication. Therefore the feedback
of users on these platforms has generated the big sentiment
analysis data to learn. At present, NLP, Hadoop framework,
and deep learning models provide a set of tools that aim to
capture and detect the expressed users’ sentiments in the col-
lected massive datasets from social media platforms. In this
work, a novel parallel fuzzy deep learning classifier is devel-
oped; This classifier incorporates NLP text-preprocessing
methods, NLP word embedding approaches, CNN+FFNN
deep learning model, and Mamdani fuzzy system. This pro-
posal’s primary goal is to determine a significant relationship
between word embedding approaches and both used deep
learning models (CNN+FNN). Also of its objective is to deal
with ingrained ambiguities in data by applying the Mamdani
fuzzy system. The proposed classifier is parallelized using the
Hadoop framework for avoiding the long-running problem
and improve the classification rate.

In our parallel fuzzy deep learning classifier, we proposal
a new structure that works with pre-processing technique,
word embedding algorithms such as FastText, Word2vec,
and GolVe under FFNN, CNN and MFS algorithms. Fur-
thermore, the first step of our work is the application of
text pre-processing for reducing the noisy data, after that
we have applied the word embedding method to transform
the text based-data to numerical based data, then we employ
the CNN deep learning model to detect and extract features
from the obtained embedding matrix in the previous step.
In addition we have used the FFNN to compute the NSS and
PSS, finally we applied the Mamdani fuzzy approaches to
deal with ingrained ambiguities for NSS and PSS values.

Six experiments were performed to demonstrate the effec-
tiveness of our developed classifier. In the first experi-
ment, we have executed our approach with and without text
pre-processing techniques, andwe deduce that the application
of text pre-processing methods reduce the error rate for the
classification of Sentiment140 from 35.59% to 5.98% and it
reduces from 29.04% to 3.61% in the COVID-19 Sentiments
dataset

In the second experiment, we have evaluated different
used word embedding methods (i.e., FastText, GolVe, and
Word2Vec). The experimental result shows that Fast-text has

less error rate compared to Word2vec and GloVe techniques,
which is equal to 8.28%, and 5.51% in the case of senti-
ment140, and COVID-19 Sentiments datasets, respectively.

In the third experiment, we carried out a comparative
study between twelve aggregation fuzzification approach
/defuzzification methods to find the most efficient fuzzifica-
tion method and the better defuzzification approach. These
aggregation methods are MF/Centroid of Area, Triangu-
lar MF/Bisector of Area, Triangular MF/Weighted Average,
Triangular MF/Center of Sums, Trapezoidal MF/Centroid
of Area, Trapezoidal MF/Bisector of Area, Trapezoidal
MF/Weighted Average, Trapezoidal MF/Center of Sums,
Gaussian MF/Centroid of Area, Gaussian MF/ Bisector of
Area, Gaussian MF/ Weighted Average, and Gaussian MF/
Center of Sums. This experiment shows that the Gaussian
MF/Center of Sums method raises the classification rate to
89.75% and decreases the error rate to 10.25%. Also, this
combination is better in terms of execution time that equals
22.01s.

In the fourth experiments, 32 deep learning models were
built, harnessing different parameters for each layer. Themost
efficient FDLCmodel is the FDLC31, which consists of a text
preprocessing phase, one embedding layer, six convolutional
layers, six pooling layers, 183 filters, 5×5, 7×7, 9×9, 10×10
size of filters, one fully connected layer, seven hidden layers,
one output layer, Gaussian fuzzification method, inference
engine process, and Sum of center defuzzification process.
This FDLC31 has achieved an accuracy equals to 99.97% if
applied to the COVID-19_Sentiments dataset, and it equals to
99.83%. if the FDLC31 is used on the Sentiment140 dataset

In the fifth, we have compared our proposed FDLC31 with
Jin et al. [29], Lan et al. [31], Lin et al. [32], Liu et al. [33],
and Xing et al. [36]We deduce that our proposal outperforms
all these used approaches in terms of TPR, TNR, FPR, FNR,
ER, PR, AC, KS, FS, and TC.

Finally, we have evaluated the performance our proposed
FDLC31 with Jin et al. [29], Lan et al. [31], Lin et al. [32],
Liu et al. [33], and Xing et al. [36] in terms of complex-
ity, convergence, and stability. We reveal that our approach
outperforms all other approaches in terms of speed conver-
gence, much lower computational complexity and it is more
stable.

Our future work is the combination of our approach with
the wireless sensor networks. The main goal of these future
work is to classify the collected data by sensor nodes, taking
into consideration multiple parameters associated with fea-
ture detection and extraction and data aggregation.
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