
Citation: López-Ales, E.; Menchón-

Lara, R.-M.; Simmross-Wattenberg, F.;

Rodríguez-Cayetano, M.; Martín-

Fernández, M.; Alberola-López, C.

Multi-Device Parallel MRI

Reconstruction: Efficient Partitioning

for Undersampled 5D Cardiac CINE.

Sensors 2024, 24, 1313. https://

doi.org/10.3390/s24041313

Academic Editor: Tie-Qiang Li

Received: 29 December 2023

Revised: 4 February 2024

Accepted: 16 February 2024

Published: 18 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Multi-Device Parallel MRI Reconstruction: Efficient Partitioning
for Undersampled 5D Cardiac CINE
Emilio López-Ales * , Rosa-María Menchón-Lara , Federico Simmross-Wattenberg ,
Manuel Rodríguez-Cayetano , Marcos Martín-Fernández and Carlos Alberola-López *

Laboratorio de Procesado de Imagen, Universidad de Valladolid, Campus Miguel Delibes sn.,
47011 Valladolid, Spain; rosamaria.menchon@uva.es (R.-M.M.-L.); fedsim@uva.es (F.S.-W.);
manrod@tel.uva.es (M.R.-C.); marcma@uva.es (M.M.-F.)
* Correspondence: emilio.lopez@uva.es (E.L.-A.); carlos.alberola@uva.es (C.A.-L.); Tel.: +34-983-423666 (C.A.-L.)

Abstract: Cardiac CINE, a form of dynamic cardiac MRI, is indispensable in the diagnosis and
treatment of heart conditions, offering detailed visualization essential for the early detection of
cardiac diseases. As the demand for higher-resolution images increases, so does the volume of
data requiring processing, presenting significant computational challenges that can impede the
efficiency of diagnostic imaging. Our research presents an approach that takes advantage of the
computational power of multiple Graphics Processing Units (GPUs) to address these challenges.
GPUs are devices capable of performing large volumes of computations in a short period, and have
significantly improved the cardiac MRI reconstruction process, allowing images to be produced
faster. The innovation of our work resides in utilizing a multi-device system capable of processing
the substantial data volumes demanded by high-resolution, five-dimensional cardiac MRI. This
system surpasses the memory capacity limitations of single GPUs by partitioning large datasets
into smaller, manageable segments for parallel processing, thereby preserving image integrity and
accelerating reconstruction times. Utilizing OpenCL technology, our system offers adaptability and
cross-platform functionality, ensuring wider applicability. The proposed multi-device approach offers
an advancement in medical imaging, accelerating the reconstruction process and facilitating faster
and more effective cardiac health assessment.

Keywords: cardiac CINE; parallel computing; multi-GPU; multi-device; MRI reconstruction; com-
pressed sensing

1. Introduction

Dynamic cardiac magnetic resonance imaging (cMRI), and particularly, cardiac CINE,
has become an indispensable tool in modern cardiovascular medicine [1]. Its preeminence
is due to its ability to provide evidence-based assessments essential for the diagnosis and
treatment of cardiovascular disorders. The accuracy and level of detail it offers enable
medical professionals to comprehensively assess cardiac function and detect subtle abnor-
malities indicative of pathologies [2]. The reliability of cMRI as a diagnostic tool depends
on meeting stringent criteria for spatiotemporal resolution and image quality.

In this context, our focus is on 5D cMRI [3,4], an advanced method for free-breathing
(FB) acquired data that incorporates an additional temporal dimension for the respiratory
phase, resulting in three spatial dimensions and two pseudo-temporal dimensions corre-
sponding to the cardiac and respiratory phases. FB cMRI offers significant advantages.
Firstly, it enhances patient comfort by eliminating the need for breath-holding, which
is particularly crucial for patients with respiratory limitations or in critical conditions.
Additionally, the efficiency of acquisition time is markedly improved, as there are no
pauses for breath-holding, reducing the overall duration of the cMRI session and increasing
patient tolerance.

Sensors 2024, 24, 1313. https://doi.org/10.3390/s24041313 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24041313
https://doi.org/10.3390/s24041313
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0298-1119
https://orcid.org/0000-0002-1543-6670
https://orcid.org/0000-0001-9534-1016
https://orcid.org/0000-0001-5356-4764
https://orcid.org/0000-0001-9342-9989
https://orcid.org/0000-0003-3684-0055
https://doi.org/10.3390/s24041313
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24041313?type=check_update&version=1

Sensors 2024, 24, 1313 2 of 23

However, these advantages are accompanied by an increase in the volume of data
generated, presenting new challenges. On the other hand, in the context of the ongoing
evolution of medical imaging paradigms, the quest for higher image resolution exponen-
tially pushes this increase in data volume. Although this expansion enhances diagnostic
capabilities, it introduces significant computational challenges. These challenges raise
the time and computational demands for proper processing, making MRI reconstruction
increasingly complex. Nevertheless, the diagnostic goals of reconstruction require rapid
computational processing. This situation has driven the adoption of various strategies for
accelerating both the acquisition and the reconstruction processes [1]. This emphasis turns
attention towards the search for alternative methods to improve the speed of advanced
iterative algorithms in parallel computing environments.

In this scenario, we should also note that the integration of artificial intelligence (AI)
and deep learning methods has marked significant advances in MRI reconstruction [5,6],
learning from large image datasets to enable faster reconstructions than traditional methods.
Classical methods based on optimization, however, still maintain their interest since they
can drive physics-informed learning-based solutions.

In this work, we propose a multi-device system capable of performing the entire
5D cardiac reconstruction process in multi-GPU configurations. Due to current memory
limitations in a single GPU, implementing the entire reconstruction process on a single
unit may not be feasible. Therefore, our alternative is oriented towards the use of a multi-
device procedure while maintaining parallelization power. Despite this, implementation
in a multi-device system is accompanied by several difficulties, particularly due to data
dependencies, which arise because of the parallelization of the reconstruction algorithms.

In addressing the dependency issues associated with iterative algorithms, we have
found a viable solution in the NESTA algorithm [7]. This first-order method is a fast and
accurate algorithm that uses a nuanced averaging of iterations to improve the convergence
of standard gradient descent algorithms. Our proposal is based on the hypothesis that
it is possible to decompose the NESTA global optimization process—used in solving the
minimization problem—into a series of smaller-scale local optimizations problems. This
decomposition would not affect the quality of the resulting images and would be executed
on subsets of data obtained by splitting the original data along some of their dimensions.

The implementation of this approach would allow for the effective parallelization
of the algorithm. Moreover, by combining our method with the acceleration techniques
already documented in the literature, we could further reduce the time required for re-
construction. This method not only improves efficiency in MRI reconstruction but also
addresses the challenge of GPU memory limitations when dealing with large datasets.

To complement this strategy, we have opted for OpenCL technology [8] for the imple-
mentation of our system, thereby ensuring the portability of the code across a wide variety
of platforms. Furthermore, we emphasize the importance of intelligent task allocation
among the available devices in a multi-device system. Such distribution allows us to over-
come the memory constraints of GPUs and further optimize reconstruction times. In this
context, we highlight the adoption of the OpenCLIPER framework [9], which facilitates
efficient resource management across the system’s computational devices. The flexibil-
ity of this framework allows us to utilize any computational device in the execution of
parallel computations.

The remainder of this paper is structured as follows: Section 2 presents a concise
summary of related research in MRI reconstruction using GPUs. Section 3 discusses
the data employed and explains the methods used, along with details concerning the
multi-device process and the computational operators used. Section 4 presents the results.
Section 5 includes a brief discussion of these findings. Finally, Section 6 presents the main
conclusions. An appendix with detailed explanations of the problem to be solved can also
be found at the end of this article.

Sensors 2024, 24, 1313 3 of 23

2. Background

Parallel computing environments commonly include Graphics Processing Units (GPUs)
used for high-performance parallel computations. For example, Wang et al. [10] report that
the integration of GPUs in MRI reconstruction has seen a notable increase as evidenced
by the growth of related academic publications. This trend is attributed to the substantial
improvements in MRI processing speed facilitated by the adoption of GPU technology.
However, this speed increase is achieved by individually optimizing some reconstruction
steps within the (single) GPU pipeline.

These optimizations, compiled into available and usable libraries, depend on the
technology employed for their implementation. Among these are CUDA (a proprietary
technology of NVIDIA widely used by the community) and OpenCL (a technology with an
open-source API). Thus, many MRI reconstruction methods have utilized these libraries
in their internal procedures to facilitate speedups. However, to take full advantage of the
GPUs used in these calculations, it is necessary to redesign the algorithms to adapt them to
the characteristics of GPUs.

Building upon these developments, the acceleration strategies facilitated by GPUs
have been increasingly applied to Compressed Sensing (CS) MRI reconstruction, which is
pivotal in addressing the heightened computational demands. Various studies have demon-
strated the capability of GPU acceleration in conjunction with this technique, significantly
improving the speed of MRI reconstruction [11–13].

It is essential to employ advanced tools and methods to address more efficiently
and accurately the complexities presented by reconstruction algorithms. The use of highly
optimized libraries is elemental to enhance the efficiency of this process. However, a notable
challenge arises due to the inability of reconstruction algorithms to be fully accommodated
in the memory of a single GPU. This is primarily because the growing volume of data
approaches the limits of current GPU memory capabilities. This limitation, along with
the algorithms used, results in parallel optimization that is often confined to individual
operations. Therefore, overcoming this limitation represents a considerable challenge.
Moreover, this bottleneck is especially pronounced in the realm of 5D cMRI reconstruction.
Given this situation, it becomes essential to find a solution that efficiently leverages the
computational power of multi-device architectures. Regarding this aspect, Table 1 shows a
summary of research related to MRI reconstruction using the multi-GPU system.

Table 1. Comparative summary of reconstruction research on multi-device systems.

Author [Ref.] Year Data a CPU Parallelizated Dimension b Synchronization

Shafique, M. et al. [14] 2023 2D Yes Coil No

Lecoeur, B. et al. [15] 2023 3D+t Yes Slice No

Cuomo, S. et al. [16] 2018 3D Yes Slice No

Schaetz, S. et al. [17] 2017 2D+t No Temporal Yes

Piccialli, F. et al. [18] 2013 3D No Slice No

Schaetz, S. et al. [19] 2012 2D No Coil No

Murphy, M. et al. [20] 2012 3D Yes Slice No

Zhuo, Y. et al. [21] 2010 2D No Slice No
a Parallel reconstruction on 2D or 3D MRI data. +t indicates dynamic data, i.e., with temporal dimension.
b Dimension by which the problem is parallelized in the multi-GPU system.

Almost half of the multi-GPU systems presented in the table, such as [14,19,21],
perform 2D reconstructions. These reconstructions are parallelized at the thread level
within GPUs. Since they do not have temporal dimensions and, due to their dimensionality,
their size is not large, they do not present problems that require synchronisms in the
multi-GPU systems in which they are implemented. In the case of [17], the data used,
despite being 2D, do have a temporal dimension, so in this case they need synchronization.

Sensors 2024, 24, 1313 4 of 23

However, they report an overload that leads them to relax the temporal regularization they
use, so they reconstruct frames without completely reconstructing the previous ones on
which they depend. On the other hand, all of them perform CUDA implementations, so
they depend on NVIDIA technology and hardware to operate.

In the other half of the table, we can observe 3D reconstruction implementations.
However, some of them, such as [16,18,20] do not need synchronization since they
perform parallelization using decoupled 2D reconstruction. Moreover, these imple-
mentations correspond to static 3D data. However, the study of Lecoeur, B. et al. [15]
presents and implements multi-GPU MRI 3D+t reconstruction (with a respiratory di-
mension). According to their methodology, they use a CPU and GPU parallelization
system. The multi-GPU parallelization they report is due to the stack-of-stars nature
of the data, where the data are independent between z-axis slices. This allows them,
after running on CPUs part of their algorithm, to parallelize 2D+t sets on the different
devices independently since they have no dependencies. This means that their system
does not have synchronization between the devices used. In addition, they depend on
CUDA, so they are also limited in this way.

While we have identified systems in the literature that parallelize 3D+t MRI [15],
these systems do not demonstrate parallelization that spans multiple GPUs for full 5D
cardiac data reconstruction (incorporating all three spatial dimensions in addition to cardiac
and respiratory dimensions) with the same depth as our system proposes. Specifically,
our system explicitly addresses workload distribution and inter-task synchronism for
the efficient use of multiples GPUs, which represents a substantive contribution with
respect to existing systems. While previous work focuses on the reconstruction of lower-
dimensionality data without the need for complex synchronization between devices, our
system handles the added complexity of 5D data and ensures consistent and coordinated
reconstruction across multiples GPUs, regardless of their manufacturer. The key distinction
of our approach lies in how load-splitting and synchronization mechanisms between GPUs
are employed to effectively address this high dimensionality and complexity, an aspect
that, to the best of our knowledge, has not been explicitly addressed by other solutions
using multiple GPUs.

3. Materials and Methods
3.1. Data and Hardware Used

In our research, we employ synthetic data from the XCAT numerical phantom v2 [22].
A FB bSSFP acquisition was simulated, guided by the following parameters: TR/TE
values at 3.0/1.5 ms, a flip angle set at 60◦, field of view (FOV) of (168 mm)3, and a
spatial resolution of 2 mm3. This simulation encompassed multi-coil data, with a total
of 16 coils. For the study, the fully sampled data were undersampled retrospectively,
utilizing the 3D variable density spiral-like Cartesian sampling scheme (VD-CASPR) [23]
with different acceleration factors (AF): 4, 8 and 10. This method was chosen to obviate the
need for gridding processes during subsequent reconstruction. The data were categorized
into 20 distinct cardiac and 4 respiratory phases. This categorization led to a total of
80 reconstructed volumes.

To evaluate the performance of the results, we mainly used a dedicated hardware
system (server 1) consisting of 4 Nvidia RTX A5000 GPUs [24] (each equipped with 24 GB
of VRAM), 2 AMD EPYC 7513 CPUs [25] (32 cores/64 threads each) at 2.6 GHz and 1 TB of
RAM. We also used a separate dedicated hardware system to complement the memory tests
(server 2) consisting of 2 Nvidia GPUs (Quadro RTX 6000 24 GB VRAM [26] and Quadro
RTX 5000 16 GB VRAM [27]) , 2 Intel Xeon E5-2697 CPUs [28] (17 cores, 34 threads each) at
2.3 GHz and 500 GB RAM.

Sensors 2024, 24, 1313 5 of 23

3.2. Method

In this work, our principal contribution is the integration of the entire reconstruction
process within a multi-device system through the parallelization of the problem. In this
way, we employ several devices at the same time, which provides substantial speed gains
while preserving the quality of the reconstructed image. In this section, our focus is to
detail the data-partitioning strategy, as well as the resource management and dependency
handling in the 5D system we propose. The process is designed to be flexible, allowing it to
be hosted on the device of choice within the system. This adaptability enables configuration
for exclusive GPU usage or, if required, for utilizing both the GPU and the CPU as integral
components of the system. To fully grasp this methodology, it is essential to understand the
5D CS reconstruction process. The minimization problem under consideration is expressed
in Equation (1):

m̂ = argmin
m

1
2
∥Em − y∥2

ℓ2
+ λ∥Φm∥ℓ1

(1)

where y denotes the acquired k-space data, m is the image to be reconstructed, E represents
the encoding operator (incorporating coil sensitivity maps, Fourier Transform, and the
sampling matrix), and Φ represents a sparsifying transform. The objective function in
Equation (1) consists of a squared ℓ2-norm term, corresponding to the data fidelity term,
and the typical ℓ1-norm constraint used in CS. Therefore, the regularization parameter λ
establishes a trade-off between data consistency and the sparsity of the solution.

Our hypothesis posits that this global optimization process can be divided into smaller
local optimization problems without compromising the quality of the reconstructed images.
We have employed the iterative NESTA algorithm [7] to solve the optimization problem
in Equation (1). NESTA uses the well-known Huber function as an approximation of the
ℓ1-norm. For the sparsifying transform Φ, we have selected the temporal total variation
(tTV). Therefore, the objective function in Equation (1) is evaluated at each iteration of the
algorithm as follows:

f (mk) =
1
2

∥∥∥Emk − y
∥∥∥2
ℓ2
+ λ · fµ(Φmk) (2)

where k-index denotes the iteration number, and fµ stands for the Huber function.
The gradient of the objective function is also computed iteratively in the following form:

∇ f (mk) = EH(Emk − y) + λ ·ΦH f ′µ(Φmk)︸ ︷︷ ︸
Λ

(3)

where f ′µ represents the gradient of fµ (defined as indicated in Equation (A2)), and {EH , ΦH}
stand for the corresponding adjoint operators.

The critical aspect of problem division lies in the parallelization of the second term of
the gradient calculation (Λ), i.e., the gradient of the regularization term. The parallelization
of this term is complicated by temporal dependencies present in the cardiac and respiratory
dimensions due to the use of tTV (see Appendix A). Addressing this issue involves two
key aspects: data partitioning and dependency management.

It should be noted that the parallelization of NESTA is comprised of the modifica-
tion of the sparsifying transform, inter-device communication, and the synchronizations
necessary to maintain the integrity of the iterative nature of the algorithm. Moreover,
the calculations of both the ℓ1-norm and ℓ2-norm are performed with the data held by
the device on which the algorithm is running. The global optimization problem becomes
smaller local optimization problems. Even so, the internal steps of the NESTA algorithm
remain unchanged.

Sensors 2024, 24, 1313 6 of 23

3.2.1. Data Partitioning

As we have previously noted, large data volumes often encounter memory limitations
in devices. Consequently, rather than processing the entire volumes, we choose to subdivide
the data along temporal dimensions based on the specifications of the available devices
(predominantly GPUs). Specifically, we prioritize GPUs with the highest amount of VRAM
available in the desired configuration. Typically, these GPUs tend to be those with the
highest computational power. We have decided to use this strategy in order to balance
compute capacity and workload. In this way, a balanced computational load can be
maintained between GPUs. This implies that systems can effectively utilize GPUs with
a wide range of configurations, encompassing both specification differences and diverse
manufacturers. However, when utilizing certain system configurations, it is important to
consider that using devices with significantly lower computational power may dictate the
time required to solve the reconstruction problem.

Data subdivision along temporal dimensions can be implemented in either the cardiac
or the respiratory dimension. Given that both approaches are similar and that the cardiac
dimension usually encompasses more phases than the respiratory one, we have chosen to
perform the subdivision in the cardiac dimension. This approach allows us to minimize
dependencies among the data subsets housed in the devices, as explained in the next
section, and to maximize memory usage.

The subdivision of data along the cardiac temporal dimension is illustrated in Figure 1,
where each mi,j represents a 3D volume with a specific state within the respiratory (1 ≤
i ≤ Nr) and cardiac (1 ≤ j ≤ Nc) dimensions, Nr being the total number of respiratory
phases and Nc the total number of cardiac phases. Thus, the subset mi,jq

is allocated to a
given device q (with 1 ≤ q ≤ d and d is the total number of devices), where the subscript
i denotes the whole set of respiratory phases, and jq stands for the subset of consecutive
cardiac phases (from jq(1) to jq(e)) in the device q. Note that, with this notation, j1(1) = 1
and jd(e) = Nc. Figure 1 provides a simplified representation, which does not consider the
temporal dependencies inherent to the problem.

Figure 1. Schematic illustration of data partitioning along the cardiac temporal dimension, distributed
across multiple devices to enable parallel reconstruction. In this schema, mi,jq

represents the subset
of cardiac phases and their corresponding respiratory phases processed by device q. The colors (red,
green and yellow) serve to visually distinguish between the different respiratory phases.

Sensors 2024, 24, 1313 7 of 23

3.2.2. Data Dependencies

The necessity to address dependency issues arises from the fact that neglecting them
during the parallelization of the second term in Equation (3) (Λ) would lead to inconsisten-
cies in the reconstructed images, resulting in a degradation of the reconstruction quality.

As discussed in the previous section, dataset division is performed along the cardiac
dimension to minimize the dependencies between the resultant subsets. These dependen-
cies arise due to the application of the tTV operators (denoted as Φ and ΦH) in the gradient
calculation (Λ in Equation (3)). The dependencies in question comprise the 3D data vol-
umes in the cardiac and respiratory phases. Given that the calculation of Λ is defined as
shown in Equation (A1), the dependencies for a specific volume are on the volumes of
the immediately adjacent phases. A more elaborate explanation of these dependencies
is provided in Appendix A. Figure 2 graphically depicts these dependencies for a given
frame mi,j within any given subset (see Figure 1). As commented above, the indices i and j,
with 1 ≤ i ≤ Nr and 1 ≤ j ≤ Nc, correspond to the temporal dimensions of the respiratory
and cardiac phases, respectively.

Figure 2. Dependencies of a frame with respect to neighboring frames in the gradient evaluation
(term Λi,j in Equation (A1)). As in the Figure 1, the colors (red, green and blue) serve to visually
distinguish between the different respiratory phases.

Parallelization through data division results in 3D volumes at the boundaries of such
division having their dependencies spread across different devices. Figure 3 illustrates the
structure of these dependencies in the parallel multi-device CINE reconstruction process.
At a synchronized k-th iteration, device q processes the subset mk

i,jq
of volume images.

Therefore, each device holds a portion of the overall dataset along with its dependencies.
As illustrated in Figure 3, device q contains the subset from mk

i,jq(1)
to mk

i,jq(e)
, as well as the

3D volumes corresponding to the previous cardiac phase (mk
i,jq−1(e)

, with jq(1) = jq−1(e) + 1)

from device q − 1, and to the next cardiac phase (mk
i,jq+1(1)

, with jq+1(1) = jq(e) + 1)

from device q + 1. Data dependencies are indicated by arrows. This pattern is replicated
across all intermediate devices (2 ≤ q ≤ d − 1). The first device manages its respective
groups of volumes and additionally, the initial cardiac phase of the second device (mk

i,j2(1)
).

Conversely, the final device encompasses its assigned volumes as well as the last cardiac
phase from the d − 1 device (mk

i,jd−1(e)).

Sensors 2024, 24, 1313 8 of 23

Figure 3. Schema of dependencies in the parallel multi-device reconstruction process. Each mk
i,jq

represents the subset of all respiratory phases for a single cardiac phase at the k-th iteration in the
device q. The red color indicates the dependencies between each device and the others, illustrating
the interconnection necessary for parallel processing. The yellow color, on the other hand, delimits
the data processed by the device itself, highlighting segments of the device-specific data set.

3.2.3. Managing Data Dependency

To address the temporal data dependencies between devices, we have established
runtime communication channels between GPUs using OpenCLIPER. This communication
occurs indirectly among devices. As previously explained, each device maintains in its
memory the dependencies of others. Except when using the CPU as a device, this memory
is typically inaccessible to other GPUs. Therefore, it is necessary for each GPU to provide
the data that other devices depend on so that all processes are correctly executed. There
are two main reasons for maintaining indirect communication between devices: firstly,
to the best of our knowledge, direct communication between GPUs is currently difficult to
achieve among the wide variety of devices available in the market. Secondly, the devices
that allow it usually require proprietary technology, such as NVLink [29]. As previously
mentioned, one of our research objectives is to maintain code portability across a broad
range of platforms; this means that our solution should enable device communication in
configurations with multiple devices from various manufacturers.

Figure 4 illustrates the entire reconstruction workflow using OpenCLIPER, showing
that the 5D CINE reconstruction operates as a set of internal processes within the devices.
OpenCLIPER, which is the central coordinating unit that oversees the execution, initi-
ates these processes by allocating the data subsets and specifying the interdependencies
to be communicated among the devices involved. Once initialized, each device func-
tions autonomously. During the reconstruction, the devices interact through a runtime
communication channel—a network of buffers allocated for each dependency—ensuring
synchronized data exchange. Within this framework, devices upload the dependencies re-
quired by others into designated buffers, and subsequently retrieve any dependencies they
need from these shared resources. OpenCLIPER manages this buffer network, coordinating
the distribution and collection of dependencies. After dependencies are addressed, the pro-
cesses on each device proceed independently until completion. When all devices have
finished their tasks, the composite image is fully assembled and available in the system.

The success of the algorithm’s execution relies on the system of indirect communica-
tion that manages temporal dependencies. This component is essential for preserving the
integrity of the process’s iterative nature. Proper synchronization (background material
about thread programming can be found in [30]), facilitated by mutexes and condition vari-
ables, ensures that dependencies are safely accessed and updated in real time, minimizing
bottlenecks and aligning the start of each algorithmic step. This approach guarantees that

Sensors 2024, 24, 1313 9 of 23

all devices utilize the correct dependencies, allowing for synchronized progression and
accurate gradient computation essential for the Λ calculation (Equation (A1)).

Figure 4. Schematic representation of the reconstruction workflow using OpenCLIPER. The process
initiates with data loading into OpenCLIPER on the host, followed by the creation and distribution
of reconstruction processes and data subsets to individual devices. Each device utilizes a modified
NESTA algorithm for reconstruction.

Before delving into the details of synchronization mechanisms, it is essential to under-
stand that the NESTA algorithm is structured into two loops: an outer loop that controls the
stages of the algorithm, and an inner loop that manages the iterations within each stage. Each
stage (4 in our case) is designed to refine the ℓ1-norm approximation using different values
of µ. These stages, allowing up to 100 iterations each, are tailored to ensure convergence.

Turning to the specifics of synchronization, Figure 5 illustrates how, prior to entering
these loops, devices share computed constants to initiate stages with values consistent with
those in the global optimization version (see S.0 in Figure 5). To perform this synchroniza-
tion, there is a mutex to manage the correct passage of constants values. Once the stage loop
starts, stage-level synchronization is necessary to manage scenarios where some devices
may require more iterations than others to achieve convergence (see S.1 in Figure 5). This
synchronization ensures that devices do not share dependencies across different stages.
There is a mutex that allows all devices to start the stages at the same time. Within the same
stage, just before the gradient computation, devices share their data through respective
communication channels tailored for each dependency (see S.2 in Figure 5). It should be
noted that each dependency is associated with its own communication channel to avoid
bottlenecks. In the same way, each communication channel, being shared by two devices,
has its own mutex for correct access. Therefore, the use of mutexes specifically for each
communication channel allows maximizing the amount of dependency transfers between
different devices, avoiding unnecessary waiting. Subsequently, devices update their data
by retrieving necessary dependencies from their specific communication channels (see
S.3 in Figure 5). In this case, we are at the other extreme of independent communication
channels, managed by the same channel-specific mutexes as the previous synchroniza-
tion (S.2), whose implementation ensures correct access to dependencies. As previously
mentioned, this process takes into account completed phases, allowing devices to rely on
existing dependencies in memory when no new updates are available. When a device
completes its tasks ahead of others, it updates its data for the last time in the stage s (see S.4
in Figure 5). The mutexes used in this synchronization are the same as those used for the

Sensors 2024, 24, 1313 10 of 23

S.2 and S.3 synchronizations. The superscript eq in place of k in m
eq
i,jq indicates that this set

corresponds to the final iteration (e) at which the device (q) has converged. Subsequently,
the device informs the dependent devices that they should proceed with the latest updated
data (see S.5 in Figure 5) to finalize their convergence. This synchronization has a general
mutex that ensures communication that the device has finished its last iteration. Upon com-
pleting this mechanism, devices that have finished their stage wait to start the next stage
with the rest of the devices. This ensures that all devices begin each stage simultaneously,
relying on an accurate set of dependent data for each iteration.

Upload Data
Dependencies

Gradient
Calculation

(Equation 3)

Optimal Solution
Estimation

Weighted Sum of
Gradients Already

Calculated

Update
Image Result

()

NO

YESCheck the Stop Criteria

Stage Synchronization

Upload Data
Dependencies

S.1

S.2

S.3

S.4

NO

Gradient Calculation
Start

Gradient Calculation
End

 Update dependencies
of devices from the
Communication Channel

 Update dependencies
of devices from the
Communication Channel

 Loading dependencies
for device on the

Communication Channel

 Loading dependencies
for device on the

Communication Channel

Iteration Start

Stage Start

YES

YES

NO

NO

Parameters
Synchronization

S.0

Update Data
Dependencies

Communication
Stage Completed

S.5 Loading dependencies
for device on the

Communication Channel

 Loading dependencies
for device on the

Communication Channel

Nesta Process
(Device)

End

Nesta Process
(Device)

Start

NO

YES

Mutexes
&

Condition Variables
Check if requires

dependencies

YES

Mutexes
&

Condition Variables
Check if requires

dependencies

Mutexes & Condition Variables
Wait on mutex until

I can use the specific Communication
Channel for this dependency

Mutexes & Condition Variables
Wait on mutex until

I can use the specific Communication
Channel for this dependency

YES

NO

Mutexes
&

Condition Variables
Check if can provide

dependencies

Mutexes & Condition Variables
Wait on mutex until

I can use the specific Communication
Channel for this dependency

YES

NO

Mutexes
&

Condition Variables
Check if can provide

dependencies

Mutexes & Condition Variables
Wait on mutex until

I can use the specific Communication
Channel for this dependency

NO

YES

Mutexes
&

Condition Variables
Check if requires

dependencies

YES

NO

Mutexes
&

Condition Variables
Check if requires

dependencies

Mutexes & Condition Variables
Wait on mutex until

I can use the specific Communication
Channel for this dependency

Mutexes & Condition Variables
Wait on mutex until

I can use the specific Communication
Channel for this dependency

Figure 5. Flowchart depicting the reconstruction process on device q, where 2 ≤ q ≤ d − 1. This chart
illustrates the management of data dependencies, the points at which synchronization occurs, and the use
of mutexes and condition variables to ensure proper coordination between concurrent tasks. The notation
meq

i,jq
with the superscript eq signifies the subset corresponding to the device’s final convergent iteration.

Devices 1 and d behave similarly, but dependencies are not considered bilateral at this stage.

Sensors 2024, 24, 1313 11 of 23

4. Results

The results presented in this section are from a series of experiments conducted with
the same dataset (see Section 3), using different acceleration factors: AF4, AF8, and AF10.
These experiments were performed on a multi-device system configured in different ways:
with CPU only, 2 GPUs, 3 GPUs, and 4 GPUs, resulting in a total of 12 distinct experiments.
Each experiment was replicated 50 times to obtain the metrics discussed below.

As mentioned before, the reconstruction algorithm used consists of four internal
stages of NESTA, with different values of parameter µ in the fµ function for ℓ1-norm
approximation, with each stage performing up to a maximum of 100 iterations to achieve
convergence. The algorithm employs a stopping criterion based on the relative conver-
gence of the objective function (f (mk) in Equation (2)), activated after a minimum number
of iterations (τ = 7). It is necessary to mention that each device (q) calculates a f (mk

i,jq
)

value with the data it works with. This is evaluated at every iteration using the progress
quotient:

qk
p =

f̄ − f (mk
i,jq

)

f̄
(4)

where f̄ is the average of the objective function in the last τ iterations of the algorithm.
The algorithm halts when qp is less than or equal to a user-defined tolerance threshold,
ensuring termination when the relative improvement of the objective function between
iterations is minimal.

On the other hand, it is important to note that the CPU-only test was conducted
through the system configuration set to use only the CPU using OpenCLIPER, employing
the same parallelization techniques as those applied to the GPUs. However, unlike in the
multi-device configurations, the CPU-only tests did not involve data division and temporal
dependency management, and optimizations were conducted on a global scale rather than
the local optimizations characteristic of multi-device approach. This approach ensures a
more accurate comparison of the benefits offered by our proposal.

It is worth mentioning that the data volume prevents reconstruction using a single
GPU due to memory constraints. To the best of our knowledge, and we believe this to be
the primary reason, no other 5D reconstruction methods implemented on GPUs have been
identified. This means that a direct comparison of our results with other 5D reconstruction
tools is not feasible.

4.1. Reconstruction Times

Table 2 and Figure 6 show the mean reconstruction times obtained for all the experi-
ments. Intuitively, one would expect that employing multiple GPUs would reduce the
reconstruction time proportionally depending on the number of devices used. The data
confirm a substantial reduction in time when utilizing multiple GPUs as opposed to
a single CPU. However, this reduction is not strictly proportional to the number of
devices used for data with AF of 8 and 10. It is important to note that higher AFs require
more time to converge because of the extensive subsampling involved. The increased
number of iterations needed for convergence leads to a greater need for communication
between devices for dependency management. Conversely, with a lower AF, the time
reduction does seem to be directly proportional to the number of GPUs employed, at-
tributed to the reduced number of iterations and, hence, a lesser need for communication
among devices.

Sensors 2024, 24, 1313 12 of 23

Table 2. Reconstruction times of the 5D cMRI dataset (3D spatial with cardiac and respiratory
dimensions) for different acceleration factors (AF).

AF Devices Used End-to-End Time a Recon Time b # Iterations c

AF4 CPU 860.04 s 834.405 s CPU: 15 + 10 + 9 + 61 = 95

AF4 Multi-GPU (2) 29.74 s (×28.9) 21.39 s GPU 1: 15 + 10 + 9 + 54 = 88
GPU 2: 15 + 10 + 10 + 16 = 51

AF4 Multi-GPU (3) 21.79 s (×39.5) 13.65 s
GPU 1: 15 + 10 + 9 + 48 = 82
GPU 2: 15 + 9 + 9 + 16 = 49
GPU 3: 15 + 10 + 9 + 51 = 85

AF4 Multi-GPU (4) 19.42 s (×44.3) 9.56 s

GPU 1: 15 + 10 + 10 + 16 = 51
GPU 2: 15 + 9 + 9 + 16 = 49
GPU 3: 14 + 9 + 9 + 16 = 48
GPU 4: 15 + 10 + 10 + 33 = 68

AF8 CPU 1296.03 s 1270.33 s CPU: 18 + 12 + 11 + 100 = 141

AF8 Multi-GPU (2) 42.62 s (×30.4) 33.04 s GPU 1: 18 + 12 + 11 + 91 = 132
GPU 2: 18 + 13 + 13 + 70 = 114

AF8 Multi-GPU (3) 33.81 s (×38.3) 23.89 s
GPU 1: 18 + 12 + 11 + 84 = 125
GPU 2: 18 + 12 + 11 + 71 = 112
GPU 3: 18 + 13 + 17 + 54 = 102

AF8 Multi-GPU (4) 26.73 s (×48.5) 16.37 s

GPU 1: 18 + 12 + 11 + 76 = 117
GPU 2: 17 + 11 + 11 + 67 = 106
GPU 3: 17 + 11 + 11 + 59 = 98
GPU 4: 18 + 13 + 15 + 50 = 96

AF10 CPU 1344.21 s 1330.45 s CPU: 19 + 12 + 11 + 100 = 142

AF10 Multi-GPU (2) 45.50 s (×29.56) 35.87 s GPU 1: 19 + 12 + 11 + 100 = 142
GPU 2: 19 + 13 + 13 + 100 = 145

AF10 Multi-GPU (3) 37.01 s (×36.3) 28.61 s
GPU 1: 19 + 12 + 11 + 100 = 142
GPU 2: 19 + 12 + 11 + 93 = 135
GPU 3: 19 + 13 + 31 + 85 = 148

AF10 Multi-GPU (4) 31.18 s (×43.1) 20.83 s

GPU 1: 19 + 12 + 11 + 95 = 137
GPU 2: 18 + 12 + 11 + 89 = 130
GPU 3: 18 + 12 + 11 + 84 = 125
GPU 4: 19 + 13 + 20 + 92 = 144

a End-to-end time: time that includes the initialization of the process and the execution of the reconstruction
(×Speed-up: times faster than CPU reconstruction). b Recon time: time that includes only the execution of the
reconstruction. c Number of NESTA iterations for reconstruction: (device: stage 1 + stage 2 + stage 3 + stage 4).

Execution Time Comparison

21.4

33

35.9

14.5

23.9

28.6

9.6

16.4

19.9

AF4 AF8 AF10

Data

0

5

10

15

20

25

30

35

40

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

2 GPUs

3 GPUs

4 GPUs

Figure 6. Comparison of reconstruction times for algorithms in different GPU configurations, showing
the reduction in time as the number of GPUs used increases in the AF4, AF8 and AF10 datasets.

Sensors 2024, 24, 1313 13 of 23

4.2. Global versus Local Optimizations

The evolution of the objective functions value f (mk) during the optimization process
is depicted in Figure 7, contrasting the global optimization approach on a single CPU
with our proposed method of parallel local optimizations on a multi-device configuration
consisting of two GPUs. In the multi-device setup, each GPU computes its objective
function f (mk

i,jq
) and performs the gradient calculation as per Equation (3), utilizing its

data subset and corresponding dependencies. A notable decrease in the value of f (mk
i,jq

)

is observed for the multi-device configuration when compared to the CPU. Furthermore,
the aggregated values from the GPUs closely match the CPU curve, indicating that the
results of the local optimizations on the GPUs are very similar to the global optimization
performed by the CPU.

On the other hand, it can also be observed, together with Table 2, that the recon-
struction requires fewer iterations to converge. However, we also observe an increase
in the number of iterations required as the AF increases, which is expected due to the
greater computational complexity introduced by a higher data subsampling rate in the
reconstruction problem. Comparing the number of iterations (Table 2) required for the CPU
execution against those required for GPU executions, we notice that they remain constant
with minimal differences, except for the last step, where it can be seen that the multi-device
version needs fewer iterations to converge than the CPU version. This suggests that our
approach of parallel local optimizations maintains a similar performance to that observed
in the global optimization approach.

0 50 100 150

Iteration

0

1

2

3

4

5

6

7
10

7 CPU vs 2 GPUs(AF8 Data)

CPU

GPU 1

GPU 2

0 50 100 150

Iteration

0

1

2

3

4

5

6

7
10

7 CPU vs SUM 2 GPUs(AF8 Data)

CPU

Sum of GPUs

Figure 7. Comparison of the f (mk) values obtained in the reconstruction using NESTA over the
iterations required for convergence between the global optimization approach on a CPU and the
parallel local optimizations approach on multi-device configuration using 2 GPUs and AF4 data.

Sensors 2024, 24, 1313 14 of 23

4.3. Reconstruction Quality

The next essential step is to validate whether the quality of the results obtained with
the multi-GPU approach is comparable to the quality derived from CPU reconstruction.
It is imperative to note that in our methodology, the minimization process is conducted
through local optimizations, as opposed to the global optimizations inherent in CPU
reconstruction. Given this difference, it is essential to evaluate the quality of the results.
For this purpose, we consider the SSIM [31] as a relevant metric. Figure 8 presents a series
of box plots that illustrate the distribution of SSIM values for different configurations with
fully sampled image as reference. It is observed that the values obtained through local
optimizations (multi-GPU configurations) are in line with those generated by the sequential
global optimization process (CPU configuration).

Furthermore, in order to evaluate the robustness of the proposed multi-device recon-
struction against noise, different levels of Gaussian noise were added to the synthetic MRI
data (AF = 4), with SNR 24, 18 and 6 dB. Table 3 shows SSIM and PSNR values of the
obtained reconstructions for the different configurations (two, three, and four GPUs) using
the CPU reconstructions as reference. Both metrics indicate a high degree of similarity to
the reference reconstruction.

Figure 8. Box plot representation of SSIM distribution variability between CPU (global optimization)
and multi-GPU (local optimization) reconstructions.

Table 3. Image quality metrics (SSIM and PSNR values) of the multi-device reconstructions for AF = 4
with the CPU reconstruction as reference.

SNR (dB) SSIM PSNR (dB)
2 GPUs 3 GPUs 4 GPUs 2 GPUs 3 GPUs 4 GPUs

∞ 0.9654 0.9774 0.9766 41.55 42.46 43.23
24 0.9768 0.9781 0.9885 42.50 43.02 45.71
18 0.9832 0.9786 0.9909 40.81 40.06 43.75
6 0.9940 0.9902 0.9970 40.44 39.26 43.44

4.4. GPU Usage Analysis

Another important aspect to consider is the memory usage in different system config-
urations. To show these results, we have used server 1, where there are four GPUs with the
same specifications. Table 4 provides a summary of VRAM memory usage and the number
of frames processed in various GPU configurations applied to AF4 data. Given the particu-
lar arrangement of the data in the system, the amount of memory used to accommodate
data of different acceleration factors does not vary, so the memory usage for the AF8 and

Sensors 2024, 24, 1313 15 of 23

AF10 sets is the same. The data overhead required for different configurations remains
stable depending on the scenario in which the problem is to be divided. As discussed earlier,
the GPUs processing the peripheral data sets interact only with one GPU due to their de-
pendencies. In contrast, the GPUs assigned to the intermediate data sets (in configurations
of three or more GPUs) will interact with two different GPUs. By requiring twice as many
dependencies, twice as much overhead is caused. Even so, the overhead caused by the
dependencies is proportionally low. In the case of the two-GPU configuration, the memory
usage is identical since the specifications of the GPUs used are identical. In contrast, for the
three-GPU configuration, we observe the scenario where the data partitioning is not exact.
Hence, the first two GPUs have a higher load compared to the third one. Finally, with four
GPUs, we can see how the distribution is more stable, where the GPUs with additional
overhead due to dependencies with two different GPUs stand out. Figure 9 shows this
behavior graphically. The blue color represents the amount of VRAM used in general, and
red highlights the part needed for dependencies.

Table 4. Summary of VRAM memory usage and number of frames processed by different GPU
configurations on server 1.

Memory Used

VRAM GPU ID 2 GPU a 3 GPU a 4 GPU a

24,564 MiB 1 11,994 MB (180 MB) 8548 MB (180 MB) 6251 MB (180 MB)
24,564 MiB 2 11,994 MB (180 MB) 8994 MB (360 MB) 6697 MB (360 MB)
24,564 MiB 3 ND 7400 MB (180 MB) 6697 MB (360 MB)
24,564 MiB 4 ND ND 6251 MB (180 MB)

Number of Frames

GPU ID 2 GPU b 3 GPU b 4 GPU b

1 44 (10 × 4 + 1 × 4) 32 (7 × 4 + 1 × 4) 24 (5 × 4 + 1 × 4)
2 44 (10 × 4 + 1 × 4) 36 (7 × 4 + 2 × 4) 28 (5 × 4 + 2 × 4)
3 ND 28 (6 × 4 + 1 × 4) 28 (5 × 4 + 2 × 4)
4 ND ND 24 (5 × 4 + 1 × 4)

a Number of GPUs used: Total memory used (memory used for dependencies). b Number of GPUs used: Total
number of frames on GPU (number of frames assigned to GPU + number of dependencies required on the GPU).
Note: The GPUs used in this system have the same VRAM size. ND indicates that the setting does not apply.

Figure 9. VRAM memory usage in configurations with 2, 3 and 4 GPUs (AF4 data) on server 1. Each
bar represents the total memory used by a single GPU, subdivided into general memory used and
additional memory used for dependencies.

Sensors 2024, 24, 1313 16 of 23

Another common scenario is that the devices used in the system configuration have
different specifications. Table 5 shows how the data-partitioning algorithm has prioritized
the most powerful GPU with the largest VRAM capacity in the system configuration to
accommodate the largest volume of data. To show the behavior of this scenario, we have
used server 2 where only 2 GPUs are available.

Table 5. Summary of VRAM memory usage and number of frames processed in a 2-GPU configuration
on server 2.

Memory Used

VRAM GPU ID 2 GPU a

24,576 MiB 1 15,440 MB (180 MB)
16,384 MiB 2 8548 MB (180 MB)

Number of Frames

GPU ID 2 GPU b

1 56 (13 × 4 + 1 × 4)
2 32 (7 × 4 + 1 × 4)

a Number of GPUs used: Total memory used (memory used for dependencies). b Number of GPUs used: Total
number of frames on GPU (number of frames assigned to GPU + number of dependencies required on the GPU).

Finally, the utilization of GPUs observed in Table 6 shows the high performance and
adaptability of our system across different configurations. In the two-GPU setup, we noted
a peak utilization of 92% for both devices, with median values standing at 87% and 86%,
respectively. Transitioning to the three-GPU setup, we recorded a maximum utilization
of 90%, 89%, and 86%, with median values of 86%, 89%, and 77%, respectively. With the
four-GPU setup, the maximum utilization values observed were 90%, 85%, 84%, and 87%,
with median values of 84%, 82%, 80%, and 79%, respectively. The slight variation in
median values suggest a workload balance. These data confirm a balanced distribution
of computational load. The nuanced difference in utilization rates among the GPUs could
be attributed to the inherent complexity of distributing tasks that vary in computation
intensity.

Table 6. Summary of GPU utilization (median and maximum value) on server 1.

GPU Utilization (Median %)

GPU ID 2 GPU a 3 GPU a 4 GPU a

1 87% 86% 84%
2 86% 89% 82%
3 ND 77% 80%
4 ND ND 79%

GPU Utilization (Maximum %)

GPU ID 2 GPU b 3 GPU b 4 GPU b

1 92% 90% 90%
2 92% 89% 85%
3 ND 86% 84%
4 ND ND 87%

a Number of GPUs used: Median value. b Number of GPUs used: Maximum value. Note: ND indicates that the
setting does not apply.

5. Discussion

One of the primary points of discussion arises from the size of the datasets we have
worked with. The considerable volume of these datasets poses a challenge for recon-
struction on a single GPU, mainly due to memory limitations. This presents a dilemma,

Sensors 2024, 24, 1313 17 of 23

especially when juxtaposed with the growing demand for rapid, efficient, and high-quality
reconstruction in the field of medical imaging. Our results suggest that distributing the
computational load across multiple GPUs not only circumvents these hardware limitations
but also achieves this without sacrificing the quality of the reconstruction. According
to our results, the quality of the images is virtually indistinguishable from that of their
traditional sequential counterparts. This reinforces the idea that multi-GPU configurations
are a compelling solution to the challenges inherent in handling large MRI datasets.

It is also important to address the broader implications of our findings. As the field
of medical imaging advances, there is an increasing demand for rapid and accurate recon-
structions. In situations where clinical decisions depend on timely and precise imaging
results, the time savings offered by conducting the entire reconstruction process within
multi-GPU configurations using local optimizations could translate into tangible clinical
benefits. Furthermore, the ability to deliver these results with minimal quality degradation
represents a significant advance in the trajectory of MRI image reconstruction method-
ologies. Many of the emerging studies, as can be seen in Table 1, present proposals that
address the problem. However, these approaches provide solutions to scenarios with low
dimensionality (or none in terms of dynamic dimensions as far as cMRI is concerned).
In addition, the parallelization presented by these proposals has a clear limit, as they focus
on dividing those parts of the process that are independent of each other. Thus, they avoid
addressing the problem of dependencies that arise when attempting to go further in the
parallelization of reconstruction algorithms. In this way, our work presents a solution.

One of the strengths of the proposed system is that its design is geared towards interop-
erability with existing medical imaging workflows and industry standards. Our intention is
for our tool to be versatile in its ability to be inserted into existing medical imaging ecosys-
tems. We understand the importance of compatibility in today’s clinical environment,
so the system has been designed to facilitate integration with prevalent medical imaging
protocols. Through the implementation of a modular framework in OpenCLIPER, our
system allows for easy incorporation of custom loaders and data savers. This means that
users can extend the system to handle additional formats, such as HDF5 [32], DICOM [33],
ISMRMrd [34], or any other emerging data format, thus ensuring long-term adaptability
and relevance.

Regarding the potential limitations of this proposal, the NESTA algorithm provides
good quality reconstructions at the cost of a much higher computational load than, for ex-
ample, methods based on least squares. This prevents us from achieving a real-time
reconstruction (such as [17], for instance), but when compared to typical acquisition times
of about 15–20 min, the figures reported in Table 2 should not impede clinical practice
when using our method. On the other hand, our proposal needs a powerful system too (a
multi-GPU system), which may not be affordable for small clinics, but its typical cost is
nevertheless about 100-fold less than the cost of an MRI scanner.

Another potential limitation of our proposal is that in order to perform inter-GPU
communication, it is necessary to maintain buffers to the size of the dependencies in both
host and devices. On the other hand, despite the high GPU utilization rates observed in
the results, the data reveal potential areas for further optimization. The fact that not all
GPUs are operating at or near maximum capacity at all times suggests that improvements
in the allocation algorithms or the parallel processing architecture could lead to even
more efficient use of resources. Optimizing these aspects could reduce processing times,
enhancing the system’s responsiveness to real-time reconstruction demands.

Scalability must also be taken into account. As Amdahl’s law predicts, the serial load
(including communication load) will inevitably exceed the computation load at a certain
number of processing devices. From this point on, adding more GPUs will yield worse,
rather than better, gains for the whole system.

Considering the economic and operational implications, we understand that the
adoption of multi-GPU systems for medical image reconstruction presents a number of
significant economic and operational implications for hospital environments. From an

Sensors 2024, 24, 1313 18 of 23

economic perspective, although the initial investment in a multi-GPU system is consider-
able, especially compared to less powerful hardware systems, it must be evaluated in the
context of the total cost of an MRI scanner. Operationally, the implementation of multi-GPU
technologies may require specific training for technical staff. However, with the proper
interface and procedures, this transition can be facilitated.

In addition, the ability of our system to process a larger volume of data in times that
do not impede clinical practice highlights its practical feasibility. This means that even if
real-time reconstruction is not achieved, the improved efficiency in image reconstruction
can facilitate greater patient throughput and more effective utilization of hospital resources,
thus offsetting the initial investment through operational and clinical improvements.

In summary, the implementation of multi-GPU systems for medical image reconstruc-
tion promises substantial benefits in terms of image quality, operational efficiency and
adaptability to different data types and reconstruction algorithms.

Another aspect we want to talk about is the environmental impact of using multi-GPU
systems for MRI reconstruction, especially in terms of consumption and carbon footprint.
In our research, the server used for testing consumes approximately 1000 watts during
the reconstruction processes. This figure, while significant, must be contextualized within
the larger picture of power consumption in medical imaging. Comparatively, an MRI
scanner can consume 20 kWh ± 5 during operation [35], depending on the manufacturer’s
specifications and the type of examination performed. This comparison highlights that
although multi-GPU systems have a non-trivial energy impact, this is substantially lower
compared to the consumption of MRI equipment.

To mitigate the environmental impact of our system, we propose several strategies:

• Algorithm Optimization: improve the efficiency of reconstruction algorithms to reduce
processing time and thus energy consumption;

• Intelligent Energy Management: implement software solutions that enable more
efficient energy management by GPU systems, adjusting the processing power to the
real needs of the computation;

• Renewable Energy Used: encourage the use of renewable energy to power the data
centers and servers that house these compute-intensive systems;

• Efficient Cooling: employ more energy-efficient cooling systems to decrease additional
energy consumption.

All possible actions aimed at optimizing this consumption and reducing the carbon
footprint are important steps towards sustainability. In addition, these strategies can offer
long-term economic benefits by reducing operating costs.

6. Conclusions

This paper presents a comprehensive approach for parallelized 5D cMRI reconstruc-
tion using multi-device systems, overcoming the memory capacity limitations of individual
GPUs and distributing load and synchronization between devices. Inter-device dependen-
cies caused by data management are addressed through a runtime communication channel.
Implementation using OpenCL ensures portability to a wide variety of platforms. The re-
sults obtained demonstrate a significant reduction in reconstruction time and maintenance
of image quality as evidenced by improvements in processing times up to ×44.3 and results
in SSIM and PSNR.

Although our proposal is focused on 5D cardiac CINE, it could also be applied to the
reconstruction of other MRI modalities. In this case, parallelization process and inter-device
communications have been optimized for the particular case of CS reconstruction with
regularization based on temporal total variation, i.e., with temporal dependencies. Any
problem that fits into this reconstruction scheme could be addressed by the proposed system.
Furthermore, the system presents a versatile and potentially transformative platform for
a wide range of applications in medical imaging and beyond. Its ability to handle high-
dimensional reconstructions opens the door to its implementation in other areas of medical
imaging that face similar challenges. For example, image reconstruction in neurology,

Sensors 2024, 24, 1313 19 of 23

oncology and interventional radiology, where data volume and the need for temporal and
spatial resolution are critical, could benefit significantly from our methodology. In addition,
the system architecture is based on flexibility and is not tied exclusively to proprietary
technologies, so the system can operate on a wider range of hardware platforms, thus
reducing costs and increasing the flexibility of advanced reconstruction technology. On the
other hand, the system can be easily adapted to work with any other type of medical
imaging. By changing the input data and the specific reconstruction algorithm, our system
can be reconfigured to address a variety of medical imaging problems, thus offering a
flexible and powerful solution to today’s medical imaging challenges. This adaptability
underlines the relevance and potential of the system as a valuable tool in other medical
specialties and research fields.

On the horizon of our research, we anticipate that technological advancement will
bring lower-cost hardware to match the performance of current high-end solutions, thus
enabling a significant reduction in the overall cost of processing systems.

Currently, work continues on the system, with a particular interest in exploring
sampling patterns, especially radial sampling. In this way, we will be able to evaluate the
adaptability of our parallel solution to various methodologies. In the future, we will study
improvements of the synchronization mechanism and advanced load balancing strategies
to further optimize performance on different hardware configurations. In addition, as a
future line of research, we will investigate the use of compression techniques to increase
memory efficiency and explore direct communication approaches between GPUs from
different manufacturers. And, in relation to GPU utilization results, the identification of
room for optimization underscores the ongoing need to refine our approach. We aim to
unlock the full potential of multi-device reconstruction.

Another open front in our research is the integration of AI and deep learning for MRI
reconstruction. Although our current focus is on parallelizing high-dimensional reconstruc-
tion, the incorporation of deep learning models could offer an avenue to overcome some of
the inherent limitations of traditional methods, especially in terms of reconstruction speed
and the handling of motion and noise artifacts.

On the software side, our work is focused on strengthening interoperability between
OpenCL and CUDA, as well as pursuing initiatives for distributed processing, such as
the development of PoCL 5.0, which bodes well for a more integrated and far-reaching
research methodology.

Author Contributions: Conceptualization: E.L.-A., R.-M.M.-L., F.S.-W., M.M.-F. and C.A.-L.; method-
ology: E.L.-A., R.-M.M.-L., F.S.-W., M.M.-F., M.R.-C. and C.A.-L.; software: E.L.-A., F.S.-W. and
M.R.-C.; formal analysis: R.-M.M.-L., M.M.-F. and C.A.-L.; writing—original draft preparation:
E.L.-A., R.-M.M.-L. and F.S.-W.; writing—review and editing: E.L.-A., R.-M.M.-L., F.S.-W., M.R.-C.,
M.M.-F. and C.A.-L.; project administration: R.-M.M.-L., F.S.-W., M.M.-F. and C.A.-L.; funding acqui-
sition: R.-M.M.-L., F.S.-W., M.M.-F. and C.A.-L. All authors have read and agreed to the published
version of the manuscript.

Funding: This work is partially supported by MINECO under grants TEC2017-82408-R, PRE2018-
086922, and by the Agencia Estatal de Investigación under grants PID2020-115339RB-I00 and TED2021-
130090B-I00.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

Sensors 2024, 24, 1313 20 of 23

AF Acceleration Factor
bSSFP Balanced Steady State Free Precession
cMRI Dynamic Cardiac Magnetic Resonance Imaging
CPU Central Processing Unit
CS Compressed Sensing
CUDA Compute Unified Device Architecture
FB Free-Breathing
FOV Field of View
GB Gigabyte
GPU Graphics Processing Unit
MRI Magnetic Resonance Imaging
OpenCL Open Computing Language
RAM Random Access Memory
TB Terabyte
TE Echo Time of the MR Acquisition
TR Repetition Time of the MR Acquisition
tTV Temporal Total Variation
SSIM Structural Similarity Index
VD-CASPR Variable Density Cartesian Acquisition with Spiral Profile Order
VRAM Video Random Access Memory

Appendix A. Gradient of the Regularization Term

As commented in Section 3.2, the key to understanding data dependencies between
the different devices is in the calculation of the term denoted as Λ within the gradient
function ∇ f (mk) (see Equation (3)), which must be evaluated at each iteration of the
NESTA algorithm. This appendix details the evaluation of Λ for the global, non-partitioned,
5D reconstruction problem.

At the k-th iteration, mk denotes the set of image volumes, i.e., mk = {mi,j}, with pseudo-
temporal indices 1 ≤ i ≤ Nr, and 1 ≤ j ≤ Nc, and with each mi,j defined over a 3D spatial
domain: X ⊂ R3. Then, we can evaluate Λ = ΦH f ′µ(Φmk) for a generic material point
x ∈ X , with mi,j = mi,j(x), and denote it as Λ(x). The term Λ involves operations along
both the cardiac and respiratory dimensions. For the sake of simplicity, we will analyze
each dimension separately by defining Λ(x) = Λc(x) + Λr(x).

For the cardiac dimension, the application of the tTV operator (Φc) can be expressed
in matrix form as:

mk(x) · Φc =

m1,1 m1,2 · · · m1,Nc

m2,1 m2,2 · · · m2,Nc
...

... mi,j
...

mNr ,1 mNr ,2 · · · mNr ,Nc

−1 0 0 · · · 0
1 −1 0 · · · 0
0 1 −1 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0
0 0 0 · · · −1
0 0 0 · · · 1

︸ ︷︷ ︸

Φc

=

=

m1,2 − m1,1 m1,3 − m1,2 · · · m1,Nc − m1,Nc−1
m2,2 − m1,1 m2,3 − m2,2 · · · m2,Nc − m2,Nc−1

...
...

. . .
...

mNr ,2 − mNr ,1 mNr ,3 − mNr ,2 · · · mNr ,Nc − mNr ,Nc−1

Then, the derivative of the Huber function is element-wise evaluated, and the tTV

adjoint operator (ΦH
c , defined as the conjugate transpose of Φc) is applied as follows:

Sensors 2024, 24, 1313 21 of 23

Λc(x) = f ′µ(m
k(x) · Φc) · ΦH

c =

=

f ′µ(m1,2 − m1,1) · · · f ′µ(m1,Nc − m1,Nc−1)

f ′µ(m2,2 − m2,1) · · · f ′µ(m2,Nc − m2,Nc−1)
...

. . .
...

f ′µ(mNr ,2 − mNr ,1) · · · f ′µ(mNr ,Nc − mNr ,Nc−1)

−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −1 1

︸ ︷︷ ︸

ΦH
c

=

=

− f ′µ(m1,2 − m1,1) f ′µ(m1,2 − m1,1)− f ′µ(m1,3 − m1,2) · · · f ′µ(m1,Nc − m1,Nc−1)

− f ′µ(m2,2 − m2,1) f ′µ(m2,2 − m2,1)− f ′µ(m2,3 − m2,2) · · · f ′µ(m2,Nc − m2,Nc−1)
...

...
. . .

...
− f ′µ(mNr ,2 − mNr ,1) f ′µ(mNr ,2 − mNr ,1)− f ′µ(mNr ,3 − mNr ,2) · · · f ′µ(mNr ,Nc − mNr ,Nc−1)

A similar analysis can be performed for operations along the respiratory dimension,

leading to:
Λr(x) = ΦH

r · f ′µ(Φr · mk(x)) =
− f ′µ(m2,1 − m1,1) − f ′µ(m2,2 − m1,2) · · · − f ′µ(m2,Nc − m1,Nc)

f ′µ(m2,1 − m1,1)− f ′µ(m3,1 − m2,1) f ′µ(m2,2 − m1,2)− f ′µ(m3,2 − m2,2) · · ·
...

...
...

. . .
...

f ′µ(mNr ,1 − mNr−1,1) f ′µ(mNr ,2 − mNr−1,2) · · · f ′µ(mNr ,Nc − mNr−1,Nc)

where Φr and ΦH

r are defined as:

Φr =

−1 1 0 0 · · · 0 0
0 −1 1 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · −1 1

, ΦH
r =

−1 0 · · · 0
1 −1 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · −1
0 0 · · · 1

.

Finally, we can conclude that

Λi,j(x) = Λc
i,j(x) + Λr

i,j(x) =

= f ′µ(mi,j − mi−1,j) + f ′µ(mi,j − mi,j−1)− f ′µ(mi+1,j − mi,j)− f ′µ(mi,j+1 − mi,j) (A1)

with f ′µ, the gradient of the well-known Huber function, defined as

f ′µ(a) =
{

a/µ, if |a| ≤ µ
a/|a|, otherwise.

(A2)

As commented in Section 3.2.3, the parameter µ changes for each stage (s) of the
algorithm (see S.0 in Figure 5).

References
1. Menchón-Lara, R.M.; Simmross-Wattenberg, F.; Casaseca-de-la Higuera, P.; Martín-Fernández, M.; Alberola-López, C. Recon-

struction techniques for cardiac cine MRI. Insights Imaging 2019, 10, 100. [CrossRef]
2. Turner, R.; Ordidge, R.; Haacke, E.; Liang, Z.P. Technical challenges of functional magnetic resonance imaging. IEEE Eng. Med.

Biol. Mag. 2000, 19, 42–54. [CrossRef]
3. Menchón-Lara, R.M.; del Val, J.R.; Godino-Moya, A.; Cordero-Grande, L.; Simmross-Wattenberg, F.; Martín-Fernández, M.;

Alberola-López, C. An Efficient Multi-resolution Reconstruction Scheme with Motion Compensation for 5D Free-Breathing
Whole-Heart MRI. In Molecular Imaging, Reconstruction and Analysis of Moving Body Organs, and Stroke Imaging and Treatment;
Cardoso, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2017; Volume 10555. [CrossRef]

http://doi.org/10.1186/s13244-019-0754-2
http://dx.doi.org/10.1109/51.870231
http://dx.doi.org/10.1007/978-3-319-67564-0_14

Sensors 2024, 24, 1313 22 of 23

4. Feng, L.; Coppo, S.; Piccini, D.; Yerly, J.; Lim, R.; Masci, P.; Stuber, M.; Sodickson, D.; Otazo, R. 5D whole-heart sparse MRI. Magn.
Reson. Med. 2018, 79, 826–838. [CrossRef]

5. Yoon, S.; Nakamori, S.; Amyar, A.; Assana, S.; Cirillo, J.; Morales, M.A.; Chow, K.; Bi, X.; Pierce, P.; Goddu, B.; et al. Accelerated
Cardiac MRI Cine with Use of Resolution Enhancement Generative Adversarial Inline Neural Network. Radiology 2023,
307, e222878. [CrossRef]

6. Moya-Sáez, E.; Navarro-González, R.; Cepeda, S.; Pérez-Núñez, Á.; de Luis-García, R.; Aja-Fernández, S.; Alberola-López, C.
Synthetic MRI improves radiomics-based glioblastoma survival prediction. NMR Biomed. 2022, 35, e4754. [CrossRef]

7. Becker, S.; Bobin, J.; Candès, E.J. NESTA: A fast and accurate first-order method for sparse recovery. SIAM J. Imaging Sci. 2011,
4, 1–39. [CrossRef]

8. Khronos Group. OpenCL (Version 3.0). Available online: https://www.khronos.org/opencl/ (accessed on 26 January 2024).
9. Simmross-Wattenberg, F.; Rodríguez-Cayetano, M.; Royuela-del Val, J.; Martin-Gonzalez, E.; Moya-Sáez, E.; Martín-Fernández,

M.; Alberola-López, C. OpenCLIPER: An OpenCL-based C++ Framework for overhead-reduced medical image processing and
reconstruction on heterogeneous devices. IEEE J. Biomed. Health Inform. 2018, 23, 1702–1709. [CrossRef] [PubMed]

10. Wang, H.; Peng, H.; Chang, Y.; Liang, D. A survey of GPU-based acceleration techniques in MRI reconstructions. Quant. Imaging
Med. Surg. 2018, 8, 196. [CrossRef] [PubMed]

11. Smith, D.S.; Gore, J.C.; Yankeelov, T.E.; Welch, E.B. Real-time compressive sensing MRI reconstruction using GPU computing and
split Bregman methods. Int. J. Biomed. Imaging 2012, 2012, 864827. [CrossRef] [PubMed]

12. Nam, S.; Akçakaya, M.; Basha, T.; Stehning, C.; Manning, W.J.; Tarokh, V.; Nezafat, R. Compressed sensing reconstruction for
whole-heart imaging with 3D radial trajectories: A graphics processing unit implementation. Magn. Reson. Med. 2013, 69, 91–102.
[CrossRef] [PubMed]

13. Sabbagh, M.; Uecker, M.; Powell, A.J.; Leeser, M.; Moghari, M.H. Cardiac MRI compressed sensing image reconstruction with a
graphics processing unit. In Proceedings of the 2016 10th International Symposium on Medical Information and Communication
Technology (ISMICT), Worcester, MA, USA, 20–23 March 2016; pp. 1–5. [CrossRef]

14. Shafique, M.; Qazi, S.A.; Omer, H. Compressed SVD-based L+ S model to reconstruct undersampled dynamic MRI data using
parallel architecture. Magn. Reson. Mater. Phys. Biol. Med. 2023, 36, 1–20. [CrossRef] [PubMed]

15. Lecoeur, B.; Barbone, M.; Gough, J.; Oelfke, U.; Luk, W.; Gaydadjiev, G.; Wetscherek, A. Accelerating 4D image reconstruction for
magnetic resonance-guided radiotherapy. Phys. Imaging Radiat. Oncol. 2023, 27, 100484. [CrossRef] [PubMed]

16. Cuomo, S.; Michele, P.D.; Piccialli, F. A (multi) GPU iterative reconstruction algorithm based on Hessian penalty term for sparse
MRI. Int. J. Grid Util. Comput. 2018, 9, 139–156. [CrossRef]

17. Schaetz, S.; Voit, D.; Frahm, J.; Uecker, M. Accelerated computing in magnetic resonance imaging: Real-time imaging using
nonlinear inverse reconstruction. Comput. Math. Methods Med. 2017, 2017, 3527269. [CrossRef] [PubMed]

18. Piccialli, F.; Cuomo, S.; De Michele, P. A regularized MRI image reconstruction based on hessian penalty term on CPU/GPU
systems. Procedia Comput. Sci. 2013, 18, 2643–2646. [CrossRef]

19. Schaetz, S.; Uecker, M. A multi-GPU programming library for real-time applications. In Proceedings of the Algorithms and
Architectures for Parallel Processing: 12th International Conference, ICA3PP 2012, Proceedings, Part I 12, Fukuoka, Japan, 4–7
September 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 114–128. [CrossRef]

20. Murphy, M.; Alley, M.; Demmel, J.; Keutzer, K.; Vasanawala, S.; Lustig, M. Fast l1-SPIRiT compressed sensing parallel imaging
MRI: Scalable parallel implementation and clinically feasible runtime. IEEE Trans. Med. Imaging 2012, 31, 1250–1262. [CrossRef]

21. Zhuo, Y.; Wu, X.L.; Haldar, J.P.; Hwu, W.M.W.; Liang, Z.P.; Sutton, B.P. Multi-GPU implementation for iterative MR image
reconstruction with field correction. In Proceedings of the International Society for Magnetic Resonance in Medicine, Stockholm,
Sweden, 1–7 May 2010; p. 2942.

22. Segars, W.P.; Sturgeon, G.; Mendonca, S.; Grimes, J.; Tsui, B.M. 4D XCAT phantom for multimodality imaging research. Med.
Phys. 2010, 37, 4902–4915. [CrossRef]

23. Prieto, C.; Doneva, M.; Usman, M.; Henningsson, M.; Greil, G.; Schaeffter, T.; Botnar, R.M. Highly efficient respiratory motion
compensated free-breathing coronary MRA using golden-step Cartesian acquisition. J. Magn. Reson. Imaging 2015, 41, 738–746.
[CrossRef]

24. NVIDIA Corporation. NVIDIA RTX A5000 GPU Specifications. Santa Clara, CA, EE. UU. 2024. Available online: https:
//www.nvidia.com/en-us/design-visualization/rtx-a5000/ (accessed on 26 January 2024).

25. Advanced Micro Devices. AMD EPYC 7513 CPU Specifications. Santa Clara, CA, EE. UU. 2024. Available online: https:
//www.amd.com/en/products/cpu/amd-epyc-7513 (accessed on 26 January 2024).

26. NVIDIA Corporation. NVIDIA Quadro RTX 6000 GPU Specifications. Santa Clara, CA, EE. UU. 2024. Available on-
line: https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-
6000-us-nvidia-704093-r4-web.pdf (accessed on 26 January 2024).

27. NVIDIA Corporation. NVIDIA Quadro RTX 5000 GPU Specifications. Santa Clara, CA, EE. UU. 2024. Available on-
line: https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-
5000-data-sheet-us-nvidia-704120-r4-web.pdf (accessed on 26 January 2024).

28. Intel Corporation. Intel Xeon E5-2697 v4 CPU Specifications. Santa Clara, CA, EE. UU. 2024. Available online: https://www.intel.
com/content/www/us/en/products/sku/91755/intel-xeon-processor-e52697-v4-45m-cache-2-30-ghz/specifications.html (ac-
cessed on 26 January 2024).

http://dx.doi.org/10.1002/mrm.26745
http://dx.doi.org/10.1148/radiol.222878
http://dx.doi.org/10.1002/nbm.4754
http://dx.doi.org/10.1137/090756855
https://www.khronos.org/opencl/
http://dx.doi.org/10.1109/JBHI.2018.2869421
http://www.ncbi.nlm.nih.gov/pubmed/30207968
http://dx.doi.org/10.21037/qims.2018.03.07
http://www.ncbi.nlm.nih.gov/pubmed/29675361
http://dx.doi.org/10.1155/2012/864827
http://www.ncbi.nlm.nih.gov/pubmed/22481908
http://dx.doi.org/10.1002/mrm.24234
http://www.ncbi.nlm.nih.gov/pubmed/22392604
http://dx.doi.org/10.1109/ISMICT.2016.7498891
http://dx.doi.org/10.1007/s10334-023-01128-5
http://www.ncbi.nlm.nih.gov/pubmed/37978992
http://dx.doi.org/10.1016/j.phro.2023.100484
http://www.ncbi.nlm.nih.gov/pubmed/37664799
http://dx.doi.org/10.1504/IJGUC.2018.091720
http://dx.doi.org/10.1155/2017/3527269
http://www.ncbi.nlm.nih.gov/pubmed/29463984
http://dx.doi.org/10.1016/j.procs.2013.06.001
http://dx.doi.org/10.1007/978-3-642-33078-0_9
http://dx.doi.org/10.1109/TMI.2012.2188039
http://dx.doi.org/10.1118/1.3480985
http://dx.doi.org/10.1002/jmri.24602
https://www.nvidia.com/en-us/design-visualization/rtx-a5000/
https://www.nvidia.com/en-us/design-visualization/rtx-a5000/
https://www.amd.com/en/products/cpu/amd-epyc-7513
https://www.amd.com/en/products/cpu/amd-epyc-7513
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-6000-us-nvidia-704093-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-6000-us-nvidia-704093-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
https://www.intel.com/content/www/us/en/products/sku/91755/intel-xeon-processor-e52697-v4-45m-cache-2-30-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/91755/intel-xeon-processor-e52697-v4-45m-cache-2-30-ghz/specifications.html

Sensors 2024, 24, 1313 23 of 23

29. Li, A.; Song, S.L.; Chen, J.; Li, J.; Liu, X.; Tallent, N.R.; Barker, K.J. Evaluating modern gpu interconnect: Pcie, nvlink, nv-sli,
nvswitch and gpudirect. IEEE Trans. Parallel Distrib. Syst. 2019, 31, 94–110. [CrossRef]

30. Butenhof, D. Programming with POSIX Threads; Addison-Wesley Professional: Boston, MA, USA, 1997.
31. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE

Trans. Image Process. 2004, 13, 600–612. [CrossRef]
32. Habermann, T.; Folk, M. The hierarchical data format (HDF): A foundation for sustainable data and software. In Proceedings of

the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 15–19 December 2014; Volume 2014, p. IN21D-07. [CrossRef]
33. NEMA PS3/ISO 12052; Digital Imaging and Communications in Medicine (DICOM) Standard. National Electrical Manufacturers

Association: Rosslyn, VA, USA, 1993.
34. Inati, S.J.; Naegele, J.D.; Zwart, N.R.; Roopchansingh, V.; Lizak, M.J.; Hansen, D.C.; Liu, C.Y.; Atkinson, D.; Kellman, P.; Kozerke,

S.; et al. ISMRM Raw data format: A proposed standard for MRI raw datasets. Magn. Reson. Med. 2017, 77, 411–421. [CrossRef]
[PubMed]

35. Heye, T.; Knoerl, R.; Wehrle, T.; Mangold, D.; Cerminara, A.; Loser, M.; Plumeyer, M.; Degen, M.; Lüthy, R.; Brodbeck, D.; et al. The
energy consumption of radiology: Energy-and cost-saving opportunities for CT and MRI operation. Radiology 2020, 295, 593–605.
[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TPDS.2019.2928289
http://dx.doi.org/10.1109/TIP.2003.819861
http://dx.doi.org/10.6084/m9.figshare.1112485.v4
http://dx.doi.org/10.1002/mrm.26089
http://www.ncbi.nlm.nih.gov/pubmed/26822475
http://dx.doi.org/10.1148/radiol.2020192084
http://www.ncbi.nlm.nih.gov/pubmed/32208096

	Introduction
	Background
	Materials and Methods
	Data and Hardware Used
	Method
	Data Partitioning
	Data Dependencies
	Managing Data Dependency

	Results
	Reconstruction Times
	Global versus Local Optimizations
	Reconstruction Quality
	GPU Usage Analysis

	Discussion
	Conclusions
	Appendix A
	References

