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Abstract

Generalized analytic functions are naturally defined in manifolds with boundary and are built
from sums of convergent real power series with non-negative real exponents. In this paper we
deal with the problem of reduction of singularities of these functions. Namely, we prove that a
germ of generalized analytic function can be transformed by a finite sequence of blowing-ups
into a function which is locally of monomial type with respect to the coordinates defining
the boundary of the manifold where it is defined.
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1 Introduction

In this paper, a generalized power series (in n variables and with coefficients in some ring A)
is a power series with n-tuples of non-negative real numbers as exponents and whose support
is contained in a cartesian product of n well-ordered subsets of Ry = {r > 0}. It is worth
to mention that this condition on the support is more restrictive (except for n = 1) than the
one used to define the Hahn ring A((I")), where I' is the group R” with the lexicographic
order (and whose elements are also called generalized power series). Introduced and studied
by van den Dries and Speissegger in [6], generalized power series appear in several contexts.
To mention a few: as solutions of differential/functional equations; as expressions of the
Riemann zeta-function (or, more generally, the Dirichlet series) in a logarithmic chart; as
asymptotic expansions of Dulac transition maps of vector fields (see for instance [12, 13]); in
model theory and o-minimal geometry (the paper [6] itself, or also [17]); as parametrizations
of algebraic curves in positive characteristic (see for instance [18, p. 19]).

Considering real coefficients, we have a natural notion of convergence for generalized
power series, whose sums provide continuous functions on open subsets of the orthant R’ ,
called generalized analytic functions. They are the local pieces to build abstract (real) gener-
alized analytic manifolds, introduced and developed by Martin, Rolin and Sanz in [14]. More
precisely, a generalized analytic manifold is a locally ringed space M = (M, Gyr), where M
is a topological manifold with boundary and Gy, is a sheaf of continuous functions locally
isomorphic to the sheaf of generalized analytic functions on open subsets of R’} . Sections of
the sheaf Gy, are called themselves generalized analytic functions on M.

The main result in [14] establishes the local reduction of singularities of generalized ana-
lytic functions, in the spirit of Zariski’s local uniformization theorem of algebraic varieties
[19] or Hironaka’s version for analytic varieties [10]. The statement, formulated in analo-
gous terms to those used in Bierstone—Milman’s paper [4] for real analytic functions, is the
following:

Local Monomialization Theorem [14]. Let f be a generalized analytic function on M and
let p € M. Then there exists a neighbourhood Uy of p in M, finitely many sequences of local
blowing-ups {m; : M; — Up}_, and compact sets L; C M; satisfying that U; mi(Li) is a
neighbourhood of p and such that, for every i, the total transform f; = f om; is of monomial
type at every q € L; (i.e., for some coordinates x = (xy, x2, ..., X,) centered at ¢, we have
fi = x*U (x) where U (0) # 0).

The centers of blowing-ups in each sequence ; have normal crossings with the boundary,
but they are defined only in some open sets of the corresponding manifold. In the standard real
analytic case, we have stronger global monomialization results (typically called Reduction
of Singularities, see [1, 5, 7]). They consist, essentially, in that in the above statement, we
can take just a single sequence (r = 1) and the centers of blowing-ups are globally defined
closed analytic submanifolds, having normal crossings with the boundary.

Such a global result is not known so far for generalized analytic functions. There are
two main difficulties related to the very notion of a blowing-up morphism in the category
of generalized analytic manifolds. On the one hand, a blowing-up depends on the local
coordinates that we use to define it. More intrinsically, a blowing-up is not uniquely defined
and depends on the choice of a standardization of the manifold (or at least of an open
neighbourhood of the center of blowing-up). Roughly, a standardization is a subsheaf Oy of
G such that (M, Oyy) is areal analytic standard manifold and from which the sheaf G; can
be recovered by a natural completion adding generalized series (see [14], we recall this notion
below). Secondly, although every generalized analytic manifold is locally standardizable,
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there may exist closed submanifolds which do not admit standardizable neighbourhoods;
i.e., such submanifolds cannot be “geometric” centers for a blowing-up (cf. [14, Example
3.20)).

Morally, a procedure for reduction of singularities of generalized analytic functions would
need to guarantee that, in the process, all closed centers susceptible to be blown-up have
standardizable neighbourhoods. If this is already proved and Y is such a center, one needs to
show furthermore that, among the dﬂi\flferent standardizations around Y, there exists for which
the corresponding blowing-up & : M — M reduces the “complexity” of the function.

In this paper, we overcome these difficulties to obtain an intermediate step towards a global
result, the so-called stratified reduction of singularities. Let us explain it. First, we recall that,
by its very definition, the boundary d M of a generalized analytic manifold is a normal crossing
divisor; i.e., M is locally given by a finite union of coordinate hyperplanes. Moreover, the
number of such hyperplanes at each point provides a natural stratification of M by (standard)
analytic manifolds. A generalized analytic function f : M — R is said to be of stratified
monomial type if for any given p € M, if § is the stratum where p belongs, there exists a
local chart (x = (x1, X2, ..., X0),y) centered at p satisfying S = {x; =x, =--- = x, =0}
and for which

fx,y) =x"U(x,y), wherea € R¢ and U(0,y) # 0.

Thus, requiring a function to be of stratified monomial type means to require that it is of
monomial type only with respect to the generalized coordinates determining equations of
the components of the boundary. In particular, the condition is empty if p ¢ dM. Also, it is
automatic if S has codimension e = 1, taking in the above definition « to be the minimum
of the support of the series defining f with respect to the single variable x = x;.

Our main result may be stated now as follows.

Theorem 1.1 (Stratified Reduction of Singularities) Let M = (M, Gy) be a generalized
analytic manifold and let f : M — R be a generalized analytic function. Let p € M and
assume that the germ of f at p is not identically zero. Then, there exist a neighbourhood V,,
of p in M and a sequence of blowing-ups

My, Gu) ™" (My—1,Gu, ) 57 - B (M1, Gu) S (V. Guly,)

such that the pull-back ' := fomgo---om—_1 € Gy, (M,) is of stratified monomial type.
Moreover, the center of each blowing-up 7w, with j = 0,1,...,r — 1, can be chosen to be
the closure of a codimension two stratum in M j, where Mo := V).

Our proof of Theorem 1.1 is constructive in the sense that each center, as well as the stan-
dardization used to define the respective blowing-up at each step, can be given explicitly in
terms of the expression of f in some initial coordinates of M at p. Moreover, each blowing-
up morphism is locally expressed as a purely monomial map between two domains of R’
in suitable charts. Consequently, all the process of stratified reduction of singularities can
be described using only combinatorics from the starting data given simply by the minimal
support (see Sect.2 below) of a generalized power series representing f at p. The datum
of minimal support is closely related to that of the Newton polyhedron of a function in the
standard analytic case and therefore, our result should be compared with the combinatorial
reduction of singularities stated in Molina’s paper [15]. Although it has been a source of
inspiration for us, we cannot apply directly the results in [15], mostly because there is no
good notion of “multiplicity” in the generalized non-standard situation (any power function
with positive real exponent in a generalized variable is a genuine change of variables).
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We want to observe that Theorem 1.1 is already proved for dim M = 3 in Palma’s paper
[16], but with a different strategy for the choice of the sequence of blowing-ups (for instance,
the centers of blowing-ups may be either corner points or closures of one-dimensional strata).

The paper is structured as follows.

In Sect. 2 we summarize the basic notions and properties of generalized power series and
of the category of generalized analytic manifolds, using the mentioned references [6] and
[14]. We emphasize the notion of standardization, which is crucial to define blowing-ups.

In Sect. 3 we introduce the category of monomial (generalized or standard) analytic mani-
folds. The objects of this subcategory are manifolds having at least one corner and equipped
with an atlas of local charts centered at each corner point for which the change of coordinates
is expressed as a monomial map between domains of the local model R’} . We represent these
changes of coordinates by means of a family of matrices of exponents (for a similar treatment
see for instance [2, 3, 16]), a combinatorial data which codifies uniquely the structural sheaf
of the manifold. We define also the class of monomial morphisms and the class of monomial
standardizations of monomial manifolds. After a blowing-up using such a standardization
with a center which is the closure of a stratum (a so-called combinatorial center), we obtain
again a monomial manifold and the blowing-up morphism is a monomial morphism. The
main result in this section is the abundance of monomial standardizations (Proposition 3.16
below). Furthermore, we can choose such a monomial standardization with a prescribed local
expression at a given corner point. Morally, local strategies of reduction of singularities are
susceptible to be “globalized”. We end this section by introducing a special class of monomial
manifolds, those obtained from a given one by a sequence of blowing-ups with combinatorial
centers, and using only monomial standardizations. Such a sequence is called a monomial
star and the family of such stars is called the monomial “voiite étoilée”, a terminology that
evokes the one introduced by Hironaka in [10, 11] for sequences of local blowing-ups in
complex analytic geometry.

In Sect. 4 we provide a proof of the main Theorem 1.1. Firstly, we prove a result about
principalization of finitely generated monomial ideal sheaves in a given monomial manifold.
This result (see Theorem 4.5 below) can be seen as a version for our category of a well known
result on principalization of ideals in the algebraic or standard analytic situation (see for
instance Goward’s paper [9] for a simple proof, or see also Ferndndez-Duque’s paper [8] for
a similar statement concerning the resonances elimination for singularities of codimension-
one analytic foliations). Taking into account that it suffices to obtain the principalization only
at the corner points, such a result can also be regarded as a globalization of the algorithm
described in van den Dries and Speissegger’s paper (see [6, Lemma 4.10]) that reduces the
number of elements in the minimal support of a generalized power series by monomial
transformations of the variables.

Although we use certain elements and arguments of that result, and despite of what we
have said above concerning the possibility to globalize a “local strategy”, our proof here
requires a different control invariant.

Once we have the principalization of monomial ideal sheaves, the main theorem is con-
cluded easily in the case we start with a corner point p € M. In this case, the sequence
my oy o---m—1 for Theorem 1.1 is actually a star in the voflite étoilée over the germ of M
at p. Finally, the general case p € dM is reduced to the case of a corner point, using that
around p there is a product structure of a neighbourhood of a corner point times a standard
analytic manifold without boundary.
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2 Preliminaries

We summarize here the basic notions about the category of generalized analytic manifolds and
blowing-up morphisms in it, introduced by Martin, Rolin and Sanz in [14]. These manifolds
are built from convergent generalized power series, extensively studied in a paper by van den
Dries and Speissegger [6].

2.1 Formal and convergent generalized power series

Denote by R4 = [0, 00). Tuples of variables are denoted by X, Y, Z, etc., and we implicitly
assume that tuples with different name have no common variables. If X has n components,
we say that X is an n-tuple and so on.

Let X = (X1, X2, ..., X;) be an n-tuple of variables and let A be an integral domain. A
formal generalized power series with coefficients in A inthe variables X isamap s : R, — A,
written as

s= Y s X", where X* = X{'X3? - X} for k= (A1, A2, ... An)
reRY

and s;, := s(X) € A, such that its support Supp(s) := {A € R’| : s; # 0} is contained in
a cartesian product of n well-ordered subsets of R. The set of all such formal generalized
power series, denoted by A[[X*]], with the usual addition and product operations of power
series has an structure of an A-algebra which is also an integral domain. Moreover, if A is
a field, then A[[X™*]] is a local algebra (see [6, Corollary 5.6]), with maximal ideal given by
m = {s € A[[X*]] : so = 0}. Note that A[[X*]] is not noetherian, in fact, the ideal m is
never finitely generated.

The minimal support of a power series s € A[[X*]] is the subset Supp,;,(s) C Supp(s)
composed of the minimal tuples of R} with respect to the (partial) division order <4, that is
My X, ooy Ap) <aq (1, 2, ...y ) ifand only if A; < w;, foralli € {1,2,...,n}.

The condition imposed on the support of a power series s allows to show that the mini-
mal support Supp,;, (s) is finite (see [6, Lemma 4.2]). As a consequence, s admits a finite
monomial presentation:

s= Y XU,

1.€Suppyin (8)

where U, € A[[X*]] satisfies Uy (0) # 0, for any A € Supp;,(s). Denote by m(s) =
#Supp iy (s). When m(s) = 1 or, equivalently, the monomial representation of s has a single
term, we say that s is of monomial type.

In this paper, we are interested in real generalized power series, thatis A = R, but we use
different rings when we want to distinguish some variables and put the others into the coeffi-
cients. To be precise, if Y and Z are tuples of k and n — k variables, respectively, we consider
R[[(Y, Z)*]] as a proper R-subalgebra of R[[Y*]][[Z*]] by the natural monomorphism

s= Y @Y7' e 5P = ) AZF, where Ay = Y a Yt (1)
(n,pmeRy peR1* reRE

If pr : R” — R"¥ denotes the natural projection onto the last n — k coordinates, for any
power series s € R[[(Y, Z)*]] we have the inclusion Supp,i, (%) C pr(Supp,,(s)), and as
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a consequence we get the inequality
m(s?) < m(s). )

Let us write R[[Y, Z*]] to denote the subalgebra of R[[(Y, Z)*]] composed by the so-
called real mixed power series: those formal real generalized power series s in the variables
(Y, Z), such that the inclusion Supp(s) C NF % R’_’[k holds, or equivalently, such that
sZ e RIIYNI[Z*]].

Given an n-tuple of variables X and a polyradius p = (p1, p2, ..., pn) € ]R’;O, denote by
R{X*}, the subalgebra of R[[X*]] consisting on those power series s for which
Isllp = Y Isilp” < oc.
reSupp(s)

The union of the R{X*}, along all the possible polyradius p € R , is again a subalgebra
R{X*} C R[[X™]], and its elements are called (real) convergent generalized power series.
We have that R{X*} is also a local algebra, whose maximal ideal is given by m N R{X*}.
If Y, Z are tuples of k and n — k variables, respectively, and p € R” is a polyradius, an
element s € R[[Y, Z*]] N R{(Y, Z)*}, gives rise to a continuous function

fY: P]f,n—k —> R

X = (X1, X0, 0, Xp) > D saxt,

3

where P, = (=p1, p1) X (=p2, 02) X -+ X (=pg, pr) X [0, prg1) X -+ x [0, p) C
R¥ x Rf‘[k , called the sum of the power series s. Moreover, f; isreal analytic at any pointin the
interior of P,f 2—i andits germ at 0 € R" is uniquely determined by the series s. We define the
convergent mixed power series to be the elements of R{Y, Z*} := R[[Y, Z*]]NR{(Y, Z)*}.

2.2 Standard and generalized analytic manifolds

Let V be an open subset of R’} and let g : V — R be a continuous function. Given a point
p = (p1,p2,...,pp) € V,consider I, :={i : p; =0} C {1,2,...,n},and put £ = #/,
and k = n — £. We say that g is generalized analytic (or just G-analytic) at p if there exists
s € R{Y, Z*}, where Y is ak-tuple and Z is an £-tuple, such that for any x = (x1, x2, ..., X)
in a sufficiently small neighbourhood of 0 in R¥ x Ri, we have

g(p1+Xo), P2+ X6(2)s - +s P+ Xo@m)) = fs(X1, X2, ..., Xpn),

where o is a permutation of the set {1, 2, ..., n} satisfying the relation j € I, if and only if
o(j)efk+1,k+2,...,n}. Wesay that g is generalized analytic in V if it so at every point
p in V. In the definition above, the series s is uniquely determined by the germ of g at p,
up to permutation of the variables Y and Z, separately. Thus, the set of germs of generalized
analytic functions at p defines an R-algebra isomorphic to R{Y, Z*}. On the other hand, if g
is a generalized analytic function at some point p € R’} , then it is so in a neighbourhood of p
in R, . Summarizing, the assignment G, : V > G,(V), where V is an open subset of R’ and
G, (V) is the set of generalized analytic functions in V, is a sheaf of R-algebras of continuous
functions over ]Ri, where the stalks G, ,, are local algebras. Moreover G, contains the sheaf
O,, of analytic functions, where O, (V) is the R-algebra of real functions in V which extend
to real analytic functions on some open neighbourhood of V in R”.

With this formalism, and taking as local models the locally ringed spaces O, := (R”_, O,,)
and G, := (R, G,), we define both the categories of standard and generalized (real)
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analytic manifolds (with boundary and corners). The objects in these categories are called
O-manifolds and G-manifolds, respectively. In order to treat both together we write A to make
reference either to @ or to G, and A to refer either to © or G. An A-manifold of dimension n is
alocally ringed space M = (M, Apr), where M is a second countable Hausdorff topological
space (the underlying space) and Ay is a subsheaf of the sheaf C(/)w of germs of continuous
real functions on M (the structural sheaf), which is locally isomorphic to the local model
A,. That is, given p € M there is an open neighbourhood V of p in M, an open subset U
of R and a homeomorphism ¢ : V' — U inducing an isomorphism of the locally ringed
spaces

@, 9" 1 (V, Aulv) — (U, Aulv),

where <pf, : Aungp) = Awm,p is given by the composition g > g o ¢ (as germs). A
morphism between two A-manifolds is just a morphism as locally ringed spaces, induced by
composition with continuous maps on the underlying spaces (with an abuse of language, we
frequently identify morphisms with the corresponding continuous maps). A couple (V, ¢) in
the above conditions is called a local chart of M at p, the components X = (x1, x2, ..., X;)
of the isomorphism ¢ : V. — U are local coordinates at p, and a family of local charts
{(V;,9j)}jes such that M = UV, is an atlas of M.

Let M = (M, Ajy) be an A-manifold. Note that the underlying space M is a topological
manifold with boundary, denoted by d M, and that the restriction (M\OM, Ay |pnom) is a
standard analytic manifold without boundary (consequently, generalized analytic manifolds
without boundary are also standard). Also there is a natural stratification S of M described
as follows. If p € M, and (V, ¢) is alocal chart at p, the number e, of vanishing coordinates
in ¢(p) (equal to #1,(p)) does not depend on the local chart (V, ¢) chosen (see [14]). In that
way, there is a well-defined map

e:M— {0,1,...,n}, pr>ep,

which is upper semi-continuous. The elements of Sy are the connected components of the
fibers of e. Given § € Sy, let us write eg := e, where p is any point in S. Observe that
(S, Aals) is a standard analytic manifold of dimension n — eg. In particular, the boundary
9 M corresponds exactly with the points p € M with e, > 0, thatis, d M is equal to the union
of strata of dimension strictly smaller than n. We have also that, dM is a normal crossings
divisor with respect to the structural sheaf. That is, for each p € dM, there exists a local
chart (V, ¢) of M at p such that

IMNV ={qgeV:xi(q)- xi(q)- - -xe,(q) =0},

where (x1, x2, ..., X,) are the coordinates associated to ¢.

Example 2.1 Let (_95 be the sheaf of real (standard) analytic functions in R¥. The locally
ringed space (R¥, Oy) is a generalized and standard analytic manifold, with a single chart
i : RE = (0, 00)¥ defined by (ay, az, ..., ar) — (e, e, .. e%).

We observe at this point that the product is defined in the category of .A-manifolds. That
is, given two generalized or standard analytic manifolds M; = (M;, Apy,) and M, =
(M2, Ap,) of dimensions n and m, respectively, there is a natural .A-manifold of dimension
n + m, that we denote by M| x My = (M| x M2, Apm, xm,), unique up to isomorphism,
solving the “product universal property”. Without too much detail, the sheaf Aps, xum, is
constructed as follows. Given a point (p,g) € M| x M; and two coordinate charts ¢; :
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4 Page8of28 B. Molina-Samper et al.

Vi — U and ¢, : Vo — U, at p and q respectively, we have that
Amixmtr,pg) =1 0 (@1 X 02)(p g = f € Appm.(p.9) )

where (p’, ¢") = (p1(p), ¥2(9)).

Example 2.2 The product (R*, Oy) x (]Rf’[k, An—i), where A € {O, G}, has a natural struc-
ture of .A-manifold by means of the homeomorphism v, x id, where 1, has been introduced
in Example 2.1. We refer to this product by writing (R¥ x Rffk s Ak n—k)-

Remark 2.3 Let us consider a point p € M with ¢, = k and let (V, ¢) be a local chart
of M at p. Up to permutation, we can assume that ¢(p) = (ay, a2, ..., a,0,...,0) with
ai # 0foralli € {1,2,...,k}. We can split the local coordinates x defined by ¢ in two
groups X = (y, z), where y = (y1, y2, ..., yx) are standard analytic functions at p and
Z = (Zk+1, Zk+2, - - - » Zn) are generalized functions. By means of translations ylf =y —a;
in the analytic coordinates we obtain a new isomorphism

¢ Vi (Y x id) " (p(V)) c RF x R,

We consider also ¢’ as a coordinate chart centered at p in the sense that ¢'(p) = 0 €
RF x R'j;k, and we usually assume that our charts are centered charts.

Letusrecall now the expression in coordinates of the continuous maps inducing morphisms
of generalized functions (details in [14, Proposition 3.16]). Consider two generalized analytic
manifolds M| = (M1, Gy, ) and My = (M2, Gp,) and acontinuous functiong : My — M
inducing a morphism between M; and M,. Given p € M| and ¢ = ¢(p) € M, take
(Vp, ©p), (Wy, ) charts centered at p and g, respectively. Following notationin Remark 2.3,
denote by y and z the k standard and n — k generalized coordinates defining ¢, respectively.
Up to permutation, we can assume also that the first &’ coordinates defining v, are standard
and the other n’ — k’ are generalized. Then, the j-th component qgj of § = Ygopo <p;1 isa
generalized analytic function and for j = k' + 1, k" +2, ..., n’, we have that

¢j =7"Uj(y.2), U;(0,0)#0, A;eRTF\{0}. 4)

Moreover, if ¢ induces an isomorphism, we have that ¢ is a homeomorphism, n = n/,
k =1k themapt € RF > (1(t,0), p2(t,0), ..., dr(t, 0)) is an analytic isomorphism, and,
ifwewrite Aj = (A;1,A;2,...,Aj k) in Eq. (4), up to a permutation of coordinates z we
have

Ajj—k >0, Aj¢=0, e{l,2,...,n—=kN\{j —k}, 5)

forall j=k+1,k+2,...,n.

We end this section introducing some notation and definitions concerning the strata of the
natural stratification Sp4. Given a stratum S in Sy, denote by S the closure of S in M, and
define dim(S) = dim(S). We write 2\ := {f cM: SeSpy}.Forj=0,1,...,n,
denote by ij the set of elements in Z )4 with dimension j, that is

Zh=15€Zm: es=n—j)

The elements of ZOM are the strata of dimension 0, and are called corner points, the elements
of Z}\/t are called edges and the elements of Z"M71 are called components of d M. Note that
dM is the union of its components.

Foreach Z € Z,4, we denote by Z((Z) the subset of Zx( whose elements are contained
in Z, and foreach j =0, 1, ..., n, we write Zﬁ,l(Z) =Zm(Z)N Zj\/t We write for short
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pE ZOM instead of {p} € ZOM, and when no confusion arises, we will put Z instead of Z,
ZJ instead of Zi\ o ete.

2.3 Monomial complexity along strata

We introduce in this section the concept of monomial complexity along a stratum and the
definition of stratified monomial type function.

Let us consider a generalized analytic manifold M = (M, Gy) and a stratum S of its
natural stratification S. Take a local chart (V, ¢) of M centered at some p € S, write e = eg
and k = dim § = n —e. We can split the coordinates defining ¢, up to reorder them, as (y, z),
wherey = (y1, y2, . .., yx) are standard analytic coordinatesin SNV andz = (z1, 22, - - -, Z¢)
are generalized functions such that SNV ={q € V : z1(q) = 22(q) = -+ = z.(q) = 0}.
Shrinking V if necessary, the chart ¢ provides an isomorphism

WO R{Y, Z) = Gup, s> fsog,

where Y and Z are k and e tuples, respectively, and f; is the sum of the power series s
introduced in Eq. (3). Given f € Gy, and s € R{Y, Z*} the mixed power series such that
W) (s) = f, we denote

Supps(f; @) = Supp(s”) C RS, Supppin s(f; ¢) = Suppmin(s”) C RS, (6)
where sZ € R{Y}{Z*} has been introduced in Eq. (1).

Lemma 2.4 Let S be a stratum in S with e = es. Take an open subset U of M such that
UNS #@, and a function f € Gy (U). Consider two local charts (Vy, ¢1) and (Va, ¢2),
centered at p and q respectively, with p,q € S N\ U. There exists a tuple (y1, V2, ..., Ye) €
RS such that (A1, Ao, ..., Ae) € Suppmin s(fq: ¢2) if and only if (A1, y2ha, ..., Yehe) €
Suppmin,S(fp; ®1).

Proof Using that S is path connected and by compactness of a given path from p to g, we
can reduce the problem to the case where both points p and g belong to the same connected
component W of U NV N Vo. Writey = (V1, Y2, .-+ Yn—e), Z = (21,22, ..., 2¢), and
alsoy = (31, Y2, -+ Yn—e)s Z = (21,22, - - ., Ze), Where, up to reordering, (y, z) are the
coordinate functions associated to ¢ and (y, Z) are the ones associated to ¢;, in such a way
that y|snv;, ¥lsnv, are analytic coordinates in W N §. That is, we have

WnS:{Z]:ZZZ"':ZeZO}:{Zl:ZZZ"':ze:O}~

In view of Egs. (4) and (5), up to reordering the variables z, the change of coordinates
0 O(pfl satisfies, forany j =1,2,...,n —eand £ =1,2,..., e, that y; = g;(y, z), and
= Zglh[ (y, z), where g, h, are generalized analytic functions such thaty — g;(y, 0) is
a standard analytic non-constant function, y; > 0 and %¢(0, 0) # 0. We summarize these
expressions by writingy = gandz = 2" h. If Ao := Supp,;, s(fgs 2) = {1, m2, .5 e},
the expression of f in coordinates (y, Z) is

flw =2"1®1(y,2) + 22 P2(¥,2) + - - - + 2 D4(¥, 2),

where ®;(y,0) # 0, forany j = 1,2, ...,t. Applying the change of coordinates in order
to get the expression of f in (y, z), we obtain

flw =2/ (y,2) + 272 W0 (y, 2) + - - - + 27H1 W (y,2), Wi(y, z) = h**Dr(g, 2 h),
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where yur = (Vitk1, V2ik.2s - - -5 Yeltk,e)- Note that Wi(y,0) # 0, so yur €
Suppg(fp; ¢1), forany k = 1,2, ...,t. Moreover, each A € Suppg(f); ¢1) is such that
Yk <4 M forsomek € {1,2,...,t}. Hence

Suppin s (fp: ©1) C Ay == {yu1, yia, ..., vt}

Now, recall that any pair of elements p,, ;s € A; are incomparable for the order <. The:n,
the elements of A are also mutually incomparable and the equality Supp,;, s(fp; @1) = Az
holds. =

The next definition makes sense as a result of Lemma 2.4.

Definition 2.5 Let f : M — R be a generalized analytic function. The monomial complex-
itymgs(f) of f alongs is the number mg(f) = #Supp,in s(fp; @), where p is some point at
S and (V, ¢) is a local chart centered at p.

When S = {p}, we just write m ,(f) instead of mp(f).

Lemma 2.6 (Horizontal stability) Let f : M — R be a generalized analytic function. Given
two strata S and T such that T C S, we have the inequality ms(f) < m7 (f).

Proof 1t is a direct consequence of Eq. (2). O

Definition 2.7 Let M = (M, G)) be a generalized analytic manifold. A generalized analytic
function f : M — R is of stratified monomial type if mg(f) = 1 for any stratum S € S.

2.4 Standardizations and blowing-ups

Let M = (M, Ay) be a standard or generalized analytic manifold and let Y C M be a
connected closed subset of M. We say that Y is a geometric center for M if ateach p € Y

there is a local chart (V, ¢) centered at p and some r € {1, 2, ..., n}, such that
YNnv=y{geVv: xi(g =xqg) =---=x(q) =0},
where (x1, x2, ..., x,) are the coordinates defined by ¢. For instance, if Z € Z/ for some

j < n —1, then Z is a geometric center (the number r in the definition above is n — j,
independently of the point ¢ € Z); such Z € Z are called combinatorial geometric centers.

When M = (M, Oypy) is a standard analytic manifold (with boundary and corners), the
construction of the (real) blowing-up with center Y is quite well-known (see details in [14]).
It consists of a proper morphism of standard analytic manifolds

(ﬂy,ﬂ#) : (1\71 Op) — (M, On)

1nduc1ng an isomorphism between M \E and M\Y, where the exceptional divisor E =
Ty YY) is a new component of dM. On the contrary, when M = (M, Gy) is a generalized
analytic manifold, the blowing-up of M with geometric center ¥ may even not exist and, if
it does, it depends on the so called standardization of M. We devote this section to recalling
this concept and what do we mean by blowing-up in the category of generalized analytic
manifolds. It is worth noting that our definition is slightly different (but equivalent) to the
original one in [14].

Let A= (N, Op) be a standard analytic manifold. Given p € N and ¢ : V — U alocal
chart at p, we define Of, (V) to be the R-algebra of continuous functions f : V — R such
that f o ¢! belongs to G, (U). Taking the sheaf associated to the presheaf V > Oy (),
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we obtain a generalized analytic manifold N* = (N, O%), called the enrichment of N (see
[14, Proposition 3.17]). Note that the stratifications Sy and Sy coincide. Moreover, if Y is
a geometric center for A, then it is also a geometric center for N°.

The assignment A/ — AF is not a functor from the category of O-manifolds to the one of
G-manifolds, since the morphisms do not lift to the enrichments unless they can be expressed
locally as tuples of monomial-type functions (see [14, Prop. 3.19]).

Definition 2.8 A standardization of a generalized analytic manifold M = (M, Gy) is a
subsheaf O of Gy such that N'= (M, ) is a standard analytic manifold with A* = M. A
generalized analytic manifold M is said to be standardizable if there exists a standardization
O C Gy ofit.

Note that a standardization is the same thing as providing an atlas %Ay = {(V}, ¢;)}jes of
M such that, for any i, j € J, the change of coordinates ¢; o o !'is standard analytic in its
domain of definition ¢; (V; N'V;) C RY.

Remark 2.9 Let M = (M, A) be an analytic manifold without boundary (hence M is at
the same time standard and generalized). Take a point p € M, an open neigbourhood V
of p, and a coordinate system (xi, X2, ..., Xx,) defined in V and centered at p. For each
i =1,2,...,n,take odd positive integers m; € Z- and consider the functions y; = x;"i
The map ¢ : V — R" defined by ¢(q) = (y1(q), y2(¢q), - . ., yu(q)) is a homeomorphism

onto U = ¢(V) and the sheaf O defined locally at p € V by
Op=1{fog: f€Ouypm CAp

is a subsheaf of A|y so that (V, @) is a standard analytic manifold. However O = Aly if
and only if m; = 1 foralli = 1,2, ..., n, or equivalently, if ¢ is a local chart if M. In this
case, there is a unique standardization for M: the total sheaf A itself.

On the contrary, when M = (M, G) is a generalized analytic manifold with dM # @,
we may have a lot of variation. For example, if we take a point p € dM and a small enough
neighbourhood V of p, there are infinitely many standardizations of the local generalized
analytic manifold (V, G|y ); on the other hand, there are also examples of non-standardizable
generalized manifolds like the one in [14, Example 3.20].

Definition 2.10 A centeré owing-up for a generalized analytic manifold M is a pair & =
(Y, O), where O is a standardization of M and Y is a geometric center for (M, O).

Remark 2.11 We can have a geometric center Y for a generalized manifold M and a standar-
dization O of M such that Y is not a geometric center for N'= (M, O). For example, let
us take the generalized analytic manifold M = (V, Gy 1|v), where V C R x R is a small
neighbourhood of the origin (0, 0) € R2. Let (y, z) be the natural coordinates in R? and let
Y be the closed topological subspace of V given by the zeros of y — z*, where A ¢ Z-o.
Note that (y’, z) with y/ = y — z* are also coordinates of M at the origin, and hence Y is a
geometric center for M. But, if we take the standardization O C Gj 1|y given by the local
chart (y, z), then Y is not a geometric center for N'= (V, O).

Now we have the ingredients to introduce the blowing-up morphisms in the category of
generalized manifolds.

Definition 2.12 Let M be a generalized analytic manifold and let £ = (Y, O) be a center
of blowing-up for M. The blowing-upms : Mg — M with centeré is the morphism of
G-manifolds induced by the blowing-up 7y : N'— N of the standard manifold "= (M, O)

with center Y (note that we are writing Mg = N ).
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If Z € Z)q is a combinatorial geometric center, and O C Gy is a standardization, we
can see that § = (Z, O) is a center of blowing-up for M. Such a & is called a combinatorial
center of blowing-up, and we say that g : Mg — M is a combinatorial blowing-up.

3 The category of monomial analytic manifolds

We devote this section to introducing a subcategory of generalized manifolds, called mono-
mial generalized analytic manifolds, which has many combinatorial properties. The objects
of this subcategory are those G-manifolds equipped with an atlas for which the change of
coordinates are expressed as monomial morphisms. We codify these changes of coordinates
by means of matrices of exponents, and we do the same for the morphisms. The formulation
in this combinatorial language allows us to conclude that monomial generalized analytic
manifolds are always standardizable. This result will be one of the keys to prove the stratified
reduction of singularities.

3.1 Monomial manifolds

We consider an A-manifold M = (M, Ay), where A € {O, G}.Letus write dM = | J;; Ei,
where {E;}; <y is the family of components of d M, and assume that / is a finite set. Asin [15],
we say that d M has strong normal crossings if for each J C I the intersection E; = () jes E;
is a connected set (in particular Ey = M is connected). In this case, the stratification S and
the family Z of closures of strata can be codified combinatorially by means of the bijection
‘H — Zgivenby J — E;, where

H=Hy:={JCI; Ej #0}.

Given Z € Z, the element Iz € H such that E;, = Z is called the index set of Z. We use
the notation [, := I{,, when p € 29 Observe that #1; = dim M — dim Z. In particular, if
p € Z° we have that I, is a set with dim M elements. Note also that Z € Z(Z) if and only
ifI; C 12.

Remark3.1 Let Y € Z' be a compact edge. If M has strong normal crossings, we have
that Z°(Y) consists exactly of two corner points p and ¢ and there are exactly two different
elements i, i; € I\Iy suchthat I, = Iy U{i,} and I, = Iy U {i,}.

Let us fix from now on an .A-manifold M = (M, Ajys) with at least one corner point and
such that M has strong normal crossings. Given p € 20, define the set

Vyi=USseS:Jc}=USeS: pes).

We have that V is an open neighbourhood of p in M homeomorphic to R, . A chart (V}7, ¢p)
defined on the whole V;,‘ , centered at p and realizing a homeomorphism ¢, : V; — RI
is called an affine chart or m-chart atp. For any i € I, we denote by x,; : Vl‘; — R the
coordinate component of ¢, satisfying

EiNVy={qeV,: xpi(q) =0}

The family of functions x, = (x;)ie I, is equal to the family of coordinates of ¢,. Regardless
of the ordering of these coordinates, we just identify ¢, with x,,. Even more, since the sets
V, are completely determined by the stratification of M, we identify (V};, ¢p) with X, and
we say simply that X, is an m-chart at p or that X, are affine coordinates at p.
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Assume that M has an atlas a = {Xp}pezo, where each x,, is an m-chart at p. With the
convention above, note that in fact a is not exactly an atlas, but an equivalence class of atlases,
since we have not considered a particular ordering of the coordinates x,,. We say that a is a
monomial atlas if all the changes of coordinates have a purely monomial expression. More
precisely, given two corner points p, g € Z°, for each i € I, there exist maps r; : I, — R,
given by j — r;(j) =: r;; such that the change of coordinates x, o x;l has the following
expression

. . Trij
Xgi =Xy, xj =[] x,. (7)
Jelp

Definition 3.2 A monomial A-manifold is a pair (M, a), where M is an A-manifold with
20 £ ¢ whose boundary M has strong normal crossings, and a = {xp} pez is a monomial
atlas over M.

Remark 3.3 Assume that M is an A-manifold admitting two monomial atlases a and a’, that
are compatible in the sense that for all p € Z° we have that x/p o x;l has a purely monomial
expression, where x,, € a and X}, € /. When A = O we have necessarily that a = a’. On
the contrary, when A = G we have a lot of variation. Indeed, from the monomial manifold
(M, a), we can obtain a different monomial atlas of M just by replacing at a single point
p € 20 the affine coordinates x p € aover V; , with the affine coordinates y , over V; defined

by yp.i = x;"’i, where s; € Ro, foralli € I,.

Definition 3.4 Let us consider two monomial .4-manifolds (M, a;) and (M5, a;) and let
¢ : M| — M, be a continuous map. We say that ¢ is a morphism of monomial A-manifolds
if it provides an .A-manifolds morphism between M and M, and moreover:

e For any point p € ZOM1 we have ¢ (p) € ZOMZ'

e The expression of ¢ in the atlases a; and ap of M and Ms, respectively, is monomial;
that is, if p € 2,’0/\/,I and p = ¢(p), X; € ap and X, € ay, the composition X5 o ¢ o x;l
is written as

- b;
Xpi =Xy,

where b; : I, — R, foralli e I5. (8)

The first example of a monomial .A-manifold is the following one: Let M = (M, Ay)
be an .4-manifold, and let (V, ) be an affine chart centered at some corner point p. Denote
by x,, the tuple of components of ¢. The pair ((V, Gy|v), X,) is a monomial .A-manifold
called an m-corner.

3.2 Combinatorial data of monomial manifolds

In this paragraph, we codify the objects and morphisms on the category of monomial .A-
manifolds through their associated combinatorial data. Firstly, we need to introduce some
notation:

Notation 3.5 Let R’ be the set of maps from / to R, where [ is a finite set.

e Wedenote by 1; : I — R the element of R’ defined by setting 1;(i) = 1,foralli € I.

e Given A € R!, we denote by D, the element of R/*! defined by setting D, (i, 1) = A(i),
foralli € I and D, (i, j) =0, wheni # j.

e GivenA:I xJ — Rand B:J x K — R, with I, J and K finite sets, we define:
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— AB to be the element of R/*X given by (i, k) — Zjej A(i, j)B(j, k).
— A~ as the element of RY*/ (if it exists) such that A='A = Dy, and AA~! = Dy,.

Roughly, we consider maps A : I x J — R as matrices of size #1 x #.J with real coefficients,
but without a specified order in the sets / and J. We frequently use the matrix notation
Aij = A(, j),for (i, j)e I x J.

Take a monomial A-manifold (M, a). Given two corner points p, g € Z0 ,letx, and x;
be the affine coordinates at p and ¢, respectively, belonging to a. We codify the change of
coordinates x; ox;l expressed by the relations in Eq. (7) by means of the matrix of exponents

CP9: 1, x I, - R, givenby (i, j) — rij.
Note that we have the equality C?” = (CP7)~!,

Definition 3.6 The combinatorial data of a monomial A-manifold (M, a) is the collection
Cm.a) = {CPI}, fez0-

Letp,qg € 20 be two corner points in M. A path (of compact edges) fromp toq is a list
P = (Y1, Y2, ..., Y;), where each Y is a compact edge in M, such that p € Y1, q € Y}, and
the intersection p; = Y; N Y is a corner point, forall j = 1,2, ...,k — 1. Note that, for
any pair of corner points p, g € ZO, there is always a path P = (Y1, Y2, ..., Yx) from p to
q. Moreover, we can assume that YUY, U---UYy C Ej, where J = I, N I, because the
strong normal crossings condition assures the connectedness of E ;. We say in this case that
‘P is a path for p toq insideE j. Given a path P from p to ¢ inside E;, we have the equality

CP‘I — CPk—lll .. .CPIPZCPPI = RL{XIP, (9)

where p; = Y; N Yy, foreachi = 1,2,...,k — 1. That is, the matrices of exponents
between corner points connected by edges generate the whole combinatorial data €y, q)
just by taking products. From now on, if p and ¢ are the two corner points of a compact
edge Y, we simply say that p and ¢ are connected throughY, and we write to emphasize
cyl=cri.

Let (M, a) be a monomial generalized analytic manifold. Let us show some properties
for the combinatorial data of (M, a).

A corner point p € 2° belongs to Ex = Sk if and only if K C I,,. Hence, if we fix two
corner points p and ¢ in 20 the smallest stratum containing both p and ¢ in its closure is
Sy, with J = I, N I;. Moreover, we have

V; N Vq* = KLCJJ Sk.

Let x,, X, € a be the affine coordinates at p and ¢, respectively. Given a point a € Sy,

we consider the coordinate systems x‘ll, = {x ; iYier, and x“ = {x* } jel,» centered at a,
defined by x ; = Xp,i— Xp,i(a) and x* = Xq.j — Xq, j(a) for correspondmg i €Iy and

jel,, respectlvely Note that the coordinate functions x* p.i - (resp. x* ) are standard analytic
coordinates at a if and only if i € 1,\J (resp. j € I,\J), hence takmg into account Egs. (4)
and (5) about the local expression 0f morphisms in arbltrary generalized analytic manifolds,
forall i, j € J, we obtain

c{;" =0, ifi #j; ng e R.y, ifi =}, (10)

where CP7 € €y, q).
In the following statement, we determine other entries of the matrix of exponents C?? in
the case where p and ¢ are corner points connected through an edge.
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Lemma 3.7 Ler Y be a compact edge in M and let Z°(Y) = {p, q}. Denote by i, € I, and
iq € 1y the indices such that Iy = I,\{is} = Ip\{ip}. The map C = Cf;q € €M, q) satisfies

(@) Cii € Rso, (b) Cij =0, ifi#j, () Cij,i =0, foralli,jely.

Proof Assertions (a) and (b) are already established by Eq. (10). Let us prove (c). Suppose
that there is an index i € Iy such that C; i # 0 and let us find a contradiction. Denote by S;

the stratum such that S; = E;, that is

S = Ei\ U Ej.
jel\{i}
Note that S; C V; N Vq*. Given a € §;, we have x,;(a) = 0 and by Eq. (7), we get
Xq,i(a) = Xq.i, (a) = 0, since we are assuming Ciq,i = Tigi # 0. This means that a € Ei,,
which is a contradiction. m]

Definition 3.8 Let (M, a) be a monomial generalized analytic manifold, and fix two corner
points p,q € 29 such that 1 » N1, # 0. The weight connexion function fromp toq is the
map y?9 : I, N I, — R.g, defined by i — C2?, where CP7 € €(py,q).

Note thati € I, N 1, if and only if p, g € E;. We use the notation yipq = yP4(i). In view
of Eq. (9) and Lemma 3.7,if J/ = I, N I, and P = (Y1, Y2, ..., ¥;) is a path of edges from
p to g inside E, then y P4 is given by the following product

ypq — y‘[;k—lq R Vlflm . yll;m’ an

where p; = Y; N Y41, foreachi =1,2,...,k— 1.

Lemma 3.9 Given a boundary component E; € 2" and two corner points p,q € E;, we
pq,,ap _

have y; "y,

Proof In view of Eq. (11) itis enough to prove the result for two corner points p, ¢ connected
through a compact edge ¥ C E;. Now we have that (Y, Y) is a path from p to p inside E;,
and in view of Eq. (11) again, we get

pp _ P4
12

]:yl. =y .qp,

Vi

as we wanted. ]

We end this subsection by introducing the combinatorial data associated to a morphism.
Let¢ : (M1, a;) — (Ma, ay) be a morphism of monomial .4-manifolds. Given a corner
point p € ZOMI and p = ¢(p), we represent ¢ locally at p by means of the matrix of

exponents Bff : I; x I, — Ry, defined by (i, j) = b;j := b;(j), where b; : I, — R is
as in Eq. (8).
Definition 3.10 The combinatorial datas8y of a morphism ¢ : (M1, a1) — (Ma, az) is the
family of matrices of exponents By = {B?} pe, -

M1

Remark 3.11 Once we fix an m-chart (V;, x,,) at some corner point p € 20 , We can recover
the whole monomial atlas a of M from €4 q) using Eq. (7). Moreover, a morphism ¢
between monomial .A-manifolds is completely determined by its combinatorial data B.
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3.3 Abundance of standardizations of monomial manifolds

In this section, we define m-standardizations, we give a characterization for their combina-
torial data and we prove a result of abundance of m-standardizations of a fixed monomial
G-manifold.

Let us fix a monomial generalized analytic manifold (M, a). A local m-standardization
of (M, a) at a corner point p is just an m-chart u,, defined in the whole open set V7, such

P’
thatif x,, € a, thenu, o x;l is given by monomial relations of the form

Api

Upi = xp,i ’

where o), ; € R, foralli € I),. (12)

We represent this change of coordinates by means of the map «, : I, — R.( defined
by i — ap ;. In that way, the change of coordinates u, o x;l is codified by the matrix of
exponents Dy, : Ip X Ip — R0, where we recall that (once an order in I, is fixed) Dy, is
a diagonal matrix with the elements «, ; in the diagonal.

Definition 3.12 An m-standardization of (M, a) is a pair (O, b), where O is a standardization
of Mand b = {u,,}pezo is a monomial atlas of N'= (M, O) such that u, is a local m-
standardization of (M, a) for every corner point p € Z°. The combinatorial data of an
m-standardization (O, b) is the collection of maps Ao,p) = {‘Xp}pez“-

Remark 3.13 If (O, b) and (O, b’) are m-standardizations of (M, a), then b necessarily that
b = b’ as we have already noted in Remark 3.3. Note also that the m-standardization (O, b)
is completely determined by the combinatorial data A (@, p).

Lemma 3.14 A collection of maps A = {ap : I, — R>0}p€2’0 is the combinatorial data of

an m-standardization of (M, a) if and only if for any pair of corner points p,q € 20 the
following relations hold:

ap o= ylpqotq,g, forall L e I,N1,, (13)

where y P4 is the weight connexion function from p to q.

Proof Let us assume first that A = A(@,p), where (O, b) is an m-standardization of (M, a).
Letus denote N'= (M, O) and let €,/ p) be the combinatorial data of the monomial standard
analytic manifold (V, b). In view of Eq. (11), it is enough to prove Eq. (13) for two corner
points p and g connected through a compact edge Y. Let us consider the m-chartsu,,,u, € b

at p and ¢, respectively. The change of coordinates u, o u;l is codified by a matrix of
exponents A = A{;q € €\ p). This change must be standard analytic in its domain of

definition uq(V;,‘ N V(;) =R x ]R”;l, and this implies
A €Zy, (AN ey, foralliely, jel,, Lely. (14)
Let C = C)? € €(\m,q) and o, oy € A(©,p). Note that A is obtained as the product
~1.
A=Dg,CD.' : Iy x I, > R.
When £ € I, N I, = Iy, in view of Lemmas 3.7 and 3.9, we have

Pq ap
Vi Og.e _ Y op.e
=t ez, A MHu=WAUPe=""L =L =1/Ay € Zy,

Age
Pq
Apt Ug,¢ Yo Qg
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which shows Agg = (A7")¢¢ = 1. From here we get @, ¢ = /7 etg,¢, and hence A satisfies
Eq. (13) as we wanted.

Assume now that A satisfies Eq. (13) for any pair of corner points p, g € 20 Ateach corner
point p € 20, consider the m-chart u p defined on V];‘ such that the change of coordinates
u,o x;l satisfies up ; = fo’]‘-j, for all j € I, where @), € A and x, € a. In that way, we

get a new monomial atlas b = {u,} pez® of M. Let us see that the changes of coordinates

u, o u;l are standard analytic for any pair of corner points p and ¢. In view of Eq. (9) it

is enough to suppose that p and g are connected through an edge Y. Defining the matrix
A = Dy, C D;pl, the change of coordinates u, o u;] is given by
ugi = [1 u?”}, foranyi € I,.
jel,

It suffices to show that A satisfies the conditions in Eq. (14). Indeed, if A;; € Z fori € I,
and forall £ € Iy, then u, ; in the above equation is standard analytic in terms of the variables
u,, in the domain V; N V7 = {up,i, # 0} N {ug,i, # 0} (the same interchanging p and g if
(A_])j( € Z4 for j € I; and any £ € Iy). Applying Lemma 3.7 we get that A,y = 0 and
(A*I)Mg =0, for all r, £ € Iy with r # £. Moreover, the same lemma assures that C,-qg =0
and that (C,‘p[)_l = C?p‘;z = 0, for all £ € Iy; hence, for any such index ¢ € Iy we obtain

Aiye = Ciyeaqiy/ope =0, (A7)0 = (Ci,0) ' p.i, /otg.e = 0.
Again by Lemma 3.7 we get

rq -1 qp
Creag.e Yo Qg —1 (C™ ey e Y %p.e
Aee = = s (A= = .

Ap.e Ap.e LN Qg

for all £ € Iy. Using Lemma 3.9 and Eq. (13) we conclude Ayy = (A Dy = 1. As a
conclusion, the atlas b defines a standard analytic structure ' = (M, O) over M, where
M = (M, Gy); thus O C Gy is a standardization of M. Moreover, by definition of b, we
have that (O, b) is an m-standardization of (M, a) with A0 ) = A. O

In the sequel, a collection of maps A = {a), : I, — R0} pezd is called realizable for(M, a)
if Eq. (13) holds for any pair of corner points p, g € 2.

Definition 3.15 Letu, be alocal m-standardization of (M, a) at a given corner point p € 20,
An extension ofu,, is a (global) m-standardization (O, b) of (M, a) such that u, € b; we
say also that (O, b) extendsu,,. We denote by £(u,) the set of extensions of u,,.

Proposition 3.16 Let (M, a) be a monomial generalized analytic manifold. Then:

(a) There is a bijection between the set of m-standardizations of (M, a) and Ri’o, where N
is the number of boundary components of 9 M.

(b) Given a corner point p € 2% and a local m-standardization u p at p, there is a bijective
map Rgo_" — &(up), where n is the dimension of M.

Proof We start with the proof of the first assertion (a). Let I be the set of indices labelling
the components of d M, thatis 9M = Uie[ E;, where N = #I, and let us fix a collection of
corner points = {g; }ies in such a way that g; € E; foreachi € I. Givenamap 8 € Rio,
we take Ag = {a) : [, — R>0}p620 to be the family of maps defined by

ape=y"pe, forallpe 2’ and € €1,
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Let us see that Ag is a realizable family of maps. Fix two corner points p and ¢, and let
¢ € 1, N 1I,. By Eq. (11) we have that y/ " y/*? = y/!. Moreover, by the definition of o ¢

and as a consequence of Lemma 3.9, we have that g, = qu" qa% ¢. Then we obtain

Wy = V(pqzﬁe _ ygpqe ygzqaq,[ _ qu%’lz
which is the required condition for Ag to be realizable. Now, in view of Lemma 3.14, there
exists a unique m-standardization (O‘3 R bﬂ) with A(O,g’b By = A g. Finally, we show that the
map

m-standardizations

.l
\IJq.R>O—>[ of (M., a)

} . B (OF 6P
is a bijection. Indeed, if 8 # B, we have that Ag # Ag and hence (0P, bP) % (OF by
taking into account Remark 3.13. On the other hand, given an m-standardization (O, b) with
combinatorial data A = {a} pez0s We have that (O, b) = Wq(B), where B is defined by
Bi = ay; i, foralli € I. The proof of (a) is finished.

Letus prove now the second assertion (b). Denote by «, : I, — R the map of exponents
defining u,, that is
Qp.i
P’

Consider the injective map iy, : ]Ri\ol” — ]Rio, defined by

Upi=Xx foralli € I,, wherex, € a.

8 if i eI\,

. a8 -
8 > ig,(8) == B°, where {ozp,f if i €l,.

Take a collection of corner points ¢, = {g;};es suchthatg; = p,foreachi € I,,andg; € E;,
foreach i € I\I},. Using the notations in item a) above, we have that Wq , (8) € E(u,) if and
only if B|;, = @), or equivalently 8 = iy, (B11\1,). In other words, we have the equality

Euy) = Im(Wq, oig,),

and hence we have the bijection ]RQOI "= & p) mapping § into Wy » (ig » (8)). We finish just
by noting that #1,, = n. O

3.4 The monomial Volte Etoilée

In this section we give the definition of m-combinatorial blowing-up and we introduce the
concept of “monomial voite étoilée” over an m-manifold, whose elements, called m-stars,
are sequences of monomial blowing-ups starting from that m-manifold. The terminology is
inspired by Hironaka [10, 11].

Let (M, a) be a monomial generalized analytic manifold. An m-combinatorial center of
blowing-up for (M, a) is a tripet (Z, O, b), where Z is a combinatorial geometric center
for M and (O, b) is an m-standardization of (M, a). Given such an m-combinatorial center
(Z, O, b), we consider the blowing-up ¢ : Mg — M with center £ = (Z, O). Let I be an
index set labelling the components of d M. We write co ¢ [ to label the exceptional divisor
Es = né_l (Z), and we put I = I U {00} as an index set for the components of 9 Mg. More
precisely, given i € I, it represents both the boundary component E; of dM and its strict
transform

E{ =n;'(E\Z) C 0Mg,
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belonging to Zﬁ/—l‘ and Zﬁ/‘l;, respectively. The index 0o € I¢ represents Eo, € Zﬁ/_[;

Proposition 3.17 There is a monomial atlas ag of Mg in such a way that wg defines a
morphism of monomial G-manifolds from (Mg, ag) to (M, a).

Proof Take a corner point p’ in M and let p = mz (p’). Note that p is a corner point in M.
Let x;, € a be the m-chart of the atlas a at p. We distinguish two situations:

Casep’ ¢ Eo. We have that I,y = I, and the blowing-up 7¢ induces an isomorphism
between V; and V;‘,. We take affine coordinates x’p , over Vlj, defined by

o .
X i =Xp.i ong|v;/, foralli € I.

Thus, the expression of ¢ in coordinates x;), and x,, is purely monomial. This expression
can be codified with the matrix of exponents B, : I,, x I, — R given by

By, j) =bij. i.j €l (15)

where §;; is the Kronecker delta symbol. In other words, B, = D1 I

Casep’ € E,. We have I,y = Ip\{j} U {oo}, for some j € Iz (see for instance [15]
for details in the combinatorial treatment of blowing-ups). By hypothesis, the pair (O, b) is
an m-standardization of (M, a); in particular, b is a monomial atlas of the standard analytic
manifold AV = (M, O). Using this information, together with the definition of blowing-
up centered at £, we get that there exists an m-chart x’p , defined in V;/ such that the map

X omgo x;l is purely monomial with associated matrix of exponents By : I, x Iy — Ry
given by

1 if r=s and r € Ip\{j},
(r,s) = o, j/ap, if s =00 and r € Iy, (16)
otherwise.

where o, € A©,p). With an appropriate order of rows and columns, B, can be seen as the
upper triangular matrix

Id,—s| O |0
0 |Id,_j|a | € R,
0 0 |1

where s = #Ilz and a € RS;OI is a column vector whose entries are defined by the quotients
ap j/ap, withr € Iz\{j}.

The collection az = {x’p e 2 with Zg = ZOM; is thus a monomial atlas in Mg. More-
over, the blowing-up ¢ induces a morphism from (Mg, ag) to (M, a) and the associated
combinatorial data is B, = {B,/} pezl: O

From now on, given an m-combinatorial center of blowing-up (Z, O, b) for a monomial
generalized analytic manifold (M, a), and the blowing-up morphism 7z : Mg — M,
with center at £ = (Z, O), we always consider Mg endowed with the monomial atlas ag
constructed in Proposition 3.17. Moreover, we also write

g L (ME, a.{-’) - (Ma Cl),

to emphasize that the morphism ¢ is considered also as a morphism of monomial generalized
analytic manifolds, and we call it an m-combinatorial blowing-up of (M, a). The associated
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combinatorial data Bﬂs = {By} pez of this morphism has been made explicit in Eq. (15),

for points p’ € Zg with p’ ¢ Eo and in Eq. (16), for points p’ € Zg(Eoo).

Definition 3.18 Let (M, a) be a monomial generalized analytic manifold. An m-star over
(M, a) is the composition 0 = 7 o 71 o - - - o w,—1 of a finite sequence of m-combinatorial
blowing-ups. That is

o (M o) 2 M e ) 25 IS (Mo, ag) = (M, a),

where foreach k =0, 1,2, ..., r — 1, the morphism 7} is an m-combinatorial blowing-up
of (Mg, ag). The integer r and the monomial generalized analytic manifold (M,, a,) are
called, respectively, the age and the end of the m-star o. The collection V‘(“M of all the
m-stars over (M, a) is called the monomial voiite étoilée of (M, a).

,a)

4 Stratified reduction of singularities via principalization of m-ideals

We devote this section to introducing the concept of m-ideal, in order to prove a theorem of
principalization. With this result we prove the stratified reduction of singularities for a global
function defined in generalized analytic manifolds admitting a monomial structure. Finally,
we apply this result to prove the main result of this paper stated in Theorem 1.1.

4.1 Principalization of m-ideals

Let us fix a monomial generalized analytic manifold (M, a), where M = (M, Gy).

Take a global generalized analytic function f € Gy (M) and two corner points p, g € Z°.
Let x;, X, € abe the m-charts at p and g, respectively, and let C?9 € €, q) be the matrix
of exponents codifying the change of coordinates x,; o X;] . The relation between the supports
of f at p and ¢ with respect to these coordinates is given by:

1;
Supp, (f;Xp) = {A,CP7: Ay € Supp, (f; %)} CRY. a7

Definition 4.1 A generalized analytic global function m € Gy, (M) is said to be an m-function
in (M, a) if for each p € 20 there is a map A : I, = R, such that

Ap
m|V; =x, , wherex, € a.
The combinatorial data of m is the list L, = {kp}pezo.

Let us consider an m-function m in (M, a) with combinatorial data Ly, = {A )} pez0- BY

Eq. (17), for any pair of corner points p, g € Z° we have the relation A p = AgCPq, where
CP49 € &\, q). In particular, we get that

Ape=hgeyl?, forany € el, NIy, (18)

where y P4 is the weighted connexion function from p to ¢. Indeed, in view of Eq. (11), itis
enough to check Eq. (18) for the case where p and ¢ are connected through an edge Y. For
this case, it holds as a consequence of Lemma 3.7.

Remark 4.2 Given alistof maps £L={x, : [, — R} e z0 satisfying A, = A, CP4, for any
pair of corner points p, g € Z°, there exists an m-function m such that £, = L.
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Definition 4.3 A finitely generated m-ideal in (M, a) is a sheaf of ideals 7 C Gy generated
by finitely many m-functions. That is,

J=mGy +mGy + - +mGy =: (m, mp, ..., my),

where my, mp, ..., my are m-functions called m-generators of J.

Notation 4.4 Let I be a finite index set and let A be a finite subset of R/. We denote by A™"
the set of elements in A that are minimal with respect to the division order <; in RZ.

Let Jbe an m-ideal in (M, a) with set of m-generators G = {m;, my, ..., my}. For each
i =1,2,...,k, letus wr'ite_ L, = P‘lp}per" Gi\{en a corner point p € 20 anc! X, €a
the m-chart at p, the restriction ‘7]"5 is an m-ideal in the m-corner (M|V5, Xp) with set of
m-generators equal to G IVI; = {my IV[;, mzlvl;, o mle,;}~ Consider the set

oyl 52 k I
Lgp:i= {AP,AP,...,AP}CRI.

Note that if (FG,p)mi“ = {/L;,, /L‘%, A /L];”}, then

1 2 kp
Ty = (7 X7 e X ). (19)
The sheaf of ideals Jis called locally principal if at each pointa € M, the stalk J, C Gy 4
is a principal ideal. Using the definition of m-ideal, it is enough to ask this property for the
corner points. In terms of the set introduced above, we have that 7is locally principal if and
only if (I‘G,p)mi“ is a singleton for any p € 2°.
Let m be an m-function in (M, a) and take an m-star o : (M, a’) — (M, a). The total
transform o*m = m o o is a again an m-function in (M’, a’). More precisely, if p’ € 20 ,
and p = o (p’), then A;, € Lo*m 18 given by

o [

)»p,—)»po,, (20)
where A, € Ly and BZ, € B, is the matrix of exponents codifying o at p’. If Jis an
m-ideal generated by G = {m, my, ..., mg}, then the total transform o * 7is also an m-ideal
in (M’, @) generated by 6*G := {o*my, c*my, ..., o *my}.

The main result in this section is the following one about principalization of m-ideals.

Theorem 4.5 Let [J be a finitely generated m-ideal in a monomial generalized analytic man-
ifold (M, a). There exists an m-star o € V(”M_a) such that o* 7 is locally principal.

To prove this theorem, we can reduce ourselves to the case where 7 is generated by two
m-functions by considering a clear finite recurrence and the following lemma.

Lemma4.6 Let J = (my,ma,...,my) be an m-ideal in (M, a). Assume that J° =
(m,, my) is locally principal for any pair of indices r,s € {1,2,...,k}. Then Jis locally

principal.

Proof Assume that there is a point p € Z° such that 7, » is not principal. There exist indices

r,s € {1,2,...,k} such that )L; € Ly, and )Li, € L, are not comparable for the division
order <4 in R’». Note that Lgrs p = (Fgrs,p)mi" ={1", A;}, where G"* = {m,, ms}, and
hence J* is not locally principal, which is a contradiction. O
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The case of two generators. Let us assume that 7 = (m, n) is an m-ideal in (M, a) generated
by two m-functions and write L, = {)‘P}pez‘) and L, = {/L,,}pezo.

We introduce first several definitions, mainly inspired by the “b-invariant” introduced in
[6] by van den Dries and Speissegger.

Let Z € 2"~2 be a codimension two combinatorial geometric center for M. We know
that the index set /7 has just two elements, say Iz = {i, j}. Let p € 20 (Z) be a corner point
in Z. We say that Z is uncoupled fo [J atp if

()Lp,i - I'Lp,i)()Lp,j - l/vp,j) <0.
We say that Z is uncoupled for J if it is so at each p € 2%2).

Lemma 4.7 A combinatorial geometric center Z € 22 s uncoupled for J if and only if
there is a corner point q € Z%(Z) such that Z is uncoupled for J at q.

Proof Assume that Z is uncoupled for [ at a corner point g € 2%(Z) and take any other
point p € 2°(Z). By Eq. (18), we have A, ¢ = Ay ¢y/?, forall £ € I, N I,, where y74 is
the weighted connexion function from p to g. Since p, g € Z, we know that Iz = {i, j} C
I, N I,. Then

()Lp,i - Mp,i)()‘-p,j - Mp,j) = V,’pqyfq()\q,i - Mq,i)()tq,j - Hq,j) <0,

since ;! > 0 and y jp ? > 0. Hence Z is uncoupled for J also at p, and we conclude that Z
is uncoupled for 7. O

Observe that if p € 20 and there are no uncoupled centers for 7 passing through p, then
we necessarily have that A, <4 u), or i, <q Ap, thatis 7, is a principal ideal.

Definition 4.8 Let 2 7 be the family of codimension two combinatorial geometric centers in
M that are uncoupled for 7, and define the invariant of Jto be Inv 7 := #Q 7.

We have that Inv 7 = 0 if and only if Jis locally principal. Thus, the objective now is to find
an m-star o € V("M O such that Inv,+ 7 = 0.

Suppose that Invy > 0 and fix Z € Q7. Take a corner point p € Z and pick a local
m-standardization u;, of (M, a) at p defined by the map «, : I, — R (. We say that u,, is
adapted toJ with respect toZ if

ap,j()‘p,i - ,up,i) + ap,i()‘-p,j - Mp,j) =0.
A global m-standardization (O, b = {u,} pez0) of (M, a) is said to be adapted to J with
respect toZ if u, is adpated to J with respect to Z for every p € 20(2).

Lemma 4.9 An m-standardization (O, b) is adapted to J with respect to Z if and only if there
is a corner point q € Z such that u, € b is adapted to J with respect to Z.

Proof Denote A = A (@ p). Assume that there is a corner point ¢ € Z such that u; € b is
adapted to Jwith respect to Z. Take any other corner point p € Z. In view of the realizability
of A established in Lemma 3.14 we know that oy ¢ = v/« ¢, forall € € I, N I,. Since
P,q € Z we have that Iz = {i, j} C I, N I;. Then, by Eq. (18), we get
Olp,j()hp,i - Mp,i) + Olp,i(}‘p,j - I'Lp,j) = Vquaq /J/ipq ()‘q,i - Mq,i)
+quaq IV] q()‘-q,j - Mq,j)
= ylpqy]pq [aq,j()\q,i - qu,i)
+ag,i(hg,j — iq. )1 =0.
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As a consequence, the local m-standardization u;, € b is adapted to [ with respect to Z
at p. We conclude that (O, b) is adapted to 7 with respect to Z. ]

A codimension two combinatorial center of blowing-up & = (Z, O, b) is adapted to Jif
Z € Qgand (O, b) is an m-standardization adapted to 7 with respect to Z. The next result
assures the existence of such a center.

Lemma 4.10 Assume thatInvy > Q. Then, there exist codimension two combinatorial centers
of blowing-up adapted to J.

Proof By definition Inv7 > 0 if and only if Q7 # . Fix an element Z € Q7 and let us
see that there are m-standardizations adapted to 7 with respect to Z. In view of Lemma 4.9,
it is enough to prove the existence of an m-standardization (O, b) adapted to 7 at a corner
point p € Z. Fix any corner point p € Z. Since Z is uncoupled for 7, we can assume, up to
exchanging the indices i and j, that

fi :}\p,i_ﬂp,i >0, and Zj = HMKp,j —)\p’j > 0.

Take ) : I, — R.( to be a map such that «),; = ¢; and @), ; = £, and take the m-chart
u, = XZ‘U defined in V}J. Any m-standardization extending u,, is adapted to 7 with respect
to Z at the point p because of the definition of «;,. Moreover, such an extension exists as a
consequence of Proposition 3.16. O

We conclude by applying finitely many times the following result.

Proposition 4.11 Let J = (m, n) be an m-ideal with Invy > 0. Given an m-combinatorial
center of blowing-up & = (Z, O, b) adapted to J, the blowing-up mz : Mg — M centered
at & satisfies Invn;j =Ihvy— 1.

Proof Let us write Z; = ZMe> T =T, Eco = 7~ Y(Z)and I7 = {i, j}. Denote also
L= {)"p}pezov Ly = {M],}pezo, Lyxm = {k;)’}p’ezg’ Lysy = {M;)/}p/egg

Let T be a codimension two combinatorial geometric center in M different from Z. Denote
by St the stratum in S such that Sy = T.Theclosure T’ of 7~ (S7) is a codimension two
geometric center in Mg having index set I7» = It = {r, s}. Given a corner point p’ € T’,
let p = 7¢(p’). We have

}‘fp’,r = }hp,ry MKp'r = Mp,r, Ap/,s = )“p,Sa MKp's = MKp,ss

in view of the relation between A/, A, and 1/, ), established in Eq. (20), and the expression
of B;}’, € B givenin Egs. (15) and (16). Then, we have that T’ € Q+ sifandonlyif T € 7,
that is 7" is uncoupled for * 7if and only if T is uncoupled for 7. Let us see now that any
element in Q2+ 7 is among the ones considered before. That is, let us show that there is no
codimension two combinatorial geometric center Z’ uncoupled for 7* 7 contained in Ex.

Take a codimension two combinatorial geometric center Z' C Ey, and a point p’ €
Zg (Z"). In view of Lemma 4.7, it is enough to prove that Z’ is not uncoupled for 7* 7 at p’.
More precisely, if we write I/ = {k, co}, we want to show that

"k — Mpk p',00 — Mp/oo) =Y.
G = 1 ) o) =0
Let us consider p = m(p’) and the local data &), € A(0,p). The corner point p belongs

to Z, and the affine coordinates u;, € b define a local m-standardization adapted to J with
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respect to Z at p, that is, we have the relation a, j(Ap; — pp,i) +api(Apj — up, j) =0.
We know that 1, = I,\{j} U {00}, up to exchanging the indices i and j. Hence, the matrix
B':= By : I, x I,y — Ry satisfies, using Eq. (16):

By =1, forf € [\{(j}, Bjoy =1, Blo= -2 = EPIZ20J g — g otherwise.
Ap.i Ap,i — Mp,i

By Eq. (20) we get the relations A, x = Ap ks hp/ k = Mp.k> and

Apillp i — hp iflpi
pP.tHp,J p,JHpst
)‘P/’OO = )‘st + Bi/,oo}‘P»i = Api— fpi = Mp,j T Bi/,oo/’LP-i = Mp' 00-
pii pii

Thus (A — p k) (A pr.00 — Mp',00) = 0, and we are done. ]

4.2 Stratified reduction of singularities in monomial manifolds
We use the result of principalization of m-ideals in order to prove the following statement:

Proposition 4.12 Let (M, a) be a monomial generalized analytic manifold with M =
(M, Gyr). Given a generalized analytic function f € Gy (M), there is an m-star o € V(”M,a)
such that the pull-back f' = f o o is of stratified monomial type.

For the proof of Proposition 4.12 we associate to f a finitely generated m-ideal ¢, and
we prove that the principalization of Jy gives rise to the stratified reduction of singularities
of f.

Givenq € Z% and Ag € Suppq (f; xg4), it makes sense to define the m-function my, as the
one having the collection of maps L, ry = {AgCPO} pez® as acombinatorial data, by Remark
4.2 and Eq. (17). The m-ideal Jy associated to f is the ideal sheaf generated by the finite set
of m-functions

Gr= U {m)‘q Dhg € Suppmin,q(f;xq)}-
qez°

By definition, notice that for any corner point ¢ € 20, we have

(TG 1.)™" = Supppin 4 (f: Xg)- @1
where the the notation I' ; 4 was introduced in Sect. 4.1 above.

Lemma 4.13 Given an m-star t : (M’,d) — (M, a), we have Ty = Jpr, where =
fort.

Proof Inview of Eq. (19), it is enough to prove that for any corner point p’ € ZOM, the equality
(TG p)™0 = (Fgf_,,p/)mi“ holds. Denote for short 'y = [r+, ,y and Iy = T, .

Fix apoint p’ € ZOM, and consider p = 7(p’). Write A := Supppmin, , (f3 Xp), Wherex, €
a,and let B;, € B be the matrix of exponents codifying 7 at p’. Let ® := {A pB;,; Ap € A}

We prove that both F’l’?i“ and l"g‘i“ are equal to @mi“.'

Step 1: T3"" = @™". Recall by Eq. (21) that 3" = A" := Suppypi, , (f; X/p/), where
x;), cd. Let A = {Al Az )»k} C R'», that is, the function f around the corner point
p has the finite presentation f|V[; = x;;l Uy + x;;z Uy +-- ~x;;k Uy, where U; (p) # 0, for all
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i =1,2,..., k. Taking into account that T(V;,) C V]j, the function f’ = f o  is written in
the chart x,y € o’ as

il e Ak
flve, =x7, (Urotlys) + X, (Uzotlys) + - X, (Ug o T|y=),
P P P P P P P

where A/ = kiB;/. Since B}, is an invertible matrix, we can assure that A" £ XS5 for any
pair of different indices r, s € {1, 2, ..., k}. This implies that A’ = (X!, 32, ..., 2*)min by
definition of minimal support of f” at p’. We are done, since ® = {Al A2 Ak}.

Step 2: T'"" = @™", Fecall that A C I'G,,p and denote A = I'G, »\A. By Eq. (2~l)
we know that for any i € A there exists A € A such that A <; u. Note that 'y = @ U B,
where

={uBy; ne A}.

Therefore, we need only to prove the following claim: If A, u : I, — Ry satisfy A <4 u,
then AB;, <4 /LB;/. For that, it is enough to consider the case where T = ¢ is a single
m-combinatorial blowing-up with center & = (Z, O, b). Denote, as usual, Eqc = ng 1(Z).
If p’ ¢ Eo orequivalently p ¢ Z, we have that I,y = I, and B;, =Dy 1 and we are done.
Assume that p’ € Eq, and let j be the index in /7 such that 7,/\{co} = I,\{j}. Denote
A =ABY and i/ = ,uB;,. By Eq. (16), we have that A, = A¢, 11}, = ¢, and thus A}, <,
for all £ € Iy \{oo}; whereas

Z pJ)» <27M 7

ter, ¥p:t tely

where a, € A©,p), as we wanted. m]

Proof of Propostion 4.12 In view of Theorem 4.5, we can take an m-star o : (M, d’) —
(M, a) suchthato* 7 is locally principal. By Lemma4.13 we know also that o * 7y = J oo -
Hence, since G . is a set of generators of Jyo,, we have that (I'g foor »)™" is a singleton

forall p’ € ZOM,. Finally, by Eq. (21) we obtain

mp (f) = #Supppin y (f's X)) = #(Ta 1, )M =1
for all p’ € ZOM/. Since a is a monomial atlas, we know that M’ = UP/_EZ?M/ V;/- Thus,
given a stratum S € S, there is a corner point p’ € ZOM, such that p’ € S. In view of the

horizontal stability property for the monomial complexity established in Lemma 2.6, we get
ms(f) <my(f)=1. We conclude that f " is of stratified monomial type. ]

4.3 Proof of the main statement

We end end here the proof of the stratified reduction of singularities for generalized analytic
functions, as stated in Theorem 1.1.

Recall that we have a generalized analytic manifold M = (M, Gy), and a generalized
analytic function f € Gy (M) in M. Given a point p € M, we want to prove that there exist
an open neighbourhood V' C M of p and a finite sequence of blowing-ups

-2

oM S M E3 IS Mo = (V. Guly).
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such that f’ = f o o is of stratified monomial type in M,. Moreover, we are going to see
that it can be done by taking blowing-ups with combinatorial centers of codimension two.

Let S be the stratum of Sy containing p, put k := dim S and e := n — k, where n is the
dimension of M. Take a local chart

. k
¢:V >R xR,

centered at p and such that ¢(S) = R¥ x {0}. If the minimal support of f along S with
respect to ¢ is Ao 1= Supppi s(f; @) = (A1 A2, M) C RE, we can write

-1 _ Al A2 A
foe ™ =2 Ui(y,z) +7" Us(y,z) + -+ 2" Uy, z),

where y = (y1, ¥2, ..., ¥) and z = (21, 22, - . ., Z.) are the natural coordinates in R¥ and
R¢, respectively, U;(y, 0) £ 0, foralli = 1,2, ..., t, and the elements of Ag are two-by-two
incomparable with respect to the division order <, in R¢.

Let us consider the m-corner (G, = (R%, G.),z). Let Jy be the m-ideal in (G,, z)

generated by the family of m-functions Gy = (2", 2, z"'}. By Theorem 4.5, there
exists a sequence of m-combinatorial blowing-ups

G (M) 3 (M arm) 223 - 2% (Mo, a0) = (G, 2),

such that 7 = o *Jo is locally principal. Let us write 6 = id x &, and W = (R¥, O), where
the sheaf O has been introduced in Example 2.1. We are going to show that the map

c=¢ o5 : Wx M, —> (V,Gy)

is the composition of a finite sequence of combinatorial blowing-ups such that /' = f oo
is of stratified monomial type.

Step 1: The map o is a sequence of combinatorial blowing-ups.

Given anindex i € {0, 1, ..., r}, write /\_/li = (Mi, g M,-) and consider the product mani-
fold M; = Wx M; = (M;, Gum;), where M; = R¥ x M;. We want to prove that, fori # r,
the map 7r; = id x 7; : M1 — M, is a combinatorial blowing-up. Let & = (Z, (’)A;,l_) be
the center of blowing-up of 77;, and denote Ni=M;, 0 o, ). By definition of standardization
0;71,- =G ;. Define Z; = Rfx Z;, and let O u; be the structural sheaf of the standard analytic
manifold W x A;. Note that 07\/1,- = Guy, and that Z; € Z)y;, and thus § = (Z;, Opy,) isa
combinatorial center of blowing-up for M; . Finally, we have that 7r; is the blowing-up of M;
centered at &;. Indeed, just note that the blowing-up centered at Z; of the standard analytic
manifold (M;, Op,) is w7z, = id x Tz, where Ty N; = N is the blowing-up centered at
Z i of M

Let us see now that the composition ¢ =" o 7 : (M1, Gpm,) — (V,Gy) is a blowing-
up of the generalized analytic manifold (V, Gy). The combinatorial geometric center is
Zo = ¢~ (Zo) and the standardization is the sheaf Oy given locally at any a € V by

1

Ova={g0¢: g€ Opmypw)

Indeed, note that My = RF x R4, and that Ofwo = Gumy, = Gk,e. Where Gy . has been
introduced in Example 2.2. Since ¢ is an isomorphism we have Oy C Gy and also O, = Gy .
Then& = (Zo, Oy ) is acombinatorial center of blowing-up. Since the blowing-up with center
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at Zo of the standard analytic manifold (V, Oy) is Tz, =7z 0 o1 we get g = mp o !

as we wanted to prove.

Step 2: The function [’ : M, — Ris of stratified monomial type.
Denote Z(,) = ZOM . Recall that M, = W x M, then there is a bijection between Z(r) and

the strata of dimension k in Sy, sending a corner point g into the stratum S, = RF x {g}.
Let us prove that

ms, () =1, (22)

foreach g € Z? If we do it, we are done. Indeed, any other stratum in S € M, contains S,
in its closure for some g € Z? , and by the horizontal stability for the monomial complexity
stated in Lemma 2.6 we have mg(f’) < ms, (f) = 1.

Fix a corner point g € M, and z, € a,. Let us prove Eq. (22). Take B, € B; be the
matrix of exponents representing & at ¢ and denote A, = {A', 2%, ..., '}, where A = A/ B,
foralli =1,2,...,t. The expression of f” around APRTY:

/ il = e = it ~
f IRka‘; =1z, (Ui oU|Rkaq*) +z; (Uz oU|Rka‘;) +-zy (U OU']R]‘XV(;‘)’

so that Suppmin,sq (f's (zg,y) = (Aq)mi“. On the other hand, using Eq. (20) we have
[54Gy.q = Ag. Since 6*Go|v; is a set of generator of Jqu* and J is locally principal,

we get that (Aq)min is a singleton by Eq. (19). We conclude ms, (f) =1, as we wanted. O
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