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Abstract1

We prove that a germ of analytic vector field at (R3, 0) that possesses a non-constant analytic 12

first integral has a real formal separatrix. We provide an example which shows that such a3

vector field does not necessarily have a real analytic separatrix. 24
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Reduction of singularities · Index of vector fields6

Mathematics Subject Classification 32S65 · 37F75 · 34Cxx · 14P157

1 Introduction8

In this paper we prove the following result:9

Theorem 1 Let X be a germ of real analytic vector field at (R3, 0) that has an analytic first10

integral. Then X has a real formal separatrix. The statement is optimal in the sense that such11

a vector field X does not necessarily have a real analytic separatrix.12

Speaking in general terms, let X be a germ of real analytic vector field at (Rn, 0). A13

real analytic separatrix of X is a germ of irreducible analytic curve Ŵ at 0 ∈ Rn which is14

invariant by X . If γ (t) = (γ1(t), . . . , γn(t)) ∈ (tR{t})n\{0} is a parametrization of Ŵ, the15
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invariance condition is equivalent to saying that there exists h(t) ∈ R{t} such that X(γ (t)) =16

h(t)
dγ
dt

(t) for any t , where h(t) �≡ 0 if and only if Ŵ is not contained in the singular locus17

Sing(X) = {p ; X(p) = 0} of X . Replacing R{t} by R[[t]], we obtain the concept of real18

formal separatrix. On the other hand, considering the canonical complexification of X to a19

holomorphic vector field at (Cn, 0) and changing R to C, we have the concepts of complex20

holomorphic separatrix and complex formal separatrix, seen as objects in (tC{t})n\{0} and21

(tC[[t]])n\{0}, respectively.22

We also recall that a first integral of X is a germ of function f : (Rn, 0) → R such that23

d f (X) = 0. The expression “analytic first integral” in Theorem 1 could be interpreted either24

as “holomorphic first integral” or “real analytic first integral”. In fact, if h : (C3, 0) → C is25

a non-constant holomorphic first integral of (the complexification of) X , then one can check26

that the real traces of Re(h) and I m(h) are real analytic first integrals of X with at least one27

of them non-constant.28

Notice that in Theorem 1 we may assume without loss of generality that X has an29

isolated singularity at 0, otherwise there is at least a real analytic separatrix of X con-30

tained in Sing(X). On the contrary, we do not assume necessarily that the singular locus31

Sing(d f ) = {p; d f (p) = 0} of the first integral f of X is isolated. However, taking into32

account that Sing(d f ) is invariant by the vector field X , we may assume that it has no33

one-dimensional real components (see below in Sect. 4 for details).34

Analytic or formal separatrices may of course be defined for holomorphic vector fields.35

They are algebraically manipulable invariant objects which play a central role in the study36

of the local dynamics of the vector field. Let us briefly review some avatars of the problem37

of existence of separatrices, related to the situation of real vector fields.38

Planar case, n = 2. First, the Separatrix Theorem of Camacho and Sad [7] asserts that39

a planar vector field always has a complex holomorphic separatrix, although it may not40

have formal real separatrices: take, for instance, the standard vector field of center-type,41

X = −y ∂
∂x

+ x ∂
∂ y

. In this example, X has an analytic first integral, showing that Theorem 142

is not true for planar vector fields. On the other hand, there are examples of planar real vector43

fields with real formal separatrices, none of them convergent. An explicit example could be44

found in [29, Example 3.7(3)]. Below, in Sect. 5, we provide other examples used for the45

proof of the second part of Theorem 1.46

It is also known that an analytic vector field X at 0 ∈ R2 with Poincaré index equal to47

zero has a real formal separatrix. Below, in Proposition 8, we provide a generalization of48

this result for vector fields defined in singular analytic surfaces, which is one of the main49

ingredients of the proof of Theorem 1.50

Three dimensional case, n = 3. Camacho–Sad’s Theorem is no longer valid in this case:51

Gómez–Mont and Luengo in [13] have constructed a family of vector fields in (C3, 0) without52

complex separatrices. They state the result for analytic separatrices, although the same proof53

works in order to show that any vector field in that family is actually devoid of complex54

formal separatrices. An explicit member of that family with real coefficients could be found55

in [27, p. 333]. As a consequence of Theorem 1, vector fields in Gómez–Mont and Luengo’s56

family with real coefficients cannot have non-constant holomorphic first integrals.57

As for the planar case, there are examples of analytic vector fields at (R3, 0) with formal58

real separatrices, none of them convergent (i.e. without real analytic separatrices). An explicit59

example can be found in [8, p. 3]. We construct in Sect. 5 another example which has,60

moreover, a non-constant analytic first integral. It will prove the second part of Theorem 1,61

that is, that the conclusion “formal” in the statement cannot be improved to “analytic”.62

We should mention that, in a recent paper, D. Cerveau and A. Lins Neto proved that a63

germ of complex analytic vector field in (C3, 0), with isolated singularity, that is tangent64
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to a holomorphic foliation of codimension one always has a complex analytic separatrix65

[11, Proposition 3]. This result implies in particular that any vector field X as in Theorem 166

actually has a complex analytic separatrix, inasmuch as X is tangent to the foliation d f = 0,67

where f is a first integral. Such a complex separatrix may not be a real one (once more by68

our example in Sect. 5 below).69

Higher dimension, n ≥ 4. Families of holomorphic vector fields at (Cn, 0) without com-70

plex separatrices (neither convergent nor formal) are constructed in [21] for any dimension71

n ≥ 4, generalizing the three dimensional construction carried out in [13]. Each one of these72

families contains an explicit example with real coefficients.73

Examples of real analytic vector fields without real formal separatrices having analytic74

first integral can be constructed in any dimension n ≥ 4, showing that the phenomenon75

depicted in Theorem 1 is exclusive for dimension three. When n = 2p is even, we consider a76

multicenter vector field, written in coordinates (x1, y1, . . . , x p, yp) as Zn = X1 + · · ·+ X p ,77

where X j = −y j
∂

∂x j
+ x j

∂
∂ y j

. When n = 2p + 3 is odd, p ≥ 1, we take coordinates78

(x1, y1, . . . , x p, yp, x, y, z) and set Zn = Z2p + W , where Z2p is a multicenter vector field79

in the variables (x1, y1, . . . , x p, yp) and W is one of the examples of three dimensional real80

vector fields in Gómez-Mont and Luengo’s family written in the variables (x, y, z). Notice81

that, in both cases, Zn has f (x1, y1) = x2
1 + y2

1 as a first integral.82

Finally, concerning real analytic separatrices in any dimension, it is worth mentioning83

Moussu’s paper [26], where it is proved that an analytic gradient vector field at (Rn, 0)84

always has a real analytic separatrix. Below, we describe some arguments of that result,85

those which are used in our proof of Theorem 1 (concretely, in Proposition 4).86

Let us sketch the proof of Theorem 1 and the plan of the article. Let X be as in the87

hypothesis of the statement, having isolated singularity, and assume that the first integral f88

of X is such that its singular locus Sing(d f ) does not have one-dimensional real components.89

Using a Brunella’s result [6] which guarantees that X has a non-trivial orbit accumulating90

to the origin, we may assume, moreover, that the special fiber Z = f −1( f (0)) of f is not91

reduced to the single point 0 ∈ R3. Under these assumptions, we prove, in Sect. 2, a technical92

result (Proposition 4) which can be framed in the context of real versions of Milnor’s Fibration93

Theorem [24]. Roughly speaking, it asserts that, in any sufficiently small neighborhood of94

the origin, f has regular fibers with connected components which are simply connected95

and which accumulate to a given two-dimensional component of the special fiber Z . Our96

proof of Proposition 4 requires some avatars of known results in the theory of reduction of97

singularities of analytic functions. We recall them in the form needed for our purposes.98

In Sect. 3, we define, for any two-dimensional component L of Z , the index IL(X) of the99

restriction X |L , a generalization to singular surfaces of the usual notion of Poincaré index of100

a planar vector field at a singular point. It is not really a new notion, it corresponds in one or101

another equivalent way to a particular case of standard definitions of the index of a vector field102

in a singular invariant variety (see [5] for more information). Pushing the restricted vector103

field X |L to nearby fibers, using homotopic invariance of the index and the aforementioned104

result about simply connected fibers, we show that IL(X) is equal to zero for at least one105

component L .106

In Sect. 4, we conclude the proof of the first part of Theorem 1 proving that, given a107

two-dimensional component L of Z , either there exists a formal separatrix of X inside L or108

IL(X) �= 0 (Proposition 8 below). Incidentally, we use again the reduction of singularities as109

presented in Sect. 2 for the proof of this result. As mentioned before, it generalizes a known110

result of planar vector fields to the situation of vector fields in singular surfaces. It is related to111
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Bendixson’s formula for the computation of the Poincaré index using hyperbolic and elliptic112

sectors of the vector field at the singularity.113

Finally, in Sect. 5, we provide an explicit example of a vector field X with isolated sin-114

gularity at 0 ∈ R3 which has an analytic first integral but which does not have any real115

analytic separatrix. The difficult part to check is that the formal real separatrix of such an116

example does really diverge. For that, we use the Martinet–Ramis moduli of planar holomor-117

phic foliations of saddle-node type [18,23] and the computation of the tangent of the moduli118

map in Elizarov’s work [12]. We thank Loïc Teyssier for his comments and decisive remarks119

concerning these arguments and techniques.120

2 About the fibers of a real analytic function121

The main result in this section is Proposition 4 below, a result on the geometry of the fibers122

of a real analytic function in R3. We provide a proof adapted to our situation which employs123

the reduction of singularities of analytic functions. Some of the arguments are inspired on124

those of the paper [15] and also on a part of Roche’s work [30] concerning Real Clemens125

Structures.126

Our starting point is the following result (see Aroca et al. [2], Hironaka [16] or Bierstone127

and Milman [3,4]).128

Theorem 2 Let f : (Rn, 0) → (R, 0) be a non-zero real analytic function. There exists a129

neighborhood U of 0 ∈ Rn and a sequence of blow-ups with closed analytic non-singular130

centers131

π : Mm
πm−→ Mm−1

πm−1−→ · · · π2−→ M1
π1−→ U (1)132

such that f ◦ π : Mm → R is everywhere locally of monomial type, i.e. it can be written133

locally as a monomial times a unit in analytic coordinates. Moreover, if Y j−1 is the center134

of π j for j = 1, . . . , m, and we define recursively the total divisor E j at stage j by E j =135

π−1
j (E j−1 ∪ Y j−1) with E0 = ∅, then Y j has normal crossing with E j and it is contained in136

the singular locus Sing(d f j ) of f j = f ◦ π1 ◦ · · · ◦ π j , for j ≥ 0, where f0 = f .137

In particular, if Z = f −1(0) and Z̃ = Z\ Sing(d f ) is assumed to be non-empty (thus Z̃138

is a smooth analytic hypersurface), then π restricts to an analytic isomorphism from π−1(Z̃)139

to Z̃ .140

For our purposes, we will use real blow-ups instead of the usual (projective) blow-ups π j141

in Theorem 2. In order to define properly a real blow-up, we must consider the category of real142

analytic manifolds with boundary and corners; i.e. manifolds locally defined in coordinate143

charts (x1, . . . , xn) as quadrants {xi1 ≥ 0, xi2 ≥ 0, . . . , xir ≥ 0} and so that the changes of144

coordinates are analytic isomorphisms preserving the quadrants. The point is that a real blow-145

up (also called a “polar blow-up”) produces a boundary in the blown-up manifold, namely the146

inverse image of the center by the blow-up (called exceptional divisor), which corresponds147

to the set of half-directions (instead of directions) in the normal bundle of the center as a148

submanifold of the ambient space. Subsequent real blow-ups produce new boundaries which149

intersect old boundaries along corners.150

Let us recall the main definitions here (see for instance the recent reference [22] for151

details). First, we define the real blow-up, with closed non-singular center Y , on a real152

manifold without boundary M . Let π : M1 → M be the usual blow-up of M with center Y153

and let τ : M+
1 → M1 be the orientable double covering of M1. The composition π ◦ τ is an154

analytic map which ramifies along the divisor E = π−1(Y ). Then the real blow-up of M with155
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center Y is the restriction σ : M ′
1 → M of π ◦ τ to only one sheet, so that M ′

1 is an analytic156

manifold with boundary ∂ M ′
1 = E . Next, more generally, if M is a real analytic manifold157

with boundary and corners and Y ⊂ M is a non-singular analytic submanifold having normal158

crossings with ∂ M , we may consider first M immersed in a real analytic manifold M̃ with no159

boundaries or corners of the same dimension (the immersion is locally uniquely determined160

up to analytic isomorphisms), so that ∂ M becomes a normal crossing divisor of M̃ and such161

that Y is sent into a non-singular submanifold Ỹ ⊂ M̃ with normal crossings with ∂ M inside162

M̃ . The real blow-up σ : M ′ → M with center Y ⊂ M is the restriction of the real blow-up163

σ̃ : M̃ ′ → M̃ with center Ỹ to M ′ = σ̃−1(M\Y ).164

With this construction in mind, we adapt Theorem 2 to obtain a version which uses real165

blow-ups and which will be more convenient for us. Although we can consider general166

statements, we will concentrate on three-dimensional analytic functions with some extra167

condition concerning its singular locus.168

Fix a germ f : (R3, 0) → (R, 0) of analytic function. Consider the prime decomposition169

f = f
n1
1 f

n2
2 · · · f

nr
r , where each f j is an irreducible germ of analytic function, and let170

h = Red( f ) = f1 f2 · · · fr . Notice that Z = f −1(0) = h−1(0). Assume the following171

property, that we call Reduced Isolated Singularity:172

(RIS). The germ of analytic set Z = f −1(0) is not reduced to {0} and Sing(dh) ⊂ {0}.173

Note that the hypothesis (RIS) implies that, in some neighborhood of the origin, the174

set Z\{0} is a non-singular two-dimensional analytic submanifold and that the irreducible175

components f −1
j (0) of Z , as germs of analytic sets, only intersect at 0. (The converse of this176

result is not true: take f = Red( f ) = y3 − x6 for which the special fiber Z = {y − x2 = 0}177

is a non-singular surface at every point and the z-axis is contained in Sing(d f ).) To be more178

precise, let ε > 0 be sufficiently small such that f is defined and analytic in a neighborhood179

of the closed ball V = B(0, ε), and such that Z ∩ V cuts transversally the boundary of V . By180

the Conic Structure Theorem (see Milnor [24] or vdDries [32] for a more general statement),181

the set (Z\{0}) ∩ V has finitely many connected components, denoted by L1, L2, . . . , Lr ,182

where each L i is a non-singular analytic surface immersed in V whose closure in V is183

homeomorphic to the cone at 0 over the link Ci = ∂V ∩ L i (a curve homeomorphic to S1).184

The germs of the components L i at 0 are well defined and do not depend on ε. We will use the185

same notation L i for both the components of (Z\{0}) ∩ V (for any given sufficiently small186

ε) and their germs. They will be called local components of the special fiber Z = f −1(0).187

Proposition 3 Let f : (R3, 0) → (R, 0) be a germ of analytic function that satisfies the188

hypothesis (RIS). Then, if ε > 0 is sufficiently small and V = B(0, ε), there is a sequence of189

real blow-ups (independent of ε)190

σ : M ′
m

σm−→ M ′
m−1

σm−1−→ · · · σ2−→ M ′
1

σ1−→ V , (2)191

such that the composition f ◦ σ is everywhere locally of monomial type and such that, if L192

is a local component of Z = f −1(0), we have:193

(i) σ−1(L) is diffeomorphic to the half-open cylinder [0, 1) × S1, where the boundary194

{0} × S1 corresponds to the link C = L ∩ ∂V .195

(ii) The strict transform L ′ = σ−1(L) of L = L ∪ {0} is a real analytic submanifold of M ′
m196

with boundary and corners, homeomorphic to the closed cylinder [0, 1] × S1.197
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(iii) Denoting ∂L ′ = C∞ ∪ σ−1(C) the two connected components of the boundary of L ′,198

we have that L ′ cuts transversally the total divisor E ′
m along C∞, which is a piecewise199

smooth analytic curve homeomorphic to S1.200

(iv) The strict transforms of two different local components do not intersect.201

Moreover, σ1 is the real blow-up with center Y ′
0 = {0} and, if Y ′

j−1 is the center of σ j for j =202

2, . . . , m, and we define recursively the total divisor E ′
j at stage j by E ′

j = σ−1
j (E ′

j−1∪Y ′
j−1)203

with E ′
0 = ∅, then, for any j ≥ 1, Y ′

j ⊂ E ′
j and E ′

j is homeomorphic to the sphere S2.204

Proof Let f = f
n1
1 f

n2
2 · · · f

nr
r be the prime decomposition of f as a germ and put205

h = Red( f ) = f1 f2 · · · fr . Let ε > 0 be sufficiently small such that f is defined in a206

neighborhood of a closed ball V = B(0, ε), and such that Z cuts transversally the boundary207

of V . Assume moreover that V is contained in a neighborhood where Theorem 2 applies208

to h, so that we obtain a sequence of blow-ups π as in (1) with centers Y0, Y1, . . . , Ym−1,209

such that h ◦ π is everywhere locally of monomial type. Therefore, the composition f ◦ π is210

also everywhere locally of monomial type. Define the sequence (2) recursively as follows:211

σ1 : M ′
1 → V is the real blow-up of V with center Y ′

0 = Y0, σ2 : M ′
2 → M ′

1 the real blow-up212

with center Y ′
1 = Y1 ∩ M ′

1, and so on. Since Sing(dh) ⊂ {0}, by the hypothesis (RIS), and213

since the center Y j−1 of π j is contained in the singular locus of h j−1 = h ◦σ1 ◦· · ·◦σ j−1, we214

have that Y ′
0 = {0} and that Y ′

j ⊂ E ′
j for j ≥ 1. We deduce then that E ′

j
∼= S2 by recurrence215

on j , using the definition of real blow-up.216

Property (i) is a consequence of the mentioned Conic Structure Theorem, together with the217

fact that σ : M ′
m\E ′

m → V \{0} is a diffeomorphism since each center Y ′
j is contained in E ′

j218

for j ≥ 0. To prove properties (ii) and (iii) we use the conclusion that π−1(Z ∩V ) is a normal219

crossing divisor, so that L ′ is contained in one of its components, a non-singular analytic220

surface which cuts transversally the components of the total divisor E ′
m . Finally, for property221

(iv), notice that if L ′
1, L ′

2 are the strict transforms of two different local components L1, L2 of222

Z and L ′
1 ∩ L ′

2 �= ∅, then necessarily L ′
1 ∩ L ′

2 �⊂ E ′
m (since L ′

1, L ′
2 and any component of E ′

m223

are components of the normal crossing divisor σ−1(Z ∩V )). Hence σ−1(L1)∩σ−1(L2) �= ∅224

and also L1 ∩ L2 �= ∅, which is impossible by the hypothesis (RIS). ⊓⊔225

Proposition 4 Let f : (R3, 0) → (R, 0) be a germ of analytic function satisfying the hypoth-226

esis (RIS). Then there is a local component L of the special fiber Z and a neighborhood base227

B of 0 ∈ R3 such that each U ∈ B is compact and satisfies the following property: there228

exists a family {FU
λ }λ∈(0,δ), where FU

λ is a connected component of a non-singular fiber of229

f |U , such that FU
λ is homeomorphic to a closed disc and such that FU

λ

λ→0−−−→ (L ∪ {0}) ∩ U230

in the Hausdorff topology.231

Proof We prove that any closed ball V = B(0, ε), with ε > 0 sufficiently small for which232

Proposition 3 holds, contains a neighborhood U with the required properties of the statement.233

We use notation of Proposition 3 so that, if L1, . . . , Lr are the local components of the singular234

fiber Z = f −1(0) and L ′
j is the strict transform of L j , then L ′

j is homeomorphic to the235

cylinder [0, 1]×S1 and L ′
j ∩E ′

m is a curve homeomorphic to S1. Moreover, L ′
i ∩L ′

j ∩E ′
m = ∅236

if i �= j . Let j0 be such that one of the connected components of E ′
m\L ′

j0
∩ E ′

m , say D,237

contains no curve L ′
j ∩ E ′

m for j �= j0. Then � = L ′
j0

∪ D is homeomorphic to a closed238

disc.239
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Real analytic vector fields with first integral and separatrices

D

L
′

j0

∆δ

240

241

Let us prove the statement for the component L = L j0 . Consider f̃ = f ◦ σ : M ′
m → R,242

whose singular fiber is given by243

Z̃ = f̃ −1(0) = σ−1(Z ∩ V ) = L ′
1 ∪ L ′

2 ∪ · · · ∪ L ′
r ∪ E ′

m,244

and thus � ⊂ Z̃ . By construction, there is a unique connected component of M ′
m\Z̃ =245

σ−1(V \ f −1(0)), denoted by K , whose topological frontier in M ′
m is exactly �. We assume,246

without lost of generality, that f̃ is positive on K . Denote also by Ṁ ′
m = σ−1(V \∂V ) (a247

manifold with boundary where ∂ Ṁ ′
m = E ′

m).248

Let g be an analytic riemannian metric on M ′
m (the existence of such a metric is guaranteed249

by Grauert’s Analytic Immersion Theorem [14]) and let ξ = −∇g( f̃ 2) be the gradient vector250

field of f̃ 2 with respect to g. The square and the sign “−” are taken in order to guarantee251

both that f̃ decreases along any trajectory of ξ and that Z̃ is exactly the singular locus of ξ .252

By a Łojasiewicz’s result (see [20]), there exists an open neighborhood H of Z̃ ∩ Ṁ ′
m in Ṁ ′

m253

such that for any p ∈ H , the integral curve γp of ξ with γp(0) = p is defined on [0,∞) and254

the limit255

Rξ (p) = lim
t→∞

γp(t)256

exists and belongs to Z̃ ∩ Ṁ ′
m . Moreover, the map Rξ : H → Z̃ ∩ Ṁ ′

m is a continuous257

retraction.258

In our particular case where f̃ is locally of monomial type, one can show, moreover, the259

following:260

Claim For any q ∈ � ∩ Ṁ ′
m , there exists a neighborhood Bq of q and a unique orbit of ξ in261

Bq ∩ K that accumulates to q.262

Assume that the Claim is true. Put �′ = � ∩ σ−1(B(0, ε/2)). Using the existential part263

of the Claim, the fact that f̃ decreases along integral curves of ξ and the compactness of264

�′, there exists a fiber δ = f̃ −1(δ) ∩ K of f̃ |K , for some δ > 0, such that �′ ⊂ Rξ (δ).265
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(Notice that fibers of f̃ |K and of f̃ 2|K coincide since we have assumed that f̃ is positive on266

K ). On the other hand, by the uniqueness property stated in the Claim and since an orbit of267

ξ can intersect at most once any fiber of f̃ , if F̃δ = R−1
ξ (�′) ∩ δ then268

Rξ |F̃δ
: F̃δ → �′

269

is bijective, and hence a homeomorphism. Observe that all the conclusions above also hold for270

any λ with λ ∈ (0, δ], using the flow of ξ , which provides, by restriction, a diffeomorphism271

from F̃δ to F̃λ for every such λ. In particular, F̃λ = R−1
ξ (�′) ∩ λ is homeomorphic to a272

closed disc for any λ ∈ (0, δ].273

We finally consider the set274

Ũ = (M ′
m\K ) ∪ (R−1

ξ (�′) ∩ f̃ −1([0, δ]) ∩ K ),275

which is a compact neighborhood of the total divisor E ′
m in M ′

m , and we put U = σ(Ũ ).276

Then U is a neighborhood of the origin contained in V with the required properties for the277

family {FU
λ = σ(F̃λ)}λ∈(0,δ].278

Proof of the Claim. Fix q ∈ � ∩ Ṁ ′
m and denote by e = e(q) the number of components of279

Z̃ , considered as a normal crossing divisor, which meet at q . We analyze separately the three280

possible values of e ∈ {1, 2, 3}. First, it is worth recalling that the expression of the vector281

field ξ = −∇g f̃ 2 = A∂/∂x + B∂/∂ y + C∂/∂z in analytic coordinates w = (x, y, z) at q is282

computed by the formula283

(A B C) = −
∂ f̃ 2

∂w

(
hi j

)
, (3)284

where (hi j ) is the inverse of the matrix of the metric g in the coordinates w and ∂ f̃ 2/∂w is285

the row vector of partial derivatives of f̃ 2. ⊓⊔286

Case e = 1. We choose an analytic chart (Bq , (x, y, z)) centered at q so that f̃ = xm ,287

with m > 0, and Bq ∩ K = {x > 0}. Inside the domain Bq of the chart, using (3), we288

may write ξ = x2m−1ξ̄ , where ξ̄ is a vector field, which is non-singular at q . Moreover, ξ̄289

is transversal to Z̃ = {x = 0} in a neighborhood of q . Thus, the orbit of ξ̄ through q is the290

unique orbit that may accumulate to q and cuts {x > 0}. Since orbits of ξ in {x > 0} are291

contained in orbits of ξ̄ , we conclude the claim.292

Case e = 2. In this case, we choose an analytic chart (Bq , (x, y, z)) such that f̃ = xm yn ,293

with m, n > 0, and Bq ∩ K = {x > 0, y > 0}. Then, using (3), we may write ξ =294

2x2m−1 y2n−1ξ̄ , where295

ξ̄ = −(myh11 + nxh21)
∂

∂x
− (myh12 + nxh22)

∂

∂ y
− (myh13 + nxh23)

∂

∂z
. (4)296

Since the orbits of ξ and ξ̄ coincide in Bq ∩ K , it suffices to prove the Claim for ξ̄ . Using the297

fact that (hi j ) is positive definite, we have that Sing(ξ̄ ) = {x = y = 0} and that the linear298

part Dξ̄ (q) of ξ̄ at q has (real) eigenvalues {0, λ, μ}, where λ < 0 < μ. Let W s, W u be299

the stable and unstable manifolds of ξ̄ at q . They are invariant smooth curves (in fact real300

analytic separatrices of ξ̄ , see [10]) tangent to the eigendirections Eλ, Eμ corresponding to301

λ and μ, respectively. Also, W c = Sing(ξ̄ ) is a center manifold of ξ̄ at q . The Theorem of302

Reduction to the Center Manifold (see [9,17]) implies that ξ̄ is topologically equivalent, in a303

neighborhood of q , to the linear vector field Dξ̄ (q) = λu∂/∂u +μv∂/∂v in R3, where u and304

v are linear coordinates on Eλ and Eμ, respectively. As a consequence, the four connected305

components of (W s ∪ W u)\{q} are the unique non-trivial orbits of ξ̄ which accumulate to q .306
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Real analytic vector fields with first integral and separatrices

It suffices to show that (W u ∪ W s) ∩ K = W s ∩ K �= ∅ (notice that in that case only one of307

the components of W s\{q} may be contained in K , since W s, W u are transversal at q to the308

components {x = 0} and {y = 0} of Z̃ , both contained in Fr(K )).309

Let us show that W u ∩ K = ∅. Notice that the integral curve of ξ̄ at any point of W u\{q}310

is defined in an interval of the form (−∞, a) and converges to q for t → −∞. This would311

also be the case for an integral curve of ξ if W u ∩ K �= ∅, since the sense of parametrization312

of integral curves of ξ and ξ̄ coincide in Bq ∩ K . However, this is impossible because − f̃ 2
313

grows along integral curves of ξ in K and f̃ (q) = 0.314

Let us show that W s ∩ H �= ∅. Denote by  = Eλ ⊕ Eμ, a linear plane invariant by the315

linear vector field Dξ̄ (q). Let Q be the cone inside  bounded by the half-lines ℓx , ℓy of 316

which correspond to the tangent directions of {y = 0, x ≥ 0} ∩  and {x = 0, y ≥ 0} ∩ ,317

respectively. If W s ∩ K = ∅ then we would have Q ∩ (Eλ ∪ Eμ) = {0}. In this case, we318

could see that the vector field Dξ̄ (q), that is everywhere transversal to the boundary of Q,319

enters Q through one of the half-lines ℓx , ℓy while it escapes from Q through the other one.320

This is impossible by comparing Dξ̄ (q) with ξ̄ , since this last vector field escapes from K321

through any point of Fr(K )\{x = y = 0} = {y = 0, x > 0} ∪ {x = 0, y > 0}.322

Case e = 3. We use the result by Kurdyka et al. [19] that solves Thom’s Conjecture : Let323

h : (Rn, 0) → R be an analytic function and let g be a real analytic riemannian metric at324

0. Then any non-trivial orbit Ŵ of the analytic gradient vector field ∇gh that converges to325

0 ∈ Rn has a well defined limit tangent326

νŴ = lim
x∈Ŵ,x→0

x

‖x‖
∈ Sn−1.327

Also, we use the following results from Moussu’s paper [26, Theorems 1 and 3]: if g(0) is the328

Euclidean metric in Rn = T0Rn (or also a scalar positive multiple of it) and Hk = hk |Sn−1 ,329

where hk is the first non-zero homogeneous polynomial (of degree k) in the Taylor expansion330

of h at 0 ∈ Rn , then we have:331

(a) If νŴ ∈ Sn−1 is the limit tangent of an orbit Ŵ of ∇gh that converges to the origin, then332

νŴ ∈ Sing(d Hk).1333

(b) Assume that h ≥ 0 in a neighborhood of the origin and denote by S0 ⊂ Sn−1 the set of334

points ν ∈ Sn−1 that satisfy335

ν ∈ Sing(d Hk), Hk(ν) < 0, k Hk(ν) < inf{λ1(ν), . . . , λn−1(ν)},336

where the λ j (ν) are the eigenvalues of the hessian matrix of Hk at ν (with respect to337

the standard metric in Sn−1). Then, for any ν ∈ S0 there exists a unique orbit Ŵ of ∇gh338

converging to the origin such that ν = νŴ (in fact, Ŵ is an analytic separatrix of ∇gh).339

In order to apply these results to our gradient vector field ξ = ∇g(− f̃ 2), we consider an340

analytic chart (Bq , w = (x, y, z)), centered at q , such that the matrix of the metric g in341

the coordinates w at w = 0 is equal to the identity and, moreover, f̃ is written in the form342

f̃ = ℓ
m1
1 ℓ

m2
2 ℓ

m3
2 , where ℓ1, ℓ2, ℓ3 are linearly independent homogeneous polynomials of343

degree one in the variables (x, y, z). To show that we can choose such an analytic chart, first344

take coordinates w̄ = (x̄, ȳ, z̄) so that f̃ = x̄m1 ȳm2 z̄m3 and then take a linear change of345

variables w = Pw̄ so that g(0) has the identity matrix in the coordinates w. We may assume346

also that K ∩ Bq is described by the set {ℓ1, ℓ2, ℓ3 > 0} and, possibly allowing g(0) to be a347

positive multiple of the identity, that the range w(Bq) of the chart contains a neighborhood348

of [−1, 1]3, so that the sphere S2 = {x2 + y2 + z2 = 1} in the coordinates w is well defined349

as a “sphere” inside Bq . Consider350

1 This result, essentially, was already established by Martinet and Thom.
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F = (−ℓ
2m1
1 ℓ

2m2
2 ℓ

2m3
2 )|S2 ,351

an analytic non-constant function on S2. According to Moussu’s results (a) and (b) above, it352

suffices to prove that:353

(i) F has a unique singular point ν0 in S2 ∩ K , which is a local minimum for F (thus the354

hessian of F at ν0 is positive semidefinite and hence ν0 belongs to the set S0 defined in355

(b) above).356

(ii) No point of the frontier of S2 ∩ K in S2 can be the limit tangent of an orbit of ξ contained357

in K .358

Property (i) is an exercise in convex geometry: For any c > 0, the function f̃ 2 − c =359

ℓ
2m1
1 ℓ

2m2
2 ℓ

2m3
3 − c restricted to K = {ℓ1, ℓ2, ℓ3 > 0} is such that its epigraph { f̃ 2 ≥ c} ∩ K360

is strictly convex. Thus, if ν0 ∈ S2 is a singular point of f̃ 2|S2∩K then the tangent plane of361

S2 at ν0 equals the tangent plane of the fiber ( f̃ 2)−1( f̃ (ν0)
2) at ν0 and separates S2 from the362

epigraph { f̃ 2 ≥ f̃ (ν0)
2}. Thus ν0 is a global maximum of f̃ 2 in restriction to S2 ∩ K , which363

shows (i).364

Let us show (ii). The set T = S2 ∩ K is a spherical triangle T determined by the lines365

ℓ j ∩ S2, j = 1, 2, 3. We consider the real blow-up σq : M̃ → M ′
m at q so that the divisor366

E = σ−1
q (q) is identified with the sphere S2. The transformed vector field σ ∗

q ξ is singular367

along E but it can be divided by an equation of E so that we obtain a new vector field ξ̃ ′ on368

M̃ , which leaves invariant the divisor E and so that E �⊂ Sing(̃ξ ′). A calculation (which, this369

time, is easier assuming that the coordinates are chosen so that f̃ = xm1 ym2 zm3 ) shows that370

Sing(̃ξ ′) ∩ T is the set of vertices of T . This proves that if an orbit of ξ̃ ′, not contained in the371

divisor E , accumulates to a single point of T , then this point must be a vertex. On the other372

hand, if v is a vertex of T , one can see that Sing(̃ξ ′) is a non-singular curve at v transversal to373

the divisor E and that the restriction of ξ̃ ′ to E is a linear vector field (in standard charts for374

the blow-up) with real eigenvalues of different sign. Thus the stable and unstable manifolds375

of ξ̃ ′ at v are contained in E , whereas Sing(̃ξ ′) is a center manifold. Using the Theorem of376

Reduction to the Center Manifold in a way analogous to the case e = 2, we conclude that no377

orbit of ξ̃ ′ outside E can accumulate to v. This proves (ii), as wanted. ⊓⊔378

3 The Poincaré–Hopf index379

Let f : (R3, 0) → R be a germ of analytic function which satisfies the hypothesis (RIS) and380

let ε > 0 be sufficiently small so that Proposition 3 holds for f . Put Z = f −1(0) ∩ B(0, ε)381

and let L be one of the local components of Z . Consider in L the orientation induced by382

the normal vector field ∇ f |L . Let C = L ∩ ∂ B(0, ε) ∼= S1 be the corresponding link383

with the usual orientation as a boundary of L . By the conic structure of L , there exists a384

homeomorphism � : L → D, where D is the unit closed disc in R2 centered at the origin,385

such that �(0) = 0 and which restricts to a diffeomorphism from L into D\{0}. We can386

suppose that � is orientation preserving. Moreover, we can suppose that the tangent map387

T � : T L ⊂ T R3 → T R2 of � over L is uniformly bounded for the usual norm of tangent388

vectors of Rn (for instance, change � by g(‖�‖)� where g : [0, 1] → [0, 1] is a convenable389

monotonic C1-function). Thus �∗(X |L) extends to a continuous vector field X̃ L on the disc390

D with isolated singularity at 0. We define the index of X along L , denoted by IL(X), to391

be the Poincaré–Hopf index of X̃ L at the origin of R2. It can be computed as the degree of392

the map X̃ L/||X̃ L || : S1 → S1. It is well known that IL(X) does not depend on ε or on the393

homeomorphism � (as long as it satisfies the mentioned properties).394
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Real analytic vector fields with first integral and separatrices

Proposition 5 Let X be a real analytic vector field at (R3, 0) having a real-analytic first395

integral f . Assume that f satisfies the hypothesis (RIS) and that X has an isolated singularity396

at 0 ∈ R3. Then there exists a local component L of Z = f −1(0) such that IL (X) = 0.397

Proof Take a local component L of Z satisfying the properties stated in Proposition 4, i.e.,398

in every neighborhood of L there are fibers of f that have connected components which are399

simply connected. Assume, without loss of generality, that there are such fibers with positive400

values of f . Consider a diffeomorphism � : L → D\{0} and the vector field X̃ L = �∗(X |L)401

as in the paragraph above, so that IL(X) is the Poincaré-Hopf index of X̃ L at 0 ∈ R2.402

We shift the link C = L ∩∂ B(0, ε) of L to nearby fibers of f in the following way. Notice403

first that, by the condition (RIS), if f = f
n1
1 · · · f

nr
r is the decomposition of f in irreducible404

factors, there is a unique j so that f j vanishes along C and, if k �= j , then fk(x) �= 0 for405

any x ∈ C . Let m = n j . In a sufficiently small neighborhood W of C in R3, the function406

β : W → R defined by407

β = f j

∏

k �= j

| fk |
nk
m408

satisfies Sing(dβ) = ∅, W ∩ L = {β = 0} and f |W = ǫβm , where ǫ = ±1. Up to changing409

the sign of β we can assume that ǫ = +1 (notice that ǫ = −1 and m even cannot occur since410

we suppose that f takes positive values near L). Notice that the fibers of β are contained in411

the fibers of f |W . Put Y = ∇β/‖∇β‖2, a vector field which is transversal to the fibers of f412

in W , in particular to L ∩ W . Moreover, if φt (x) is the flow of Y , we have β(φt (x)) = t for413

every x ∈ L ∩ W and every t ∈ R sufficiently small. Let us denote by L t the fiber f = tm
414

in B(0, ε) and by Ct the curve φt (C). There exists a small ρ > 0 such that, for each fixed415

|t | < ρ, the flow φt (x) defines a diffeomorphism �t between an open neighborhood A of C416

in L and an open neighborhood At of Ct in L t , which restricts to a diffeomorphism from C417

to Ct . Moreover, if t > 0, �t preserves the orientation induced by the gradient ∇ f on the418

fibers of f .419

If |t | < ρ, the map �t = � ◦ �−1
t takes At diffeomorphically into a neighborhood of420

S1 in R2, sending Ct to S1. We define X̃ t = �t ∗(X |At ). The map s �→ X̃st , for s ∈ [0, 1],421

defines a homotopy between X̃ L = X̃0 and X̃ t . Moreover, if t is sufficiently small, we may422

assume that X̃st never vanishes over S1. Thus we have423

IL (X) = degree (X̃ L/||X̃ L || : S1 → S1) = degree (X̃ t/||X̃ t || : S1 → S1).424

By our choice of the local component L and Proposition 4, if t > 0 is sufficiently small, Ct is425

contained in a connected component of L t that is simply connected. Hence, the curve Ct is the426

boundary of a submanifold Dt in L t diffeomorphic to the unit disc D via a diffeomorphism427

h : Dt → D, which can be extended to a neighborhood of Ct in L t and satisfies h(Ct ) = S1.428

On the one hand, the vector field ξ = h∗(X |Dt ) in D has Poincaré index equal to 0, since429

it never vanishes. On the other hand, such an index can be calculated as the degree of the430

map ξ/||ξ || : S1 → S1 and this is equal to the degree of X̃ t/||X̃ t || : S1 → S1, since ξ and431

X̃ t are related by the diffeomorphism h ◦ �−1
t defined in a neighborhood of S1 in R2. This432

concludes the proof of the Proposition. ⊓⊔433

4 Proof themain theorem434

In this section we complete the proof of the first part of Theorem 1.435
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Let X be a germ of analytic vector field with an isolated singularity at 0 ∈ R3 having a non-436

constant analytic first integral f : R3 → R with f (0) = 0. As mentioned in the introduction,437

we may assume that the singular locus Sing(d f ) = {p ∈ R3 : d f (p) = 0} of f has no438

components of real dimension equal to one at 0. This is a consequence of the following result439

(whose proof given in [25] for the complex case generalizes, without changes, to the real440

case) and the fact that X is tangent to the foliation given by d f = 0.441

Proposition 6 Let Y be a germ of real analytic vector field having an isolated singularity at442

0 ∈ R3. Let ω be a germ of real analytic integrable 1-form at 0 ∈ R3 such that ω(Y ) = 0.443

Then the one-dimensional components of Sing(ω) = {p : ω(p) = 0} are invariant by Y .444

Under the hypothesis that f is a first integral of X , we obtain that the special fiber Z = f −1(0)445

of f is not reduced to a single point, i.e., that Z\{0} �= ∅. This is a consequence of Brunella’s446

result [6] which asserts that X has a non trivial orbit τ accumulating to the origin. In our447

case, we have necessarily that τ ⊂ Z and hence Z �= ∅, since the orbits of X are contained448

in the fibers of f .449

Moreover, the following lemma implies that we may assume that the function f satisfies450

the (RIS) hypothesis.451

Lemma 7 If f does not satisfy the (RIS) hypothesis then X has a real analytic separatrix.452

Proof Consider the prime decomposition f = f
n1
1 f

n2
2 · · · f

nr
r where the f j are two by two453

different irreducible germs of real analytic functions and let h = Red( f ) = f1 f2 · · · fr .454

Notice that Z = f −1(0) = h−1(0). We have already shown that Z �⊂ {0}, so if f does not455

satisfy the (RIS) hypothesis then Sing(dh) �⊂ {0}. In this case, there exists a component H of456

the analytic set Sing(dh) of positive (real) dimension accumulating to the origin. Necessarily457

H ⊂ Sing(dh)∩Z and hence H is one-dimensional, since Sing(dh)∩Z has no component of458

codimension one. Indeed, in a neighborhood of the origin, a point p belongs to Sing(dh)∩ Z459

if and only it satisfies at least one of the following conditions:460

(i) there is a pair of indices i, j , with i �= j , such that p ∈ { fi = f j = 0};461

(ii) there is an index j such that p ∈ { f j = 0} ∩ Sing(d f j ).462

It suffices to prove that H is invariant by X . For this, we consider the real analytic 1-form463

obtained by canceling the poles of the logarithmic derivative of f :464

ω f = Red( f )
d f

f
=

r∑

j=1

n j f1 · · · f̂ j · · · fr d f j .465

We have that Sing(ω f ) ∩ Z = Sing(dh) ∩ Z since both sets are described by the same466

properties (i) and (ii) above, and thus H is a one-dimensional component of Sing(ω f ) ∩467

Z . Finally, since ω f (X) = 0, the set Sing(ω f ) ∩ Z (and hence H ) is invariant by X by468

Proposition 6, as wanted. ⊓⊔469

Assume now that the first integral f satisfies the hypothesis (RIS), so that we can apply470

to f the constructions and the results described in the preceding sections. In particular, let471

L1, . . . , Lr ⊂ B(0, ε) be the local components of Z = f −1(0), where ε is sufficiently small,472

as defined in Sect. 2 and let IL j
(X) be the index of X along L j as defined in Sect. 3.473
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Real analytic vector fields with first integral and separatrices

Theorem 1 is a consequence of Proposition 5 and of the following result:474

Proposition 8 For any j ∈ {1, 2, . . . , r}, either there is a formal real separatrix of X con-475

tained in L j or IL j
(X) �= 0.476

Proof Fix j ∈ {1, 2, . . . , r} and put for simplicity L = L j , C = C j etc. Assume that477

ε is sufficiently small so that Proposition 3 holds for V = B(0, ε). That is, there exists a478

sequence of real blow-ups σ : M ′ → V such that L ′ = σ−1(L) is a real analytic surface with479

boundary and corners, homeomorphic to a closed cylinder [0, 1] × S1, such that σ induces a480

diffeomorphism between σ−1(L) and L . The boundary of L ′ consists of the two components481

C ′ = σ−1(C) (the transform of the link of L by σ ) and D′ = L ′ ∩ E ′, where E ′ = σ−1(0)482

is the exceptional divisor of σ . While C ′ is a smooth analytic curve, D′ is only piecewise483

smooth analytic. Denote by J ⊂ D′ the set of corners of D′, i.e., the set of points where D′
484

is not smooth. Consider in L ′ the orientation induced from that of L by σ . Up to considering485

another surface diffeomorphic to L ′, we may assume that L ′ is a submanifold with boundary486

and corners inside the euclidean plane R2, with the standard orientation.487

The transformed vector field X ′ = σ ∗(X |L) in L ′\D′ defines a one-dimensional singular488

analytic foliation F ′ which can be extended analytically to D′ as an oriented foliation (i.e.,489

at any point p ∈ D′, there is an analytic vector field X ′
p in a neighborhood Vp of p in L ′,490

with isolated singularities, generating F ′ and such that X ′
p and X ′ are equally oriented in491

Vp\D′) whose set of singular points Sing(F ′) is finite and contained in D′. Moreover, using492

Seidenberg’s Theorem on reduction of singularities [31], and up to considering new blow-493

ups on L ′ at points of D′, we can assume that any point of Sing(F ′) is a simple singularity494

(that is, the eigenvalues λ,μ of the corresponding linear part are real and satisfy μ �= 0495

and λ/μ /∈ Q>0) and that any connected component of D′\J is either invariant for F ′ or496

everywhere transversal to F ′.497

Suppose that there is no formal real separatrix of X inside L . Then, at any point p ∈ D′,498

the formal separatrices of F ′ at p (of a generator X ′
p of F ′) are contained in D′. In particular,499

any connected component of D′\J is invariant for F ′. Also taking into account that a simple500

singularity of a two-dimensional real vector field, with real eigenvalues, has exactly two501

transversal formal separatrices (both real, non-singular and tangent to the corresponding502

eigendirections), we have necessarily that Sing(F ′) = J and that the only formal separatrices503

of F ′ at any p ∈ J are the two components of D′ through the point p (thus, they are analytic504

separatrices). Notice that, since D′ is contained in the boundary of L ′, there are exactly505

two connected components of D′\J locally at p ∈ J , each of them is part of one of the506

separatrices of F ′ at p. Each connected component ℓ of D′\J is a non-singular oriented leaf507

of F ′ , going from α(ℓ) to ω(ℓ), both points in J . A singular point p ∈ J is either a sink,508

a source or a saddle, depending if ω(ℓ) = ω(ℓ′) = p, α(ℓ) = α(ℓ′) = p or the remaining509

cases, respectively, where ℓ, ℓ′ are the two components of D′\J which accumulate to p.510

Sinks an sources are jointly called nodes. A node connection is a union511

τ = ℓ1 ∪ · · · ∪ ℓr512

where the ℓ j are connected components of D′\J satisfying α(τ) := α(ℓ1) is a source,513

ω(τ) := ω(ℓr ) is a sink and ω(ℓ j ) = α(ℓ j+1) for j = 1, . . . , r − 1 (which are saddle

123

Journal: 13398 Article No.: 0639 TYPESET DISK LE CP Disp.:2019/1/30 Pages: 19 Layout: Small

A
u

th
o

r
 P

r
o

o
f



un
co

rr
ec

te
d

pr
oo

f

R. Mol , F. S. Sánchez

points). By construction, there is a continuum of trajectories of X ′ in L ′\D′ accumulating to514

τ and having α(τ), ω(τ) as the α and ω-limit set, respectively. See the figure below:515

516

517

By the nature of real blow-ups, the cardinal of J is even and, if J �= ∅, the number of518

connected components of D′\J and the number of node connections are also even.519

To conclude the proposition, let us prove that in this situation we have IL (X) > 0. The520

index IL (X) can be calculated as follows. Let S be a closed simple curve in L ′\D′ surrounding521

D′ and homotopic to C ′ in L ′\D′ with the standard orientation and let φ : S1 → S be an522

orientation preserving homeomorphism. Then IL(X) is equal to the degree of the map523

θ : S1 → S1, p �→
X ′(φ(p))

‖X ′(φ(p))‖
.524

Suppose, moreover, that S is a differentiable curve having only finitely many tangencies with525

X ′ and let i and e be, respectively, the number of interior and exterior tangencies (i.e., at526

such a tangency point q , the orbit of X , devoid of q , stays locally at q in the interior or in527

the exterior of S, respectively). Then, from Poincaré (see also Pugh’s work [28]), we can528

calculate the degree of the map θ above as529

deg(θ) = 1 +
i − e

2
. (5)530

We will finish by constructing a differentiable curve S with a positive (even) number of531

interior tangencies and no exterior tangencies with the vector field X ′.532

Let τ be a node connection in D′ and let γ1, γ2 be two trajectories of X ′ in L ′\D′, both533

having α and ω-limit equal to α(τ) and ω(τ), respectively, and such that γ2 is inside the534

circle τ ∪ γ1. Using the flow-box theorem, we can construct a differentiable arc of curve535

Sτ connecting two different points of γ1, lying inside τ ∪ γ1 except for its extremities and536

everywhere transversal to X ′ except for a point aτ where it touches γ2. This is depicted in537

the figure:538
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539

540

We choose the extremities of Sτ sufficiently near the corresponding singular points α(τ),541

ω(τ), so that, in sufficiently small neighborhoods of the the node singularities of D′, the arcs542

Sτ can be jointed in a smooth way by small arcs transversal to X ′. Thus, we produce a simple543

closed curve S surrounding D′ with the required properties: S is everywhere transversal to544

X ′ except for the points aτ , which are in fact interior tangencies of S with the vector field545

X ′, and there are as many of them as the number of node connections (an even number). ⊓⊔546

Remark 9 It is worth noticing that formula (5) is closely related to Bendixson’s formula for547

the index of a planar analytic vector field X at the origin in R2:548

I (X) = 1 +
e − h

2
549

where e is the number of “elliptic” sectors and h is the number of “hyperbolic” sectors of550

X ′ at the origin (see Andronov et al. [1]). In fact, in our situation, if we collapse L ′ into a551

neighborhood of 0 ∈ R2 sending D′ to the origin, the push-forward of X ′ gives a vector552

field (which can be continuously extended to the origin) having as many elliptic sectors as553

the number of node connections in D′ and no hyperbolic sectors. This is an alternative proof554

of the last part of Proposition 8, after the observation that Bendixson’s formula extends to555

continuous vector fields which have finitely many sectors of elliptic, hyperbolic or parabolic556

type.557

5 Examples558

In this section we prove the second part of Theorem 1, that is, we provide examples of559

analytic vector fields at 0 ∈ R3 having an analytic non-constant first integral but not having560

analytic separatrices. Our examples are obtained as a one-parameter unfolding of a two-561

dimensional vector field which has a unique formal real separatrix which is not convergent.562

In the introduction, we have already discussed the existence of planar vector fields with such563

a property, for instance, Risler’s example in [29]. We need to modify such example in order564

that its unfolding produces a three-dimensional vector field with isolated singularity.565
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Proposition 10 Let a = a(x) ∈ R{x} be a convergent series in one variable such that566

a(0) = a′(0) = 0 and consider the planar analytic vector field567

Ya = (y2 + x4)
∂

∂x
+

(
−xy + x3a(x) +

a(x)

x
y2

)
∂

∂ y
. (6)568

Then Ya has a unique real formal separatrix Ŵa at 0 ∈ R2 and, for a convenient (in fact569

generic) choice of the series a(x), Ŵa is not convergent.570

Using this proposition, we construct our desired examples in R3 as follows.571

Example 11 Given a(x) ∈ R{x} with a(0) = a′(0) = 0, consider the vector field in R3,572

expressed in coordinates (x, y, z) as573

Xa = Ya + z2 ∂

∂x
,574

where Ya is given in (6). The vector field Xa is in fact a family of planar vector fields in the575

parameter z. In other words, the function f = z is an analytic first integral of Xa . Moreover,576

since the coefficient of ∂/∂x is y2 +x4 +z2, the origin is an isolated singularity of Xa . Hence,577

the real formal separatrices of Xa are those contained in the fiber z = 0. More specifically,578

they are the separatrices of the restriction Xa |z=0 = Ya . By Proposition 10, Xa has a unique579

real formal separatrix Ŵa , which is not convergent for a convenient choice of the series a(x).580

Proof of Proposition 10 If Ŵ is a formal real separatrix of Ya then its tangent line corresponds581

to a root of the tangent cone of Ya at the origin, which is given by the equation y3 + yx2 =582

y(y2 + x2) = 0. Thus Ŵ is tangent to ℓ = (y = 0). Let π1 : M1 → R2 be the blow-up at the583

origin and let p1 be the point in the exceptional divisor E1 = π−1
1 (0) corresponding to ℓ.584

The strict transform Ŵ of Ŵ by π1 is a formal separatrix of the the strict transform Y a of Ya585

at p1. A computation using usual coordinates (x, y1) = (x, y/x) of the blow-up π1 shows586

that Y a has a saddle-node singularity at p1 for which the divisor E1 is the strong separatrix587

(tangent to the non-zero eigenvalue) and thus Ŵ is the weak formal separatrix (tangent to the588

zero eigenvalue). This proves the uniqueness of Ŵ = Ŵa .589

Let us prove that Ŵa is not convergent for some choice of the series a(x). For that, we590

consider the blow-up π2 : M2 → M1 at the point p1 and the point p2 in the exceptional591

divisor E2 = π−1
2 (p1) corresponding to the tangent of Ŵa at p1. We put usual coordinates at592

p2 of the form (x, y2) = (x, y1/x) = (x, y/x2) and compute the strict transform of Y a as593

Y a = x3(1 + y2
2 )

∂

∂x
+

(
−y2(1 + 2x2(1 + y2

2 )) + a(x)(1 + y2
2 )

) ∂

∂ y2
.594

Again Y a has a saddle-node singularity for which the divisor E2 = (x = 0) is the strong595

separatrix and the strict transform Ŵa of Ŵa by π2 is the weak separatrix. To finish, let us show596

that Ŵa is not convergent for a convenient choice of a. Let us assume that a(x) = α(2x2) for597

some α(z) ∈ zR{z}. After dividing Y a by 1 + y2
2 , we consider the ramification z = 2x2 and598

rename w = y2, obtaining the saddle-node vector field599

ξα = z2 ∂

∂z
+

(
−w(1 + z) +

w3

1 + w2
+ α(z)

)
∂

∂w
. (7)600

It suffices to prove the following:601
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Assertion There is a choice of the series α(z) so that, for any δ > 0 sufficiently small, the602

weak formal separatrix of the saddle-node vector field ξδα is not convergent.603

We use the Martinet-Ramis moduli for analytic orbital classification of holomorphic foli-604

ations generated by saddle-node vector fields at the origin of C2 (see [23] and also [18]). In605

our particular case, any vector field ξα of the form (7) is formally orbitally equivalent to the606

vector field in normal form607

N = z2 ∂

∂z
+ (−w(1 + z))

∂

∂w
.608

If we denote by N the class of vector fields formally orbitally equivalent to N , the moduli609

map associates to any η ∈ N is a couple G(η) = (g(η), ψ(η)) where g(η) ∈ C and ψ(η) is610

a germ of a tangent to the identity biholomorphism at (C, 0) in such a way that two vector611

fields η, η′ are orbitally analytically equivalent if and only if G(η) = G(η′). On the other612

hand, if η ∈ N then the weak formal separatrix of η is convergent if and only if the constant613

part g(η) of the moduli is equal to zero [23, Theorem III.4.4]. Moreover, if we have a family614

{ηλ} of vector fields in N depending analytically on λ ∈ Cm then λ �→ g(ηλ) is also analytic615

[18, Theorem 1, p. 33].616

In order to prove the assertion, put δ = ε3/2 for ε ∈ R>0 and write the vector field ξδα617

under the change of variable w =
√

εw̄ as618

ηε,α = z2 ∂

∂z
+

(
−w̄(1 + z) + ε

(
w̄3 + α(z)

)
− ε2w̄5 + ε3w̄7 − · · ·

) ∂

∂w̄
.619

Hence g(ξε3/2α) = g(ηε,α) and it suffices to show that there exists a series α = α(z) so that620

d(g(ηε,α))

dε
|ε=0 �= 0. (8)621

(Notice that this gives the assertion since the weak separatrix of ξ0 = η0,α is w̄ = 0 and622

hence g(ξ0) = 0). First, put623

ηε,α = N + ε(w̄3 + α(z))
∂

∂w̄
= z2 ∂

∂z
+

(
−w̄(1 + z) + ε(w̄3 + α(z))

) ∂

∂w̄
,624

so that (changing the notation w = w̄) we have ηε,α = ηε,α + εYε where625

Yν = (−νw5 + ν2w7 − · · · )
∂

∂w
.626

In other words, if we put ζε,ν,α = ηε,α + εYν then we have ηε,α = ζε,ε,α . Notice that, for any627

series α, we have that g(ζε,ν,α) is analytic in (ε, ν), g(ζ0,ν,α) = 0 for any ν and ζε,0,α = ηε,α628

for any ε. Hence we obtain629

d(g(ηε,α))

dε
|ε=0 =

d(g(ηε,α))

dε
|ε=0 .630

Thus, to prove (8), it suffices to show that
d(g(ηε,α))

dε
|ε=0 �= 0 for some choice of α.631

The derivative of g(ηε,α) at ε = 0 (considered as a component of the tangent of the moduli632

map G) can be computed explicitly from Elizarov’s paper [12] as follows. Make the change633

of variables z �→ −z and multiply by −1, getting the new expression for the family634

ηε,α = z2 ∂

∂z
+

(
w(1 − z) − ε(w3 + α(−z))

) ∂

∂w
.635
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To put it in Elizarov’s pattern, we have to divide it by 1 − z so that the family η̄ε,α becomes636

the family vp,λ + εP∂w considered in equation [12, Eq. 1.8], where637

vp,λ =
z2

1 − z

∂

∂z
+ w

∂

∂w
(and hence p = 1 and λ = −1)638

and639

P(z, w) = −
α(−z) + w3

1 − z
= −(α(−z) + w3)(1 + z + z2 + · · · ).640

Choose α(z) such that α(0) = α′(0) = 0 and write641

−α(−z)(1 + z + z2 + · · · ) =
∑

k≥2

ck zk .642

This corresponds to f−1(z) in the expansion in power series in [12, Eq. 1.9]. The constant643

part g of the moduli map corresponds in our case to the component a0,−1 in equation [12,644

Eq. 1.3] (that is, j = 0 and l = −1).645

From all these data, and computing the sequence mk(l) = mk(−1) in [12, Eq. 1.7] for646

the corresponding Borel transform, we conclude from Elizarov’s formula in [12, Theorem647

1] that648

d(g(ηε,α))

dε
|ε=0= u

∞∑

k=2

ck

k

Ŵ(k + 2)
,649

where Ŵ is the Euler’s Gamma function and u is some non-zero constant which does not650

depend on α (if we want to be precise, we can check that in fact u = −1). Therefore,651

d(g(ηε,α))

dε
|ε=0 �= 0 for a generic choice of α(z), as we wanted. This ends the proof. ⊓⊔652
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