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A B S T R A C T

This work calculates the collapse load factor and the collapse mechanism of 2D frames with slender structural
members of variable section type and arbitrary distributed loads. A Kinematic Direct Method (KDM) is used
for calculations. The equilibrium equations necessary to carry out the analysis are obtained systematically.
The search for the collapse mechanism and the collapse load factor is carried out using an optimization
method where the load factor is maximized. The following types of load are used: uniformly distributed loads,
trapezoidal and sinusoidal distributed loads.
1. Introduction

The framed structures are always the test bench, many software
for this family of structure were early developed in various research
centres around the world. Steel frames show a high non-linear be-
haviour due to the plasticity of the material and the slenderness of the
members. In general, the plastic-hinge approach is adopted to capture
the inelasticity of material [1].

Behaviour of steel frames has been a great topic in the research
field of construction engineering. In 1914 Kazinczy [2] was the first
to investigate the reserve of plastic resistance in a hyper-static beam
structure, introducing the concept of the plastic hinge and the collapse
mechanism. Until now, the terminology plastic hinge is used to indicate
a section (zero-length) on which all points are in the plastic range.
The terminology collapse mechanism is originally utilized to describe
the ultimate state of a frame where it is considered as a deformable
geometric system.

Plastic behaviour of structures in general and of framed structures
in particular has been dealt with in many text books. The first reference
to limit analysis came from Van den Broek [3], followed by the contri-
butions of Baker and Heyman [4], Horne [5], Neal [6], and Hodge [7],
all between 1955 and 1960. Considering only the bending effect, the
other effects are neglected. By its simplicity, this approach is popularly
applied to 2D steel frames.

In general, either the plastic-zone or the plastic-hinge approach is
adopted to capture the both material inelasticity and geometric non-
linearity of a framed structure. In the plastic-hinge approach, only
one beam–column element per physical member can model the non-
linear properties of the structures. It leads to significant reduction
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of computation time. Furthermore, the computer program using the
plastic-hinge model is familiar the habit of engineers. However, the
plastic-hinge analysis is not without inconveniences that needs then
to be improved [8]. The great impulse acquired by limit analysis was
possible thanks to the rigorous establishment of the basic theorems,
which was carried out by Gvozdev [9], in 1938. Basic theorems: static,
kinematic and uniqueness, which give rise to the kinematic or direct
method based on the method of combining mechanisms [10–12].

Generally, there are two fundamental theorems: static and kine-
matic. It leads to two corresponding approaches: static approach and
kinematic approach that are called direct methods. The terminology
Direct means that the load multiplier is directly found without any
intermediate state of structures. Both the static method and the kine-
matic method are continually exploited and improved since more than
50 years until now: classic methods and mathematical programming
methods [13].

The kinematic direct method has important drawbacks from the
point of view of its practical application: first, it is not systematic
or general; and secondly, it requires possible collapse mechanisms to
be tested, which even with few plastic hinges implies many possible
collapse mechanisms that will have to be tested and verified. On the
other hand, the step-by-step methods based on the matrix formulation
are systematic and efficient for concentrated load cases at the nodes of
the structure, and they are very inefficient and imprecise for analysing
structures with uniform distributed loads [14–16].

In this work, the approach of the equilibrium equations necessary
to solve the kinematic direct method has been systematized, and in
addition, the search for the collapse mechanism is carried out by means
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Fig. 1. Methodology. Beam/column element.
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of non-linear programming, which facilitates the calculation of the
collapse load factor and the structure collapse mechanism.

This paper has been organized as follows: after this brief intro-
duction, the methodology is then applied to various types of planar
frames. Finally, the main conclusions and contributions of the work are
summarized.

2. Methodology

In this section, the calculation hypotheses are established, the ob-
taining of the equilibrium equations is explained and the resolution of
the problem is proposed by means of kinematic direct method [17,18],
see flowchart in Fig. 2.

2.1. Hypotheses

• The beams and columns are assumed to be free of residual or
initial stresses.

• Plastic collapse implies unlimited displacement at constant load,
and the level of load that causes it is called the collapse load.

• The value of the maximum bending moment that the section can
transmit is called plastic moment and since the section is variable,
this magnitude will depend on the 𝑥 coordinate, (𝑀𝑝,𝑘(𝑥)).

• When the bending moment reaches the value of the plastic mo-
ment, the rotation of the section where it occurs can increase
indefinitely.

• The plastic moment depends on the material and the section.
• The formation of each plastic hinge is supposed to take place in

a sudden and concentrated way in the section where the bending
moment reaches the value of the plastic moment.

• The hypothesis of small displacements and rotations of the sec-
tions of the structure at the moment of collapse is assumed;
therefore, the accumulated rotations between beams or columns
in the plastic hinges must also be small.

.2. Equilibrium equations

The matrix method of analysis of beam/column structures is con-
idered to obtain the equations of equilibrium, but in its vector formu-
ation. The balance of each beam/column is considered as follows (see
ig. 1). The end forces are calculated and the force vector is formed:

0 = ∫

𝐿𝑘

0
𝑞(𝑥)𝑑𝑥

𝑥0 =
1

⋅
( 𝐿𝑘

𝑥 ⋅ 𝑞(𝑥)𝑑𝑥
)

(1)
2

𝑅0 ∫0 𝑀
where 𝑅0 is the resultant of the load distribution and 𝑥0 is the point of
application of the resultant of the distributed load.
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where 𝑁𝑘𝑖, 𝑁𝑘𝑗 are the axial forces, 𝑉𝑘𝑖, 𝑉𝑘𝑗 are the shear forces and
𝑀𝑘𝑖,𝑀𝑘𝑗 are the bending moments at the ends of the beam/column
(𝑘); the first subscript indicates the element beam/column (𝑘) and
the second subscript indicates the node (𝑖, 𝑗), 𝑞(𝑥) is the transversal
distributed load. All magnitudes are expressed as function of the axial
force 𝑁𝑘, the values of the bending moments in both end sections
𝑀𝑘𝑖,𝑀𝑘𝑗 , the resultant force 𝑅0 and section of application of the
esultant force 𝑥0.

The previous vector is expressed in the coordinates (𝑥, 𝑦) of the
eam/column, and must be expressed in a global coordinate system
𝑋, 𝑌 ) common to the structure, through the corresponding coordinate
ransformation (𝑻 (𝛼)) [19]:

𝑘 = 𝑻 𝑻 (𝛼) ⋅ 𝒇𝑘 (3)

here (𝑭 𝑘) are the forces (and moments) at the ends of the beam/
olumn k, expressed in a common system for all the members of the
tructure, and (𝑻 𝑻 (𝛼)) indicates the operation of transposing rows and
olumns in the matrix (𝑻 (𝛼)) of change of coordinates.

Finally, the vector of internal forces (𝑭 𝑖𝑛𝑡) must be assembled. It
alances the external loads (𝑭 𝑒𝑥𝑡) applied at the nodes of the structure:

𝑖𝑛𝑡 = 𝑭 𝑒𝑥𝑡 (4)

In the case of point loads, it is known that the sections of the
tructure that are candidates for forming a possible plastic hinge are:
he nodes (joints between bars), the fixed supports, the section of
pplication of the loads and section changes [20,21].

In the case of beams with distributed loads, plastic hinges can addi-
ionally be formed in the intermediate sections of the beams/columns.
ogically, it is then necessary to carry out the corresponding checks
rom the bending moments calculated in the element [22,23].

It is important to bear in mind that if a plastic hinge is produced
n an intermediate section, then its location at the beam (given by
arameter 𝑥𝑘) can be modified during the plasticizing process, up until
he formation of the collapse mechanism.

𝑘 = 𝑓1(𝑀𝑘𝑖,𝑀𝑘𝑗 , 𝑞𝑖, 𝑞𝑗 ) (5)

𝑘 = 𝑓2(𝑥𝑘)
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Fig. 2. Methodology flowchart.
where 𝑀𝑘 is the maximum bending moment in the beam/column k and
𝑥𝑘 is the section where the maximum value occurs, see Annex A.

2.3. Search for the collapse mechanism

The collapse mechanism must comply with the equilibrium equa-
tions obtained according to the previous section and the bending
moment of any section must not exceed the value of the plastic mo-
ment. The search for the collapse mechanism is carried out by posing
and solving an optimization problem. The optimization method used
has been the Differential Evolution Algorithm [24] with the Wolfram
Mathematica tool (NMaximize function) [25].

The objective function consists of maximizing the load factor subject
to: the equilibrium equations of the problem and inequality constraints,
the conditions of absolute value of bending moment less than or equal
to the plastic moment. Posed optimization problem:

𝑀𝑎𝑥 𝜆

𝑭 𝑖𝑛𝑡 = 𝑭 𝑒𝑥𝑡

|𝑀𝑘𝑖| ≤ 𝑀𝑝,𝑘(0)

|𝑀𝑘𝑗 | ≤ 𝑀𝑝,𝑘(𝐿𝑘)

|𝑀𝑘| ≤ 𝑀𝑝,𝑘(𝑥𝑘)

(6)

where 𝜆 is the load factor; 𝑭 𝒊𝒏𝒕 are the internal forces; 𝑭 𝑒𝑥𝑡 are the
external loads; 𝑀𝑘𝑖,𝑀𝑘𝑗 are the bending moments at the ends of the
beam/column 𝑘; 𝑀𝑝,𝑘(0) is the plastic moment of the beam/column 𝑘
at node 𝑖 (at 𝑥 = 0); 𝑀𝑝,𝑘(𝐿𝑘) is the plastic moment of the beam/column
𝑘 at node 𝑗 (at 𝑥 = 𝐿𝑘, being 𝐿𝑘 the length of the beam/column
3

𝑘); 𝑀𝑝,𝑘(𝑥𝑘) is the plastic moment of the beam/column 𝑘 at 𝑥 = 𝑥𝑘
and 𝑀𝑘 is the relative maximum or minimum bending moment in the
beam/column 𝑘.

The final value that the objective function takes is the collapse load
factor 𝜆𝑐 . In the sections where the value of the plastic moment is
reached, a plastic hinge is formed. After forming a sufficient number
of plastic hinges, the structure becomes a mechanism, the collapse
mechanism.

Finally, by way of validation a simple example has been resolved
with a step-by-step method [26] and with the methodology proposed
in this work, the same results are reached as summarized in Annex B.

3. Numerical results and discussion

In this section, the methodology is applied to the study of three
application problems with a total of four cases.

3.1. Numerical data

The numerical data in common for all the problems are: 𝐸 = 2.1 ⋅
108 kN∕m2; 𝑓𝑦 = 275.0 ⋅ 103 kN∕m2; 𝑞 = 1.0 kN∕m; where 𝐸 is Young’s
module, 𝑓𝑦 the yield strength of the steel and 𝑞 is the load value.

The columns are uniform section type IPE300 or variable section
type IPEvar300, see Annex C. The properties of the IPE300 section
type are: 𝑊𝑝𝑐 = 602.10 ⋅ 10−6 m3; 𝑀𝑝𝑐 = 𝑊𝑝𝑐 ⋅ 𝑓𝑦 = 165.577 kN m where
𝑊𝑝𝑐 is the column section plastic module and 𝑀𝑝𝑐 is the column plastic
moment. The properties of the IPEvar300 section type are: 𝑊𝑝𝑐 (0) =
192.68 ⋅ 10−6 m3; 𝑊𝑝𝑐 (𝐿𝑘) = 1126.53 ⋅ 10−6 m3; 𝑀𝑝𝑐 (0) = 52.988 kN m;
𝑀𝑝𝑐 (𝐿𝑘) = 309.797 kN m where 𝑊𝑝𝑐 (0) is the column section plastic

module at node 𝑖 (at 𝑥 = 0); 𝑊𝑝𝑐 (𝐿𝑘) is the column section plastic
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Fig. 3. Flat frame. Plastic analysis results.
Fig. 4. Gabled frame. Plastic analysis results.
module at node 𝑗 (at 𝑥 = 𝐿𝑘); 𝑀𝑝𝑐 (0) is the column plastic moment
at node 𝑖 (at 𝑥 = 0) and 𝑀𝑝𝑐 (𝐿𝑘) is the column plastic moment at node
𝑗 (at 𝑥 = 𝐿𝑘).

The beams are uniform section type IPE270 or variable section type
IPEvar270, see Annex C. The properties of the IPE270 section type
are: 𝑊𝑝𝑏 = 460.54 ⋅ 10−6 m3; 𝑀𝑝𝑏 = 𝑊𝑝𝑏 ⋅ 𝑓𝑦 = 126.648 kN m where
𝑊𝑝𝑏 is the beams section plastic module and 𝑀𝑝𝑏 is the beam plastic
moment. The properties of the IPEvar270 section type are: 𝑊𝑝𝑏(0) =
47.33 ⋅ 10−6 m3; 𝑊𝑝𝑏(𝐿𝑘) = 860.35 ⋅ 10−6 m3; 𝑀𝑝𝑏(0) = 40.516 kN m;
𝑝𝑏(𝐿𝑘) = 236.597 kN m where 𝑊𝑝𝑏(0) is the beam section plastic
odule at node 𝑖 (at 𝑥 = 0); 𝑊𝑝𝑏(𝐿𝑘) is the beam section plastic module

t node 𝑗 (at 𝑥 = 𝐿𝑘); 𝑀𝑝𝑏(0) is the beam plastic moment at node 𝑖 (at
= 0) and 𝑀𝑝𝑏(𝐿𝑘) is the beam plastic moment at node 𝑗 (at 𝑥 = 𝐿𝑘).

.2. Problem 1: flat frame

In this section, a flat frame is solved, the base of columns are fixed,
eam/column joints are perfectly rigid and loads are triangular and
niform distributed type. Geometric properties and loads are: 𝐿𝑐 =
.0m; 𝐿𝑏 = 20.0m; 𝑞 = 1.0 kN∕m where 𝐿𝑐 is the length of the columns;
𝑏 is the length of the beams and 𝑞 is the load value.

In the case studied, IPEvar300 variable section columns and IPE270
niform section beams are considered. The loads applied to the columns
re trapezoidal distributed loads.

The methodology in Section 2 is applied and systematically solves
he plastic problem, only the equilibrium equations of the problem are
equired. In beams/columns with load distributed in the element, an
ntermediate plastic hinge can be produced between extreme sections.

Collapse mechanism is indicated in Fig. 3 and collapse load factor
esults 𝜆𝑐 = 4.38 and 𝑥𝑏 = 6.79m. The iterative process is detailed in
able 1. It is verified that the total number of iterations is low and the
4

omputing time is very reduced.
Table 1
Flat frame. Optimization iteration process.
Step 𝜆𝑐 𝑀𝑎

1 2.80192 9143.72
2 3.51975 −21229.2
3 3.79445 −16065.8
4 3.99569 −21229.2
5 4.37592 −52987.8
6 4.37592 −52987.8

CPU time spent: 0.5 s

3.3. Problem 2: gabled frame

In this section, this work methodology is used to solve a gabled
frame. The bases of the columns are perfectly fixed. And all the loads
on the structural elements are distributed loads, simulating for example
a wind type load from left to right. Geometric properties and loads are:
𝐿𝑐 = 7.0m; 𝐻 = 9.5m 𝐿 = 25.0m; 𝑞 = 1.0 kN∕m where 𝐿𝑐 is the length
of the columns; 𝐻 is the height of the frame; 𝐿 is distance between
supports and 𝑞 is the load value.

Variable section beams and columns, IPEvar270 section beams and
IPEvar300 section columns are considered, see Fig. 4.

Fig. 4 not only shows the definition of the problem but also the
plastic hinges that give rise to the collapse mechanism of the structure.
The collapse load factor is 𝜆𝑐 = 1.18. This case represents a material
saving of 88% compared to all IPE270 section beams and all IPE300
section columns.

3.4. Problem 3: double gabled frame

The last problem solved is a double gabled frame. Again the bases
of the columns are perfectly fixed, the loads are of the uniformly
distributed type of intensity 𝑞. Geometric properties and loads are:
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Fig. 5. Double gabled frame. Case a. Plastic analysis results.
Fig. 6. Double gabled frame. Case b. Plastic analysis results.
𝑐 = 7.0m; 𝐻 = 9.5m 𝐿 = 25.0m; 𝑞 = 1.0 kN∕m where 𝐿𝑐 is the length
f the columns; 𝐻 is the height of the frame; 𝐿 is distance between
upports and 𝑞 is the load value.

Two cases will be considered: case a, beams and columns of uniform
ection, beams of section IPE270 and columns of section IPE300, see
ig. 5; and case b, variable section beams and columns, IPEvar270
ection beams and IPEvar300 section columns, see Fig. 6.

Figs. 5 and 6 shows the plastic analysis results, the collapse mecha-
ism and the load factor associated. For case a, the collapse load factor
s 𝜆𝑐 = 2.94 and 𝑥𝑐 = 2.21m; 𝑥𝑒 = 4.42m and 𝑥ℎ = 2.56m. For case b,

the load factor is 𝜆𝑐 = 2.84. One of the advantages of the methodology
s that distributed loads case are solved using the same discretization
f nodes and elements that for concentrated loads case.

. Conclusions

The classic formulation for plastic methods of planar frames is very
nsystematic. It is based on the Virtual Works Principle (VWP) and
se equilibrium equations to find the structure’s collapse mechanism.
o obtain these equilibrium equations, the VWP is formulated using
irtual problems in displacements (virtual mechanisms). This analysis
echnique is based on testing possible mechanisms until the collapse
echanism is found and this procedure is inefficient.

However, the present work uses the Kinematic Direct Method to
arry out the first order plastic analysis of planar frames. One of the
bjectives achieved is that the entire methodology has been simpli-
ied, since the necessary equilibrium equations are obtained systemati-
ally. It leads directly to the collapse mechanism corresponding to the
tructure with given loads, geometry and boundary conditions.

The second advantage is that the search for the final state of
he structure (collapse mechanism) is an optimization method quickly
nd efficiently, since the objective function is simple, the equality
onstraints are the equilibrium equations of the problem, which are
inear algebraic equations that depend on the proportional load factor
arameter 𝜆 (which is the value to be maximized), which allows solving
ractical problems with a large number of unknown parameters.
5

The third advantage of this approach is that the same methodology
is used for the plastic calculation regardless of the type of load applied
in the beams/columns. This allows solving with the same discretization
of elements that we would use to solve the same problem but only
with point loads, that is, one element per beam/column and with-
out intermediate nodes in the beams/columns with distributed load
applied.

Also indicate that the results obtained have been compared with
those resulting from applying other methods, such as the step-by-step
methods for limit analysis, and very similar results have been obtained,
although the method presented here is much simpler.
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nnex A. Loads types

In this section the parameters used for each type of load will be
ndicated.

niformly distributed load

The parameters used are:

0 = 𝑞 ⋅ 𝐿𝑘

0 =
𝐿𝑘
2

𝑘 =
2𝑀𝑘𝑗 − 2𝑀𝑘𝑖 + 𝑞 ⋅ 𝐿2

𝑘
2𝐿𝑘 ⋅ 𝑞

𝑀𝑘 =
4𝑀2

𝑘𝑖 +
(

2𝑀𝑘𝑗 + 𝑞 ⋅ 𝐿2
𝑘
)

+𝑀𝑘𝑖
(

4𝑞 ⋅ 𝐿2
𝑘 − 8𝑀𝑘𝑗

)

8𝑞 ⋅ 𝐿2
𝑘

(7)

here 𝑅0 is the resultant of the applied load; 𝑥0 is the point of
pplication of the load resultant; 𝑥𝑘 is the point on the beam/column
here the bending moment is a relative maximum or minimum and 𝑀𝑘

s the value of the relative maximum or minimum bending moment.

rapezoidal distributed load

The parameters used for this load case are:

0 =
1
2
𝐿𝑘

(

𝑞𝑖 + 𝑞𝑗
)

𝑥0 =
𝐿𝑘

(

𝑞𝑖 + 2𝑞𝑗
)

3
(

𝑞𝑖 + 𝑞𝑗
)

𝑥𝑘 =
𝑞𝑖 +

√

𝐿2𝑘𝑞𝑖𝑞𝑗+𝐿
2
𝑘𝑞

2
𝑗 −𝐿

2
𝑘𝑞

2
𝑖 +6𝑀𝑘𝑖𝑞𝑖−6𝑀𝑘𝑖𝑞𝑗−6𝑀𝑘𝑗 𝑞𝑖+6𝑀𝑘𝑗 𝑞𝑗

𝐿𝑘

3
(

𝑞𝑖
𝐿𝑘

−
𝑞𝑗
𝐿𝑘

)

𝑘 =
𝐿3
𝑘𝑞𝑖

(

4𝑞2𝑖 − 3𝑞𝑖𝑞𝑗 − 3𝑞2𝑗
)

54𝐿𝑘(𝑞𝑖 − 𝑞𝑗 )2

+
2𝐿2

𝑘

(

𝑞2𝑖 − 𝑞𝑖𝑞𝑗 − 𝑞2𝑗
)

√

𝐿2
𝑘

(

−𝑞2𝑖 + 𝑞𝑖𝑞𝑗 + 𝑞2𝑗
)

+ 6𝑀𝑘𝑖(𝑞𝑖 − 𝑞𝑗 ) − 6𝑀𝑘𝑗 (𝑞𝑖 − 𝑞𝑗 )

54𝐿𝑘(𝑞𝑖 − 𝑞𝑗 )2

−
12(𝑀𝑘𝑖 −𝑀𝑘𝑗 )(𝑞𝑖 − 𝑞𝑗 )

√

𝐿2
𝑘

(

−𝑞2𝑖 + 𝑞𝑖𝑞𝑗 + 𝑞2𝑗
)

+ 6𝑀𝑘𝑖(𝑞𝑖 − 𝑞𝑗 ) − 6𝑀𝑘𝑗 (𝑞𝑖 − 𝑞𝑗 )

54𝐿𝑘(𝑞𝑖 − 𝑞𝑗 )2

+
18𝐿𝑘(𝑞𝑖 − 𝑞𝑗 )(2𝑀𝑘𝑖𝑞𝑖 − 3𝑀𝑘𝑖𝑞𝑗 +𝑀𝑘𝑗𝑞𝑖)

54𝐿𝑘(𝑞𝑖 − 𝑞𝑗 )2

(8)
6

Fig. 8. IPE section type.

Table 2
Validation problem. Iteration process.
Step 𝑞𝑐 𝑀𝑐

1 85 184 120 727.0
2 105 416 81 403.5
3 10 673 96 565.4
4 115 938 126 509.0
5 129 386 81 403.5
6 137 127 98 971.6
7 138 187 121 009.0
8 143 218 126 381.0
9 143 221 126 394.0
10 143 228 126 425.0

CPU time spent: 1.078 s

Sinusoidal distributed load

The parameters used are:

𝑅0 =
𝐿𝑘((𝜋 − 2)𝑞𝑖 + 2𝑞𝑗 )

𝜋

𝑥0 =
𝐿𝑘
2

𝑥𝑘 =
𝜋𝐿2

𝑘𝑞𝑖 − 2𝐿2
𝑘𝑞𝑖 + 2𝐿2

𝑘𝑞𝑗 − 2𝜋𝑀𝑘𝑖 + 2𝜋𝑀𝑘𝑗
2𝜋𝐿𝑘𝑞𝑖
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Table 3
Beams/columns of uniform height. IPE series.

IPE ℎ 𝑏 𝑒 𝑒1 𝑊𝑝 𝑀𝑝
S275 (mm) (mm) (mm) (mm) (cm3) (N m)

270 270 135 6.6 10.2 460.54 126 648.00
300 300 150 7.1 10.7 602.10 165 577.00
Fig. 9. Variable height beams/columns. IPEvar series.
Table 4
Variable height beams/columns. IPEvar series.

IPEvar ℎ0 ℎ1 𝑏 𝑒 𝑒1 𝑊𝑝,0 𝑀𝑝,0 𝑊𝑝,1 𝑀𝑝,1
S275 (mm) (mm) (mm) (mm) (mm) (cm3) (N m) (cm3) (N m)

270 108 432 135 6.6 10.2 147.33 40 516.40 860.35 236 597.00
300 120 480 150 7.1 10.7 192.68 52 987.80 1126.53 309 797.00
𝑀𝑘 = 𝑀𝑘𝑖 −

(

𝜋𝐿2
𝑘𝑞𝑖 − 2𝐿2

𝑘𝑞𝑖 + 2𝐿2
𝑘𝑞𝑗 − 2𝜋𝑀𝑘𝑖 + 2𝜋𝑀𝑘𝑗

)2

8𝜋2𝐿2
𝑘𝑞𝑖

+

(

𝑀𝑘𝑗−𝑀𝑘𝑖

𝐿𝑘
+ 𝐿𝑘((𝜋−2)𝑞𝑖+2𝑞𝑗 )

2𝜋

)

(

𝜋𝐿2
𝑘𝑞𝑖 − 2𝐿2

𝑘𝑞𝑖 + 2𝐿2
𝑘𝑞𝑗 − 2𝜋𝑀𝑘𝑖 + 2𝜋𝑀𝑘𝑗

)

2𝜋𝐿𝑘𝑞𝑖

(9)

Annex B. Validation problem

In this section, a basic frame fixed ended in the base of both columns
with an uniform load is applied in the left column of the frame (see
Fig. 7). Solution by a step by step method an be consulted in Ref. [26]
and summarized here. The data in this case are: 𝐿𝑝 = 3m; 𝐿𝑑 = 5m,

here 𝐿𝑝 is the height of the column and 𝐿𝑑 is the beam length.
As pointed out above, one more unknown (𝑥𝑏, position of the plastic

inge) appears for each additional distributed load. The value of the
ending moment in section b is expressed as a function of the bending
oments at the ends of the column (𝑀𝑎,𝑀𝑐) and the applied load (𝑞),

nd the coordinate 𝑥𝑏, see Annex A. The mechanism involves plastic
inges in the following sections: a, e, b and d. The collapse load results
𝑐 = 143.2 kN∕m. The intermediate plastic hinge (section b) in the
lement requested by the distributed load is 𝑥𝑏 = 2.196m.

On the other hand, the methodology of this work provides the
ollowing results: 𝑞𝑐 = 143228N∕m, 𝑥𝑏 = 2.196m and 𝑀𝑐 = 126425Nm.
able 2 shows the variables during the iterative resolution process.

nnex C. Variable height beam/column of the IPE series

See Figs. 8 and 9 and Tables 3 and 4.
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