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Let F ∈ Diff (C2, 0) be a germ of a holomorphic diffeomorphism and let � be an

invariant formal curve of F. Assume that the restricted diffeomorphism F|� is either

hyperbolic attracting or rationally neutral non-periodic (these are the conditions that

the diffeomorphism F|� should satisfy, if � were convergent, in order to have orbits

converging to the origin). Then we prove that F has finitely many stable manifolds,

either open domains or parabolic curves, consisting of and containing all converging

orbits asymptotic to �. Our results generalize to the case where � is a formal periodic

curve of F.
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1 Introduction

Let F ∈ Diff (Cn, 0) be a germ of a holomorphic diffeomorphism. A stable set of F is a

subset B ⊂ V of an open neighborhood V of 0, where F is defined, which is invariant,

that is, F(B) ⊂ B, and such that the orbit of each point of B converges to 0. If B is an

analytic, locally closed submanifold of V then we say that B is a stable manifold of F (in

V). Note that the stability in this definition refers to the stable behavior of the orbits

converging to 0 and so it is more general than the classical one, since the fixed point

does not need to belong to the stable manifold but only to its closure.

In the case of one-dimensional diffeomorphisms, the existence of stable mani-

folds depends mainly on the multiplier λ = F ′(0) ∈ C. More precisely, F has nontrivial

stable manifolds when F is (hyperbolic) attracting (|λ| < 1), in which case a whole

neighborhood of 0 ∈ C is a stable manifold, or rationally neutral (λ is a root of unity)

and non-periodic, in which case the “attracting petals” of Leau–Fatou flower Ttheorem

[11, 15] are stable manifolds. In the remaining cases, (hyperbolic) repelling (|λ| > 1),

periodic or irrationally neutral (|λ| = 1 and λ is not a root of unity), the origin itself is

the only stable manifold of F in any neighborhood (a result by Pérez Marco [18] in the

last case).

In the 2D case, the problem of the existence of stable manifolds of F has

been addressed by several authors. The existence of one-dimensional stable manifolds,

usually called parabolic curves (when they do not contain the origin), has been studied,

for example, by Ueda [23] when F is semihyperbolic; by Écalle [10], Hakim [12], Abate [1],

Abate et al. [2], Molino [17], Brochero et al. [8] and López and Sanz [16] when F is tangent

to the identity; by Bracci and Molino [7] when F is quasi-parabolic. The existence of

open stable manifolds has been treated for example by Ueda [22] in the semihyperbolic

case; by Weickert [25], Hakim [12, 13] (see also the survey [5]), Vivas [24], Rong [20], Abate

and Tovena [4] in the tangent to the identity case.

In this paper, we study the case of a planar diffeomorphism F ∈ Diff (C2, 0)

and we look for stable manifolds consisting of orbits which are asymptotic to a given

invariant formal curve �. Going one step further, our interest is to describe a family of

such stable manifolds whose union “captures” any orbit asymptotic to �. Following the

terminology adopted by Ueda in [22], we construct a “base of the set of orbits asymptotic

to �” that is a union of stable manifolds. Our assumptions in order to guarantee the

existence of such stable manifolds are just the necessary conditions inherited from the

one-dimensional dynamics induced by F on �. No further hypotheses on the linear part

DF(0) are required.
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Let us describe our main result in more precise terms. At the end of the

AQ2

introduction we discuss its relation with some of the results that appear in the

references mentioned above.

Recall that a formal curve � at 0 ∈ C
2 is a reduced principal ideal of C[[x, y]]. It

is called irreducible if � is a prime ideal. We say that � is invariant by F, or F-invariant,

if � ◦ F = �. If � is irreducible and F-invariant then we can consider the restriction F|�,

which is a formal diffeomorphism in one variable (see Section 2).

A formal irreducible curve �0 is called m-periodic if �0 ◦ Fm = �0 and m is the

minimum positive integer holding such property. In that case, the formal curve

AQ3
AQ4

� =
m−1⋂
j=0

�0 ◦ Fj

is F-invariant. Let us point out that if �0 defines an analytic curve V(�0) then

V(�) = ∪m−1
j=0 Fj(V(�0)). Thus, V(�) is the minimal F-invariant curve containing V(�0).

Equivalently, � is the maximal F-invariant ideal contained in �0, being this conclusion

also valid in the formal setting. We say that � is the invariant curve associated to �0.

In this case, the irreducible components of � are the m-periodic curves �j := �0 ◦ Fj for

j = 0, . . . , m − 1.

Given a m-periodic curve �0 of F, a nontrivial orbit O of F is said to be

asymptotic to the associated invariant curve � if it converges to the origin and, for

any finite composition of blowups of points σ : M → C
2, the ω-limit of the lifted

sequence σ−1(O) is contained in the finite set determined by the components of � in

the exceptional divisor σ−1(0) (see Section 2 for details).

Our main result is the following (see Section 2 and in particular Definition 2.3

for details).

Theorem 1. Consider F ∈ Diff (C2, 0) and let �0 be a formal m-periodic curve of F

whose associated invariant curve is denoted by �. Assume that the restriction Fm|�0
is

either attracting or rationally neutral and non-periodic. Then, in any sufficiently small

open neighborhood V of 0, there exists a nonempty finite family of pairwise disjoint

stable manifolds S1, . . . , Sr ⊂ V of F of pure positive dimension and with finitely many

connected components such that the orbit of every point in Sj is asymptotic to � and

such that any orbit of F asymptotic to � is eventually contained in S1 ∪ · · · ∪ Sr.

It is worth mentioning that a diffeomorphism F ∈ Diff (C2, 0) always has a formal

periodic curve by a result of Ribón [19], although they may be all divergent and non-

invariant.
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Remark 1. In order to show Theorem 1 it suffices to consider irreducible invariant

curves, that is, m = 1. Indeed, assume that �0 is m-periodic and apply the theorem to

Fm and the Fm-invariant irreducible curve �0. Let F0 = {S1, . . . , Sr} be a family of stable

manifolds of Fm obtained for a domain V in which every Fj, for j = 1, . . . , m−1, is defined

and injective, and put F = {∪m−1
j=0 Fj(S1), . . . , ∪m−1

j=0 Fj(Sr)}. Then F is a family with the

required properties of Theorem 1 for F and the invariant curve �. Notice that, since each

component of � is invariant by Fm, the points determined by � in the exceptional divisor

after blowups are fixed points for the corresponding transform of Fm (see Section 2).

Thus, an orbit O = {Fn(p)}n≥0 of F is asymptotic to � if and only if each one of the m

orbits Oj = {Fnm+j(p)}n≥0 of Fm for j = 0, . . . , m − 1 is asymptotic to one and only one

of the components of �. Hence, the orbit under Fm of a point in Fj(Si) is asymptotic to

�j = Fj(�0) for any j = 0, . . . , m − 1 and any i = 1, . . . , r and thus Fj(Si) ∩ Fk(Sl) = ∅
whenever i �= l and j, k ∈ {0, . . . , m − 1}.

As a consequence of Remark 1, we assume from now on that all formal

irreducible periodic curves are invariant.

Roughly speaking, Theorem 1 can be interpreted by saying that the condition

ensuring the existence of stable manifolds in dimension 1 also provides (applied to

F|�) stable manifolds of orbits asymptotic to �. More precisely, if � were convergent,

the hypotheses in Theorem 1 would be necessary conditions in order to have stable

orbits inside �. Although these hypotheses are not necessary in general, if they are not

satisfied then one can find simple examples where no orbit asymptotic to � exists. In the

case where F|� is hyperbolic, being attracting is a necessary condition for having orbits

asymptotic to � (see Section 3). In the case where F|� is periodic (and hence rationally

neutral), since the set of fixed points of a diffeomorphism is an analytic set, either

F is itself periodic or � is convergent. In the 1st case, there are no nontrivial orbitsAQ5

converging to the origin; in the 2nd case, there are examples with no asymptotic orbits

(for instance, F(x, y) = (−x, 2y) and � = (y)) and examples with asymptotic orbits (for

instance, F = Exp(y(x2∂/∂x + y∂/∂y)) and � = (y)). In the case where F|� is irrationally

neutral, although we can also find simple linear examples with no asymptotic orbits,

we do not know if there are examples with asymptotic orbits.

In the proof of Theorem 1, we consider separately the two situations for F|�,

namely hyperbolic or rationally neutral, since the arguments and the structure of the

stable manifolds Sj are notably different in both cases.

In Section 3 we study the case where F|� is hyperbolic attracting. The result

is a consequence of the classical Stable Manifold and Hartman–Grobman theorems for
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diffeomorphisms. We show that � is an analytic curve that contains eventually any orbit

of F that is asymptotic to �. Indeed the hyperbolic case can be characterized in terms of

the family of stable manifolds F = {S1, . . . , Sr} provided by Theorem 1 in the following

way: F|� is hyperbolic if and only if Sj is a germ of analytic curve at 0 for some 1 ≤ j ≤ r

and in this case F = {� \ {0}}. We also prove that � is either non-singular or a cusp

yp = xq in some coordinates and that, in this last case, F is analytically linearizable.

The case where F|� is rationally neutral, is more involved, and is treated in

Sections 4, 5, 6, and 7. Observe first that, considering an iterate of F and using similar

arguments to the ones in Remark 1, we may assume that F|� is a parabolic formal

diffeomorphism, that is, (F|�)′(0) = 1.

In Section 4, we show that, after finitely many blowups along �, we can consider

analytic coordinates (x, y) at the origin such that � is non-singular and tangent to the

x-axis and F is of the form

x ◦ F(x, y) = x − xk+p+1 + O(x2k+2p+1)

y ◦ F(x, y) = μ(y + xka(x)y + O(xk+p+1y, xk+p+2))
, (1)

where k ≥ 1, p ≥ 0 and a(x) is a polynomial of degree at most p with a(0) �= 0. Notice

that k + p + 1 is the order of contact with the identity of the restriction F|� and hence

depends only on F and �.

Let A(x) = A0 + A1x + · · · + Apxp be the polynomial defined by the formula

log μ + xk
(
A0 + A1x + · · · + Apxp

)
= Jk+p

(
log

(
μ
(
1 + xka(x)

)))
,

where Jm denotes the truncation of a series up to degree m. The idea behind this

definition is that the jets of order k + p + 1 of F and of the exponential of the vector

field

Z = −xk+p+1 ∂

∂x
+ (log μ + xkA(x))y

∂

∂y

coincide, and the dynamics of F and EXP(Z) are somewhat related. Let us describe

briefly the behavior of the orbits of the toy model EXP(Z) converging to the origin

and asymptotic to the invariant curve y = 0, which plays the role of �. Given such

an orbit O = {(xn, yn)}, the sequence {xn} is an orbit of the one-dimensional parabolic

diffeomorphism x �→ EXP(−xk+p+1 ∂
∂x ) and hence it converges to 0 ∈ C along a well-

defined real limit direction, necessarily one of the k + p half-lines ξR+ with ξk+p =
1, called the attracting directions (they correspond to the central directions of the

attracting petals in Leau–Fatou flower theorem). On the other hand, Z has a 1st integral
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H(x, y) = yh(x), where

h(x) = Exp

(∫
log μ + xkA(x)

xk+p+1
dx

)
,

and the behavior of the orbits of EXP(Z), since they are contained in fibers of H, depends

on the asymptotics of H in a neighborhood of the corresponding attracting direction �.

Making a linear change of variables so that � = R
+, we say that � is a node direction if(

ln |μ|, Re
(
A0

)
, . . . , Re

(
Ap−1

))
< 0 in the lexicographic order. Otherwise, we say that �

is a saddle direction.

Consider the simplest case, where |μ| �= 1 (i.e., F is semi-hyperbolic). Then � is a

saddle or a node direction if |μ| > 1 or |μ| < 1, respectively. There exists a sector 	 ⊂ C

bisected by � in which either h(x) or 1/h(x) is a flat function depending on whether

� is a saddle or a node direction, respectively. Thus, the fibers of H in 	 × C behave

correspondingly as a saddle (only y = 0 is bounded) or a node (any fiber is bounded

and asymptotic to y = 0). In the general case, one can show a similar description for

the fibers of H in 	 × C, where 	 is a domain of C containing � that is not necessarily

a sector. Moreover, 	 × C eventually contains any orbit {(xn, yn)} of EXP(Z) such that

{xn} has � as a limit direction. We obtain that 	 × C (respectively 	 × {0}) is a stable

manifold of EXP(Z) when � is a node direction (respectively saddle direction) composed

of orbits asymptotic to the curve y = 0. The family of these stable manifolds satisfies

the conclusions of Theorem 1.

For a general diffeomorphism F written in the reduced form (1), we obtain a

similar description of the orbits asymptotic to �. In fact, we construct a family {S�} of

stable manifolds of F, where � varies in the set of attracting directions � = ξR+, with

ξk+p = 1, satisfying the assertion of Theorem 1. The case of a saddle direction is treated

in Section 5, where we obtain that S� is one-dimensional and simply connected (a so-

called parabolic curve). The case of a node direction is studied in Section 6, where we

obtain that S� is a simply connected open set.

As a consequence of our main result, in Section 7 we prove the following

theorem, which generalizes results in [7] and [16].

Theorem 2. Let � be an irreducible formal invariant curve of F ∈ Diff (C2, 0) such that

F|� is parabolic, with F|� �= id, and assume that spec(DF(0)) = {1, μ}, with |μ| ≥ 1. Then

there exists a parabolic curve for F, which is asymptotic to �.

We end this introduction discussing some special situations for the diffeomor-

phism F already treated in the literature and their relation with our approach to find

stable manifolds. Note that our point of view does not allow to recover all the stable
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manifolds obtained in the references mentioned above (e.g., the open stable manifolds

found by Hakim in [13]) since we are only studying those orbits that are asymptotic to a

formal curve.

- In the semi-hyperbolic attracting case (|μ| < 1), every attracting direction is a

node direction. We obtain r = k+p open stable manifolds whose union forms a base for

the set of orbits of F asymptotic to �. This case is the one considered by Ueda in [22],

and our unified point of view recovers his result (observe that in the semi-hyperbolic

case, the Poincaré–Dulac normal form F̃ of F has a unique formal invariant curve �̃ such

that the restriction F̃|�̃ is parabolic and hence so does F).

- In the semi-hyperbolic repelling case (|μ| > 1), every attracting direction is

a saddle direction and we obtain r = k + p parabolic curves, defined as graphs of

holomorphic functions over open sectors in the x-variable, whose union is a base of

the set of orbits asymptotic to �. This case is also treated by Ueda in [23] and we again

recover his conclusion.

- In the case spec(DF(0)) = {1} and p = 0 (BriotBouquet case), we have that

every attracting direction is a saddle direction. We obtain, as in Écalle [10] and Hakim

[12], that there exist k parabolic curves of F whose union is a base of convergent orbits

asymptotic to � (notice that the tangent direction of � in this case is a “characteristic

direction” of F). This result was used by Abate [1] (see also [8]) to show that every tangent

to the identity diffeomorphism with isolated fixed point has a parabolic curve.

- In the case spec(DF(0)) = {1, μ}, with |μ| = 1, μ is not a root of unity and

p = 0, every attracting direction is a saddle direction. In this case, Bracci and Molino [7]

proved the existence of k parabolic curves of F. Since in this case there exists a formal

invariant curve � such that F|� is parabolic, using the Poincaré–Dulac normal form, our

approach recovers their result and generalizes it to the case p > 0.

- In the case spec(DF(0)) = {1} and Re(A0) > 0, a particular case of a saddle

direction, López and Sanz proved in [16] the existence of a parabolic curve of F

asymptotic to �. Following the same arguments (which are in turn a modification of

Hakim’s proof in [12]) we recover that result and generalize it for an arbitrary saddle

direction.

- In the case spec(DF(0)) = {1} and Re(A0) < 0, a particular case of a node

direction, Rong proved in [20] the existence of an open stable manifold. Notice that,

since A0 �= 0, applying Briot–Bouquet’s theorem [6] to the infinitesimal generator of F we

conclude that there always exists a formal invariant curve � such that F|� is parabolic.

Hence, our approach recovers Rong’s result and generalizes it for an arbitrary node

direction.
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2 Diffeomorphisms, Invariant Curves and Blow-ups

Let F ∈ Diff (C2, 0) be a germ of a holomorphic diffeomorphism at the origin of C
2. In

this article we make use repeatedly of the behavior of F under blowup. Although quite

well known (see for instance [19]), let us summarize the principal properties, in order to

fix notations and to establish a convenient terminology.

Let π : C̃2 → C
2 be the blowup at the origin of C

2 and denote by E = π−1(0)

the exceptional divisor. Then F̃ = π−1 ◦ F ◦ π extends to an injective holomorphic map

in a neighborhood of E in C̃2 that leaves the divisor E invariant and so that F̃|E is the

projectivization of the linear map DF(0) in the identification E � P
1
C

. Hence, a point p ∈ E

is a fixed point for F̃ if and only if p corresponds to the projectivization of an invariant

line � of DF(0). In this case we will say, in analogy with the standard terminology for

curves, that p is a 1st infinitely near fixed point of F and that the germ Fp of F̃ at p is the

transform of F at p. Repeating the operation of blowing up, we can recursively define

sequences {pn}n≥0 of infinitely near fixed points of F and corresponding transforms

Fpn
putting p0 = 0 and, for n ≥ 1, taking pn as a first infinitely near point of Fpn−1

(considered as an element of Diff (C2, 0) after taking analytic coordinates at pn−1).

Let us recall how the eigenvalues of the differential of a diffeomorphism vary

under blowups. Let λ, μ be the eigenvalues of DF(0) and let p be an infinitely near fixed

point of F corresponding to an invariant line � of DF(0) associated to the eigenvalue

λ; then the differential of the transform Fp has eigenvalues {λ, μ/λ}, where μ/λ is the

eigenvalue associated to the tangent direction of the exceptional divisor E at p. This can

be seen by the following simple computation. Choose coordinates (x, y) at 0 ∈ C
2 such

that � is tangent to the x-axis and write F(x, y) = (F1(x, y), F2(x, y)) and DF(0)(x, y) =
(λx + ay, μy), where a ∈ C. Consider coordinates (x′, y′) at p so that π is written as

π(x′, y′) = (x′, x′y′). Then F̃ = π−1 ◦ F ◦ π is written locally at p as

F̃(x′, y′) =
(

F1(x′, x′y′), F2(x′, x′y′)
F1(x′, x′y′)

)
, (2)

so that we obtain DF̃(p)(x′, y′) = (λx′, μ
λ

y′ + bx′) for some b ∈ C, which gives the result

(notice that E = {x′ = 0} in these coordinates).

We assume the reader is familiar with the theory of planar curves (see for

instance [9]) that applies as well in the formal category, and we briefly recall here

only the relevant facts needed in this paper. Let � be an (irreducible) formal curve at

0 ∈ C
2. By definition, once we fix coordinates (x, y) at the origin, � is a principal ideal

of C[[x, y]], generated by an irreducible nonconstant series f (x, y). The multiplicity of
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� is the positive integer ν = ν(�) such that f ∈ mν \ mν+1, where m is the maximal

ideal of C[[x, y]]. The formal curve � is non-singular if and only if ν = 1. If we write

f = fν + fν+1 + · · · as a sum of homogeneous polynomials, then the irreducibility of f

implies fν = (ax + by)ν , where a, b ∈ C are not both zero. The line ax + by = 0 is the

tangent line of � (in the coordinates (x, y)).

A formal curve � is uniquely determined by a parametrization, that is, a pair

γ (s) = (γ1(s), γ2(s)) ∈ C[[s]]2 \ {0} with γ (0) = (0, 0) such that h ∈ � if and only if

h(γ (s)) = 0. We can always consider a parametrization γ (s) that is irreducible (i.e., it

cannot be written as γ (s) = σ(sl), where σ(s) is another parametrization of � and l > 1)

and so in the following all the considered parametrizations are irreducible even when

not explicitly stated. In fact, if γ (s) is an irreducible parametrization of � then any

other parametrization γ̃ (s) of � is written as γ̃ (s) = γ (θ(s)) for a unique θ(s) ∈ C[[s]] with

θ(0) = 0. If γ (s) is irreducible, the multiplicity ν of � is the minimum of the orders of

the series γ1(s), γ2(s) ∈ C[[s]] and the tangent line is given by [γ1(s)/sν , γ2(s)/sν ]|s=0 ∈ P
1
C

.

A formal curve � is also uniquely determined by its sequence {qn}n≥0 of infinitely

near points, obtained by blowups as follows. Put q0 = 0. If π : C̃2 → C
2 is the blowup

of C2 at the origin, q1 ∈ π−1(0) is the point corresponding to the tangent line of � in the

identification π−1(0) � P
1
C

. There is a unique irreducible formal curve �1 at q1 such that

�1 is different from the exceptional divisor at q1 and which satisfies π∗� ⊂ �1, where

π∗� = {h ◦ π : h ∈ �}, called the strict transform of �. Then, recursively for n ≥ 2, qn

is the point corresponding to the tangent line of �n−1 and �n is the strict transform of

�n−1 by the blowup at qn−1.

In the following proposition, we present several equivalent definitions for a

formal curve to be invariant for a diffeomorphism. Although quite well known, we

include its proof for the sake of completeness.

Proposition 2.1. Consider F ∈ Diff (C2, 0) and let � be an irreducible formal curve at

the origin of C2. The following properties are equivalent:

(a) For any h ∈ �, one has h ◦ F ∈ �.

(b) Given a parametrization γ (s) of �, there exists θ(s) ∈ C[[s]] with θ(0) = 0 and

θ ′(0) �= 0 such that F ◦ γ (s) = γ ◦ θ(s).

(c) The sequence of infinitely near points of � is a sequence of infinitely near

fixed points of F.

If any of the conditions above holds, we say that � is an invariant formal curve of F.

Proof. Notice first that in (a) it is sufficient to consider h a fixed generator of �. Also,

in (b) it suffices to consider γ (s) a fixed irreducible parametrization; if γ̃ (s) is another
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parametrization, then γ̃ (s) = γ (τ(s)), where τ(s) ∈ C[[s]] has order l > 0. Hence, assuming

(b) for γ (s), F ◦ γ̃ (s) = γ (θ(τ (s))) and, since θ ◦ τ(s) and τ(s) have the same order, there

exists some α(s) ∈ C[[s]] with α(0) = 0 and (α′(0))l = θ ′(0) �= 0 such that θ ◦ τ(s) = τ ◦ α(s).

This shows property (b) for γ̃ (s).

Let us prove the equivalence between (a) and (b). Let h be a generator of � and

let γ (s) be an irreducible parametrization of �. Then we have property (a) if and only

if h ◦ F(γ (s)) = 0, which is equivalent to saying that F ◦ γ (s) is a parametrization of �,

which, in turn, is equivalent to the existence of some θ(s) ∈ C[[s]] with θ(0) = 0 such that

F ◦ γ (s) = γ (θ(s)). The additional condition θ ′(0) �= 0 in this last case is a consequence

of the fact that the minimum of the orders of the components of F ◦ γ (s) and of γ (s) are

the same.

Let us prove the equivalence between (b) and (c). First, assume that property (b)

holds and let γ (s) be an irreducible parametrization of �. On the one hand, property (b)

for γ (s) implies that the tangent line of � is an invariant line of DF(0). Thus, if q1 is the

1st infinitely near point of �, q1 is an infinitely near fixed point of F. On the other hand,

one can lift γ to a parametrization γ̃ of the strict transform �1 of � by the blow-up π

at the origin such that π ◦ γ̃ (s) = γ (s) and Fq1
◦ γ̃ (s) = γ̃ ◦ θ(s). Repeating the argument,

we prove (c). Now assume that (c) holds. Notice that the last argument presented above

shows that property (b) is stable both under blowup and blowdown, that is, property (b)

holds for F and � at the origin if and only if it holds for the transform Fq1
of F and the

strict transform �1 of � at the 1st infinitely near point q1 of �. Then, using reduction

of singularities of formal curves, we can assume that � is non-singular. Let us show in

this case that (c) implies (a), which is equivalent to (b). Consider formal coordinates (x̂, ŷ)

such that � is generated by ŷ and write F = (F1(x̂, ŷ), F2(x̂, ŷ)) in those coordinates. The

sequence of infinitely near points of � is given by the centers qn of the charts (x̂n, ŷn) for

which the corresponding composition of blowups is written as (x̂n, ŷn) �→ (x̂n, (x̂n)nŷn)

and the expression of the corresponding transformed diffeomorphism at qn is obtained

repeating n times the computation in (2). In particular, if qn is an infinitely near fixed

point of F then F2(x̂, x̂nŷ) is divisible by x̂n for any n. Thus, ŷ divides F2(x̂, ŷ), which

shows property (a). �

If � is a formal invariant curve of a diffeomorphism F, the series θ(s) ∈ C[[s]]

given by property (b) in Proposition 2.1 can be considered as a formal diffeomorphism

in one variable, that is, θ(s) ∈ D̂iff (C, 0). Note that the class of formal conjugacy of θ(s)

is independent of the chosen irreducible parametrization γ (s) in (b). Any representative

of this class will be called the restriction of F to � and denoted by F|�. Notice that if
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α ∈ Z then � is invariant by Fα and

(F|�)α = Fα|�.

The number λ� = θ ′(0) ∈ C
∗, called the inner eigenvalue, is intrinsically defined

and invariant under blowups (since θ(s) is stable under blowups as mentioned in the

proof of Proposition 2.1).

On the other hand, let λ(�) be the eigenvalue of the differential DF(0) cor-

responding to the tangent direction of �, which we call the tangent eigenvalue. The

relation between the inner and the tangent eigenvalues is given by the following lemma,

which can be proved by a simple computation.

Lemma 2.2. If ν is the multiplicity of � and λ�, λ(�) are respectively the inner and the

tangent eigenvalues of �, then we have (λ�)ν = λ(�).

In particular, λ� = λ(�) if � is non-singular. The equality is not necessarily true

when � is singular. Consider for instance the linear diffeomorphism F(x, y) = (x, −y).

For any natural odd number n ≥ 3, the curve �n generated by the polynomial xn − y2 is

invariant for F and tangent to the x-axis, an eigendirection with associated eigenvalue

equal to 1, whereas λ�n
= −1 for any such n. Notice that this example also shows that

the tangent eigenvalue λ(�) is not invariant under blowup (after some blowups, the

formal curve becomes non-singular and hence λ� and λ(�) eventually coincide).

Definition 2.3. Let � be a formal invariant curve of F ∈ Diff (C2, 0) and let λ� be the

inner eigenvalue. We say that � is hyperbolic if |λ�| �= 1 (attracting if |λ�| < 1 and

repelling if |λ�| > 1), and that � is rationally neutral if λ� is a root of unity; in the

particular case λ� = 1, we say that � is parabolic.

Notice that the condition of � being hyperbolic, rationally neutral or parabolic

is stable under blowups.

We discuss now the concept of asymptotic orbit which appears in the statement

of Theorem 1. In fact, we will consider such property for larger stable sets of a

diffeomorphism F ∈ Diff (C2, 0). Recall from the introduction that a stable manifold

of F (in U) is an analytic locally closed submanifold S in a neighborhood U where F

is defined such that F(S) ⊂ S and such that, for any point a = a0 ∈ S, the orbit

{an = Fn(a)}n converges to the origin. The smallest nontrivial example of a zero-
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dimensional stable manifold is an orbit that converges and is not reduced to the origin,

called a (nontrivial) stable orbit of F. Another interesting example is a parabolic curve,

defined as a connected and simply connected stable manifold of pure dimension one not

containing the origin.

Definition 2.4. Let S be a stable set of F such that 0 �∈ S. We say that S has the property

of iterated tangents if the following holds: if π1 : M1 → C
2 is the blowup at the origin

and S1 = π−1
1 (S), then S1 ∩ π−1

1 (0) is a single-point p1; if π2 : M2 → M1 is the blowup

at p1 and S2 = π−1
2 (S1), then S2 ∩ π−1

2 (p1) is a single-point p2; and so on. The sequence

of points {pn}n so constructed is called the sequence of iterated tangents of the stable

manifold S. Given an irreducible formal curve � at 0 ∈ C
2, we say that S is asymptotic

to � if S has the property of iterated tangents and its sequence of iterated tangents is

equal to the sequence of infinitely near points of �.

Notice that if S is a stable manifold with the property of iterated tangents,

then any stable orbit O ⊂ S also has the property (and the same sequence of iterated

tangents), but the converse does not need to be true. On the other hand, if {pn} is the

sequence of iterated tangents of a stable manifold S, then each pn is a fixed point of the

corresponding transform of F at the point pn. Thus, by Proposition 2.1, if S is asymptotic

to a formal curve � then � is an invariant curve of F.

Stable orbits of a diffeomorphism need not have the property of iterated

tangents. We can take for instance a linear diffeomorphism F(x, y) = (ax, ae2π iθy), where

a ∈ C satisfies 0 < |a| < 1 and θ is irrational. Since the origin is a global attractor for F,

any orbit of F is a stable orbit, but only those orbits contained in one of the (invariant)

coordinate axes have the property of iterated tangents. In fact, if {(xn, yn)} is an orbit of

F with xnyn �= 0 for any n, we have [xn : yn] = [c : e2π inθ ] ∈ P
1
C

for some nonzero constant

c, which has infinitely many accumulation points when n goes to infinity.

On the other hand, there may exist stable orbits with iterated tangents that

are not asymptotic to any formal curve. As an example, we can consider a linear

diffeomorphism F(x, y) = (ax+ay, ay), where 0 < |a| < 1. The orbits of F are asymptotic

to the exceptional divisor after a blowup at the origin, but they are not asymptotic to

a formal curve in the ambient space. More precisely, the unique formal invariant curve

� of F is the x-axis. Any nontrivial orbit O of F is stable and tangent to �, that is, its

transform π−1(O) by the blow-up π at the origin is a stable orbit of the transformed

diffeomorphism Fp1
, where p1 corresponds to [1 : 0]. One can see that if O is not

contained in � then π−1(O) is asymptotic to the exceptional divisor E = π−1(0).
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It is worth to notice that the property of being asymptotic to a formal curve

� in Definition 2.4 corresponds actually to the standard analytic meaning of having

� as “asymptotic expansion”. To fix ideas, if � is non-singular and we consider a

parametrization of the form γ (s) = (s, h(s)), where h(s) = ∑
n≥1 hnsn ∈ C[[s]], then a

nontrivial orbit O = {(xn, yn)} is asymptotic to � if and only if for any N ∈ N there exist

some CN > 0 and some n0 = n0(N) ∈ N such that, for any n ≥ n0, we have

∣∣∣yn − (h1xn + h2x2
n + · · · + hNxN

n )

∣∣∣ ≤ CN |xn|N+1.

A similar condition (see [16]) can be considered for a parabolic curve asymptotic to a

formal curve �. It is worth to remark that our definition of parabolic curve asymptotic

to a formal curve coincides with that of “robust parabolic curve” in [3].

We can now restate our main result Theorem 1. Since we use different argu-

ments, we consider the two different situations in separate statements.

Theorem 2.5 (�-hyperbolic case). Let F ∈ Diff (C2, 0) and let � be an invariant formal

curve of F. Assume that � is hyperbolic attracting. Then � is a germ of an analytic curve

at the origin such that a (sufficiently small) representative of it is a stable manifold of

F and eventually contains any orbit of F asymptotic to �.

Theorem 2.6 (�-rationally neutral case). Consider F ∈ Diff (C2, 0) and let � be an

invariant formal curve of F. Assume that � is rationally neutral and that the restricted

diffeomorphism F|� is not periodic. Then, for any sufficiently small neighborhood V of

the origin, there exists a non empty finite family of mutually disjoint stable manifolds

{S1, . . . , Sr} in V of pure positive dimension satisfying

(i) Every orbit in the union S = ⋃r
j=1 Sj is asymptotic to �.

(ii) S eventually contains any orbit of F asymptotic to �.

(iii) If n is the order of the inner eigenvalue λ� as a root of unity, then each Sj is

a finite union of n connected and simply connected mutually disjoint stable

manifolds Sj1, . . . , Sjn of the iterated diffeomorphism Fn (i.e., either parabolic

curves or open stable sets of Fn). In fact, Sji = F(Sj,i−1) for i = 2, . . . , n and

for any j.

Moreover, if dim(Sj) = 1 then Sj is asymptotic to �. If dim(Sj) = 2, one can also choose

Sj to be asymptotic to �.
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In Section 3 we prove Theorem 2.5 and other related questions concerning the

case, where � is hyperbolic. The proof of Theorem 2.6 is more involved and will be

carried on in Sections 4–7. As mentioned in the introduction, by the same arguments

used in Remark 1, to show Theorem 2.6 it suffices to consider the case λ� = 1 (�-

parabolic case).

3 �-Hyperbolic Case

In this section, we assume that � is a hyperbolic formal invariant curve of F ∈
Diff (C2, 0), that is, |(F|�)′(0)| �= 1.

We prove Theorem 2.5 and other results related to this case. They are conse-

quences of classical theorems involving local hyperbolic dynamics and normal forms.

To summarize, we first show that � is an analytic curve at the origin as a consequence

of the stable manifold theorem. Moreover, some manipulations regarding the Poincaré–

Dulac normal form allow us to show that � is either non-singular or a cusp yp = xq

in some coordinates and that, in this last case, F is analytically linearizable. In the

attracting case |(F|�)′(0)| < 1, we obtain, as an application of Hartman–Grobman

theorem, that all stable orbits of F that are asymptotic to � are contained in �. This

result forbids the existence of 2D stable manifolds formed by orbits asymptotic to �,

that can appear in the parabolic case λ� = 1 as we shall see in Section 6. Finally, we

characterize the attracting hyperbolic case as the unique case where there exists an

analytic curve at the origin which is a stable set.

Proposition 3.1. Let � be a formal irreducible invariant curve of F ∈ Diff (C2, 0).

Suppose that spec(DF(0)) = {λ(�), μ}, where the tangent eigenvalue λ(�) satisfies

|λ(�)| < min(1, |μ|). Then � is a non-singular analytic curve. Moreover, it is the unique

formal periodic curve whose tangent line is not the eigenspace associated to μ.

Proof. Set λ = λ(�), and denote by {pn}n≥0 the sequence of infinitely near points of �.

To prove the uniqueness statement, we will show that the sequence {pn} depends only on

F. The eigenvalues λ and μ are different, thus there are two eigenspaces of dimension

1. Since � is not tangent to the eigenspace associated to μ by hypothesis, it follows

that the tangent line of � is the eigenspace of DF(0) associated to λ. In particular such

direction, and then p1, depend only on DF(0). If Fp1
is the transform of F at p1, we have

that spec(DFp1
(p1)) = {λ, μ/λ}. If �1 is the strict transform of �, then by the invariance

of the inner eigenvalue under blow-ups |λ�1
| = |λ�| < 1 and, since λ(�1) is a power of
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λ�1
and |μ/λ| > 1, it follows that λ = λ(�1). Therefore, �1 is tangent to the eigenspace

of DFp1
(p1) associated to λ and hence p2 depends only on DFp1

(p1) and then on F. By

induction, denoting by Fpj+1
the transform of Fpj

and by �j+1 the strict transform of �j,

we obtain that

spec(DFpj+1
(pj+1)) =

{
λ,

μ

λj+1

}
(3)

and then λ is the eigenvalue associated to the tangent line of �j+1 at pj+1 for any j ≥ 0. In

particular, the sequence {pn}n of infinitely near points of � depends only on F. Moreover,

since the tangent line of �j is not tangent to the exceptional divisor for all j, it follows

that � is non-singular.

Since |λp| < min(1, |μp|), the curve � is the unique formal Fp-invariant curve that

is not tangent to the eigenspace of μ for any p ∈ N. Moreover, the properties |λ| < 1 and

|λ| < |μ| imply that � is a non-singular analytic curve by the stable manifold theorem

[21, Theorem 6.1]. �

Next we see that any formal hyperbolic invariant curve can be reduced to the

setting of Proposition 3.1 via blowups.

Proposition 3.2. Let � be a formal hyperbolic invariant curve of F ∈ Diff (C2, 0). Then

� is an analytic curve.

Proof. Suppose spec(DF(0)) = {λ, μ} with λ = λ(�). We can suppose |λ| < 1 up to

replacing F with F−1 if |λ| > 1. Also, by reduction of singularities, we may assume that

� is non-singular. Thus, using the same notations as in the proof of Proposition 3.1,

λ�j
= λ for any j and the exceptional divisor at pj has inner eigenvalue μ/λj. Take j ∈ N

such that |λ| < |μ/λj|. Therefore, �j and then � are analytic by Proposition 3.1. �

Corollary 3.3. Let � be an analytic curve at the origin that is a stable set for F ∈
Diff (C2, 0). Then |λ(�)| < 1.

Proof. The result is a consequence of the analogous one for the one-dimensional

diffeomorphism f = F|�. Up to conjugacy we can suppose f ∈ Diff (C, 0). Let U

be a bounded open neighborhood of the origin that is a stable set for f . Cauchy’s

integral formula implies that the sequence of derivatives of the sequence {f n}n≥1 is

uniformly bounded in compact subsets of U. Thus, the sequence {f n}n≥1 is normal and

as a consequence {f n}n≥1 converges to 0 uniformly in compact subsets of U. Another
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application of Cauchy’s integral formula shows limn→∞(f n)′(0) = 0. Since (f n)′(0) = λn
�,

we deduce |λ�| < 1.
�

As a consequence of Proposition 3.2, we see that the unique asymptotic manifold

associated to a hyperbolic invariant curve is the curve itself.

Proposition 3.4. Let � be an invariant curve of F ∈ Diff (C2, 0) with |λ(�)| < 1. Then

any stable orbit of F asymptotic to � is contained in �.

Proof. Using the arguments of Proposition 3.2 and the notations of the proof of

Proposition 3.1, consider j ∈ N such that |μ/λj| > 1. Equation (3) and the Hartman–

Grobman theorem imply that the unique orbits of Fpj
that converge to pj are those

contained in �j. Consider a point q whose orbit O = {Fn(q)}n is asymptotic to �, and

denote by πl : Ml → Ml−1 the blowup at pl−1 for 1 ≤ l ≤ j, where M0 = C
2 and

p0 = 0. Since O is asymptotic to �, (π1 ◦ · · · ◦ πj)
−1(Fn(q)) tends to pj when n → ∞,

so (π1 ◦ · · · ◦ πj)
−1(O) ⊂ �j and therefore O is contained in �. �

Remark 3.5. Let � be an invariant curve of F ∈ Diff (C2, 0) with |λ(�)| < 1. Even if there

are no asymptotic stable manifolds of dimension 2, let us consider the “closest” case.

This is the (hyperbolic) node case, corresponding to |μ| < |λ(�)| < 1. In this case, the

tangent line � of � is an attractor for the dynamics induced by DF(0) in the space P
1
C

of

directions. In fact, the origin is an attractor for the map F and any orbit converges to the

origin with tangent �. Of course, this convergence is not asymptotic since the hierarchy

of the eigenvalues is disrupted by blowup. More precisely, the inequality |μ| < |λ(�)| is

not stable by blowup. Indeed such property is key in the proof of Proposition 3.4. On the

other hand, in the �-parabolic case λ(�) = 1, since the inner eigenvalue is stable under

blowups, the tangent eigenvalue of � and all of its strict transforms are equal to 1, and

then equation (3) implies that the inequality |μ| < 1 is preserved under blowups at the

infinitely near points of �. Then, with the notations of Proposition 3.1, the tangent line �j

of �j is always an attractor for the action induced by DFpj
(pj) in the space of directions

at pj for j ≥ 0. Since all the iterated tangents are attractors, it becomes possible to

find open stable manifolds in which all the orbits are asymptotic to � (we will show

in Section 6 that they actually exist). Let us remark that asymptotic convergence is not

necessarily related to the dynamics of DF(0), for instance it can also happen in the case

λ(�) = 1 and |μ| = 1 as we will see in the next sections.

The next result shows that if a formal hyperbolic invariant curve is singular,

then both the dynamics and the curve are very special.
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Proposition 3.6. Let � be a hyperbolic invariant curve of F ∈ Diff (C2, 0). Suppose that

� is singular. Then there exist coprime natural numbers q > p > 1 such that, up to an

analytic change of coordinates, we have that F(x, y) = (λ(�)x, μy), where λ(�)q = μp, and

that � is the curve yp = xq.

Proof. We denote λ = λ(�) and spec(DF(0)) = {λ, μ}. We can suppose |λ| < 1 without

loss of generality. By Proposition 3.1, we have |μ| ≤ |λ| < 1. Since the eigenvalues of

DF(0) have modulus less than 1, the diffeomorphism F is analytically conjugated to its

Poincaré–Dulac normal form (cf. [14, Theorem 5.17]). This normal form is either F(x, y) =
(λx, μy) or F(x, y) = (λx, μ(y + xm)), where μ = λm. Let us show that the 2nd case is

impossible. Indeed, in that case

F(x, y) = (λx, μy) ◦ EXP
(

xm ∂

∂y

)
= EXP

(
xm ∂

∂y

)
◦ (λx, μy)

is the Jordan–Chevalley decomposition of F (see [19]). Since any invariant curve of F is

also invariant by the unipotent part Fu(x, y) = EXP
(
xm ∂

∂y

)
and then by the vector field

X = xm ∂
∂y (cf. [19, Propositions 2 and 3]), we deduce that x = 0 is the unique F-invariant

curve, which is impossible since � is singular.

Let γ (s) = (sp, γ2(s)) be an irreducible parametrization of �, where γ2(s) =∑∞
j=1 cjs

j ∈ C[[s]]. Since F(γ (s)) = (λsp, μγ2(s)) is again a parametrization of �, we obtain

that μγ2(s) = γ2(λ1/ps), where λ1/p is a p-th root of λ. Hence, cj �= 0 implies μp = λj

for any j ∈ N. We deduce that γ (s) = (sp, cqsq) for some q ∈ N with λq = μp. Since γ is

irreducible, p and q are coprime. Moreover, q > p, because |μ| < |λ|, and p > 1, because

� is singular. The curve � is equal to yp = xqcp
q , and then conjugated by a linear map

(x, y) �→ (αx, y) to yp = xq. �

Remark 3.7. Let � be a hyperbolic invariant curve of F ∈ Diff (C2, 0). Then there exists

a non-singular hyperbolic invariant curve �′ such that λ(�) = λ(�′). Indeed, if � is

singular then we can suppose F(x, y) = (λ(�)x, μy), by Proposition 3.6, and then we

define �′ = {y = 0}.

4 �-Parabolic Case: Reduction of the Diffeomorphism

Consider a diffeomorphism F ∈ Diff (C2, 0) and a formal invariant curve � that is

parabolic (i.e., (F|�)′(0) = 1) and such that F|� �= id. Note that the tangent eigenvalue

λ(�) is 1, by Lemma 2.2, and put spec(DF(0)) = {1, μ}.
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Definition 4.1. We say that the pair (F, �) is reduced if � is non-singular and there

exist coordinates (x, y) at 0 ∈ C
2 such that F is written as

x ◦ F (x, y) = x − xk+p+1 + O(x2k+2p+1)

y ◦ F (x, y) = μ
[
y + xka(x)y + O(xk+p+1y) + b(x)

]
,

where k ≥ 1, p ≥ 0, b(x) ∈ xC{x} and a(x) is a polynomial of degree at most p with

a(0) �= 0, and such that � is transversal to the y-axis. The polynomial μ
(
1 + xka(x)

)
is

called the principal part of the pair (F, �).

Observe that the integer k + p is independent of the coordinates (x, y), since

k + p + 1 is the order of contact with the identity of the formal diffeomorphism F|�.

Remark 4.2. Suppose that (F, �) is reduced, with the same notations of Definition

4.1, and denote by l ≥ 1 the order of contact of � with the x-axis, so that � admits

a parametrization of the form γ (s) = (
s, γ2(s)

)
, where the order of γ2(s) is l. Then, the

order ν0(b) of b at 0 satisfies ν0(b) = l, in the case μ �= 1, and ν0(b) ≥ l + k, in the case

μ = 1.

In this section, we will prove that there exists a finite sequence of changes of

coordinates and blowups at the infinitely near points of � such that the pair (̃F, �̃),

where F̃ is the transform of F and �̃ is the strict transform of �, is reduced.

Observe first that, after a finite number of blowups centered at the infinitely

near points of �, we can assume that � is non-singular and transversal to the

exceptional divisor, which is given by {x = 0} in some analytic coordinates (x, y). In

these coordinates, � admits a parametrization γ (s) of the form γ (s) = (
s, γ2(s)

)
, with

γ2(s) ∈ sC[[s]].

Denote by r + 1 ≥ 2 the order of contact with the identity of the formal

diffeomorphism F|� (which is well defined since F|� �= id) and consider the change

of variables (x, y) �→ (
x, y − J2r+2γ2(x)

)
, where Jl denotes the jet of order l. In the new

coordinates, the curve � admits a parametrization γ (s) = (s, γ 2(s)), where the order of

γ 2 is at least 2r + 3. Since F(s, γ 2(s)) = (θ(s), γ 2(θ(s))) for some θ(s) = s + αsr+1 + · · ·
with α �= 0 and F|�(s) = θ(s) = F1(s, γ 2(s)), we conclude that F is written in the new
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coordinates as

x ◦ F(x, y) = x + αxr+1 + O(y, xr+2)

y ◦ F(x, y) = μ
[
y + y

∑
j≥1

cjx
j + O(y2, x2r+3)

]
.

Set t = min{j ≥ 1 : cj �= 0}, if the series
∑

j≥1 cjx
j does not vanish, and t = ∞ otherwise. AQ6

Put k = r and p = 0 if t ≥ r, and k = t and p = r − t, otherwise. Note that, in both cases,

r = k + p. We have then

x ◦ F(x, y) = x + αxk+p+1 + O(y, xk+p+2)

y ◦ F(x, y) = μ
[
y + cxky + O(xk+1y, y2, x2k+2p+3)

]
,

where k ≥ 1, p ≥ 0, α �= 0 and, if p ≥ 1, then c �= 0; moreover, the order of contact of �

with the x-axis is at least 2k + 2p + 3.

Consider now the sequence φ of blowups centered at the 1st 2k+2p+1 infinitely

near points of �. Observe that each of these blowups increases the exponent of x in every

term in x ◦ F with positive degree in the variable y and decreases by one unit the order

of y ◦ F(x, 0), and that all terms in y ◦ F with degree at least 2 in the variable y are of

the form O(xj−1) after the 1st j blowups. Moreover, a monomial in y ◦ F of the form uxjy,

with 0 ≤ j ≤ k + p, is unaltered by each blowup if j ≤ k + p − 1, and is transformed

into (u − αμ)xk+py if j = k + p. Note also that the coefficient c does not change if p ≥ 1.

Hence, the transform F̃ of F by φ is written in some coordinates (x, y) as

x ◦ F̃(x, y) = x + αxk+p+1 + O(x2k+2p+1y, xk+p+2)

y ◦ F̃(x, y) = μ
[
y + axky + O(xk+1y, x2k+2py2, x2)

]
,

where again k ≥ 1, p ≥ 0, α �= 0 and, if p ≥ 1, then a = c �= 0. In these coordinates, the

strict transform �̃ of � is parametrized by γ̃ (s) = (s, γ̃2(s)), where γ̃2(s) has order at least

2. Finally, after a polynomial change of coordinates of the form (x, y) �→ (βx + P(x), y),

where β ∈ C
∗ and P(x) ∈ x2

C[x], we obtain

x ◦ F̃ (x, y) = x − xk+p+1 + O(x2k+2p+1)

y ◦ F̃ (x, y) = μ
[
y + xka(x)y + O(xk+p+1y) + b(x)

]
,
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where k ≥ 1, p ≥ 0, b(x) ∈ x2
C{x} and a(x) is a polynomial of degree at most p such that

a(0) �= 0 in case p ≥ 1. Hence, (̃F, �̃) is reduced unless a(0) = 0; in this case, necessarily

p = 0, and we get a reduction for (̃F, �̃) after a final blowup.

Consider a reduced pair (F, �). We define the attracting directions of (F, �) as

the k + p half lines ξR+, where ξk+p = 1. This definition is motivated by the following:

when � is convergent, the one-dimensional diffeomorphism F|� is of the form F|�(x) =
x−xk+p+1+O(x2k+2p+1) so, by Leau–Fatou flower theorem, the real tangents of its orbits

are exactly the attracting directions of (F, �), and we find stable manifolds of dimension

one in sectors bisected by each one of them.

We will classify the attracting directions in two types as follows. Consider

A0, A1, . . . , Ap ∈ C such that

log μ + xk
(
A0 + A1x + · · · + Apxp

)
= Jk+p

(
log

(
μ
(
1 + xka(x)

)))
,

where μ
(
1 + xka(x)

)
is the principal part of the pair (F, �). Note that A0 = a(0) �= 0 and

Aj = aj + Pj(a0, . . . , aj−1) for all 1 ≤ j ≤ p and for suitable polynomials P1, . . . , Pp, where

a0 + a1x + · · · + apxp = a(x). The polynomial log μ + xk
(
A0 + A1x + · · · + Apxp

)
is called

the infinitesimal principal part of (F, �). Observe that, if the order of contact of � with

the x-axis is at least k+p+2 and we put Fid(x, y) = (x, μ−1y)◦F(x, y), then Fid is tangent

to the identity and the jet of order k + p + 1 of its infinitesimal generator X is exactly

Jk+p+1X = −xk+p+1 ∂

∂x
+ xk

(
A0 + A1x + · · · + Apxp

)
y

∂

∂y
.

Definition 4.3. An attracting direction � = ξR+ is a node direction for (F, �) if

(
ln |μ|, Re

(
ξkA0

)
, . . . , Re

(
ξk+p−1Ap−1

))
< 0

in the lexicographic order; otherwise, it is a saddle direction. In the case |μ| = 1, we

define the 1st asymptotic significant order of � as p, if Re(ξk+jAj) = 0 for all 0 ≤ j ≤ p−1,

or as the 1st index 0 ≤ r� ≤ p − 1 such that Re(ξk+r�Ar�
) �= 0, otherwise.

Note that, when |μ| �= 1, all attracting directions have the same character; they

are node directions in case |μ| < 1 and saddle directions in case |μ| > 1. In the case

p = 0, an attracting direction � is a saddle direction if and only if |μ| ≥ 1. Moreover, the

1st significant order r� is equal to 0 if p = 0 and |μ| = 1.
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In the next two sections we will prove the existence, for a reduced pair (F, �),

of a stable manifold of F in a neighborhood of every attracting direction �, which has

dimension one or two depending on whether � is a saddle or a node direction.

Remark 4.4. In order to study asymptotic properties along � it will be interesting to

consider further refinements of a reduced pair (F, �), in which the order of contact of �

with the x-axis can be assumed to be arbitrarily high. Let us explain how to obtain such

transformations. Let γ (s) = (s, γ2(s)) be a parametrization of �. Given m ≥ 2, a change

of coordinates (x, y) �→ (x, y − Jk+p+m−1γ2(x)) transforms F into

x ◦ F (x, y) = x − xk+p+1 + O(x2k+2p+1)

y ◦ F (x, y) = μ
[
y(1 + xka(x)) + O(xk+p+1y, xk+p+m)

]
.

Notice that this change of coordinates preserves the principal part (and hence the

infinitesimal one) of (F, �) for all m ≥ 2. For technical reasons, we will also need to

impose the condition

Re(Ap) > 0

on a reduced pair (F, �), where Ap is the coefficient of the term of degree k + p in the

infinitesimal principal part of (F, �). This condition can be obtained after a polynomial

change of variables as above, to increase the order of contact of � with the x-axis, and

a finite number of blowups at the infinitely near points of �, since, as we pointed out

above, each of these blowups increases ap by one unit and leaves the other coefficients

of a(x) unaltered, and thus the same happens for the coefficients A0, . . . , Ap of the

infinitesimal principal part. Observe that, although the infinitesimal principal part

changes with these blowups, the node or saddle character of each attracting direction

does not.

5 �-Parabolic Case: Existence of Parabolic Curves

In this section, we prove that if � is a parabolic formal invariant curve of F ∈ Diff (C2, 0)

such that (F, �) is reduced, then for every saddle attracting direction there exists a one-

dimensional stable manifold of F asymptotic to �.

Theorem 5.1. Consider F ∈ Diff (C2, 0) and a formal invariant curve � of F such that

the pair (F, �) is in reduced form in some coordinates (x, y). For each attracting direction

of (F, �) that is a saddle direction, there exists a parabolic curve of F asymptotic to �.
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More precisely, if � is a saddle attracting direction of (F, �), then there exist a connected

and simply connected domain R ⊂ C, with 0 ∈ ∂R, that contains � and a holomorphic

map ϕ : R → C such that the set

S = {(x, ϕ(x)) : x ∈ R}

is a parabolic curve of F asymptotic to �. Moreover, if {(xn, yn)} is an orbit of F

asymptotic to � such that {xn} has � as tangent direction, then (xn, yn) ∈ S for all n

sufficiently big.

The rest of the section is devoted to the proof of Theorem 5.1. The strategy of

the proof is analogous to the one used in [16], which is inspired by the techniques used

by Hakim in [12].

Up to a linear change of coordinates, we can assume without loss of generality

that � = R
+; in the case |μ| = 1, we denote by r its 1st significant order. For d, e, ε > 0,

we define the set Rd,e,ε as follows.

• If |μ| > 1 or |μ| = 1 and r = 0, then

Rd,e,ε = {x ∈ C : |x| < ε, −dRe(x) < Im(x) < eRe(x)}.

• If |μ| = 1, r ≥ 1 and Im(a(0)) > 0, then

Rd,e,ε = {x ∈ C : |x| < ε, −dRe(x) < Im(x) < eRe(x)r+1}.

• If |μ| = 1, r ≥ 1 and Im(a(0)) < 0, then

Rd,e,ε = {x ∈ C : |x| < ε, −dRe(x)r+1 < Im(x) < eRe(x)}.

As mentioned in Remark 4.4, to prove the asymptoticity of the parabolic curve

we will need to consider successive changes of coordinates in which the order of contact

of � with the x-axis is arbitrarily high. Therefore, we consider an arbitrary m ≥ p + 2.

By Remark 4.4, after a polynomial change of variables and a finite sequence of blowups

centered at the infinitely near points of � we can find some coordinates (xm, ym), with

(x, y) = φ(xm, ym) = (
xm, xt

mym + P(xm)
)

for some t ∈ N and some P(x) ∈ xC[x], such that
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F is written as

xm ◦ F (xm, ym) = F1 (xm, ym) = xm − xk+p+1
m + O(x2k+2p+1

m )

ym ◦ F (xm, ym) = F2 (xm, ym) = μ
[
ym + xk

ma(xm)ym + O(xk+p+1
m ym, xk+p+m

m )
]

,

� has order of contact at least k+p+m with the xm-axis and Re(Ap) > 0, where Ap is the

coefficient of the term of degree k + p in the infinitesimal principal part of (F, �). Note

that it suffices to prove Theorem 5.1 in the new coordinates (xm, ym). In fact, if Sm is a

parabolic curve of the transform of F by φ then φ(Sm) is a parabolic curve of F. Moreover,

φ(Sm) is asymptotic to � if and only if Sm is asymptotic to the strict transform of � and,

since the x-variable is preserved by φ, the fact that Sm is a graph over a domain R ⊂ C

and the property of Sm eventually containing any asymptotic orbit whose sequence of

1st components is tangent to � are both preserved by φ. For simplicity, we also denote

the new coordinates by (x, y). By the definition of a saddle direction, we have that either

|μ| > 1 or |μ| = 1 and Re(Aj) = 0 for j = 0, . . . , r − 1 and Re(Ar) > 0, where

log μ + xkA(x) = log μ + xk
(
A0 + A1x + · · · + Apxp

)
is the infinitesimal principal part of (F, �). Notice that A0 = a(0) �= 0.

We shall need the following technical lemmas.

Lemma 5.2. Suppose |μ| = 1 and r ∈ N
∗. Then there exists a germ of diffeomorphism

of the form ρ(x) = x + ∑∞
j=2 ρjx

j such that

A0ρ(x)k = xkA(x),

with ρj ∈ R for any 2 ≤ j ≤ r and ρr+1 �∈ R. Moreover, Im(A0)Im(ρr+1) < 0.

Proof. The existence of ρ follows since the vanishing order and the principal terms of

A0xk and xkA(x) at 0 coincide. The properties of ρj for 0 ≤ j ≤ r + 1 follow easily solving

A0

⎛⎝x +
∞∑

j=2

ρjx
j

⎞⎠k

= xk(A0 + A1x + · · · + Apxp)

recursively. Indeed, we obtain A1 = kA0ρ2 and Aj = A0(kρj+1 + Pj(ρ2, . . . , ρj)) for any

2 ≤ j ≤ p, where Pj is a polynomial with real coefficients. �
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Lemma 5.3. Suppose r ∈ N
∗. Consider a real analytic curve κ at 0 ∈ C given by

{
x ∈ C : Im(x) = κr+1Re(x)r+1 + κr+2Re(x)r+2 + · · ·

}
.

Let ρ(x) = x + ∑∞
j=2 ρjx

j, where ρ2, . . . , ρr ∈ R and ρr+1 �∈ R. Then ρ(κ) is of the form

{x ∈ C : Im(x) = (κr+1 + Im(ρr+1))Re(x)r+1 + · · · }.

Proof. Let τ(Re(x)) = Re(x) + i
∑∞

j=r+1 κjRe(x)j be a parametrization of κ. The jet of

order r + 1 of the parametrization ρ ◦ τ of the curve ρ ◦ κ is given by

Jr+1(ρ ◦ τ) = Re(x) +
r∑

j=2

ρjRe(x)j + Re(ρr+1)Re(x)r+1 + i
(
κr+1 + Im(ρr+1)

)
Re(x)r+1,

and the result follows. �

Lemma 5.4. If |μ| = 1, then

Rd,e,ε ⊂ {x ∈ C : Re(xkA(x)) > 0}

for d, e, ε sufficiently small.

Proof. The result is clear if r = 0. Suppose r ≥ 1, and assume without loss of generality

that Im(A0) < 0. If ρ is the diffeomorphism of Lemma 5.2, it suffices to show that

ρ(Rd,e,ε) ⊂ {x ∈ C : Im(xk) > 0}. By Lemma 5.3, the set ρ(Rd,e,ε) is enclosed between two

curves of the form

Im(x) = (−d + Im(ρr+1))Re(x)r+1 + · · · and Im(x) = 2eRe(x).

Since Im(ρr+1) > 0, if d, e, ε are small enough we conclude that Im(xk) > 0 for any

x ∈ ρ(Rd,e,ε). �

Lemma 5.5. F1

(
Rd,e,ε × B(0, ε)

) ⊂ Rd,e,ε for d, e, ε > 0 sufficiently small.

Proof. The set Rd,e,ε is the intersection of the three sets A = {x ∈ C : |x| < ε, Re(x) > 0},
B = {x ∈ C : Re(x) > 0, Im(x) > −dRe(x)α}, and C = {x ∈ C : Re(x) > 0, Im(x) < eRe(x)β},
where either {α, β} = {1, r + 1} or α = β = 1. Let us show that F1(x, y) belongs to those

sets for any (x, y) ∈ Rd,e,ε × B(0, ε) if d, e, ε > 0 are sufficiently small.
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Note that F1(x, y) = x − xk+p+1 + O(x2k+2p+1) for any (x, y) ∈ Rd,e,ε × B(0, ε).

Thus, Re(F1(x, y)) = Re(x) + O(xk+p+1) in Rd,e,ε × B(0, ε), so it is positive if d, e, ε > 0

are sufficiently small. Since F1(x, y)/x = 1 − xk+p + O(x2k+2p), we deduce |F1(x, y)| ≤ |x|
if (x, y) ∈ Rd,e,ε × B(0, ε) for d, e, ε > 0 small enough. In particular, F1(x, y) ∈ A for any

(x, y) ∈ Rd,e,ε × B(0, ε).

Let us show F1(Rd,e,ε×B(0, ε)) ⊂ B. Fix 0 < δ < 1 such that (k+p+1)δ > α. We split

Rd,e,ε × B(0, ε) in two subsets, namely R1 = {(x, y) ∈ Rd,e,ε × B(0, ε) : Im(x) < −δdRe(x)α}
and R2 = (

Rd,e,ε × B(0, ε)
) \ R1. In R2, we have

Im(F1(x, y)) + dRe(F1(x, y))α = Im(x) + dRe(x)α + O(xk+p+1)

≥ d(1 − δ)Re(x)α + O(xk+p+1) > 0

if d, e, ε > 0 are small enough, since α < k + p + 1. Thus, we obtain F1(R2) ⊂ B. Let us

focus on R1. First we consider the case α = 1. The inequality

Im(log(F1(x, y)) − log x) = Im
(

log
F1(x, y)

x

)
= −Im(xk+p) + O(xk+p+1) > 0

holds in R1 for d, e, ε > 0 small enough; it implies that arg(F1(x, y)) > arg(x) so

Im(F1(x, y)) + dRe(F1(x, y))

Re(F1(x, y))
>

Im(x) + dRe(x)

Re(x)

and in particular F1(R1) ⊂ B. Suppose α > 1. Given (x, y) ∈ R1, we denote γ =
Im(x)/Re(x)α, which satisfies −d < γ < −δd. We have, writing x = Re(x) + iγ Re(x)α,

that

Im(F1(x, y)) = Im(x) − Im(xk+p+1) + O(x2k+2p+1)

= Im(x) − γ (k + p + 1)Re(x)k+p+α + O(xk+p+α+1)

and that

Re(F1(x, y))α =
(
Re(x) − Re(xk+p+1) + O(x2k+2p+1)

)α

= Re(x)α − (x)k+p+α + O(xk+p+α+1).
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Therefore,

Im(F1(x, y)) + dRe(F1(x, y))α = Im(x) + dRe(x)α

− [(k + p + 1)γ + dα]Re(x)k+p+α + O(xk+p+α+1)

for (x, y) ∈ R1. We denote δ′ = d[(k + p + 1)δ − α], which satisfies δ′ > 0 by the choice of

δ. We obtain

Im(F1(x, y)) + dRe(F1(x, y))α ≥ Im(x) + dRe(x)α + δ′Re(x)k+p+α + O(xk+p+α+1) > 0

for all (x, y) ∈ R1 if d, e, ε > 0 are small enough. In particular, F1(R1) ⊂ B.

Analogously we can show that F1

(
Rd,e,ε × B(0, ε)

) ⊂ C, and the lemma is proved.�

We consider 0 < ε < 1 small and fix d, e > 0 small enough so that Lemmas 5.4

and 5.5 hold (notice that this does not depend on m). Let m ≥ p+2. Consider the Banach

space

Bm
ε =

{
u ∈ O(Rd,e,ε,C) : sup

{ |u(x)|
|x|m−1 : x ∈ Rd,e,ε

}
< ∞

}
with the norm ‖u‖ = sup

{ |u(x)|
|x|m−1 : x ∈ Rd,e,ε

}
and its closed subset

Hm
ε = {u ∈ Bm

ε : ‖u‖ ≤ 1, |u′(x)| ≤ |x|m−p−2 ∀x ∈ Rd,e,ε}.

If we denote fu(x) = F1(x, u(x)), then fu(Rd,e,ε) ⊂ Rd,e,ε for every u ∈ Hm
ε , by Lemma 5.5.

Moreover, as in Leau–Fatou flower theorem, there exists a constant C > 0 such that if

x0 ∈ Rd,e,ε and u ∈ Hm
ε , and we denote xj = fu(xj−1), then

lim
j→∞

(k + p)jxk+p
j = 1 and |xj|k+p ≤ C

|x0|k+p

1 + j|x0|k+p
(4)

for all j ∈ N. Therefore, if u ∈ Hm
ε is a solution of the equation

u(fu(x)) = F2(x, u(x)), (5)

then the set Sm = {
(x, u(x)) : x ∈ Rd,e,ε

}
is a parabolic curve of F.

Define

E(x) = Exp
(

−
∫

A(x)

xp+1 dx
)

.
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We have, as in [16, Lemma 3.7],

E(x)E(F1(x, y))−1 = Exp(−xkA(x)) + O(xk+p+1). (6)

Lemma 5.6. If ε > 0 is small enough and we put xj = fu(xj−1) for j ≥ 1, for any u ∈ Hm
ε ,

we have

(i) For any real number s > k + p there exists a constant Ks > 0, independent of

u, such that for any x0 ∈ Rd,e,ε,

∑
j≥0

|xj|s ≤ Ks|x0|s−k−p.

(ii) There exists a constant M > 0 independent of u such that, for any x0 ∈ Rd,e,ε

and for any j ≥ 0, ∣∣∣μ−jE(x0)E(xj)
−1

∣∣∣ ≤ M.

Proof. Part (i) follows from the inequality in (4), as in [12, Corollary 4.3]. To prove part

(ii), observe that

E(x0)E(x1)−1 = Exp
(
−xk

0A(x0)
)

+ θu(x0),

where |θu(x0)| ≤ K|x0|k+p+1 for any x0 ∈ Rd,e,ε and any u ∈ Hm
ε , with some K > 0

independent of u. If |μ| > 1, since
∣∣∣Exp

(
−xk

0A(x0)
)∣∣∣ ≤ Exp

(
K′εk

)
for some K′ > 0, we

have
∣∣∣μ−1Exp

(
−xk

0A(x0)
)∣∣∣ ≤ 1 if ε is small enough. If |μ| = 1, since Rd,e,ε ⊂ {x ∈ C :

Re(xkA(x)) > 0} by Lemma 5.4, we have
∣∣∣μ−1Exp

(
−xk

0A(x0)
)∣∣∣ ≤ 1. Therefore, for ε > 0

small enough, we obtain

∣∣∣μ−jE(x0)E(xj)
−1

∣∣∣ ≤
j−1∏
l=0

(1 + K|xl|k+p+1) ≤
∞∏

l=0

(1 + K|xl|k+p+1).

The convergence of the infinite product follows from part (i). �

Define

H(x, y) = y − μ−1E(x)E(F1(x, y))−1F2(x, y) ∈ C{x, y}.
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Using equation (6), the identity μ
(
1 + xka(x)

) = Jk+p

(
Exp

(
log μ + xkA(x)

))
and the

expression of F2, we obtain that

H(x, y) = O(xk+p+1y, xk+p+m).

Proposition 5.7. If ε > 0 is sufficiently small and we put xj = fu(xj−1) for j ≥ 1, for

any u ∈ Hm
ε and any x0 ∈ Rd,e,ε, then the series

Tu(x0) =
∑
j≥0

μ−jE(x0)E(xj)
−1H(xj, u(xj))

is normally convergent and defines an element Tu ∈ Hm
ε . Moreover, T : u �→ Tu is a

contracting map from Hm
ε to itself and u ∈ Hm

ε is a fixed point of T if and only if u

satisfies equation (5).

Proof. The normal convergence of the series Tu(x0) and the fact that Tu ∈ Hm
ε for all

u ∈ Hm
ε , if ε is sufficiently small, are proved as in [16, Proposition 3.9].

To show that T is a contraction, consider u, v ∈ Hm
ε and write Tu(x0) − Tv(x0) =

U1 + U2, with

U1 =
∑
j≥0

μ−jE(x0)E(xj)
−1

[
H(xj, u(xj)) − H(zj, v(zj))

]
U2 =

∑
j≥0

μ−j
[
E(x0)E(xj)

−1 − E(x0)E(zj)
−1

]
H(zj, v(zj)),

where xj = f j
u(x0) and zj = f j

v(x0). Arguing as in [16, Proposition 3.9], we prove that there

exists B1 > 0 such that |U1| ≤ B1|x0|m‖u − v‖. To bound U2, write

r(x) = −
∫

A(x)

xp+1 dx = 1

xp

(
p−1A0 + (p − 1)−1A1x + · · · + Ap−1xp−1

)
− Ap log x.

As an application of Taylor’s formula, we obtain

r(x1) = r(x0) + xk
0A(x0) + θu(x0),

where |θu(x0)| ≤ c|x0|k+p+1 for some constant c > 0 independent of u. If we put

E(x0)E(xj)
−1 − E(x0)E(zj)

−1 = Expa − Expb,
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with a = r(x0) − r(xj) and b = r(x0) − r(zj), we have

|μ|−j
∣∣∣E(x0)E(xj)

−1 − E(x0)E(zj)
−1

∣∣∣ = |μ|−j |Expa − Expb|

≤ |μ|−j|a − b| max
ζ∈[a,b]

|Expζ |.

If |μ| = 1, since Re(xkA(x)) > 0 for all x ∈ Rd,e,ε by Lemma 5.4, we have that Re(r(x0) −
r(x1)) ≤ |θu(x0)| and therefore

Re(r(x0) − r(xj)) ≤
j−1∑
l=0

c|xl|k+p+1 ≤ 1

if ε is sufficiently small, by Lemma 5.6. Analogously, Re(r(x0) − r(zj)) ≤ 1, and hence

[a, b] ⊂ {x ∈ C : Re(x) ≤ 1} so

|μ|−j max
ζ∈[a,b]

|Expζ | ≤ e.

If |μ| > 1, there exists a constant K > 0 such that |xkA(x)| ≤ Kεk for all x ∈ Rd,e,ε, so

Re(r(x0) − r(xj)) ≤
j−1∑
l=0

(
Kεk + c|xl|k+p+1

)
≤ jKεk + 1

if ε is small enough, by Lemma 5.6. Analogously, Re(r(x0) − r(zj)) ≤ jKεk + 1, and hence

|μ|−j max
ζ∈[a,b]

|Expζ | ≤ |μ|−jExp
(
jKεk

)
e = Exp

(
(Kεk − ln |μ|)j

)
e ≤ e

for ε > 0 sufficiently small. Therefore,

|μ|−j
∣∣∣E(x0)E(xj)

−1 − E(x0)E(zj)
−1

∣∣∣ ≤ e|r(zj) − r(xj)|

and, arguing as in [16, Proposition 3.9], there exists a constant B2 > 0 such that |U2| ≤
B2|x0|m‖u − v‖. Therefore, |Tu(x0)− Tv(x0)| ≤ (B1 + B2)|x0|m‖u − v‖, so T is a contraction

if ε is small enough.

Finally, rewriting

Tu(x0) = E(x0)
∑
j≥0

(
μ−jE(xj)

−1u(xj) − μ−(j+1)E(xj+1)−1F2(xj, u(xj))
)

= u(x0) − μ−1E(x0)E(x1)−1F2(x0, u(x0)) + μ−1E(x0)E(x1)−1Tu(x1)
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we conclude that u ∈ Hm
ε satisfies equation (5) if and only if u is a fixed point of T. �

The existence of a solution u ∈ Hm
ε of equation (5) (and hence of a parabolic

curve for F) follows from Proposition 5.7, by Banach fixed point theorem. The property

of the parabolic curve being asymptotic � can be proved exactly as in [16] (showing that

Sm = Sm′ for m′ ≥ m by uniqueness of the fixed point and that Sm is tangent to � up to

an order that increases with m).

To complete the proof of Theorem 5.1, it only remains to show that if {(xj, yj)} is

an orbit of F asymptotic to � such that {xj} has R
+ as tangent direction, then (xj, yj) ∈ Sm

for j sufficiently big. To prove it, we will need the two following lemmas.

Lemma 5.8. If {(xj, yj)} is a stable orbit of F such that {xj} has R
+ as tangent direction

and |yj| < |xj| for all j, then

lim
j→∞

Im(xj)

Re(xj)
r+1 = 0.

Proof. We denote by −ρ+(k+p+1)/2 the coefficient of x2k+2p+1 in F1(x, y) and consider

ψ(x) = 1

(k + p)xk+p
+ ρ log x.

Using the fact that |yj| < |xj| for all j, we can see that ψ(x1) = ψ(x0) + 1 + O(xk+p+1
0 ), so

ψ(xj) − j is bounded for any j, by Lemma 5.6. Therefore,

1

(k + p)xk+p
j

= ψ(xj) − ρ log(xj) = j + O(1) − ρ log(xj) = j + O(log j),

where the last equality follows from (4). Hence,

xj = (k + p)−1/(k+p)j−1/(k+p)

(
1 + O

(
log j

j

))
.

The quotient Im(xj)/Re(xj)
r+1 satisfies then

Im(xj)

Re(xj)
r+1 =

(k + p)
− 1

k+p j−
1

k+p O
(

log j
j

)
(k + p)

− r+1
k+p j−

r+1
k+p

(
1 + O

(
log j

j

)) = (k + p)
r

k+p j
r

k+p O
(

log j

j

)
.

Since r < k + p, Im(xj)/Re(xj)
r+1 tends to 0 when j → ∞. �
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Lemma 5.9. If |μ| = 1 there exists a constant c > 0 such that, if d, e, ε are small

enough, then for every x ∈ Rd,e,ε we have

Re(xkA(x)) ≥ c|x|k+r.

Proof. If r = 0, we have

Re(xkA(x)) ≥ Re(A0xk)/2 ≥ c|x|k

for x ∈ Rd,e,ε if d, e, ε are small enough, where c = Re(A0)/3.

If r > 0, using the diffeomorphism ρ(x) = x +∑
j≥2 ρjx

j of Lemma 5.2, it suffices

to show that Re(A0xk) ≥ c|x|k+r for every x ∈ ρ(Rd,e,ε), for some c > 0. Without loss

of generality, we can assume Im(A0) < 0, so Im(ρr+1) > 0. The set ρ(Rd,e,ε) is enclosed

between two curves of the form

Im(x) = (−d + Im(ρr+1))Re(x)r+1 + · · · and Im(x) = 2eRe(x),

by Lemma 5.3. Notice that −d + Im(ρr+1) is positive if d is sufficiently small. The

elements of ρ(Rd,e,ε) satisfy d′|x|r < arg x < π/(2k) for some d′ > 0 if d, e, ε are small

enough. Then, since sine is an increasing function in (0, π/2), we obtain

Re(A0xk) = −Im(A0)|x|k sin(k arg x) ≥ −Im(A0)|x|k sin(kd′|x|r) ≥ c|x|k+r

in ρ(Rd,e,ε) if d, e, ε are small enough, where c = −Im(A0)kd′/2. �

Let {(xj, yj)} be an orbit of F asymptotic to �, such that {xj} has R
+ as tangent

direction. We consider the sectorial change of coordinates (x, y) ∈ Rd,e,ε × B(0, ε) �→
(x, y −u(x)), where u ∈ Hm

ε is the solution of equation (5), so that the parabolic curve Sm

becomes the x-axis and F is written as

F1(x, y) = x − xk+p+1 + O(x2k+2p+1)

F2(x, y) = μy
[
1 + xka(x) + O(xk+p+1)

]
.

Since {(xj, yj)} is asymptotic to � and Sm = (y = 0) is also asymptotic to �, we have

that |yj| < |xj| if j is big enough. Then, by Lemma 5.8, for any d, e, ε > 0 we have that



OUP UNCORRECTED PROOF – FIRST PROOF, 24/6/2019, SPi

32 L. López-Hernanz

xj ∈ Rd,e,ε if j is big enough. Then, we have

|μ|
∣∣∣1 + xk

j aj(x) + O(xk+p+1
j )

∣∣∣ = |μ|
∣∣∣Exp

(
xk

j A(xj)
)

+ O(xk+p+1
j )

∣∣∣ > 1

for j big enough, since either |μ| > 1 or |μ| = 1 and Re(xk
j A(xj)) ≥ c|xj|k+r, by Lemma 5.9.

Therefore, the orbit {(xj, yj)} can only converge to 0 if yj = 0 for all j big enough. This

ends the proof of Theorem 5.1.

6 �-Parabolic Case: Existence of Open Stable Manifolds

In this section, we show that if � is a parabolic formal invariant curve of F ∈ Diff (C2, 0)

such that (F, �) is reduced, then for every node attracting direction there exists a 2D

stable manifold of F in which every orbit is asymptotic to �.

Theorem 6.1. Consider F ∈ Diff (C2, 0) and a formal invariant curve � of F such that

the pair (F, �) is in reduced form in some coordinates (x, y). For each attracting direction

of (F, �) that is a node direction, there exists an open stable manifold of F, where every

orbit is asymptotic to �. More precisely, if � is a node attracting direction of (F, �), then

there exist a connected and simply connected domain R ⊂ C, with 0 ∈ ∂R, that contains

� such that the set

S =
{
(x, y) : x ∈ R,

∣∣∣y − Jk+2p+1γ2(x)

∣∣∣ < |x|
}

,

where γ (s) = (s, γ2(s)) is a parametrization of �, is an open stable manifold of F, where

every orbit is asymptotic to �. Moreover, if {(xn, yn)} is an orbit of F asymptotic to �

such that {xn} has � as tangent direction, then (xn, yn) ∈ S for all n sufficiently big.

The rest of the section is devoted to the proof of Theorem 6.1. Up to a linear

change of coordinates, we can assume without loss of generality that � = R
+; in the

case |μ| = 1, we denote by r its 1st significant order. Observe that r < p. For d, e, ε > 0,

we define the set Rd,e,ε as follows.

• If |μ| < 1 or |μ| = 1 and r = 0, then

Rd,e,ε = {x ∈ C : |x| < ε, −dRe(x) < Im(x) < eRe(x)}.
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• If |μ| = 1, r ≥ 1 and Im(a(0)) > 0, then

Rd,e,ε = {x ∈ C : |x| < ε, −dRe(x)r+1 < Im(x) < eRe(x)}.

• If |μ| = 1, r ≥ 1 and Im(a(0)) < 0, then

Rd,e,ε = {x ∈ C : |x| < ε, −dRe(x) < Im(x) < eRe(x)r+1}.

As mentioned in Remark 4.4, to prove the asymptoticity of the orbits inside the

stable manifold we will need to consider successive changes of coordinates in which

the order of contact of � with the x-axis is arbitrarily high. Therefore, we consider

an arbitrary m ≥ p + 2. By Remark 4.4, we can find some coordinates (xm, ym), with

(x, y) = φ(xm, ym) =
(
xm, ym + Jk+p+m−1γ2(xm)

)
, such that F is written

xm ◦ F (xm, ym) = F1 (xm, ym) = xm − xk+p+1
m + O(x2k+2p+1

m )

ym ◦ F (xm, ym) = F2 (xm, ym) = μ
[
ym + xk

ma(xm)ym + O(xk+p+1
m ym, xk+p+m

m )
]

,

and � has order of contact at least k + p + m with the xm-axis (in this case, unlike the

case of a saddle attracting direction, we do not need the condition Re(Ap) > 0 on the

coefficient Ap in the infinitesimal principal part). We define, for d, e, ε > 0,

Sm
d,e,ε =

{
(xm, ym) ∈ C

2 : xm ∈ Rd,e,ε, |ym| < |xm|
}

.

If we show that, in the coordinates (xm, ym), the set Sm
d,e,ε is a stable manifold where

every orbit is asymptotic to � and that eventually contains every orbit {(xn, yn)}
asymptotic to � such that {xn} has � as tangent direction, then the set φ(Sm

d,e,ε) will

satisfy the required properties of Theorem 6.1 in the coordinates (x, y). We will work

therefore in the coordinates (xm, ym), that we still denote (x, y) for simplicity. By the

definition of a node direction, we have that either |μ| < 1 or |μ| = 1 and Re(Aj) = 0 for

j = 0, . . . , r − 1 and Re(Ar) < 0, where

log μ + xkA(x) = log μ + xk
(
A0 + A1x + · · · + Apxp

)
is the infinitesimal principal part of (F, �). Note that A0 = a(0) �= 0.
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Proposition 6.2. If d, e, ε > 0 are small enough, then

F(Sm
d,e,ε) ⊂ Sm

d,e,ε.

Proof. Arguing exactly as in Lemma 5.5, we have that

F1(Sm
d,e,ε) ⊂ Rd,e,ε

if d, e, ε > 0 are sufficiently small. If (x, y) ∈ Sm
d,e,ε, using the identity μ

(
1 + xka(x)

) =
Jk+p

(
μExp

(
xkA(x)

))
, we have that

∣∣∣∣F2(x, y)

F1(x, y)

∣∣∣∣ =
∣∣∣∣∣μy

(
Exp(xkA(x)) + O(xk+p+1)

) + O(xk+p+m)

x − xk+p+1 + O(x2k+2p+1)

∣∣∣∣∣
≤ |μ|

∣∣∣y
x

∣∣∣ ∣∣∣Exp(xkA(x)) + O(xk+p+1)

∣∣∣ |1 + O(xk+p)| + O(xk+p+m−1)

< |μ|
∣∣∣Exp(xkA(x)) + O(xk+p+1)

∣∣∣ |1 + O(xk+p)| + O(xk+p+m−1).

If |μ| < 1, we conclude that
∣∣F2(x, y)/F1(x, y)

∣∣ < 1 if ε > 0 is small enough, so F(Sm
d,e,ε) ⊂

Sm
d,e,ε. If |μ| = 1, arguing as in Lemma 5.9 (with the only difference that in this case

Re(Ar) < 0 and Im(A0)Im(ρr+1) > 0, where ρ is the diffeomorphism of Lemma 5.2),

there exists a constant c > 0 such that

Re(xkA(x)) ≤ −c|x|k+r

for all x ∈ Rd,e,ε, if d, e, ε are small enough. Then, we get

∣∣∣∣F2(x, y)

F1(x, y)

∣∣∣∣ ≤
(
1 − c|x|k+r + O(xk+r+1)

)
|1 + O(xk+p)| + O(xk+p+m−1)

≤ 1 − c|x|k+r + O(xk+r+1) < 1

for any (x, y) ∈ Sm
d,e,ε, if d, e, ε > 0 are small enough, so F(Sm

d,e,ε) ⊂ Sm
d,e,ε. �

Consider d, e, ε > 0 such that Proposition 6.2 holds. For any (x0, y0) ∈ Sm
d,e,ε,

arguing as in the classical Leau–Fatou flower theorem, we have that limj→∞(k +
p)jxk+p

j = 1, where (xj, yj) = F(xj−1, yj−1), and therefore, by the definition of Sm
d,e,ε, we

have that limj→∞(xj, yj) = 0, so Sm
d,e,ε is a stable manifold of F. Moreover, if {(xj, yj)} is

an orbit of F asymptotic to � such that {xj} has R
+ as tangent direction, then |yj| < |xj|
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if j is big enough, since � is tangent to the x-axis, and xj ∈ Rd,e,ε if j is big enough, by

Lemma 5.8. Hence, (xj, yj) ∈ Sm
d,e,ε if j is sufficiently big.

The rest of the proof is devoted to showing that every orbit in Sm
d,e,ε is asymptotic

to �. We define, as in the proof of Theorem 5.1,

E(x) = Exp
(

−
∫

A(x)

xp+1 dx
)

.

Lemma 6.3. Suppose |μ| = 1 and r > 0. Then there exists a germ of diffeomorphism of

the form ζ(x) = x + ∑∞
j=2 ζjx

j such that

− A0

pζ(x)p =
∫ Jp−1A(x)

xp+1 dx,

with ζj ∈ R for any 2 ≤ j ≤ r and ζr+1 �∈ R. Moreover, Im(A0)Im(ζr+1) < 0.

Proof. The existence of ζ follows from the fact that the meromorphic functions

−A0/(pxp) and
∫ Jp−1A(x)

xp+1 dx have the same principal term. The properties of ζj, 0 ≤ j ≤
r+1, follow easily solving the equation recursively. Indeed, we obtain A1 = −(p−1)A0ζ2

and Aj = A0

(
−(p − j)ζj+1 + Pj(ζ2, . . . , ζj)

)
for any 2 ≤ j < p, where Pj is a polynomial

with real coefficients. �

Lemma 6.4. Let (x0, y0) ∈ Sm
d,e,ε and set (xj, yj) = Fj(x0, y0) for any j ≥ 0. Then

lim
j→∞

|μ|j
∣∣∣∣∣E(x0)−1E(xj)

xl
j

∣∣∣∣∣ = 0

for any l ≥ 0.

Proof. Assume first that |μ| < 1. From equation (6), we obtain

μE(x0)−1E(x1) = μExp
(
xk

0A(x0)
)

+ θ(x0),

where |θ(x0)| ≤ K|x0|k+p+1 for some K > 0. Then,
∣∣μE(x0)−1E(x1)

∣∣ ≤ δ for some δ < 1, if ε

is small enough. Hence,

|μ|j
∣∣∣∣∣E(x0)−1E(xj)

xl
j

∣∣∣∣∣ ≤ δj 1

|xj|l
,

which tends to 0 when j → ∞, since limj→∞(k + p)jxk+p
j = 1 and δ < 1.
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Assume now that |μ| = 1. We define the set R̃d,e,ε ⊆ Rd,e,ε as follows. Let ζ(x) =
x + ∑

j≥2 ζjx
j be the diffeomorphism of Lemma 6.3. If r = 0, then R̃d,e,ε = Rd,e,ε. If r ≥ 1

and Im(A0) > 0, then

R̃d,e,ε = Rd,e,ε ∩ {x ∈ C : Im(x) < ẽRe(x)r+1},

where 0 < ẽ < −Im(ζr+1). If r ≥ 1 and Im(A0) < 0, then

R̃d,e,ε = Rd,e,ε ∩ {x ∈ C : Im(x) > −d̃Re(x)r+1},

where Im(ζr+1) > d̃ > 0. Notice that, by Lemma 5.8, xj ∈ R̃d,e,ε for j sufficiently big.

If r = 0, then we have

|E(x)| ≤ Exp
(

Re(A0)

2p

1

|x|p
)

for each x ∈ R̃d,e,ε for d, e, ε small enough, and then limj→∞ |E(xj)/xl
j| = 0 for any l ≥ 0.

If r > 0, then thanks to Lemma 6.3 it suffices to show

lim
x→0

x∈ζ(R̃d,e,ε)

∣∣∣∣E(ζ−1(x))

ζ−1(x)l

∣∣∣∣ = 0

for any l ≥ 0. Notice that E(ζ−1(x)) = Exp
(
A0/(pxp) − Ap log x + ν(x)

)
, where ν is a

holomorphic function defined in a neighborhood of 0. Hence it suffices to prove

lim
x→0

x∈ζ(R̃d,e,ε)

∣∣∣∣Exp(A0/(pxp))

xl

∣∣∣∣ = 0

for any l ≥ 0. We have∣∣∣∣Exp
(

A0

pxp

)∣∣∣∣ = Exp
(

Re
(

A0

pxp

))
= Exp

(
1

p|x|2p Re(A0xp)

)
.

The inequality Re(A0xp) ≤ −c|x|p+r holds in a neighborhood of 0 in ζ(R̃d,e,ε) for some

c > 0 analogously as in the proof of Lemma 5.9. Since∣∣∣∣Exp
(

A0

pxp

)
1

xl

∣∣∣∣ ≤ Exp
( −c

p|x|p−r

)
1

|x|l ,

which tends to 0 when x → 0, we obtain limj→∞ |E(xj)/xl
j| = 0 for any l ≥ 0. �
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Consider (x0, y0) ∈ Sm
d,e,ε and denote (xj, yj) = Fj(x0, y0) for j ≥ 0. Let us prove

that the orbit {(xj, yj)} is asymptotic to �. Recall that we are considering coordinates

(x, y) = (xm, ym) for which the order of contact of � with the x-axis is at least k + p + m.

In other words, if γ (s) = (s, γ2(s)) is a parametrization of �, then γ2 is at least of order

k + p + m. We will show that, given any N ≥ m, we have

∣∣∣yj − Jk+p+N−1γ2(xj)

∣∣∣ < |xj|N−1

if j is big enough. If we work in the coordinates (xN , yN) given by (xN , yN) =(
xm, ym − Jk+p+N−1γ2(xm)

)
, that we will still denote (x, y) for simplicity, we need to

show that
∣∣∣yj

∣∣∣ < |xj|N−1 if j is big enough. Observe that, since the order of γ2(s) is at

least k + p + m ≥ 3 in the coordinates (xm, ym), in the new coordinates (x, y) we have

|yj| < 2|xj|.
Note that, because of Lemma 5.8, xj ∈ Rd,e,ε for any d, e, ε > 0, if j is big enough.

If we denote

Dd,e,ε =
{
(x, y) ∈ C

2 : x ∈ Rd,e,ε, |y| < |x|N−1
}

,

then, with the same argument of Proposition 6.2, we have that F(x, y) ∈ Dd,e,ε for any

(x, y) ∈ Dd,e,ε, if d, e, ε > 0 are small enough. Therefore, it suffices to show that there

exists j ∈ N such that (xj, yj) ∈ Dd,e,ε for d, e, ε > 0 small enough. Suppose this last

property does not hold. Then, setting

U = {(x, y) ∈ C
2 : |x|N−1 ≤ |y| < 2|x|}

we have (xj, yj) ∈ U for any j ≥ 0.

Let us see how y/E(x) changes under iteration. We set

H(x, y) = y − μ−1E(x)E(F1(x, y))−1F2(x, y).

As in the proof of Theorem 5.1, we have

1 − μ−1
(

F2(x, y)

E(F1(x, y))

)(
y

E(x)

)−1

= H(x, y)

y
= O(xk+p+1, xk+p+Nx−N+1),

so H(x, y)/y = O(xk+p+1) for every (x, y) ∈ U. Therefore, we obtain∣∣∣∣ y1

E(x1)

∣∣∣∣ = |μ|
(
1 + O(xk+p+1

0 )
) ∣∣∣∣ y0

E(x0)

∣∣∣∣ .
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This leads us to ∣∣∣∣∣ yj

E(xj)

∣∣∣∣∣ = |μ|j (1 + O(x0)
) ∣∣∣∣ y0

E(x0)

∣∣∣∣
for any j ≥ 0 by Lemma 5.6. Then we obtain∣∣∣∣∣ yj

xN−1
j

∣∣∣∣∣ =
∣∣∣∣∣ yj

E(xj)

∣∣∣∣∣
∣∣∣∣∣E(xj)

xN−1
j

∣∣∣∣∣ ≤ 2|μ|j
∣∣∣∣ y0

E(x0)

∣∣∣∣
∣∣∣∣∣E(xj)

xN−1
j

∣∣∣∣∣
for any j ≥ 0. Applying Lemma 6.4, we obtain that limj→∞ yj/xN−1

j = 0, contradicting the

fact that (xj, yj) ∈ U for any j ≥ 0. This shows that every orbit in Sm
d,e,ε is asymptotic to �

and ends the proof of Theorem 6.1.

Remark 6.5. The open stable manifold S obtained in Theorem 6.1 is not asymptotic to

�. Let us see that we can replace S with another stable manifold that is asymptotic to �

and contains eventually every orbit {(xn, yn)} asymptotic to � such that {xn} has � as a

tangent direction. Denote

Uj = S ∩
{
(x, y) ∈ C

2 : ε/2j+2 < |x| < ε/2j
}

for j ≥ 0. We have Uj ∩ Uj+1 �= ∅ by construction and F(Uj) ∩ Uj �= ∅ because F(S) ⊂ S and

|x ◦ F(x, y) − x| ≤ c|x|k+p+1 for some c > 0 and for all (x, y) ∈ S. For any N ≥ 1, we define

VN =
{
(x, y) ∈ C

2 :
∣∣y − JNγ2(x)

∣∣ < |x|N
}

,

where γ (s) = (s, γ2(s)) is a parametrization of �. Fix j ≥ 0. There exists kj ∈ N such that

Fk(x, y) ∈ V1 ∩ · · · ∩ Vj+1

for all (x, y) ∈ Uj and k ≥ kj. The property is clear for the neighborhood of a single-point

(x, y) ∈ Uj and hence it holds for any point of Uj by compactness of Uj. We define Wj =
∪∞

k=kj
Fk(Uj) for j ≥ 0 and W = ∪∞

j=0Wj. By construction the set W is an open set. Moreover,

F(Uj) ∩ Uj �= ∅ implies that Wj is connected. The sets Wj and Wj+1 have common points

for any j ≥ 0 since Uj ∩ Uj+1 �= ∅. Thus, W is a connected open set. Finally, we claim that

given any N ≥ 1, a neighborhood of 0 in W is contained in VN . Fix N ≥ 1. By compactness

of Uj for j ≥ 0 we obtain that a neighborhood of 0 in W0 ∪ · · · ∪ WN−2 is contained in

VN . By construction ∪∞
k=N−1Wk is contained in VN and hence a neighborhood of 0 in W is

contained in VN . By the previous discussion the set W is asymptotic to �. Now, given any
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orbit {(xn, yn)} satisfying the hypotheses in Theorem 6.1 we know that (xj, yj) belongs to

S for j sufficiently big. This implies that there exist j0, k0 ∈ N such that (xj0 , yj0) ∈ Uk0
.

Clearly the orbit {(xn, yn)} is eventually contained in Wk0
and then in W.

7 �-Parabolic Case: Conclusion

As a consequence of the results obtained in Sections 4, 5, and 6, we have the following

result, from which Theorems 2.6 and 2 follow.

Theorem 7.1. Consider F ∈ Diff (C2, 0) and let � be an invariant formal curve of

F, such that (F|�)′(0) = 1 and F|� �= id. Denote by r + 1 the order of contact with

the identity of F|�. Then, for any sufficiently small neighborhood of the origin, there

exists a family {S1, . . . , Sr} of connected and simply connected mutually disjoint stable

manifolds of pure positive dimension where every orbit is asymptotic to � and such

that S1 ∪ · · · ∪ Sr eventually contains any orbit of F asymptotic to �. If dim(Sj) = 1 then

Sj is asymptotic to � and if dim(Sj) = 2 then Sj can be chosen to be asymptotic to �.

Moreover, if spec(DF(0)) = {1, μ}, with |μ| ≥ 1, then at least �r/4� stable manifolds Sj

have dimension one, where �r/4� is the least integer greater or equal than r/4.

Proof. Let φ be a sequence of holomorphic changes of coordinates and blowups such

that the pair (̃F, �̃) is reduced, where F̃ is the transform of F and �̃ is the strict transform

of �. Denote by k and p the integers associated to the reduced pair (̃F, �̃) (see Remark

4.4). Notice that k + p = r, since the restriction F|� is preserved under blowups. Since

φ(̃S) is a stable manifold of F for every stable manifold S̃ of F̃, the existence of the family

{S1, . . . , Sr} of pairwise disjoint connected and simply connected stable manifolds where

every orbit is asymptotic to � follows immediately from Theorems 5.1 and 6.1. The one-

dimensional stable manifolds are asymptotic to �, by Theorem 5.1, and the 2D ones can

be chosen to be asymptotic to �, by Remark 6.5.

Let O be an orbit of F asymptotic to �. In some coordinates (x, y), the transform

F̃ of F satisfies x ◦ F̃(x, y) = x −xk+p+1 +O(x2k+2p+1). Since φ−1(O) = {(xn, yn)} is an orbit

of F̃ asymptotic to �̃, the sequence {xn} has one of the attracting directions of (̃F, �̃) as

tangent direction arguing as in Leau–Fatou flower theorem. Applying Theorems 5.1 and

6.1, we conclude that O is eventually contained in S1 ∪ · · · ∪ Sk+p.

To complete the proof of the Theorem, assume that spec(DF(0)) = {1, μ}, with

|μ| ≥ 1. Observe that, since the inner eigenvalue is 1, this condition is stable under

blowup. To prove that in this case a stable manifold Sj has dimension one, it suffices

to show that its corresponding attracting direction of (̃F, �̃) is a saddle direction, by
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Theorem 5.1. If |μ| > 1 or |μ| = 1 and p = 0, every attracting direction is a saddle

direction, so every Sj has dimension one. Assume that |μ| = 1 and p ≥ 1, and let log μ +
xk

(
A0 + A1x + · · · + Apxp

)
be the infinitesimal principal part of (̃F, �̃). Notice that A0 �=

0. We denote by a the number of attracting directions ξR+ such that Re(ξkA0) > 0.

The number a is a lower bound for the number of saddle directions, and is equal to

�{0 ≤ j < r : Re(e
2π ijk

r A0) > 0}. We denote g = gcd(r, k), r′ = r/g and k′ = k/g. Notice that

r′ ≥ 2 since p ≥ 1. Also, since r′ and k′ are coprime, η is a root of unity of order r′ if and

only if so is ηk′
. Hence, we obtain

a = g �{0 ≤ j < r′ : Re(e
2π ijk′

r′ A0) > 0} = g �{0 ≤ j < r′ : Re(e
2π ij

r′ A0) > 0}.

Suppose r′ �= 2. There are at least �r′/4� roots of unity ξ of order r′ such that Re(ξA0) > 0.

Hence, we obtain a ≥ gr′/4 = r/4.

Suppose r′ = 2. This case happens if and only if k = p. Hence, either Re(A0) �= 0

(and then there are k one-dimensional stable manifolds and k 2D ones) or Re(ξkA0) = 0

for any attracting direction ξR+. In this last case, if Aj = 0 for all 1 ≤ j ≤ p−1 then every

attracting direction is a saddle direction, so every Sj has dimension one. Otherwise,

we consider the first index t, with 1 ≤ t ≤ p − 1, such that At �= 0. Analogously as

above there are at least �{0 ≤ j < r : Re(e
2π ij(k+t)

r At) > 0} saddle directions. We denote

g′ = gcd(r, k + t) = gcd(2k, k + t). Since r/g′ > 2k/k = 2 we can apply the argument in the

previous paragraph to show that there are at least g′(r/g′)/4 = r/4 saddle directions. �
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