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TRAJECTORIES IN INTERLACED INTEGRAL PENCILS OF

3-DIMENSIONAL ANALYTIC VECTOR FIELDS ARE

O-MINIMAL

OLIVIER LE GAL, FERNANDO SANZ, AND PATRICK SPEISSEGGER

Abstract. Let ξ be an analytic vector field at (R3, 0) and I be an analytically

non-oscillatory integral pencil of ξ; i.e., I is a maximal family of analytically
non-oscillatory trajectories of ξ at 0 all sharing the same iterated tangents.

We prove that if I is interlaced, then for any trajectory Γ ∈ I, the expansion

Ran,Γ of the structure Ran by Γ is model-complete, o-minimal and polynomially
bounded.

1. Introduction

We fix a real analytic vector field ξ in a neighborhood U of the origin 0 ∈ Rn,
with n ≥ 2, and suppose that ξ(0) = 0. We are interested in the geometry of integral
curves of ξ accumulating at the origin; i.e., of solutions γ : [a,∞) −→ U of ξ such
that ω(γ) := limt→∞ γ(t) = 0. Indeed, we are not interested in any particular
parametrization of such a solution γ but only in its image |γ| := {γ(t) : t ≥ a},
which we will simply call a trajectory of ξ at the origin. As in our more elementary
paper [10], we are interested in the following vague questions:

(a) What is the relative behavior between distinct trajectories of ξ at the origin?
(b) What finiteness properties, relative to a given family of sets, do trajectories

of ξ at the origin have?

To make these questions precise in the cases considered here and to state our
theorem, we need to recall, in the next two paragraphs, some terminology and
results from Cano, Moussu and Sanz [3, 4]. We assume the reader to be familiar
with semianalytic and subanalytic sets (see for instance Bierstone and Milman [1]).

Let γ : [a,∞) −→ Rn be a differentiable curve; for b ≥ a, we set |γ|b := {γ(t) :
t ≥ b}. We call γ and its image |γ| analytically non-oscillatory if, for every
semianalytic A ⊆ Rn, there exists b ≥ a such that either |γ|b ⊆ A or |γ|b ∩ A = ∅.
Thus, one way to make question (b) precise is to ask, as done in [3], whether a
given trajectory of ξ at the origin is analytically non-oscillatory (simply called “non
oscillante” there). In [3], the notion of analytical non-oscillation is compared to the
following: let γ1 := π−1

1 ◦γ be the lifting of γ via the blowing-up π1 : M1 → Rn with
center the origin p0 = 0. If γ1 has a single limit point p1 ∈ π−1

1 (p0) as t → ∞, we
say that γ has tangent p1 at the origin. We say that γ has iterated tangents
at the origin if, for k ∈ N, there are differentiable curves γk : [a,∞) −→ Mk and
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points pk ∈Mk such that M0 = Rn, γ0 = γ, p0 = 0 and, for k > 0, γk is the lifting
of γk−1 via the blowing-up πk : Mk −→Mk−1 with center {pk−1} and accumulates
at pk. In this situation, the sequence of iterated tangents (pk)k∈N thus obtained
is uniquely determined by the image |γ|. By [3, Section 1.2], if |γ| is analytically
non-oscillatory, then γ has iterated tangents; the converse is false in general, even
if n = 3 and |γ| is a trajectory of ξ at the origin [3, Théorème 1].

The notions of the previous paragraph make sense for any n ≥ 2. To make
sense of question (a) in the case n = 3, we recall the following definitions from [4]:
let γ, γ′ : [a,∞) −→ R3 be two analytically non-oscillatory, differentiable curves
such that |γ| ∩ |γ′| = ∅. We say that they are interlaced if, for some system
(x, y, z) of analytic coordinates at the origin, there are b, b′ ≥ a, ε > 0 and differ-
entiable functions u, v, u′, v′ : (0, ε] −→ R such that |γ|b = {(x, u(x), v(x)) : 0 <
x ≤ ε} and |γ′|b′ = {(x, u′(x), v′(x)) : 0 < x ≤ ε}, and such that the vector
(u(x) − u′(x), v(x) − v′(x)) ∈ R2 spirals around the origin as x → 0+. We say
that |γ|, |γ′| are subanalytically separated if there exists a subanalytic map σ
from a neighborhood of |γ| ∪ |γ′| into R2 such that σ(|γ|) ∩ σ(|γ′|) is a finite set of
points. The main result of [4] relates these two notions in the following situation:
an integral pencil of ξ at the origin is a maximal collection of trajectories of ξ
at the origin all having the same sequence of iterated tangents. We call an integral
pencil I of ξ at the origin analytically non-oscillatory if every trajectory of
I is analytically non-oscillatory. In [4, Théorème 1] it is proved that, if I is an
analytically non-oscillatory integral pencil of ξ at the origin, then either every pair
of disjoint trajectories in I is interlaced, in which case we call I an interlaced
pencil, or every pair of disjoint trajectories in I is subanalytically separated, in
which case we call I a subanalytically separated pencil.

For our theorem, we assume the reader to be familiar with the basics of o-minimal
structures (see van den Dries and Miller [7]); in particular, we will be working with
the o-minimal structure Ran, whose definable sets are the globally subanalytic sets.
For a trajectory Γ of ξ at the origin, we let Ran,Γ be the expansion of Ran by Γ.
Clearly, the o-minimality of Ran,Γ implies that Γ is analytically non-oscillatory. The
converse is not true in general: while Rolin, Sanz and Schäfke [13] give, in any di-
mension n, criteria for (and specific examples of) ξ and analytically non-oscillatory
trajectories Γ of ξ at the origin that imply the o-minimality of Ran,Γ, they also
exhibit a particular ξ in R5 with an analytically non-oscillatory trajectory Γ at the
origin such that Ran,Γ is not o-minimal. The question of whether counterexamples
of the latter kind exist in R3 or R4 remains open, and our main theorem can be
viewed as a partial result towards showing that no such counterexamples exist in
R3:

Main Theorem. Let I be an interlaced, analytically non-oscillatory integral pencil
of an analytic vector field ξ at 0 ∈ R3, and let Γ be a trajectory of I. Then
the expansion Ran,Γ of Ran by Γ is model complete, o-minimal and polynomially
bounded.

Let I be an analytically non-oscillatory integral pencil of ξ at the origin. An
even stronger criterion than o-minimality of Ran,Γ, for individual trajectories Γ ∈ I,
is that of o-minimality of the expansion Ran,I of Ran by all trajectories in I. For
instance, if n = 2, then Ran,I is o-minimal, because non-oscillatory trajectories of ξ
at the origin are pfaffian sets in this case, see Lion and Rolin [9] or Speissegger [14,
Example 1.3]. If n = 3, however, the o-minimality of Ran,I and [4, Théorème 1]
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imply that I is subanalytically separated since, by its very definition, two interlaced
trajectories cannot be definable in the same o-minimal structure. Thus, the Main
Theorem above is the best we can hope for if I is interlaced.

If I is subanalytically separated, we do not know what happens in general. For
the record, in [10] we consider this problem in the case where ξ arises from a system
of two linear ODEs with meromorphic coefficients

y′ = A(x)y +B(x), y = (y1, y2).

In this situation, we obtain from [10, Theorem 4] that if I is a subanalytically
separated integral pencil at 0, then the expansion of Ran by all trajectories in I is
o-minimal.

The proof of the Main Theorem goes as follows: in Section 2, we use a result in
[4] to reduce to the situation where the vector field ξ arises from a two-dimensional
system of differential equations in final form. Basic ODE theory then gives the exis-
tence of a formal power series solution H(X) of this system to which the trajectories
Γ we are interested in are asymptotic. In this situation, a result of Rolin, Sanz and
Schäfke [13] states that Ran,Γ is o-minimal provided H(X) satisfies the so-called
SAT property (see Section 3). Thus, similar to [13], it remains to establish this
SAT property of H(X). In [13], this was achieved under the additional assumption
that ξ has sufficiently many independent (over the non-flat germs) components of
Stokes phenomena (see Sections 4 and 5 for definitions). The main contribution of
this paper is the independence proof of the components of the Stokes phenomena in
the situation considered here, from which we then obtain the SAT property along
the lines of [13], carried out in Section 6. This independence proof, in turn, is based
on a further reduction to what we call “interlaced final form” (Proposition 4), as
well as on multisummability theory, see Example 17 and Proposition 21.

2. Reduction to interlaced final form

Systems of ODEs. To describe the first reduction in the proof of our Main Theo-
rem, we work in the following setting: we fix q ∈ N and nonzero n ∈ N and consider
an n-dimensional system of ordinary differential equations of the form

(1) xq+1y′(x) = Θ(x, y(x)),

where y ∈ Rn and Θ : V −→ Rn is real analytic in some neighbourhood V of
0 ∈ R1+n. A solution at 0 of (1) is a differentiable map y : (0, ε] −→ Rn, for
some ε > 0, such that gr y ⊆ V and y satisfies (1) for 0 < x ≤ ε. A formal
solution at 0 of (1) is an n-tuple H ∈ R[[X]]n such that (0, H(0)) ∈ V and

Xq+1H ′(X) = (T(0,H(0))Θ)(X,H(X)−H(0)),

where TaΘ ∈ R[[X,Y ]] denotes the Taylor series of Θ at a ∈ V and Y = (Y1, . . . , Yn).

Remark. The integer q is equal to the Poincaré rank of system (1) if T(0,H(0))Θ is
not divisible by X in R[[X,Y ]].

Let η = −xq+1∂x − Θ(x, y) · ∂y be the real analytic vector field, defined in a
neighbourhood of 0 ∈ R1+n, associated to system (1), where ∂y = (∂y1 , . . . , ∂yn).
Then the graph of any solution h at 0 of system (1) is a trajectory Γ of η.

Remark. This Γ is not necessarily a trajectory at 0 of η; indeed, the graph of h is
a trajectory at 0 of η if and only if limx→0+ h(t) = 0.
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Thus, we call a solution h at 0 of system (1) analytically non-oscillatory if its
graph grh is analytically non-oscillatory. In addition, if n = 2, we call a pair (g, h)
of solutions at 0 of system (1) subanalytically separated (respectively, inter-
laced) if the pair of graphs (gr g, grh) is subanalytically separated (respectively,
interlaced).

Remark 1. Assume that system (1) has a formal solution H at 0. We set H0 := H,
p0 := H(0) ∈ Rn and H1(X) := (H(X)−p0)/X ∈ R[[X]]n. Iterating this procedure
we obtain, by induction on k ∈ N, points pk ∈ Rn and tuples Hk ∈ R[[X]]n such
that pk = Hk(0) and Hk+1(X) =

(
Hk(X)− pk

)
/X. If h is a solution at 0 of

system (1) with asymptotic expansion H at 0, then this computation corresponds
to the computation of the iterated tangents of the graph of h in suitable charts at
each stage of blowing up. Therefore, a solution h at 0 of system (1) has asymptotic
expansion H at 0 if and only if the graph of h has iterated tangents at 0 determined
by H through the above computation.

Thus, we call integral pencil at 0 of system (1) any maximal collection of
solutions at 0 of system (1) all having the same asymptotic expansion at 0. In
particular, if the system (1) has a formal solution H at 0, we denote by I(H) the
integral pencil of system (1) consisting of all solutions at 0 of (1) asymptotic to H.

In addition, if n = 2, we call an integral pencil I at 0 of system (1) analytically
non-oscillatory if every solution in I is analytically non-oscillatory, and we call
I subanalytically separated (respectively, interlaced) if every pair of distinct
solutions in I is subanalytically separated (respectively, interlaced).

Remark. It follows from Remark 1 that, if h is a solution at 0 of system (1) with
asymptotic expansion H and I is the integral pencil containing h, then I = I(H).

The reduction. We assume for the remainder of this section that n = 2. Following
[3, Définition 4.2], we say that system (1) is in final form if q ≥ 1 and

(2) Θ(x, y) =
(
a(x)I + xrJ(x)

)
y + xq+1g(x, y),

where 0 ≤ r ≤ q + 1 (this r corresponds to the “indice de radialité” k(X) in [4,
Définition 4.2]), g is real analytic in some neighbourhood of 0, a(x) is a polynomial
of degree at most r−1 (with a(x) = 0 if r = 0), I is the identity matrix, and J(x) is
a matrix of polynomials of degree at most q− r (with J(x) = 0 if r > q), such that
the matrix A(x) := a(x)I + xrJ(x) has at least one nonzero eigenvalue at x = 0
and J(0) has two distinct eigenvalues if r ≤ q.

Assume that system (1) is in final form (2). The hypothesis on the eigenvalues of
A(x) at x = 0 then imply (by a routine calculation as found, for instance, in Chow
and Hale [5, Chapter 12, Theorem 3.7]) that there exists a unique formal solution H
at 0 of system (1) such that H(0) = 0. Moreover, by Bonckaert and Dumortier [2,
Theorem 2.1], there exists a solution h at 0 of system (1) with asymptotic expansion
H at 0; in particular, I(H) is nonempty.

Fact 2 ([4], Théorèmes 4.3 and 4.5). Assume that system (1) is in final form (2),
and let H be its unique formal solution at 0 satisfying H(0) = 0. Then I(H) is
analytically non-oscillatory and interlaced if and only if the following holds:

J(0) has non-real eigenvalues,

traceA(x) = αxl +O(xl+1) for some l < q and α > 0,

and H is divergent.

(3)
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Moreover, in this situation, the integral pencil I(H) consists of all solutions h at 0
satisfying limx→0+ h(x) = 0.

To see how this fact is used towards the proof of our Main Theorem, let I be an
interlaced, analytically non-oscillatory integral pencil at 0 of ξ. By [3, Proposition
5.1], there exists a polynomial map σ : R3 −→ R3 fixing the origin (obtained by a
finite composition of local blowings-up and ramifications), and there exists a system
(1) in final form, with unique formal solution H at 0 satisfying H(0) = 0, such that
every trajectory |γ| in I is the image under σ of the graph of some solution in the
pencil I(H) of this system (1). Since the map σ is polynomial, it follows from [3,
Proposition 1.13] that I(H) is non-oscillatory and interlaced.

Moreover, if H is a formal solution at 0 of a system (1) in final form satisfying
(3), a routine linear change of variables y 7→ Ry, where R ∈ M2(R), shows that
RH is a formal solution at 0 of a system (1) in final form (2) satisfying (3) and the
following additional condition:

(4) J(0) =

(
a −b
b a

)
, where a, b are real and b 6= 0.

These observations lead us to the following definition: we say that system (1) is
in interlaced final form if q ≥ 1, r ≤ q and

(5) Θ(x, y) = (a(x)I + xrb(x)J) y + xq+1g(x, y) + c(x),

where a(x) = a0 + · · ·+ aqx
q is a polynomial of degree at most q satisfying a0 > 0,

b(x) = b0 + · · ·+ bq−rx
q−r is a polynomial of degree at most q− r satisfying b0 6= 0,

c(x) is a tuple of polynomials of degree at most q satisfying c(0) = 0, g is real

analytic in some neighbourhood of 0 and J =

(
0 −1
1 0

)
.

Remark 3. The explanation for the additional term c(x) is deferred to Remark
10. A system (1) in interlaced final form (5) with c(x) = 0 is in final form (2)
and satisfies conditions (3) and (4). Moreover, the arguments given before Fact
2 also apply to any system (1) in interlaced final form, i.e., for any such system,
there exists a unique formal solution H at 0 such that H(0) = 0, and there exists
a solution h at 0 with asymptotic expansion H at 0, so that I(H) is nonempty.

Proposition 4. Assume that system (1) is in final form (2) and satisfies conditions
(3) and (4). Then there exist T1, . . . , Tq ∈M2(R) such that, with

T (x) := I + xT1 + · · ·+ xqTq,

the pullback of system (1) via the change of variables y = Tz, for z ∈ R2, is in
interlaced final form.

Proof. Set again A(x) := a(x)I+xrJ(x), and assume A satisfies conditions (3) and
(4). If a matrix T as required exists, then there exists a real analytic gT , defined
on a neighbourhood of 0 and depending on T , such that h is a solution at 0 of our
system (1) if and only if T−1h is a solution at 0 of the system

xq+1z′ = T−1
(
AT − xq+1T ′

)
z + xq+1gT (x, z).

Thus, it suffices to find T and matrices D,E ∈M2(R)[x] of degree at most q such
that

(6) AT − TD − xq+1T ′ = xq+1E
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and

(7) D(x) = a(x)I + xrN(x),

where N(x) = N0 + xN1 + · · · + xq−rNq−r, with each Nj ∈ M2(R) of the form(
aj −bj
bj aj

)
and b0 6= 0. To do so, we write J(x) = J0 +xJ1 + · · ·+Jq−r with each

Jj ∈M2(R). Plugging into (6) yields

xq+1E =xr(JT − TN)− xq+1T ′

=xr(J0 −N0)

+ xr+1(J0T1 − T1N0 + J1 −N1)

...

+ xq

q−r−1∑
j=0

(JjTq−r−j − Tq−r−jNj) + Jq−r −Nq−r


+ xq+1P,

where P ∈ M2(R)[x] is of degree at most q and depends on T and N . This shows
that we can take N0 := J0, which works because of our hypotheses. Working
by induction on k = 0, . . . , q − r, we therefore assume k > 0 and having found
T1, . . . , Tk−1 and N0, . . . , Nk−1 with the required properties such that

l−1∑
j=0

(JjTl−j − Tl−jNj) + Jl −Nl = 0, for l = 0, . . . , k − 1;

we then need to find Tk such that

Nk := Jk + (J0Tk − TkN0) +

k−1∑
j=1

(JjTk−j − Tk−jNj)

also has the required properties. Since the matrix(
α β
γ δ

)
:= Jk +

k−1∑
j=1

(JjTq−r−j − Tq−r−jNj)

is already determined, direct computation shows that

Tk :=
1

4b

(
−γ − β α− δ
α− δ γ + β

)
does the job. Finally, with T and N determined in this way, both P and gT are
determined as well, and we take E := P . �

Thus, the Main Theorem is implied by the following particular case:

Theorem 5. Assume that system (1) is in interlaced final form (5), and let H
be its unique formal solution at 0 satisfying H(0) = 0. Then, for h ∈ I(H), the
structure Ran,h is model complete, o-minimal and polynomially bounded.
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3. Reduction to establishing SAT

To explain our variation of the approach in [13], we need to recall some definitions
and facts. First, recall that a tuple F = (F1, . . . , Fl) ∈ R[[X]]l such that F (0) = 0
is analytically transcendental if, for every convergent G ∈ R[[X,Z]] such that
G(0) = 0 and Z = (Z1, . . . , Zl), the condition G(X,F (X)) = 0 implies G = 0.

For the remainder of this section, we work with system (1) and assume that it
has a formal solution H at 0. For k ∈ N, we associate the point pk ∈ Rn and the
tuple Hk to H as in Remark 1, and we set

RkH(X) = (RkH1(X), . . . , RkHn(X)) := Hk(X)− pk.

Note that RkH(0) = 0 for each k.

Definition 6. Let q be as in system (1).

(1) We call a polynomial P ∈ R[X] positive if P (x) > 0 for all sufficiently
small x > 0, and we call P q-short if degP < (q + 1) ordP .

(2) The formal solution H is strongly analytically transcendental, or SAT
for short (pronounced “sat”), if for any integers k ≥ 0 and l ≥ 1 and any
l-tuple P = (P1, . . . , Pl) of distinct q-short positive polynomials, the tuple

RkH ◦ P := (RkH1 ◦ P1, . . . , RkHn ◦ P1, RkH1 ◦ P2, . . . , RkHn ◦ Pk)

is analytically transcendental.

Fact 7 (Lemma 4.1 and Theorem 2.2 of [13]). Assume that system (1) has a SAT
formal solution H at 0. Then for every h ∈ I(H), the structure Ran,h is model-
complete, o-minimal and polynomially bounded.

Thus, to prove Theorem 5 (and hence the Main Theorem), it suffices to establish
the following:

Theorem 8. Assume that system (1) is in interlaced final form (5), and let H be
its unique formal solution at 0 satisfying H(0) = 0. Then H is SAT.

Let us point out that, in the situation of Theorem 8 with r = 0 in (5), system
(1) also satisfies the hypotheses in [13, Theorem 2.4’], thus implying Theorem 8
for this case. In general, however, we allow the linear part of (5) to have two real
eigenvalues (whenever r > 0), a case to which [13, Theorem 2.4’] does not apply.
As our proof would not be different for the case r = 0, we shall focus on the case
r > 0, which allows us to somewhat lighten notations.

The reason for the term c(x) in the definition of “interlaced final form” is that
it suffices to establish the following weakening of SAT:

Definition 9. Let q be as in system (1). The formal solution H is 0-SAT if
for any integer l ≥ 1 and any l-tuple P = (P1, . . . , Pl) of distinct q-short positive
polynomials, the tuple R0H ◦ P is analytically transcendental.

Remark 10. It suffices to prove Theorem 8 with “0-SAT” in place of “SAT”.
To see this, assume that Theorem 8 holds with “0-SAT” in place of “SAT”, and
assume that system (1) is in interlaced final form (5), and let H be its unique formal
solution at 0 satisfying H(0) = 0. Then

(8) Xq+1H ′ = T0A ·H +Xq+1 · T0g(X,H) + T0c,
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where A(x) := a(x)I + xrb(x)J . Since R1H(X) = H1(X) − p = H(X)/X − p,
where p := H1(0), it follows that

Xq+1(R1H)′ = (A−XqI)H1 +Xq · T0g(X,H) + T0c/X

= (A−XqI)R1H +Xq+1T0h(X,R1H) + T0d,

where h(x, y) :=
(
T(0,p)G

)
(x, y) with G(x, y) := (g(x, xy)− g(0, 0))/x and

d(x) := c(x)/x+ xqg(0, 0) + (A(x)− xqI)p.

Note that deg d ≤ q; dividing (8) by X and setting X = 0, we get that d(0) = 0.
Thus, R1H is the unique formal solution at 0, with R1H(0) = 0, of another system
(1) in interlaced final form (5). Since Rk+1H = R1(RkH) for k ∈ N, we obtain, by
iterating this procedure and applying the hypothesis, that H is SAT.

4. Summability

We recall, in this and the next section, the basics of multisummability as de-
scribed by Malgrange and Ramis [11], with notations adapted to our situation.
Thus, we set C∗ := C \ {0}, R∗ := R \ {0}, R+ := [0,+∞), R∗+ := R∗ ∩ R+ and let
S1 be the unit circle in R2. We identify S1 with the interval [0, 2π) via the standard
argument map, and we equip S1 in this way with addition ⊕ and subtraction 	
obtained from the corresponding operations modulo 2π on [0, 2π). We also identify
C∗ with R∗+ × S1 via the usual covering map ρ : (r, θ) ∈ R+ × S1 7→ reiθ.

Thus, we associate to any subset X of S1 the set VX of all open neighbourhoods
of {0}×X in C∗. For any X ⊆ S1, we let O(X) be the algebra of all germs at 0 of
analytic functions f : U −→ C with U ∈ VX ; then O := {O(U) : U ⊆ S1 open} is
a sheaf on S1.

The reason for introducing sheaf terminology is that it provides a convenient
setting in which to define multisummability; we refer the reader to Hartshorne [8,
Section II.1] for details on sheaves. Thus, we let A be the subsheaf of O whose
stalk Aθ, for θ ∈ S1, consists of all f ∈ Oθ that have an asymptotic expansion
Tθf(X) =

∑
anX

n ∈ C[[X]] at 0, that is, there exist a representative f : V −→ C,
with V ∈ V{θ}, and constants cn ∈ R depending on V , for n ∈ N, such that

(9)

∣∣∣∣∣f(z)−
m−1∑
n=0

anz
n

∣∣∣∣∣ ≤ cm|z|m, for z ∈ V and m ∈ N.

If C is the sheaf on S1 whose section, for open U ⊆ S1, consists of all locally constant
maps F : U −→ C[[X]], we call Taylor map the morphism T : A −→ C of sheaves
induced by the maps Tθ.

Remark. If U ⊆ S1 is connected, then T�A(U) takes values in C[[X]]. It follows from

basic complex analysis that if f ∈ A(S1), then Tf converges.

Next, we define the subsheaf A0 of flat functions as the kernel of T and, for
k > 0, we let Ak be the subsheaf of A0 whose stalk Akθ , for θ ∈ S1, consists of all
f ∈ Aθ that are exponentially flat of order at least k, that is, there exist a
representative f : V −→ C, with V ∈ V{θ}, and constants A, b > 0 depending on V
such that

|f(z)| ≤ Ae−b/|z|
k

for z ∈ V.
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Fact 11 (Watson’s Lemma, statement before Définition 1.5 in [11]). Let1 k > 1/2
and I ⊆ S1 be a closed interval of length |I| ≥ π/k. Then Ak(I) = {0}.

Gevrey asymptotics. Let s ≥ 0. We let C[[X]]s be the ring of all Gevrey series of
order s, that is, all F (X) =

∑∞
n=0 anX

n ∈ C[[X]] such that the series
∑∞
n=0

an
Γ(ns)X

n

converges. We also let As be the subsheaf of A whose stalk As,θ, for θ ∈ S1, consists
of all f ∈ Aθ for which there exist a representative f : V −→ C, with V ∈ V{θ},
and a constant c > 0 depending on V such that (9) holds with cn = cnΓ(ns). Note
that, for connected U ⊆ S1, we have T (As(U)) ⊆ C[[X]]s.

Fact 12 (1.3 and 1.4 of [11]). Let k > 1/2 and I ⊆ S1 be an interval.

(1) A1/k(I) ∩ A0(I) = Ak(I).
(2) If I is closed and of length less than π/k, then T�A1/k(I) is surjective onto

C[[X]]1/k.
(3) Quasi-analyticity: if I is closed and of length at least π/k, then T�A1/k(I)

is injective.

One of the key concepts needed is that of quotient sheaf. In our situation, we
have the following: if B is a subsheaf of A and I is a subinterval of S1, then every
element of (A/B)(I) is represented by a (finite if I is closed, possibly infinite if I
is not closed) tuple of elements fi ∈ A(Ui), such that each Ui is an open interval,
I ⊆

⋃
i Ui and, for all i, j, we have (fi − fj) |Ui∩Uj∈ B(Ui ∩ Uj).

Since A0 is the kernel of T and Ak is a subsheaf of A0, for k ≥ 0, the Taylor map
induces a morphism Tk : A/Ak −→ C of sheaves; we usually omit the subscript k.
Moreover, we have

Corollary 13. The map T :
(
A/Ak

) (
S1
)
−→ C[[X]]1/k is an isomorphism.

Proof. By [11, Théorème 1.6], we have
(
A/Ak

) (
S1
)

=
(
A1/k/Ak

) (
S1
)
; the corol-

lary then follows from Fact 12. �

Summability. To describe what we use from summability theory, we need the
following notations: for distinct θ, ζ ∈ S1 and k ≥ 1, we set

d(θ, ζ) := min{θ 	 ζ, ζ 	 θ} ∈ [0, π]

and

V (θ, k) :=
(
θ 	 π

2k
, θ ⊕ π

2k

)
;

so V (θ, k) is a proper subinterval of S1, and we denote its topological closure in
S1 by I(θ, k). If d(θ, ζ) < π, we let U(θ, ζ) be the unique open interval in S1 with
endpoints θ and η and of length equal to d(θ, η). If d(θ, ζ) < π, we set

U(θ, ζ, k) :=
⋃

φ∈U(θ,ζ)

V (φ, k);

note that, under these assumptions, U(θ, ζ, k) is a proper subinterval of S1 of length
greater than π/k.

Let k ≥ 1 and F ∈ C[[X]]1/k. Recall [11, Définition 1.5] that, if I ⊆ S1 is a
closed interval of length at least π/k, then F is k-summable on I if there exists

1If one replaces S1 by its universal covering space R, all definitions and facts stated in this
section are easily adapted to all k > 0. Since we only consider integer k > 0 in this paper, the

present setting suffices for our purposes.
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f ∈ A1/k(I) such that Tf = F . By quasianalyticity, if such an f exists, it is unique;
we call it the k-sum of F on I and denote it by SIF .

Definition 14. (1) The series F is k-summable in the direction θ ∈ S1 if
F is k-summable on I(θ, k).

(2) The series F is k-summable if it is k-summable in all but finitely many
directions; in this situation, the directions in which F is not k-summable
are called the singular directions of F .

(3) If F is k-summable and ξ, ζ ∈ S1 are such that d(ξ, ζ) < π, and if the interval
U(ξ, ζ) contains no singular directions of F then, by analytic extension,
there exists a unique f ∈ A1/k(U(ξ, ζ, k)) such that f�I(θ,k)= SI(θ,k)F , for
θ ∈ U(ξ, ζ). We call this f the k-sum of F on U(ξ, ζ) and denote it by
Sξ,ζF .

Next, let S ⊆ S1 be finite; for θ ∈ S1, we let θ+(S) be the first element of
S ∪ {θ ⊕ π/2}, distinct from θ, that lies on S1 after θ in the positive sense and,
similarly, we let θ−(S) be the first element of S ∪ {θ 	 π/2}, distinct from θ, that
lies on S1 after θ in the negative sense. Note that, for θ ∈ S1 and ∗ ∈ {+,−}, we
have d(θ, θ∗(S)) < π and

V (θ, k) = U(θ, θ−(S), k) ∩ U(θ, θ+(S), k),

independent of S.
Assume now that F is k-summable with its singular directions in S. By def-

inition, for θ ∈ S1 and ∗ ∈ {+,−}, the interval U(θ, θ∗(S)) contains no singular
directions of F , so the k-sum Sθ,θ∗(S)F is well defined. The difference

∆θF := Sθ,θ+(S)F − Sθ,θ−(S)F

is defined on V (θ, k), independent of S and called the Stokes phenomenon of F
in the direction θ. Note that ∆θF = 0 whenever θ /∈ S.

The tuples
(
Sθ,θ+(S)F

)
θ∈S1 and

(
Sθ,θ−(S)F

)
θ∈S1 are uniquely determined by F

and S. Moreover, by Fact 12(1), each ∆θF belongs to Ak(V (θ, k)). It follows
that the tuple

(
Sθ,θ+(S)F

)
θ∈S1 represents an element in

(
A1/k/Ak

) (
S1
)
, which we

denote by SF and call the k-sum of F . Note that SF depends only on F but not
on S.

Finally, for the purposes of this paper, F is called summable if there exists
k ≥ 1 such that F is k-summable.

Remarks 15. Assume that k ≥ 1 and F is k-summable with its singular directions
in S and adopt the corresponding notations above.

(1) It follows from Fact 12(2) and basic complex analysis that F converges if
and only if F is summable and has no singular directions. In this situation,
we identify SF with the germ at 0 of the analytic function defined by F .

(2) Let G ∈ C[[X]] be convergent and of order ν > 0. Using Corollary 13, we
obtain (we leave the details to the reader) that the series

(F ◦G)(X) := F (G(X))

belongs to C[[X]]1/νk. Moreover, the singular directions of F ◦G belong to

S′ :=
⋃ν−1
µ=0(S + 2πµ)/ν, and the corresponding sums and Stokes phenom-

ena, for θ ∈ S1 and ∗ ∈ {+,−}, are

Sθ,θ∗(S′)(F ◦G) = Sνθ,(νθ)∗(S)F ◦ SG
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and
∆θ(F ◦G) = ∆νθF ◦ SG.

The next computation (Example 17 below) is a crucial ingredient in our proof
of Theorem 8. Here and in Section 6, we shall use the following:

Remark 16. Let X = (X1, . . . , Xm), Y = (Y1, . . . , Yn) and Z = (Z1, . . . , Zn), and
let F ∈ R[[X,Y ]]. Then there are B1, . . . , Bn ∈ R[[X,Y, Z]] such that

F (X,Y )− F (X,Z) =

n∑
i=1

Bi(X,Y, Z)(Yi − Zi);

moreover, we have

Bi(X,Y, Y ) =
∂F

∂Yi
(X,Y ).

The case n = 1 follows from the binomial formula; for n > 1, proceed by induction
on n (simultaneously for all m), using the equality

F (X,Y )− F (X,Z) = F (X,Y ′, Yn)− F (X,Y ′, Zn)

+ F (X,Y ′, Zn)− F (X,Z ′, Zn),

where Y ′ := (Y1, . . . , Yn−1) and Z ′ := (Z1, . . . , Zn−1). It follows, moreover, that
the Bi are convergent whenever F is.

Example 17 (Stokes phenomena for H). Assume that system (1) is in interlaced
final form (5), with r > 0, and let H be its unique formal solution at 0 satisfying
H(0) = 0. As before, we set

A(x) := a(x)I + xrb(x)J,

and we also write g(x, y) =
∑∞
i=0 gi(x)yi. Following [12], each component of H is

q-summable with singular directions among the directions of the qth roots of the
eigenvalues of A(0). Since r > 0, we have A(0) = a(0)I; moreover, by assumption,
a(0) > 0. Hence the possible singular directions are the qth roots of unity,

S :=

{
2pπ

q
: p = 0, . . . , q

}
.

We refer to Definition 14 for the corresponding sums

Sθ,θ∗(S)H = (Sθ,θ∗(S)H1,Sθ,θ∗(S)H2)

and Stokes phenomena
∆θH = (∆θH1,∆θH2),

for θ ∈ S1 and ∗ ∈ {+,−}. Below, we set Y := (Y1, Y2) and Z := (Z1, Z2). By
Remark 16, there is a convergent B ∈M2(R[[X,Y, Z]]) such that

B(X,Y, Z)(Y − Z) = TΘ(X,Y )− TΘ(X,Z).

Again by [12], Sθ,θ∗(S)H is a solution of system (1) on U(θ, θ∗, q); so ∆θH is a
solution of the system

(10) xq+1y′ = fθ(x) · y
on V (θ, q), where fθ(x) := SB

(
x,Sθ,θ+(S)H(x),Sθ,θ−(S)H(x)

)
is a matrix inM2(A1/q(V (θ, q))).

Thus, for

Qa(x) := − 1

xq

(
a0

q
+

a1

q − 1
x+ · · ·+ aq−2

2
xq−2 + aq−1 x

q−1

)
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and v ∈ A(V (θ, q))2, we have that w := exp(Qa(x)) · xaq · v is a solution of system
(10) on V (θ, q) if and only if v is a solution on V (θ, q) of the system

(11) xq−r+1y′ =
fθ(x)− a(x)

xr
· y.

Note that T ((fθ−a)/xr)(X) = b(X)J+Xq−r+1L(X), where L ∈ R[[X]]; in partic-
ular, the linear part of (fθ−a)/xr has two distinct eigenvalues. It follows from [17,
Theorem 12.2] that the system (11) can be diagonalized on V (θ, q − r) ⊇ V (θ, q):
there exists a holomorphic linear change of variables v = Cθ(x)u, where Cθ ∈
M2(A(V (θ, q))), such that v ∈ A(V (θ, q))2 satisfies (11) if and only if

(12) xq−r+1u′ = Nθ(x)u,

where Nθ ∈ M2(A(V (θ, q))) is diagonal. Moreover, from the Taylor expansion of
(fθ − a)/xr, we see that

Cθ(x) =

(
1 1
−i i

)
+O(xq−r+1)

and

Nθ(x) = b(x)

(
i 0
0 −i

)
+O(xq−r+1).

Setting

Qb(x) :=

{
− 1
xq−r

(
b0
q−r + b1

q−r−1x+ · · ·+ bq−r−1x
q−r−1

)
if r < q,

0 if r = q,

the nonzero solutions of (12) are of the form u = µθ ·E, where µθ = diag(µθ,1, µθ,2)

with µθ,i ∈ A(V (θ, q)) \ A0(V (θ, q)) and E =

(
e1

e2

)
with

e1(x) := exp
(
iQb(x)

)
· xibq−r and e2(x) := 1/e1(x),

defined using the main branch of log on the sector

{z ∈ C : |z| > 0, arg z ∈ V (θ, q)}.

With these notations in place, we have shown that the Stokes phenomenon ∆θH
on V (θ, q), for singular θ ∈ S1, is of the form

(13) ∆θH = (exp ◦Qa) · xaq · Cθ · µθ · E,

with Qa, aq and E depending only on the system (1) in interlaced final form (5),
but not on the particular θ ∈ S1.

5. Multisummability

What happens if series of various summability orders are added or multiplied?
In general, the resulting series are not k-summable for any k; what happens instead
is based on the “relative Watson Lemma”:

Fact 18 (Proposition 2.1 of [11]). Let 1/2 < k1 < k2, and let I ⊆ S1 be an interval
containing a closed interval of length π/k1. Then

(
Ak1/Ak2

)
(I) = {0}.
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To define multisummability, we use the following notation: let J ⊆ I ⊆ S1 be
open intervals and B ⊆ C be two sheaves on S1. For g ∈ C(I), we denote by
g�J the restriction of g to J , and by [g]B the element of (C/B)(I) represented by g.
Moreover, if D is a third sheaf on S1 such that B ⊆ D ⊆ C, we identify (C/B)/(D/B)
with C/D in the usual way (see [8]).

Let 1 ≤ k1 < · · · < kµ and F ∈ C[[X]], and set k := (k1, . . . , kµ). Recall [11,
Définition 2.2] that, if I1 ⊃ I2 ⊃ · · · Iµ are closed intervals on S1 such that each
Iλ has length at least π/kλ and I := (I1, . . . , Iµ), then F is k-summable on I
if F ∈ C[[X]]1/k1 and there exist fλ ∈

(
A/Akλ+1

)
(Iλ), for λ = 1, . . . , µ − 1, and

fµ ∈ A(Iµ) such that, if f0 is the unique (see Corollary 13) element of
(
A/Ak1

)
(S1)

with Tf0 = F , we have

fλ−1�Iλ =

{
[fλ]Akλ/Akλ+1 if 1 ≤ λ < µ,

[fλ]Akλ if λ = µ.

In this situation, it follows from Fact 18 that the tuple f := (f1, . . . , fµ) is uniquely
determined (quasianalyticity). Thus, we call f the k-sum of F on I and, in
particular, we set SIF := fµ ∈ A(Iµ).

Definition 19. (1) Let θ ∈ S1 and set

I(θ, k) := (I(θ, k1), . . . , I(θ, kµ)).

Then F is k-summable in the direction θ if F is k-summable on I(θ, k).
(2) The series F is k-summable if it is k-summable in all but finitely many

directions; in this situation, the directions in which F is not k-summable
are called the singular directions of F .

(3) If F is k-summable and ξ, ζ ∈ S1 are such that d(ξ, ζ) < π, and if the interval
U(ξ, ζ) contains no singular directions of F then, by analytic extension,
there exists a unique f ∈ A(U(ξ, ζ, kµ)) such that f�I(θ,kµ)= SI(θ,k)F , for
θ ∈ U(ξ, ζ). We call this f the k-sum of F on U(ξ, ζ) and denote it by
Sξ,ζF .

Let S ⊆ S1 be finite, and ssume that F is k-summable with its singular directions
in S. As in the case of simple summability, for θ ∈ S1 and ∗ ∈ {+,−}, we define
the Stokes phenomenon of F in the direction θ as

∆θF := Sθ,θ+(S)F − Sθ,θ−(S)F.

Note again that ∆θF is independent of S, and that ∆θF = 0 whenever θ /∈ S.
By quasianalyticity, the tuples

(
S+
θ F
)
θ∈S1 and

(
S−θ F

)
θ∈S1 are uniquely deter-

mined by F and S. Moreover, by definition, each ∆θF belongs to Ak1(V (θ, kµ)). It
follows that the tuple

(
S+
θ F
)
θ∈S1 represents and element in

(
A/Ak1

) (
S1
)
, which

we denote by SF and call the k-sum of F . Note that SF depends on F but not
on S.

Finally, for the purposes of this paper2, F is multisummable if there exists a
tuple k as above such that F is k-summable.

Remark 20. It follows from quasianalyticity and basic complex analysis that F
converges if and only if F is multisummable and has no singular directions.

2If one replaces S1 by its universal covering space R, all definitions and facts stated in this
section are easily adapted to all tuples k satisfying k1 > 0; see [11, Section 2].
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The collection of all multisummable series (as defined here) forms a subalgebra of
C[[X]] containing all summable series [11, Section 2]. Moreover, by [11, Proposition
2.3], this algebra is stable under composition on the left with convergent power
series. In a particular situation, as described next, we need a more precise statement
of this kind.

Composition of convergent with multisummable series. Let m,n ∈ N and
F ∈ C[[X,X11, . . . , X1n, X21, . . . , Xmn]] be convergent; we abbreviate

F (X, {Xij}) := F (X,X11, . . . , X1n, X21, . . . , Xmn),

where i = 1, . . . ,m and j = 1, . . . , n. Given Hij ∈ C[[X]] with Hij(0) = 0, for each
pair (i, j), we set

(F ◦ {Hij})(X) := F (X, {Hij(X)}) ∈ C[[X]].

In this situation, if J ⊆ S1 is an interval and hij ∈ A(J) are such that each
hij(0) = 0, we write SF ◦ {hij} for the element f ∈ A(J) represented by the
function z 7→ SF (z, {hij(z)}) : V −→ C, for some appropriate V ∈ VJ .

Similarly, we need to define composition of SF with elements of
(
A/Al

)
(S1):

for l ≥ 1/2, open intervals J, J ′ ⊆ S1, θ ∈ J ∩J ′ and α ∈ A(J) and β ∈ A(J ′), note
that

([β]Al)θ = ([α]Al)θ if and only if (β − α)θ ∈
(
Al
)
θ
.

Thus, given l > 1/2 and gij ∈
(
A/Al

)
(S1), for 1 ≤ i ≤ m and 1 ≤ j ≤ n, we define

the composition SF ◦ {gij} ∈
(
A/Al

)
(S1) by setting, for θ ∈ S1,

(SF ◦ {gij})θ := [SF ◦ {αij}]Al ,

where each αij ∈ Aθ represents (gij)θ. This composition is well defined: if βij ∈ Aθ
also represents (gij)θ, then the polynomial growth of SF implies that (SF ◦ {βij} − SF ◦ {αij})θ ∈(
Al
)
θ
, as required.

For the next proposition, we let l ≥ 1 and H1, . . . ,Hm ∈ C[[X]] be l-summable,
with corresponding sets Si ⊆ S1 of singular directions and satisfying Hi(0) = 0. Let
also P1, . . . , Pn ∈ C[X] be polynomials satisfying Pj(0) = 0. We set νj := ord(Pj) >
0 and denote by 1 ≤ k1 < k2 < · · · < kµ the elements of the set {νj l : j = 1, . . . , n}.

By Remark 15(2), each Hi ◦ Pj is k(i, j)-summable for some unique k(i, j) ∈
{k1, . . . , kµ} and S(Hi ◦ Pj) ∈

(
A/Ak(i,j)

)
(S1), so that

[S(Hi ◦ Pj)]Ak1/Ak(i,j) ∈
(
A/Ak1

)
(S1).

We set k := (k1, . . . , kµ) and let S′ ⊆ S1 be the union of all directions associated
to each Hi ◦ Pj as in Remark 15(2) from the set Si. Note that, for θ ∈ S1 and
i = 1, . . . ,m, we have θ+(Si) ≥ θ+(S′) and θ−(Si) ≤ θ−(S′); setting

θ∗ := θ∗(S′)

below, it follows that U(θ, θ∗, kµ) ⊆ U(θ, θ∗(Si), k(i, j)) and the restriction

Sθ,θ∗(Hi ◦ Pj)�U(θ,θ∗,kµ)∈ A(U(θ, θ∗, kµ))

is well defined.

Proposition 21. For θ ∈ S1 and ∗ ∈ {+,−}, the series F ◦{Hi◦Pj} is k-summable
in every direction contained in U(θ, θ∗) and satisfies

Sθ,θ∗(F ◦ {Hi ◦ Pj}) = SF ◦
{
Sθ,θ∗(Hi ◦ Pj)�U(θ,θ∗,kµ)

}
;
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in particular, the series F ◦{Hi ◦Pj} is k-summable with singular directions among
those in S′.

Proof. We fix θ, ∗ and φ ∈ U(θ, θ∗). For i ≤ m, j ≤ n and λ ≤ µ, we define a sum
hλij of Hi ◦ Pj on the interval I(φ, kλ) ⊆ U(θ, θ∗, kλ) such that hµij ∈ A(I(φ, kµ))

and hλij ∈
(
A/Akλ+1

)
(I(φ, kλ)) for λ < µ, as follows:

hλij :=


Sθ,θ∗(Hi ◦ Pj)�I(φ,kµ) if λ = µ,

[Sθ,θ∗(Hi ◦ Pj)]Akλ+1�I(φ,kλ) if λ < µ and k(i, j) ≤ kλ+1,

[S(Hi ◦ Pj)]Akλ+1/Ak(i,j)�I(φ,kλ) if k(i, j) > kλ+1.

Then, for 1 ≤ λ ≤ µ, we set fλ := SF ◦
{
hλij
}

; in particular,

fµ = SF ◦
{
Sθ,θ∗(Hi ◦ Pj)�I(φ,kµ)

}
by definition. It is straightforward from this definition that F ◦ {Hi ◦ Pj} is k-
summable in the direction φ with k-sum (f1, . . . , fµ) on I(φ, k). The proposition
now follows, since SI(φ,k)(F ◦ {Hi ◦ Pj}) = fµ in this case. �

6. Putting it all together

This section is devoted to the proof of Theorem 8; so we assume that system
(1) is in interlaced final form (5), and we let H be its unique formal solution at
0 satisfying H(0) = 0. By Remark 10, it suffices to show that H is 0-SAT. As
justified after the statement of Theorem 8, we shall assume throughout this proof
that r > 0. We adopt all the notations introduced in Example 17.

We now let n ∈ N, F ∈ R[[X,Z]] be nonzero and convergent, with Z = (Zij)1≤i≤2,1≤j≤n,
and let P1, . . . , Pn ∈ R[X] be positive and q-short of orders ν1, . . . , νn > 0, respec-
tively, and we adopt all corresponding notations introduced for Proposition 21 (with
m = 2, l there equal to q here and Si there equal to S here) and Definition 19. We
assume, for a contradiction, that

(14) F ◦ {Hi ◦ Pj} = 0.

In this situation, we chose F as follows: we let ΛF ⊂ {1, 2} × {1, . . . , n} be the
set of all indices (i, j) such that F depends on Zij , that is, the series obtained
from F by replacing the indeterminate Zij with 0 is different from F . Replacing
F if necessary, we may assume the cardinal |ΛF | is minimal among all non-zero
convergent F satisfying (14), and we let F be the set of all nonzero convergent
power series G(X,Z) such that G ◦ {Hi ◦ Pj} = 0 and |ΛG| = |ΛF |.

The following lemma also appears on p. 437 of the proof of [13, Theorem 4.4];
we include its proof here for completeness’ sake.

Lemma 22. Let (i0, j0) ∈ ΛF . There exists G ∈ F such that

(∂G/∂Zi0j0) ◦ {Hi ◦ Pj} 6= 0.

Proof. Let (i0, j0) ∈ ΛF , and let Hi0j0 be the tuple obtained from the tuple {Hi◦Pj}
after replacing the entry Hi0 ◦Pj0 by the indeterminate Zi0j0 ; in particular, Hi0j0 ∈
R[[X,Zi0j0 ]]2n. We claim that there exists d ≥ 1 such that

(
∂dF/∂Zdi0j0

)
◦{Hi◦Pj} 6=
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0: otherwise, by Taylor expansion, the power series

F ◦Hi0j0 =
∑
m≥0

1

m!

∂mF

∂Zmi0j0
◦ {Hi ◦ Pj} · ((Hi0 ◦ Pj0)− Zi0j0)m

=
∑
k≥0

Gk(X) · Zki0j0

in R[[X,Zi0j0 ]] is identically zero; in particular, each Gk ∈ R[[X]] is zero. On the
other hand, writing Z ′ := {Zij : (i, j) 6= (i0, j0)}, H ′i0j0 := {Hi ◦ Pj : (i, j) 6=
(i0, j0)} and

F (X,Z) =
∑
k≥0

Fk(X,Z ′) · Zki0j0 ,

we see that 0 = Gk = Fk ◦H ′i0j0 for each k. Since each Fk converges and |ΛFk | <
|ΛF |, the minimality of |ΛF | implies that Fk = 0 for every k, hence F = 0, a
contradiction.

Finally, we chose d minimal such that
(
∂dF/∂Zdi0j0

)
◦{Hi ◦Pj} 6= 0, and we take

G := ∂d−1F/∂Zd−1
i0j0

. �

The rest of the proof is based on the following observation: recall that, for θ ∈ S1,
∗ ∈ {+,−} and each (i, j), the series Hi ◦ Pj is k(i, j)-summable in every direction
contained in U(θ, θ∗) and that

V (θ, kµ) ⊆ V (θ, k(i, j)) = U(θ, θ+, k(i, j)) ∩ U(θ, θ−, k(i, j)).

Claim. There exist θ ∈ S1 and G ∈ F such that

SG ◦ {Sθ,θ+(Hi ◦ Pj)�V (θ,kµ)} − SG ◦ {Sθ,θ−(Hi ◦ Pj)�V (θ,kµ)} 6= 0.

Assuming this claim holds, we finish the proof of Theorem 8 as follows: by
Proposition 21, the series G ◦ {Hi ◦ Pj} is multisummable and satisfies

∆θ(G ◦ {Hi ◦ Pj}) =

SG ◦ {Sθ,θ+(Hi ◦ Pj)�V (θ,kµ)} − SG ◦ {Sθ,θ−(Hi ◦ Pj)�V (θ,kµ)},

for θ ∈ S1. Thus, the claim implies that G ◦ {Hi ◦ Pj} has at least one singular
direction, so by Remark 20, the series G ◦ {Hi ◦ Pj} is divergent, which contradicts
the assumption that it is zero; this then proves the theorem.

Proof of the claim. Let Y = {Yij}, for (i, j) ∈ {1, 2} × {1, . . . , n}; by Remark 16,
there are convergent Fij ∈ R[[X,Y, Z]] such that

F (X,Y )− F (X,Z) =
∑
(i,j)

Fij(X,Y, Z) · (Yij − Zij).
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Therefore, for θ ∈ S1, we get from Remark 15(2) that

SF ◦ {Sθ,θ+(Hi ◦ Pj)�V (θ,kµ)} − SF ◦ {Sθ,θ−(Hi ◦ Pj)�V (θ,kµ)}

=
∑
(i,j)

Dij,θ ·
(
Sθ,θ+(Hi ◦ Pj)�V (θ,kµ) − Sθ,θ−(Hi ◦ Pj)�V (θ,kµ)

)
=
∑
(i,j)

Dij,θ ·∆θ(Hi ◦ Pj)�V (θ,kµ)

=
∑
(i,j)

Dij,θ · (∆νjθHi ◦ Pj)�V (θ,kµ),

(15)

where Dij,θ ∈ A1/k1(V (θ, kµ)) has asymptotic expansion (see Remark 16)

(16) TDij,θ = Fij(X, {Hi ◦ Pj}, {Hi ◦ Pj}) =
∂F

∂Zij
(X, {Hi ◦ Pj}),

independent of θ. We now chose θ ∈ S1 such that νjθ is a singular direction of H
for at least one j ∈ {1, . . . , n}; since H is divergent, such θ and j exist by Remark
15(1). Setting

Ω := {j : νjθ is a singular direction of H},
we obtain from (13) that, in restriction to V (θ, kµ),

(17)
∑
(i,j)

Dij,θ · (∆νjθHi ◦ Pj)

=
∑
j∈Ω

exp(Q ◦ Pj)) · P
aq
j ·

(
D1j,θ D2j,θ

)
· (Cθ ◦ Pj) · (µθ ◦ Pj) · (E ◦ Pj),

where we write Q := Qa.
To finish the proof of the claim, it suffices to find φ ∈ V (θ, kµ) such that, after

replacing F by a suitable G ∈ F , the restriction of any representative of (17) to the
ray Rφ := {reiφ : r > 0} is not zero. From the fact that the Pj are distinct q-short
real polynomials, we obtain the following (compare with p. 441 of the proof of [13,
Theorem 4.4]):

Subclaim. For distinct j1, j2 ∈ Ω, the meromorphic function Q ◦Pj1 −Q ◦Pj2 has
nonzero principal part at 0.

Proof. We write i instead of ji (for readability) and Pi(z) = cνiz
νi + · · · + cdiz

di

such that νi(q + 1) > di and cνi > 0, for i = 1, 2; in particular, νi > 0. Then

(Q ◦ Pi)(z) = − a0

cqνi
z−νiq + higher order terms,

so the subclaim follows if ν1 6= ν2, or if ν1 = ν2 and cν1 6= cν2 . So we assume from
now on that ν := ν1 = ν2 and cν1 = cν2 ; then there exist c 6= 0 and ν < µ < ν(q+1)
such that P := P2 − P1 satisfies

P (z) = czµ + higher order terms.

Therefore,

P2 = P1 + P = P1

(
1 +

P

P1

)
=

P1

1 + P̃
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with P̃ ∈ C[[X]] of order µ−ν ∈ (0, νq). Setting Q̃(z) := −zqQ(z) ∈ R[z], we obtain

Q ◦ P2 = −

(
1 + P̃

P1

)q
· Q̃ ◦ (P1 + P )

= −

(
1 + P̃

P1

)q
·

(
Q̃ ◦ P1 +

Q̃(1) ◦ P1

1!
P + · · ·+ Q̃(q) ◦ P1

q!
P q

)

= −

(
1 + P̃

P1

)q
·
(
Q̃ ◦ P1 +O(xµ)

)
= (Q ◦ P1)− 1

P q1
·
(
qP̃ · (Q̃ ◦ P1) +O(zµ−ν+1)

)
.

Now note that the term
(
qP̃ · (Q̃ ◦ P1)

)
/P q1 belongs to C((X)) and has order µ −

ν − νq < 0, which finishes the proof of the subclaim. �

By the subclaim, there exists φ ∈ V (θ, kµ) such that the germ at 0 of the
restriction qj1,j2 of the real part of Q◦Pj1−Q◦Pj2 to Rφ satisfies limz→0 |qj1,j2(z)| =
∞, for distinct j1, j2 ∈ Ω. Thus, there is a unique j0 ∈ Ω such that limz→0 qj,j0(z) =

−∞ for all j ∈ Ω\{j0}; in particular, the germ at 0 of the restriction of
exp(Q(Pj(z))
exp(Q(Pj0 (z))

to Rφ is exponentially flat for each such j. Therefore, dividing (17) by exp(Q◦Pj0),
we see that it now suffices to prove, after replacing F by a suitable G ∈ F , that
the germ at 0 of the factor

(18)
(
D1j0,θ D2j0,θ

)
· (Cθ ◦ Pj0) · (µθ ◦ Pj0) · (E ◦ Pj0)

is not zero (since, in this case, the germ at 0 of this restriction is of polynomial
growth, as shown in Example 17).

By Lemma 22 and (16), after replacing F by a suitable G ∈ F , there exists
m ∈ N such that

TDij0,θ = αiX
m + higher order terms, for i = 1, 2,

and α1 and α2 are real and not both 0. Similarly, by Example 17, there exists
m′ ∈ N such that

Tµθ,i ◦ Pj0 = βiX
m′ + higher order terms, for i = 1, 2,

and β1, β2 ∈ C are such that β1β2 6= 0. Taking into account the form of the matrix
Cθ(0) in Example 17, the factor (18) is therefore equal to

(
δ1 δ2

)
· (E ◦Pj0), where

δ1 = β1(α1 + iα2)xm+m′ + ε1

δ2 = β2(α1 − iα2)xm+m′ + ε2
(19)

with εi ∈ A(V (θ, kµ)) such that εi = o(xm+m′) as x → 0, for i = 1, 2. Since
e2 = 1/e1 and b0 6= 0 in the definition of e1, we get (working in the stalk over
θ, say) that

(
δ1 δ2

)
· (E ◦ Pj0) = 0 if and only if (e1 ◦ Pj0)2 = −δ2/δ1, which is

impossible by (19). �
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Scientifique, 73376 Le Bourget-du-Lac Cedex, France
E-mail address: Olivier.Le-Gal@univ-savoie.fr

Universidad de Valladolid, Departamento de Álgebra, Análisis Matemático, Ge-

ometŕıa y Topoloǵıa, Facultad de Ciencias, Campus Miguel Delibes, Paseo de Belén,
7, E-47011 Valladolid, Spain

E-mail address: fsanz@agt.uva.es

Department of Mathematics and Statistics, McMaster University, 1280 Main Street

West, Hamilton, Ontario L8S 4K1, Canada
E-mail address: speisseg@math.mcmaster.ca


