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LOCAL MONOMIALIZATION OF GENERALIZED ANALYTIC

FUNCTIONS

R. MARTÍN, J.-P. ROLIN, AND F. SANZ

Abstract. Generalized power series extend the notion of formal power series

by considering exponents of each variable ranging in a well ordered set of
positive real numbers. Generalized analytic functions are defined locally by the
sum of convergent generalized power series with real coefficients. We prove a
local monomialization result for these functions: they can be transformed into

a monomial via a locally finite collection of finite sequences of local blowings-
up. For a convenient framework where this result can be established, we
introduce the notion of generalized analytic manifold and the correct definition

of blowing-up in this category.

1. Introduction

It is well known that an analytic function defined on an analytic manifold can be
transformed into normal crossings via a locally finite collection of finite sequences
of local blowings-up [BM88, Theorem 4.4]. Our goal is to establish a similar result
for a wider class of functions, namely the class of generalized analytic functions
defined on generalized analytic manifolds.

The notion of convergent generalized power series is introduced in [DS98] in
order to show the existence of o-minimal expansions of the ordered real field in which
the convergent Dirichlet series are definable (as our work is not really concerned with
these model-theoretic notions, we do not give details here). Roughly speaking, the
generalized series are essentially defined as convergent series of monomials, where
the variables are raised to positive real powers (see the precise definitions and a
few examples in Section 2). Hence these functions are a priori defined for positive
values of the variables.

A large part of the present paper is devoted to the description of a convenient
framework in vue of our monomialization result, including in particular the notion
of generalized analytic manifold . Indeed, although many useful results on
convergent generalized series are given in [DS98], a complete treatment of these
objects in the language of real analytic geometry, involving a precise definition of
generalized analytic manifolds and their morphisms, admissible centers of blowings-
up, and blowings-up morphisms, was still missing. Above all, although a notion
of blow-up substitution is given in [DS98], as well as process of simplification of
generalized series involving these substitutions, no local monomialization result is
proved there (because such a result is not needed in their proof of o-minimality).

We consider the present work as a very first step of a more general program. Our
next goal is to define generalized semianalytic and subanalytic subsets of generalized
manifolds, to prove a uniformization theorem for generalized subanalytic sets, and,
if possible, a rectilinearization theorem for generalized subanalytic sets in the spirit
of Hironaka’s rectilinearization [Hir73, Theorem 7.1]. Consequently, we do not
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2 R. MARTÍN, J.-P. ROLIN, AND F. SANZ

give here the detailed proof of every proposition. We just present the framework,
announce the main result and sketch the proofs. A complete and self contained
text awaits a next work.

We recall in Section 2 the main definitions and properties of convergent gener-
alized series, following the terminology and notations of [DS98]. In Section 3 we
establish the formal framework needed to state our uniformization result. We give
in particular the definitions of generalized manifolds (which are actually manifolds
with boundary and corners, since the generalized series are defined for positive
values of the variables), generalized analytic maps, and blowings-up. Notice that
working with manifolds with boundaries and corners leads to consider oriented
real blowings-up, in contrast with the projective real blowings-up used in
[BM88] or [Hir73], for example. Moreover, in order to preserve the structure of the
boundary as a divisor with normal crossings, the center of the blowing-up must not
only be a smooth closed submanifold, but have normal crossings with the boundary.
Such centers will be called admissible.

On the other hand, there is a specific problem for generalized manifolds when
we want to define blowings-up with admissible center. The classical process which
consists in defining blowings-up in the local models of the manifolds, and then
in “lifting” these morphims on manifolds via local charts, does not work as such
here. In fact, there are isomorphisms that do not lift to the blown-up space. We
actually need to define blowings-up with respect to a given coordinate system.
A more subtle and convenient way to overcome this difficulty is to consider only
blowings-up whose centers are contained in a so called standarizable generalized
manifold. These manifolds, defined and studied in 3.4, are essentially analytic
manifolds (with boundary and corners) whose structural sheaf has been “enriched”
by the introduction of generalized analytic functions. We then take advantage
of the fact that the notion of blowing-up morphism is well defined in the category
of analytic manifolds, to extend it to the “enriched” generalized manifolds. This
procedure is developed in 4.1.

It is worth to notice that the concept of standardizable manifold is pertinent:
we show in 3.4 an example of generalized manifold which is not standarizable, i.e.
that does not come from a (standard) analytic manifold by enriching its structural
sheaf. It also points out that there may be closed admissible centers of a generalized
manifold which can not be centers of blowing-up in any raisonable way. Examples
of this kind (and obstruction to blow-up) only occur in the global setting, every
generalized analytic manifold being locally standarizable.

Section 4 is devoted to our main result, which asserts the monomialization of
generalized analytic functions via local blowings-up:

Theorem B. Let M be a generalized analytic manifold, p an point of M , and f a
generalized analytic function defined over M . Then there exists a finite family

Σ = {πj : Wj →M,Lj}j∈J

where:

(1) each πj is the composition of finitely many local blowings-up (with admis-
sible centers)

πj : Wj =Wj,nj

πj,nj→ Wj,nj−1

πj,nj−1→ Wj,nj−2 → · · · πj,1→ Wj,0 =M
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LOCAL MONOMIALIZATION OF GENERALIZED ANALYTIC FUNCTIONS 3

(2) each Lj is a compact subset of Wj such that ∪j∈Jπ (Lj) is a compact neigh-
borhood of p in M

such that for all j ∈ J , f ◦ πj : Wj → R is of monomial type at any point of Lj.

The first step of its proof, which consists in transforming some “generalized” vari-
ables into “analytic variables” via convenient local blowings-up, follows a scheme
already described in [DS98]. This procedure enables us to produce sufficiently many
analytic variables so that Weierstrass Preparation Theorem with respect to one of
those variables holds. We are then led to the case where f is a distinguished poly-
nomial whose coefficients are generalized convergent series. Its second step, which
consists mainly in the reduction of the degree of the distinguished polynomial, fol-
lows the great lines of the proof of Theorem 4.4 in [BM88] or Proposition 3.8 in
[RSW03].

Let us add a final remark. The term “local blowing-up” means, as usual, a
blowing-up with a locally closed admissible center (that is, closed in some open
subset of its ambient space). One may wonder about a possible global resolution
of singularities of generalized functions. Namely, is it possible to improve the
Local Monomialization Theorem so that the family Σ consists in a single sequence
of blowing-ups (|J | = 1)

π : Mn
πn→Mn−1

πn−1→ Mn−2
πn−2→ · · · π1→M0 =M

such that is πj is “global”, that is, a blowing-up with respect to a closed admis-
sible center of the whole manifold Mj−1? This question could be an interesting
continuation of the present work. One of the first, though not minor, tasks for
this latter result, is to prove that we do not encounter examples, as the one that
was mentioned above, of admissible centers which can not be blown-up (i.e. which
admit no standarizable open neighborhood).

2. Formal and convergent generalized power series

2.1. Formal generalized power series.

2.1.1. Definitions. We recall the definitions given in [DS98]. Let m range over N
and let X = (X1, . . . , Xm) be a tuple of m distinct indeterminates. Consider a
commutative ring A with 1 ̸= 0. A formal generalized power series in the
variables X with coefficients in A is a map s : [0,∞)

m → A, that we write as the
fomal series

s = s (X) =
∑

α∈[0,∞)m

sαX
α

where sα = s (α) ∈ A, Xα denotes the formal monomial Xα1
1 · · ·Xαm

m , and the
support

supp (s) = {α ∈ [0,∞) : sα ̸= 0}
is a good set , i.e. is contained in the cartesian product S1 × · · · × Sm of well
ordered subsets of [0,∞). In particular, every good set is finite or countable. These
series are added and multiplied in the usual way, and form an A-algebra denoted
by A [[X∗]]. The coefficient s0 = s (0) is the constant term of s. A series s is a
unit in A[[X∗]] if and only if s0 is a unit in A. Examples of such series are given in
2.2.1.

We equip the set [0,∞)
m

with the partial order α = (α1, . . . , αm) ≤ β =
(β1, . . . , βm) ⇔ αi ≤ βi for i = 1, . . . ,m (which corresponds to the division order
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4 R. MARTÍN, J.-P. ROLIN, AND F. SANZ

of the monomials, Xα|Xβ). For s ∈ A [[X∗]], the minimal support Suppmin (s)
of s is the set of minimal elements of Supp (s) (this set is finite since Supp (s) is a
good set). We have

s =
∑

α∈Suppmin(s)

Xαuα

where uα ∈ A [[X∗]] and uα (0) ̸= 0 for every α ∈ Suppmin (s). This expression
is called the monomial presentation of s. In particular, a series is called of
monomial type if its support has exactly one minimal element.

2.1.2. Mixed series. The following subrings of generalized power series play an im-
portant role in the following. Let

(X,Y ) = (X1, . . . , Xm, Y1, . . . , Yn)

be a tuple of (m+ n) distinct variables. We denote by A [[X∗, Y ]] the subring of
A
[
[(X,Y )

∗]
] whose elements are the series

s =
∑

(α,β)∈[0,∞)m×Nn

sα,βX
αY β ,

that is, generalized series with integers exponents in the variables Y . These series
are called mixed series in the variables (X,Y ). Note that A [[X∗, Y ]] is a proper
subring of A [[X∗]] [[Y ]]. It is convenient to call the variables X generalized and
the variables Y analytic. As a matter of notation, we will write A[[X∗, Y ]]m,n

when we want to make explicit the number of generalized and analytic variables

2.1.3. Composition morphims. In the classical framework of (usual) formal power
series, the composition makes sense: if s ∈ A [[Y ]] and t = (t1, . . . , tn) ∈ A [[W ]]n

(where W = (W1, . . . ,Wl)), with t1 (0) = · · · = tn (0) = 0, then we may substitute
t for Y and obtain the series s (t (W )) ∈ A [[W ]].

We can proceed similarly with mixed series. If s ∈ A [[X∗, Y ]] and t = (t1, . . . , tn) ∈
A [[W ∗]]n, we can substitute t for Y in s, and obtain the series s (X, t (W )) ∈
A
[
[(X,W )

∗]
]. But substitution inside generalized variables is much more delicate.

Consider for example s (X) = X1/2 and t (W1,W2) =W1+W2. There is no reason-
able candidate in R

[
[(W1,W2)

∗]
] to be s (t (W1,W2)), that is to be a square root

of W1 +W2.
However, the following kinds of substitution make sense:

Proposition 2.1. Let X = (X1, . . . , Xm), Y = (Y1, . . . , Yn) , W = (W1, . . . ,Wp)
and Z = (Z1, . . . , Zq) denote multivariables.

(1) Let s ∈ A [[X∗, Y ]] and t = (t1, . . . , tn) ∈ A [[W ∗, Z]]n with t1 (0) = · · · =
tn (0) = 0. Then s (X∗, t (W,Z)) ∈ A

[
[(X,W )

∗
, Z

]
]. Moreover, the map

s 7→ s (X∗, t (W,Z)) is an A-algebra homomorphism.

(2) Let s ∈ R [[X∗]] and t = (t1, . . . , tm) ∈ R [[W ∗]]. If ti = W βi

ui with
βi ̸= (0, . . . 0), ui ∈ R [[W ∗]] and ui (0) > 0 for i = 1, . . . ,m (that is, ti is of
monomial type), then s (t (Z)) ∈ R [[W ∗]]. Moreover, the map s 7→ s (t (W ))
is an R-algebra homomorphism.

Sketch of the proof. We use the following notion from [DS98]: a family {si}i∈I of
generalized series (in m variables) is called a summable family if

• (a) for each α ∈ [0,∞)m, there are only finitely many i ∈ I such that
α ∈ Supp(si) and
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LOCAL MONOMIALIZATION OF GENERALIZED ANALYTIC FUNCTIONS 5

• (b) the union ∪i∈ISupp(si) is a good set of [0,∞)m. In this case, the sum∑
i∈I si is well defined as a generalized series.

Now, for part 1, if s =
∑

(α,β)∈[0,∞)m×Nn s(α,β), we only have to check that the

family

{s(α,β)tβ1

1 · · · tβn
n }(α,β)∈[0,∞)m×Nn

is a summable family. Similar arguments are needed for part 2 of the Proposition.
But we have to show first that for any a ∈ [0,∞), the series uai ∈ R[[W ∗]] is well
defined by

uai =
∑
k∈N.

(
a
k

)
ui(0)

a−k(ui − ui(0))
k.

�

We can complete the second point of the former proposition by a result, not
mentionned in [DS98], which states that the only series which admit a Nth root
for every N ∈ N are the series of monomial type in the generalized variables. It
is used in section 3.3.2, in order to give the local expression of morphims between
generalized analytic manifolds.

Proposition 2.2. Let s ∈ R [[X∗, Y ]] be a formal generalized power series where
X = (X1, . . . , Xm), Y = (Y1, . . . , Yn) are respectively the generalized and the an-
alytic variables. Suppose that s ̸≡ 0 and that for every integer N ∈ N s admits a
N th root sN ∈ R [[X∗, Y ]]. Then s = Xαu, where α ∈ [0,∞)

m
and u ∈ R [[X∗, Y ]]

is a unit with u (0, 0) > 0.

Sketch of proof. We consider s as a series s =
∑

α∈[0,∞)m sαX
α ∈ R[[Y ]][[X∗]] in

m variables. The result is clear if m = 0: a formal series with integer powers which
has N th-roots for any N is a unit.

Assume that m > 0. The Newton polyhedron ∆(s) of s is the convex hull in
Rm of Supp(s) + Rm

+ . In fact, it is equal to the convex hull of Suppmin(s) + Rm
+

and thus ∆(s) is actually a finite convex polyhedron. It suffices to prove that ∆(s)
has a unique vertex: in that case, we would have s = Xαt where t ∈ R[[Y ]][[X∗]]
with initial coefficient t0 ∈ R[[Y ]] ̸= 0 and the hypothesis would imply that t0 has
N th-roots (in R[[Y ]]) for any N . Thus t0 would be a unit.

Assume that ∆(s) has at least two vertices. We use the following notations for
any given ρ = (ρ1, ..., ρm) ∈ (0,∞)m and any t =

∑
α tαX

α ∈ R[[Y ]][[X∗]]:

(1) The ρ-order of t is νρ(t) = min{ρ · α/α ∈ Supp(t)}, where · is the usual
scalar product.

(2) The ρ-initial part of t is Inρ(t) =
∑

α/ρ·α=νρ(t)
tαX

α.

(3) t is called ρ-quasihomogeneous if t = Inρ(t).

Geometrically, νρ(t) is the minimum of real numbers c ≥ 0 such that the hyperplane
Hρ,c = {ρ1X1 + · · · ρmXm = c} intersects ∆(t) and the support of Inρ(t) is equal
to the set of vertices of ∆(t) contained in Hρ,νρ(t). Thus Supp(Inρ(t)) is finite for

any ρ and any t. On the other hand, if t has N th-roots for any N then Inρ(t) too
and any N th-root of Inρ(t) is ρ-quasihomogeneous with ρ-order equal to νρ(t)/N .

Choosing a convenient vector ρ, we can assume that our series s with all N th-
roots has a finite support contained in a segment [α, β] in Rm

+ , not parallel to a
coordinate axis and so that α, β are both in Supp(s) and α ̸= β. Let us look for a
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6 R. MARTÍN, J.-P. ROLIN, AND F. SANZ

contradiction. We write

s =
∑

λ∈[0,1]

sλX
(1−λ)α+λβ , sλ ∈ R[[Y ]],

where {λ / sλ ̸= 0} (with some abuse, also denoted by Supp(s)) is finite and contains
{0, 1}. A fixed N th-root, sN , of s writes accordingly as

sN =
∑

λ∈[0,1]

sN,λX
(1−λ) α

N +λ β
N , sN,λ ∈ R[[Y ]],

where {0, 1} ⊂ Supp(sN ), too. Since (sN )N = s, we have, for any λ ∈ [0, 1], the
formula

(2.1) sλ =
∑

λ1+···+λN=Nλ

sN,λ1 · · · sN,λN .

LetN big enough so that for any λ ∈ Supp(s), either λ = 0 or λ > 1/N . Considering
equation 2.1 for λ = 1/N , we notice that the N -tuples of the form (λ1, . . . , λN ) =

(0, ..., 1(j
th), ..., 0) in this sum give the term NsN,1(sN,0)

N−1) ̸= 0. Since s1/N = 0,
we must have a different N -tuple (λ1, ..., λN ) so that λj ∈ Supp(sN ) and λ1+ · · ·+
λN = 1. Thus, there exists some 0 < γ1 < 1 in the support of sN . Repeating the
argument for λ = γ1/N we find an element 0 < γ2 < γ1 in Supp(sN ). We construct
inductively a strictly decreasing sequence in Supp(sN ), contradicting the well order
of this support. �

2.1.4. The b invariant, a numerical data towards a monomialization result. This
numerical invariant is introduced in [DS98] to measure how far a generalized series
is from being of monomial type.

Let α, β ∈ [0,∞)
m

. Put inf (α, β) := (min {α1, β1} , . . . ,min {αm, βm}). If
inf (α, β) ∈ {α, β} (which means that one of the monomials Xα, Xβ divides the
other one), then put d (α, β) = 0. Otherwise, there are two possibilities:

(1) inf (α, β) = 0. Then put d (α, β) := a+ b, where

a := |{j ∈ {1, . . . ,m} : αj ̸= 0}| and b := |{j ∈ {1, . . . ,m}} : βj ̸= 0| .

(2) inf (α, b) ̸= 0. Then d (α, β) := d (α− inf (α, β) , β − inf (α, β)).

We note gcd
(
Xα, Xβ

)
:= X inf(α,β) and d

(
Xα, Y β

)
:= d (α, β).

Definition 2.3. Given s ∈ A [[X∗]], we define

b (s) = (b1 (s) , b2 (s)) = (#Suppmin (s)− 1, b2 (s)) ∈ N2,

where

b2 (s) =

{
0 if b1 (s) = 0

min {d (α, β) : α, β ∈ Suppmin (s) , α ̸= β} otherwise.

The following substitution, introduced in [DS98, 4.9], is intended to express a
blowing-up transformation in some local charts. It generalizes the classical notion
of quadratic blowing-up to the more general framework of series in monomials with
positive real exponents (It is an example of the permissible substitution stated in
Proposition 2.1, part 2).

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



LOCAL MONOMIALIZATION OF GENERALIZED ANALYTIC FUNCTIONS 7

Definition 2.4. For i, j ∈ {1, . . . ,m} and γ > 0 consider the injective A-algebra
endomorphism of A [[X∗]] which extends the following definition:

ςγi,j (Xk) = Xk for k ̸= i and ςγi,j (Xi) = XiX
γ
j .

The following simple and important fact is proved in [DS98]:

Proposition 2.5. Let s ∈ A [[X∗]] with m ≥ 2.

(1) If b(s) = (0, 0) then, for every different i, j ∈ {1, . . . ,m} and γ > 0, we
have b

(
ςγi,j (s)

)
= 0.

(2) If b (s) ̸= (0, 0) then there exist different i, j ∈ {1, . . . ,m} and γ > 0 such
that

b
(
ςγi,j (s)

)
< b (s) and b

(
ς
1/γ
j,i (s) < b (s)

)
.

The first point of this result garantees that if a series is of monomial type,
then further transformations of the same type, possibly introduced to lower the
b-invariant of other series, will not alter this property. The second point states that
if a series is not of monomial type, there exists such a substitution which lowers
the number of elements of its minimal support.

2.2. Convergent generalized power series.

2.2.1. Definitions and examples. Suppose now that A is a normed ring with norm
|·|. For each polyradius r = (r1, . . . , rm) ∈ (0,∞)

m
and s ∈ A [[X∗]], we put

∥s∥r =
∑

|sα| rα ∈ [0,∞]

and we let A {X∗}r be the normed subalgebra of A [[X∗]] consisting of the s’s with
∥s∥r <∞, with norm given by ∥·∥r. Each s (X) ∈ A {X}r gives rise to a continuous
function (still denoted by s) x 7→ s (x) :=

∑
sαx

α : [0, r1] × · · · × [0, rm] → R,
analytic on the interior (0, r1)× · · · × (0, rm) of its domain.

We put

A {X∗} =
∪
r

A {X∗}r ,

which is also a subring of A [[X∗]].
Let us give a few examples of such series, with A = R, in which we see different

occurences of the notion of good support.

Examples. 1) Consider a real analytic germ F ∈ R {x1, . . . , xm}, and m positive

(and possibly irrational) numbers λ1, . . . , λm. Then the germ f(xλ1
1 , . . . , xλm

m ) ad-
mits a representative in R {X∗}r for some r ∈ (0,∞)

m
. Its support is included in

the cartesian product λ1N× · · · × λmN.
2) Consider an ordinary Dirichlet series g (t) =

∑
j≥1

aj

jt with abscissa of

convergence t0 ∈ R. We may study the behavior of g in a neighborhood of +∞ in
considering the logarithmic chart t = − log x. Hence we consider the convergent
generalized series f : x 7→ g (− log x) =

∑
j≥1 ajx

log j : [0, e−t0 ] → R. Its support

{log j : j ∈ N>0} is an increasing sequence of real numbers, hence is obviously well
ordered.

3) More generally, given an increasing sequence (λj)j≥1 of real numbers whose

limit is +∞, the function g : t 7→
∑

j≥1 aje
−λjt is called aDirichlet series of type

(λj) (see [HR64] for example). If t0 is its abscissa of convergence, then the function
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8 R. MARTÍN, J.-P. ROLIN, AND F. SANZ

f : x 7→ g (− log x) =
∑

j≥1 ajx
λj : [0, e−t0 ] → R is a convergent generalized series,

whose support is the well ordered set {λj : j ∈ N>0}.
4) The supports of the foregoing examples, being cartesian products of increas-

ing sequences whose limit is +∞, are good sets for obvious reasons. Let us show
that “reasonable” examples may produce series with more complicated good sup-

ports. It can easily be checked that the generalized series f : x →
∑

i≥0
1
2ix

2−1/2i ,

[0, 1] → R, is a solution of the functional equation f (x) = x+ 1
2f (

√
x). Its support{

2− 2/2i : i ∈ N
}
is a well ordered set with 2 as single limit point.

Consider now the series g (x) =
1

1− x
f (x). It satisfies the functional equation

(1− x) g (x) = x+ (1−
√
x) g (

√
x). Its support is the set

{
2 + ℓ− 2/2i : ℓ, i ∈ N

}
,

which is well ordered, and admit all the integers greater or equal than 2 as limit
points.

Mixed convergent series. We can now, for mixed variables (X1, . . . , Xm, Y1, . . . , Yn),
define the rings of convergent mixed series, that is

A {X∗, Y }m,n := A [[X∗, Y ]]m,n ∩A
{
(X,Y )

∗}
and

A {X∗, Y }m,n;r,l = A {X∗, Y }r,l := A [[X∗, Y ]]m,n ∩A
{
(X,Y )

∗}
r,l

for polyradii r = (r1, . . . , rm), l = (l1, . . . , ln). An element s ∈ A {X∗, Y }r,l gives
rise to a continuous function (still denoted by s and called the sum of the convergent
series) defined on

Īr,l = [0, r1]× · · · × [0, rm]× [−l1, l1]× · · · × [−ln, ln]
by s (x, y) =

∑
sα,βx

αyβ . This function is actually analytic on int
(
Īr,l

)
. More

precisely, we have the following result [DS98, Cor. 6.7]:

Theorem 2.6. If (a, b) ∈ Ir,l = [0, r1) × · · · × [0, rm) × (−l1, l1) × · · · × (−ln, ln),
put m′ := |{i ∈ {1, . . . ,m} : ai = 0}| and consider a permutation σ of {1, . . . ,m}
such that σ ({i ∈ {1, . . . ,m} : ai = 0}) = {1, . . . ,m′}. Then, there exists a unique
convergent generalized series T(a,b)(s) ∈ R{Z∗,W}m′,m+n−m′ such that, with the
obvious action of σ on the functions, and the obvious notations:

T(a,b) (s) (z, w) = σ (s) ((a, b) + (z, w)) .

The series T(a,b)(s) is called called the Taylor expansion of s at (a, b). It is well
defined up to a permutation of the variables (Z,W ) that leaves invariant the set of
generalized variables Z and that of the analytic ones W (see [DS98, Cor. 6.7]).

2.2.2. Properties of convergent series. The behavior of convergent generalized power
series under composition are summarized in the following convergent version of
Proposition 2.1.

Proposition 2.7. Let X = (X1, . . . , Xm), Y = (Y1, . . . , Yn) , W = (W1, . . . ,Wp)
and Z = (Z1, . . . , Zq) denote multivariables.

(1) Let s ∈ A {X∗, Y } and t = (t1, · · · , tn) ∈ A {W ∗, Z}n, such that t1 (0) =
· · · = tn (0) = 0. Then s (X, t (W,Z)) ∈ A

{
(X,W )

∗
, Z

}
, and its sum is

equal to (x,w, z) 7→ s(x, t(w, z)), where s, t denote the sums of the corre-
sponding convergent series.

(2) Let s ∈ R {X∗} and t = (t1, . . . , tn) ∈ R {Z∗}m such that ti = Zβi

ui,
with βi ̸= (0, . . . 0), ui ∈ R {Z∗} and ui (0) > 0 for all i ∈ {1, . . . ,m}.
Then s (t1, . . . , tm) ∈ R {Z∗}. Moreover, as in the former part, the sum of
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LOCAL MONOMIALIZATION OF GENERALIZED ANALYTIC FUNCTIONS 9

this latter convergent series is given by the composition of the sums of the
corresponding convergent series s and ti.

Finally, the “generalized” version of Weierstrass preparation theorem is also
proved in [DS98, Th. 5.10]:

Weierstrass preparation theorem for mixed series. Let n > 0 and s ∈
A {X∗, Y } be regular in Yn of order d, that is, s(0, 0, Yn) = Y d

nU(Yn) where U ∈
A[[Yn]] is a unit. Put Y ′ = (Y1, . . . , Yn−1). Then s factors uniquely as s = UP ,
where U ∈ A {X∗, Y } is a unit and P ∈ A {X∗, Y ′} [Yn] is monic of degree d in Yn.

This statement implies the following corollary:

Implicit functions theorem. Let s = (s1, s2, . . . , sk) ∈ A[[X∗, Y,W ]]k where
X = (X1, X2, . . . , Xm), Y = (Y1, Y2, . . . , Yn) and W = (W1,W2, . . . ,Wk). Sup-

pose that sj(0) = 0 for j = 1, 2 . . . , k and that the matrix
(

∂sj
∂Wi

(0)
)
1≤i,j≤k

is not

singular. Then there exists unique t1, t2, . . . , tk ∈ A[[X∗, Y ]] with ti(0) = 0 such
that

sj(X,Y, t1(X,Y ), t2(X,Y ), . . . , tk(X,Y )) ≡ 0

for j = 1, 2 . . . , k.

Remark 2.8. Actually, the reduction of generalized series to polynomials via conve-
nient blowings-up is the major part of the proof of o-minimality in [DS98]. This is
probably why there is no attempt there to prove a monomialization result. But for
different algebras of functions, where Weierstrass preparation is notoriously wrong,
local monomialization is a very efficient way to prove o-minimality. It is in par-
ticular the case for so-called quasianalytic classes of functions (see for example
[BM04, RSW03]).

3. Generalized analytic manifolds

We introduce in this section the language of generalized analytic manifolds and
morphisms, which is the most appropriate for the statement (and the proof) of
our Local Monomialization theorem. Actually, we need to introduce three types
of manifolds. The simplest being the real analytic manifolds with boundary and
corner, the richest being the generalized analytic manifolds. An intermediate class,
the standardizable manifolds, is introduced because of its specific role in the blowing-
up process.

In the following, k ranges over the integers.

3.1. Analytic and G-analytic functions. We introduce a class of functions, de-
fined on open subsets of quadrants Rk

≥0, and which can be represented locally by

real convergent generalized power series (in the same way as the classical real ana-
lytic functions are those locally described by convergent power series). Let us recall
first what is meant by an analytic function on such a quadrant:

Definition 3.1. Let V be an open subset of Rk
≥0. A function f : V → R is analytic

on V if there exists an open neighborhood W of V in Rk and an analytic function
f̃ : W → R such that f̃ |V = f . The ring of analytic functions on V is denoted by
Ok (V ).
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10 R. MARTÍN, J.-P. ROLIN, AND F. SANZ

In order to define the generalized analytic functions, we need to take in consider-
ation the difference between the “analytic variables” and the “generalized variables”
(see 2.1.2). This motivates the following notations:

Notation 3.2. Let k,m, n ∈ N, A ⊂ {1, . . . , k} and ξ = (ξ1, . . . , ξk) ∈ (0,∞)
k
.

1) We put

IA,ξ := B1 × · · · ×Bk ⊂ Rk where Bi =

{
[0, ξi) if i ∈ A

(−ξi, ξi) if i ̸∈ A
.

For a positive real number ε, we also write IA,ε for IA,(ε,...ε).
2) Let Sk the group of permutations of {1, . . . , k} and Sm,n the subgroup of ele-

ments of Sk which leave invariant the subsets {1, . . . ,m} and {m+ 1, . . . ,m+ n}.
For every σ ∈ Sk we also denote by σ the map Rk → Rk: (w1, . . . wk) 7→(
wσ(1), . . . , wσ(k)

)
.

3) From now on, we put m = |A| and n = k −m. We put Im,n,ξ = I{1,...,m},ξ.
Let SA be the subset of permutations σ ∈ Sk such that σ (A) = {1, . . . ,m}.

4) If p = (p1, . . . , pk) ∈ Rk
≥0, we put

A (p) := {i ∈ {1, . . . , k} : pi = 0} , mp := |A (p)| , np = k −mp.

5) If p ∈ Rk
≥0 and σ ∈ SA(p) then θp,σ is the map defined on Rmp

≥0 × Rnp by

(w1, . . . , wk) 7−→ p+ σ (w1, . . . , wk) =
(
p1 + wσ(1), . . . , pk + wσ(k)

)
.

For every δ > 0 small enough, the map θp,σ restricts to an homeomoprhism from
Imp,np,δ to p+ IA(p),δ with θp,σ (0) = p.

Definition 3.3. Let V be an open subset of Rk
≥0 and p ∈ V . A function f : V → R

is said to be generalized analytic (or G-analytic for short) at p if there exists
δ > 0, a convergent series s ∈ R {X∗, Y }mp,np,δ

and a permutation σ ∈ SA(p) such

that

i)
(
p+ IA(p),δ

)
⊂ V ,

ii) s|Imp,np,δ
= f |(p+IA(p),δ) ◦ θp,σ.

We say that f is G-analytic on V if f is G-analytic at every point p ∈ V . The ring
of G-analytic functions on V is denoted by Gk (V ).

Notice that, although the definition of generalized analytic function at a point
p does not depend on the choice of the permutation σ ∈ SA(p), the series s ∈
R{X∗, Y } depends on σ. In fact, for two such permutations, the corresponding
series differ by the action on the variables (X,Y ) of an element of the subgroup
Smp,np of Sk. Disregarding this ambiguity, we will say that the series s introduced
in Definition 3.3 is the Taylor expansion of f at p, denoted by Tp(f). Using
Theorem 2.6, it is not difficult to prove the following:

Proposition 3.4. The map f 7→ Tp(f) induces an isomorphism between the R-
algebra of germs of generalized analytic functions at p and R{X∗, Y }mp,np .

3.2. The local models Ok and Gk. We introduce two locally ringed spaces on
the same topological space Rk

≥0, intended to be the local models of the manifolds
considered later. They are both equipped with a sheaf of rings of continuous real
functions, with the restriction of functions as restrictions morphisms .
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Notation 3.5. 1) The assigment which associates to every open subset V of Rk
≥0

the ring Ok (V ) (resp. the ring Gk (V )), together with the usual restriction maps
on open subsets, defines the sheaf Ok (resp. Gk) over Rk

≥0.

2) In the following definitions or statements, the letter A denotes the letter O
or G, and A denotes the letter O or G accordingly.

Definition 3.6. The local model of A-manifolds of dimension k is the locally
ringed space Ak =

(
Rk

≥0,Ak
)
.

Remark 3.7. The stalks of the sheaves Ak at every point p ∈ Rk
≥0 are actually

local rings. In fact, for A = O, the stalk at every point is isomorphic to the ring
R{X1, ..., Xk} of convergent power series. For A = G, the stalk at a point p is
isomorphic to R{X∗, Y }m(p),n(p) by Proposition 3.4. Hence the local models Ak

are indeed locally ringed spaces.

3.3. Standard analytic manifolds, generalized analytic manifolds and their
morphims.

3.3.1. O-manifolds and A-manifolds. Consider the category C where

(1) The objects are the locally ringed spaces X = (|X| ,CX) where |X| is a
topological space and CX is a sheaf of R-algebras of continuous functions
over |X|, such that for every p ∈ |X|, the stalk CX,p is a local R-algebra.

(2) The morphisms between two objects X = (|X| ,CX) and Y = (|Y | ,CY ) are
pairs

(
φ,φ♯

)
where φ : |X| → |Y | is an homeomorphism and φ♯ : CY →

φ∗CX is the associated morphism of sheaves determined by composition by
φ; namely, if f ∈ CY (V ) is a section of CY over the open subset V ⊂ Y ,
then φ♯ (f) = f ◦ φ ∈ φ∗CX (V ) = CX

(
φ−1 (V )

)
(we usually drop the

second component φ♯ from the notation and say simply φ : X → Y is a
morphism).

The manifolds studied in this work are the objects A of two subcategories O and G
of C, such that A is locally isomorphic (in C) to one of the foregoing local models.
Classically, the morphisms between manifolds are defined as morphims between
objects of these categories.
Definition 3.8.

(1) An A-manifold (or manifold of type A) of dimension k is an object
M = (|M | ,AM ) in the category C, where:
(a) |M | is an Hausdorff space with a countable open basis,
(b) Every point of |M | has an open neighborhood isomorphic in C to the

restriction of the local model Ak|V =
(
V,Ak|V

)
for some open subset

V ⊂ Rk
≥0.

The O-manifolds (respectively G-manifolds) will be also frequently
called standard analytic manifolds (respectively generalized analytic
manifolds).

(2) Consider two M and N of the same type A. A A-morphism (or mor-
phism , for short) φ : M → N is a morphism between M and N in the
category C.

(3) An open submanifold of a A-analytic manifold M = (|M | ,AM )) is the
locally ringed space (U,AM |U ), where U is an open subset of |M |. It is also
obviously a A-manifold.
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12 R. MARTÍN, J.-P. ROLIN, AND F. SANZ

The next example is intended to consider the functions associated to mixed
series on G-manifolds (see section 2.2).

Example 3.9. Consider the map Φ: Rm
≥0 × Rn → Rm

≥0 × Rn
>0 ⊂ Rm+n

≥0 defined by

Φ (x, y) = (x, ey1 , . . . , eyn) , x ∈ Rm
≥0, y ∈ Rn.

Consider the inverse image Gm,n of the sheaf Gm+n|Rm
≥0

×Rn
>0

by the continuous map

Φ. Then the G-manifold
(
Rm

≥0 × Rn,Gm,n
)
is called the (m,n)-mixed local model .

Definition 3.10. Let M = (|M | ,AM ) be a A-manifold and p ∈ |M |. A local
chart at p is a pair (U,w) where U is an open neighborhood of p in |M | and

w : U → V = w (U) , w (q) = (w1 (q) , . . . , wk (q))

is a homeomorphism which induces an isomorphism between theA-manifoldsM |U =
(U,OM |U ) and Ak|V =

(
V,Ak|V

)
.

The components w1, . . . , wk are called the local coordinates of M at p.

Notation 3.11. We can associate, to every point p of a A-manifold and every local
chart (U,w) at p, an integer which is the number of zero components of w (p). It
can be proved (via a simple argument involving Proposition 2.2 and the Invariance
of Domain Theorem) that this number does not depend on the choice of the chart
(U,w). Hence it will be denoted by mp (and we put np = k −mp) and called the
number of boundary components of M at p.

For such a local chart (U,w), there exists σ ∈ SA(w(p)) (cf. notations in 2.2) such

that θ−1
pσ ◦w = (x, y) = (x1, ..., xmp , y1, ..., ynp) induces an isomorphism between the

open submanifold U and an open neighbourhood of the origin of the (mp, np)-mixed
local model. We will say that (U, (x, y)) is a local (mixed) chart centered at p.

Thus we have:

Proposition 3.12. Let M = (|M | ,AM ) be a A-manifold and p ∈ |M |. Then p
has an open neighborhood isomorphic to Amp × Rnp .

Proposition 3.13. Let M = (|M | ,A|M ) be a A-manifold. Then M admits an
A-atlas, i.e. a family {(Ui, φi)}i∈I such that:

(1) for every i ∈ I, Ui is an open subset of |M | and φi : Ui → Vi = φi (Ui) ⊂
Rk

≥0 is an homeomorphism,

(2) M =
∪

i∈I Ui,
(3) for every i, j ∈ I, φi ◦φj : φj (Ui ∩ Uj) → φi (Ui ∩ Uj) is a A-isomorphism.

Conversely, if |M | is a second countable Hausdorff topological space and {(Ui, φi)}i∈I

is a family satisfying 1 to 3 above, then there exists a unique structure of A-manifold
M = (|M | ,AM ) over |M | such that this family is an A-atlas.

We can now give the local expressions of the morphims between the standard
analytic manifolds and between the G-manifolds.

3.3.2. Local expression of morphisms between two A-manifolds of the same type.
Consider two A-manifolds M = (|M | ,AM ) and N = (|N | ,AN ) of the same type
and a continous map f : |M | → |N | which induces a morphism bewteen M and
N . Let p ∈ M , φ : M |Up → Amp × Rnp a local chart of M centered at p and
ψ : N |Vφ(p)

→ Amφ(p) × Rnφ(p) a local chart of N centered at φ (p). Consider the

map h : = ψ ◦ f ◦ φ−1 : Rmp

≥0 × Rnp → Rmφ(p)

≥0 × Rnφ(p) . Then :
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LOCAL MONOMIALIZATION OF GENERALIZED ANALYTIC FUNCTIONS 13

(1) if A denotes O, then h has an analytic extension on a neighborhood of
0 ∈ Rmp+np .

(2) if A denotes G, then each component of h is G-analytic at 0 ∈ Rmp+np .

These considerations lead us to the following important explicit description of mor-
phisms and isomorphisms between G-manifolds. This description, which is in a
great part a direct corollary of Proposition 2.2, together with the Implicit Func-
tion Theorem and the Invariance of Domain Theorem, shows in particular that a
morphism of G-manifolds, when expressed in any coordinate system, must be of
monomial type in the generalized variables.

Proposition 3.14. Let m,n,m′, n′ ∈ N, k = m+n, k′ = m′+n′. Let U, V be open
neighborhoods of the origin in Rm

≥0×Rn and Rm′

≥0×Rn′
respectively. Let h : U → V

be a continuous map with h (0) = 0, and h = (h1, . . . , hk′) be the components of h.
Denote by (x, y) = (x1, . . . , xm, y1, . . . ym) and (z, w) = (z1, . . . , zm′ , w1, . . . , wn′)

the coordinates in Rm
≥0×Rn and Rm′

≥0×Rn′
. Then (always with the convention that

Am denotes the local model for A-manifolds, either Om or Gm):

(1) h induces a morphism
(
h, h♯

)
: Am ×Rn|U0 → Am′ ×Rn′ |V0 (where U0 and

V0 are neighborhoods of the origin in Rm
≥0×Rn and Rm′

≥0×Rn′
respectively)

if and only if each component hj is A-analytic at the origin in Rm
≥0 × Rn,

y 7→ (hm′+1 (0, y) , . . . , hk′ (0, y)) is analytic from Rn to Rm′
and, for j =

1, . . . ,m′,

hj (x, y) = xα
j

gj (x, y) = x
αj

1
1 · · ·xα

j
m

m gj (x, y)

for a certain αj ∈ [0,∞)
m

and A-analytic functions gj, with gj > 0 in a
neighborhood of the origin in Rm

≥0 × Rn.

(2) Assume that k = k′ and that h induces a morphism
(
h, h♯

)
: Gm ×Rn|U →

Gm′ × Rn′ |V . Then
(
h, h♯

)
is an isomorphism in the category G (up to

restriction of U, V to smaller neighborhoods) if and only if m = m′, n = n′,
h is an homeomorphim, the map

y 7→ (hm′+1 (0, y) , . . . , hk′ (0, y))

induces an analytic local isomorphism of Rn and, for every j = 1, . . . ,m′,

zj = hj (x, y) = x
aj

i(j)gj (x, y)

with aj > 0, gj is an analytic function at 0 such that g (x, y) > 0 in a
neighborhood of 0 in Rm

≥0×Rn, and j 7→ i (j) is a permutation of {1, . . . ,m}.

3.4. Standardizable manifolds. We introduce here a special class of G-manifolds.
The elements of this class are the O-manifolds where the structural sheaf has been
“enriched” by “adding” the generalized analytic functions to the analytic ones. Let
us say at once that not every G-manifold may be obtained that way (cf. Example
3.18 below).

Proposition 3.15. Let A = (|A| ,OM ) be an O-manifold, and U = (Ui, φi) be an
O-atlas of A. Then the subsheaf GA of the sheaf of continuous functions over |A|,
whose sections over an open subset U of A is

(f : U → R) ∈ GA (U) ⇔ f |Ui∩U◦φ−1
i |φi(U∩Ui) ∈ Gk (φi (U ∩ Ui)) ,∀i ∈ I with U∩Ui ̸= ∅,

does not depend on the chosen atlas U and endows |A| with a structure of G-analytic
manifold Ae = (|A| ,GA). Moreover, the identity map on |A| induces induces a
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14 R. MARTÍN, J.-P. ROLIN, AND F. SANZ

morphism Id: Ae → A in the category of locally ringed spaces. In that case, we say
the Ae is the enrichment of the O-manifold A.

A typical example is of course given by the local models: for every k ∈ N and
every open set U ⊂ Rk

≥0, we have (Ok |U )e = Gk |U .

Definition 3.16. Let M = (|M | ,GM ) be a G-manifold. We say that M is stan-
dardizable if there exists a O-manifold A and a G-isomorphism φ : M → Ae. In
this situation, the pair (A,φ) is called a standardization of M .

The enrichment is not a functor between the category of standard analytic man-
ifolds to the category of generalized analytic manifolds. Consider for instance
]A = O2, B = O1 and the O-morphism

h : A→ B, h(x1, x2) = x1 + x2.

Then Ae = G2, Be = G1 but h :
∣∣G2

∣∣ →| G1 | does not induce a G-morphism (by
Proposition 3.14 on the local expression of morphisms). In fact, using again the
same proposition, we can prove the following:

Proposition 3.17. Let M , N be two standarizable G-manifolds with standariza-
tions (A,φ) and (B,ψ) respectively. Then, given a O-morphism (h, h♯) : A → B,

the lifting h̃ = ψ−1 ◦ h ◦ φ :| M |→| N | induces a G-morphism if and only if h is
locally of monomial type, i.e., for any point p ∈| A | there is a local chart (U, x)
of A centered p at and a local chart (V, y) of B centered at h(p) such that each
component fj = yj ◦ f is of monomial type in the x-coordinates:

fj = xα
j

gj , α
j ∈ [0,∞)dim(A), gj(0) ̸= 0.

Obviously, every generalized manifold is locally standarizable: if (U,w) is a local
chart on a G-manifold M then, considering the image w(U) ⊂ Rk

+ as an open
O-submanifold, (w(U), w) is a standarization of U .

But this is not the case in the global setting, as the following example shows.

Example 3.18. Consider two copies of R+ × R, denoted by U1 and U2, with
coordinates (x, y) and (z, w) respectively. Let α be a positive real number and
consider Cα the topological space obtained as the quotient of the disjoint union of
U1 and U2 under the relation

(x, y) ∼ (z, w) ⇐⇒
{
x = z, y = 1/w, if y > 0;
x = zα, y = 1/w if y < 0.

It is easy to see that Cα is homeomorphic to the cylinder S1 × R. On the other
hand, denoting by Ui,α the image of Ui into Cα for i = 1, 2, we have that

{(U1α, (x, y)), (U2,α, (z, w))}
is a topological atlas on Cα so that the change of variables determines an isomor-
phism between the open G-submanifold G1 × (R \ {0}) and itself. Thus, we can
endow Cα with a unique structure of G-manifold Cα = (Cα,GCα) in such a way that
that atlas is a G-atlas.

Claim.- Cα is standarizable if and only if α = 1.

Moreover, if α ̸= 1 then there is no open neighborhood of the boundary ∂Cα

which is a standarizable G-manifold. The “if” part of the claim is quite clear: C1 is
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LOCAL MONOMIALIZATION OF GENERALIZED ANALYTIC FUNCTIONS 15

isomorphic to the (generalized) product manifold G1 ×R, which is the enrichment
of O1×R. In order to prove the “only if” part of the claim we look at the following
statement about Cα:

(*) There exists a G-functions hi in a neighborhood of ∂Cα∩Ui,α for
i = 1, 2, having the boundary ∂Cα as their zero locus and such that
the quotients h1/h2 and h2/h1 remain bounded in a neighborhood
of any point of ∂Cα, except possibly for a discrete subset of points.

The claim is finished once we prove the following results:
(1) If Cα is standarizable then (*) holds: let (A,ϕ) be a standardization of Cα.

Consider, for i = 1, 2, a point qi ∈ ∂A ∩ ϕ(Ui,α) and take an analytic coordinate
chart (xi, yi) at qi such that ∂A = {xi = 0}. We consider hi so that hi ◦ ϕ−1 is
the analytic continuation in ϕ(Ui,α). Analyticity implies that at any point q ∈ ∂A
where defined, the function hi ◦ ϕ−1 writes in analytic coordinates (x, y) at q for
which x = 0 is the boundary as

hi ◦ ϕ−1(x, y) = xH(x, y), where H(0, y) ̸≡ 0

and this proves the required properties on the quotients h1/h2 and h2/h1.
(2) If α ̸= 1 then (*) does not hold : Suppose that (*) holds. Write the functions

h1, h2 in the atlas (U1,α, (x, y)), (U2,α, (z, w)) as

h1(x, y) = xβ1H1, h2(z, w) = zβ2H2,

where βi ∈ R+ and Hi is a G-analytic function in a neighborhood of ∂Cα ∩ Ui,α

such that Hi|∂Cα ̸≡ 0 (thus, since this restriction is analytic, its zero locus is a
discrete subset of ∂Cα ∩ Ui,α). Now, consider an open set Ωϵ, for ϵ = + or −,
contained in ∂Cα∩{ϵy > 0} where neither H1 or H2 vanishes. Taking into account
the expression of the change of variables between the two charts, we can write

h1 = xβ1H1 = zβ1H1 in Ω+,

h1 = xβ1H1 = zαβ1H1 in Ω−.

If the condition about the quotients h1/h2 and h2/h1 is true in both open sets Ω+

and Ω− then we must have β2 = β1 = αβ1, which implies α = 1.

4. Local monomialization of generalized analytic functions

4.1. Blowings-up on G-manifolds. The standard approach in the definition of
the blowing-up of a point in a manifold consists in defining the blowing-up of a
point in the local model of the manifold and then to use a system of coordinates.
This method holds for O-manifolds, but not for G-manifolds. The main problem
is that it is not possible for G-manifolds to define the blowings-up independently
of the system of coordinates, which leads us to define it relatively to some coordi-
nates. However, this goal will be achieved if we consider only blowings-up with an
admissible center Y inside a standarizable manifoldM (defined in 3.4) with respect
to a standarization φ : M → A of M that sends Y to an admissible center in the
category O.

Our definition proceeds in introducing the following notions:

• The admissible centers to be blown-up: in particular, the standardizable
ones play a specific role in the process.
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16 R. MARTÍN, J.-P. ROLIN, AND F. SANZ

• The blowings-up of admissible centers on O-manifolds, based on blowings-
up of local models and local charts.

• The blowings-up of standardizable admissible centers on G-manifolds.

4.1.1. Admissible centers.

Definition 4.1. Let M = (|M | ,AM ) and N = (|N | ,AN ) two A-manifolds of the
same type.

(1) A A-morphism φ : N → M is a submanifold if φ is injective and if for
each p ∈ |N | , the induced homomorphism of germs φ♯

p : GM,φ(p) → GN,p is
surjective.

(2) The submanifold φ : N → M is called closed if φ (|N |) is a closed subset
of |M | and regular if φ : |N | → φ (|N |) is an homeomorphism.

Definition 4.2. LetM = (|M | ,AM ) be anA-manifold and |Y | be a connected sub-
set of |M |. Suppose that for every p ∈ |Y | there exist aA-local chart (Up, φp = (x1, . . . , xk))
at p ∈ |Y | and Jp ⊂ {1, . . . , k} such that

(4.1) φp (|Y | ∩ Up) = {q ∈ Up : xj (q) = xj (p) , j ∈ Jp} .

Let lp = k − ♯Jp, πp : (x1, . . . , xk) ∈ Rk 7→ (xj)j ̸∈Jp
∈ Rlp and ψp = πp ◦ φp. Then

the closed regular A-submanifold (Y,AY ) of M (for the inclusion map i : |Y | ↪→
|M |) defined by the atlas {(Vp = |Y | ∩ Up) , ψp}p∈|Y | is called an A-admissible
center .

For example, consider the subset Y in R2
≥0 given by the graph of the function

x 7→ xλ with λ ̸= 1. Then Y is a G-admissible center of G2 but it is not a O2-
admissible center of O2.

Thus, in the case of G-manifolds, we need an improvement of the foregoing
notion.

Definition 4.3. LetM be a G-manifold and Y be an admissible center. We say that
the pair (M,Y ) is standardizable if there exists a standardization φ : M → A
such that |Z| = φ (|Y |) ⊂ |A| has the property 4.1. In this situation, we say that φ
is a standardization of the pair (M,Y ).

4.1.2. Blowing-up of a point of the standard model Rk of analytic manifold (without
boundary). Consider a point p ∈ Rk and put

πk
p : R≥0 × Sk−1 → Rk, (r, (x1, . . . , xk)) 7→ p+ (rx1, . . . , rxk) .

Let R̃k := O1×Sk−1 the product in the category O of O1 and Sk−1. The maps πk
p is

continuous, proper and it induces a morphism from R̃k to Rk and an isomorphism

from R̃k \ {0} × Sk−1 to Rk \ {0}. The pair
(
R̃k, πk

p

)
is called the blowing-up

in Rk with center the point p (in fact, this is the polar blowing-up in contrast
with the usual projective blowing-up which does not create any boundary; we will
only use here the polar blowing-up, so we will call it simply blowing-up). As usual,(
πk
p

)−1
(p) is called the exceptional divisor of this blow-up. It is the boundary

of the O-manifold R̃k.
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LOCAL MONOMIALIZATION OF GENERALIZED ANALYTIC FUNCTIONS 17

4.1.3. Blowing-up of a point of the standard model Om × Rn of O-manifold. Let

p ∈ Rm
≥0 × Rn. Then R̃m,n

p =
(
πm+n
p

)−1 (Rm
≥0 × Rn

)
⊂ R≥0 × Sm+n−1 is a regular

closed submanifold of R̃m+n, and the map

πm,n
p = πm+n

p |
R̃m,n

p

: R̃m,n
p → Om × Rn,

is a proper morphism and a local isomorphism at any point except for those in

the regular O-submanifold
(
πm,n
p

)−1
(p) or R̃m,n

p (which is of codimension 1). The

pair
(
R̃m,n

p , πm,n
p

)
is called the blowing-up of Om × Rn at the point p, and(

πm,n
p

)−1
(p) is called the exceptional divisor of this blowing-up.

4.1.4. Blowing-up at a point of an O-manifold. In a natural way, we define the
blowing-up at a point of an O-manifold by carrying the blowing-up at 0 of the local
model Om × Rn.

Consider an O-manifold (A,OA), a point p ∈ |A| and a local chart φ : U →
Rm

≥0 × Rn centered at p. Let Ã(φ) be the O-manifold obtained by taking the

quotient of the disjoint union of A \ {p} and R̃m,n under the relation

a ∼ q iff a ∈ U, q ∈ R̃m,n and φ(a) = πm,n
0 (q).

The map πA
p (φ) : Ã(φ) → A defined as the inclusion on A\{p} and by φ−1◦πm,n

0 on

R̃m,n is a proper analytic morphism and induces an isomorphism from Ã\(πA
p )

−1(p)

to A\{p}. A blowing-up of A at p is any pair
(
Ã, πA

p

)
where Ã is an O-manifold

and πA
p : Ã→ A is a morphism such that there exists an isomorphism θ : Ã→ Ã (φ),

with πA
p (φ) ◦ θ = πA

p .
It may be proved that two such pairs associated to different charts are isomorphic.

4.1.5. Blowing-up an admissible center of a O-manifold. Consider an admissible
center Z = (|Z| ,OZ) of an O-manifold A = (|A| ,OA). Every point p ∈ |Z| has
an open neighborhood in A which is a normalizing domain for the submanifold Z,
that is

A|U ≃ Z|U ×Om(U) × Rn(U).

Since |Z| is a closed subset of |A|, if p ̸∈ |Z| we consider an open neighbor-
hood U of p which does not intersect |Z| (so that Z|U = ∅). Define πA

Z (U) :=(
id, π

m(U)×n(U)
0

)
: Z|U × ˜Om(U) × Rn(U) → Z|U ×Om(U) × Rn(U).

For two normalizations φU : U ∩ |Z| → Z|U ×Om(U)×Rn(U) and φV : U ∩ |Z| →
Z|V × Om(V ) × Rn(V ) the isomorphism θ = φV ◦ φ−1

U lifts to an isomorphism θ̃ of
the blown-up spaces. Consider now the topological space∣∣∣Ã∣∣∣ = ⨿

U normalizing chart

|U ∩ Z| × ˜Om(U) × Rn(U)� ∼

where two elements p = (a, x) ∈ |U ∩ Z|× ˜Om(U) × Rn(U) and q = (b, y) ∈ |V ∩ Z|×
˜Om(V ) × Rn(V ) are equivalent for the relation ∼ iff θ̃ (a, x) = (b, y). The collection

of charts {|Z ∩ U | ,U (U)}, where U describes the normalizing charts of Z, endows∣∣∣Ã∣∣∣ with a structure of O-manifold.
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18 R. MARTÍN, J.-P. ROLIN, AND F. SANZ

A blowing-up of A with center Z is a pair (B, π) where B is an O-manifold

and π : B → A is a morphism for which there exists an isomorphism θ : B → Ã
such that πA

Z ◦ θ = π. A local blowing-up on A is a pair (B, π) where B is an
O-manifold and π = i ◦ τ : B → U ↪→ A where i : U ↪→ A is an open submanifold
and τ : B → U is a blowing-up of A with an admissible center Z ⊂ U closed in U .

4.1.6. Blowing-up on G-manifolds. Unlike the analytic framework, the definition
of the blowing-up in a generalized manifold with a closed admissible center may
depend on the choice of the local chart at p. For instance, a (a priori) good candidate

for the blowing-up of the origin inG2 could be the enrichment (R̃2,0)e of the blowing-
up of the origin of the standard local model. But a change of coordinates in G2 of
the form θ : x 7→ xλ, y 7→ y with λ ̸= 1 can not be lifted to an isomorphism on the

blown-up space (R̃2,0)e.
This inconvenience forces us to specify a standarization of an open submanifold

containing the center which is to be blown-up. And, consequently, we have the
possibility that we do not have a priori the possibility to blow-up the center if such
a standarization does not exists (see Example 3.18 above).

Consider a G-manifoldM and a closed (connected) admissible center Y ⊂M such
that the pair (M,Y ) is standardizable by means of the standardization φ :M → A.

The manifold Z = φ (Y ) is an admissible center in the O-manifold A. Let
(
Ã, πA

Z

)
be a blowing-up on A with center Z, and M̃ be the enrichment of Ã. Let φ̃ : M̃ → Ã
be the morphism induced by the identity map. Moreover, being locally of monomial

type, the morphism πA
Y lifts to a morphism πM

Y : M̃ →M . The triple
(
M̃, πM

Y , φ̃
)
is

called the blowing-up of M with center Y relatively to the standardization

φ. The inverse imageD =
(
πM
Y

)−1
(Y ) is a regular manifold of codimension 1, called

the exceptional divisor of this blowing-up. We have the relation πA
Z ◦φ̃ = φ◦πM

Y .
Finally, πM

Y is a proper, surjective morphism which restricts to an isomorphism from

M̃ \D to M \ Y .
Consider now a locally closed subset Y of a G-manifoldM . A local blowing-up

on M with center Y is any triple (N, π, φ), where N is a G-manifold,

π = i ◦ τ : N → U ↪→M,

where i : U ↪→M is an open submanifold such that Y is closed in U , and τ : N → U
is a blowing-up morphism on U with the admissible center Y ⊂ U .

Example 4.4. A useful situation occurs when Y is of codimension 2. Considering
a normalizing chart of Y in some open neighborhood of p ∈ Y , we can assume that
U = Gm×Rn, and that Y |U= {xi = xj = 0} for two generalized coordinates xi, xj
of Gm × Rn. Let γ > 0 and consider the standardization of the pair (U, Y ) given
by

φγ : U → O
m

× R
n

, φγ (x, y) =
(
. . . , x

γ

i , . . . , xj , . . . , y
)
.

Let π : M̃ → U ↪→ M the local blowing-up with center Y |U relatively to the
standardization φγ . If, for instance, the two variables xi, xj are generalized, then

M̃ is covered by two charts (x′, y′) and (x′′, y′′) with values in Rm

≥0 ×Rn

such that
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LOCAL MONOMIALIZATION OF GENERALIZED ANALYTIC FUNCTIONS 19

the expression of the blowing-up morphism is

π (x′, y′) =
(
x′1, . . . , x

′
i, . . . , (x

′
i)

γ

x′j , . . . , y
′
)

π (x′′, y′′) =

(
x′′1 , . . . , x

′′
j , . . . ,

(
x′′j

)1/γ

x′′i , . . . , y
′′
)

Actually, our monomialization process is entirely based on blowings-up with
centers of codimension at most 2. We may observe that these local expressions of

blowings-up correspond to the transformations ςγij and ς
1/γ
ji of 2.1.4.

Example 4.5. With our definitions, the blowing-up with an admissible center of
codimension one may produce some effect, as opposed to the situation in standard
analytic manifolds without boundary where the used blowing-up is a projective
one. Suppose for instance that Y is an admissible center of codimension 1 with
normalizing chart in some open set U

φ : U → Y |U ×R

then the local blowing up with center Y |U (with respect to the foregoing normal-
izing chart considered as a standardization) is the following morphism

π : Y |U ×G1
⊔
Y |U ×G1 → Y |U ×R

defined by π(q, x) = (q,±x) where the sign of x is taken different in the two
different copies Y |U ×G1. Geometrically, we add two new boundary components
of codimension one, {x = 0} in each copy, the exceptional divisor.

4.2. Local monomialization of G-functions. The following definition is inspired
by Hironaka’s notion of “voûte étoilée” [Hir73, Chapter 3]:

Definition 4.6. Let M be a G-manifold and p ∈ |M |. A proper *-neighborhood
of p is a finite family Σ = {πj :Wj →M,Lj}j∈J where

(1) each πj is the composition of a finite sequence of finitely many local blowings-
up (with admissible centers):

πj : Wj =Wj ,nj

πj,nj→ Wj,nj−1

πj,nj−1→ Wj,nj−2 → · · · πj,1→ Wj,0 =M

(2) each Lj is a compact subset of |Wj | such that
∪

j∈J πj (Lj) is a compact

neighborhood of p in |M |.

We can now state our main result:

Theorem 4.7. (Local monomialization of G-functions) LetM be a generalized
analytic manifold, f ∈ G (M) and p ∈M . Then there exists a proper *-neighborhood
Σ = {πj : Wj →M,Lj}j∈J of p such that for all j ∈ J , f ◦ πj : Wj → R is locally

monomial at every point of Lj. Moreover, we may supposed that the admissible
center of every local blowing-up involved in Σ is of codimension ≤ 2.

The proof is achieved in two main steps:

(1) Reducing the function f into a Weierstrass polynomial.
(2) Proving the result for Weierstrass polynomials.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



20 R. MARTÍN, J.-P. ROLIN, AND F. SANZ

4.2.1. The reduction to the case of a Weierstrass polynomial. Consider a G-manifold
M , p ∈ |M | and a G-analytic function f at p. Let (U,φ = (x, y)) be a chart of M
centered at p. We can define b (f, p, (U,φ)) : = b (s), where s ∈ R {X∗, Y } is the
Taylor expansion of f at p with respect to the coordinates (x, y) and s is considered
as an element in R{Y }[[X∗]]. It is not difficult to prove that b (f, p, (U,φ)) does not
depend on the local chart (U,φ). We let b (f, p) = (b1 (f, p) , b2 (f, p)) ∈ N2 be the
invariant of the G-function f at p. Hence the data I (f, p) = (mp, np, b (f, p)) ∈ N4

is a well defined numerical invariant depending only on f and p (actually, mp and
np depends only on p and M). Recall also that I(f, p) is upper semicontinuous (for
the lexicographic order in N4) as a function of the point p.

The next statement explains how the invariant I (f, p) can be lowered when
b2 (f, p) > 0:

Proposition 4.8. Let f ∈ G (M) and p ∈ |M |, and assume that b2 (f, p) > 0. Then

there exists a local blowing-up π : M̃ → M with admissible center Y through p, of
codimension 2, such that, for every point q ∈ π−1 (p), the function f̃ = f◦π ∈ G(M̃)
satisfies

I(f̃ , q) < I (f, p) .

Proof. Consider a local chart (U, (x, y)) centered at p with x = (x1, . . . , xm), y =
(y1, . . . , ym), m = mp, n = np, and let s ∈ R {X∗, Y }m,n be the Taylor expansion

of f in these coordinates. Then b (f, p) = b (s). By Proposition 2.5 there exists
γ > 0 and two different indices i, j ∈ {1, . . . ,m} such that the transformations ζγij

and ζ
1/γ
ji applied to s gives series with smaller b-invariant.

Hence if we consider the closed admissible center Y = {xi = xj = 0} inside U ,
the standardization of the pair (U, Y ) given by

φ : U → Om × Rn, φ (x, y) = (. . . , xγi , . . . , xj , . . . , y)

and the local blowing-up morphism π : M̃ → U ↪→ M with center Y associated
with the standardization φ, straightforward computations show the following:

(1) If q ∈ π−1 (p) is the origin of one of the two canonical charts of M̃ which
describes π (cf. Example 4.4), then b (f ◦ π, q) < b (f, p).

(2) If q is any other point of π−1 (p), then mq (f ◦ π) = mp (f) − 1 and hence
I (f ◦ π, q) < I (f, p).

�

Using the fact that I(f, p) is upper semicontinuous and properness of the blowing-
up morphism, this result implies that it is enough to prove our main theorem when
b2 (f, p) = 0. But in this situation, we have two possibilities:

(1) np = 0. In that case, f is of monomial type at p.
(2) np > 0. There exists a local chart (U,φ) centered at p, α ∈ [0,∞)

mp and
g ∈ GM (U) such that

f (x, y) = xαg (x, y)

with g (0, y) ̸≡ 0 in φ (U). There exists a change of coordinates involving only the
y variables which transforms g in a function regular in the last variable ynp .

Hence the reduction of Theorem 4.7 to the case of a distinguished polynomial
is a consequence of Weierstrass Preparation Theorem, together with the following
easy fact:
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Assertion. Let h = xα be a monomial in the generalized variables and let π : M̃ →
M be a local blowing-up with admissible center. Then, at any point q ∈ π−1(p),
the Taylor expansion of the total transform h ◦ π with respect to any choice of local
coordinates (z, w) centered at q (z being the generalized variables) is of monomial
type of the form ZβU(Z,W ) with U(0, 0) ̸= 0.

4.2.2. The case of a Weierstrass polynomial. Consider a G-manifold M of dimen-
sion k, dimM = k ≥ 2 and f ∈G (M). Assume that the main theorem is true in
dimension less than k (the result for k = 1 being trivial). Moreover, assume that
the number mp of boundary components of M at p is less than k and that there
exists a local chart (U,φ = (x, y)) where y is an analytic variable such that

f (x, y) = yd + a1 (x) y
d−1 + · · ·+ ad (x)

with ai ∈ G (U) and ai (p) = 0 for all i.
The rest of the proof follows the main lines of the proof of Theorem 4.4 in

[BM88, p.24] and [RSW03, Prop. 3.8]. It consists mainly in lowering the order d
by convenient blowings-up.

If d = 1, the change of coordinates x1 = x, y1 = y − a1 (x) gives a new local
chart for which f is of monomial type at p.

If d > 1, the classical Tschirnhausen change of coordinates y  y − a1(d)
d leads

to the following expression for f :

f (x, y) = yd + b2 (x) y
d−2 + · · ·+ bd (x) .

The hypothesis induction made on the dimension k applied to the function
∏d

i=2,bi ̸=0 bi
implies that there exists a *-neighborhood of p,

Σ =
{
πj : Wj =W ′

j × (−δ, δ) →M,Lj = L′
j × [−δ/2, δ/2]

}
such that for every j, the local expression of f at any point (q, 0) ∈ L′

j × {0} is

(f ◦ πj) (x′, t) = td + (x′)
α2 u′2 (x

′) td−2 + · · ·+ (x′)
αd u′ (x′)

where u′i (q, 0) ̸= 0 and αi ∈ [0,∞) k−1.
In that case, after possible blowings-up with (codimension one) centers at the

coordinate hyperplanes x′i = 0 (as in Example 4.5), we can suppose that the number
of boundary components of q in W ′

j is maximal, equal to mq = k − 1. In this

case,
(
bl ◦ π′

j

)1/l
= (x′)

αl/l (u′)
1/l
l is a G-analytic function. The foregoing argument

applied to the product of all nonzero functions and of all the nonzero differences

among the family
{(
bl ◦ π′

j

)1/l}
l
leads to the case where the local expression of f

is

f (x, y) = yd + xα2u2 (x) y
d−2 + · · ·+ xαdud (x)

and the set of vectors {αl/l}l=2,...,d is totally ordered for the division order (the

proof of this statement is just the same as that of Lemma 4.7. in [BM88]). We follow
the classical argument which consists in picking the index r such that αr/r ≤ αj/j
for all j, 2 ≤ j ≤ d, and an index l such that αr,l ̸= 0. Consider the admissible
center Y = {y = xl = 0} ⊂ U , closed in U and of codimension 2, together with the
standardization of the pair (U, Y ) given by

φ : U → Rk−1
≥0 × R, φ =

(
x1, . . . , xl−1, x

αr,l/r
l , xl+1, . . . , xk−1, y

)
.
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The corresponding (local) blowing-up πU
Y : Ũ → M with center Y and with re-

spect to this standardization is such that Ũ is covered by two charts (x′, y′) and

(x′′, y′′) with values in Rk−1
≥0 × R, so that the exceptional divisor

(
πU
Y

)−1
(Y ) has

equations {x′l = 0} and {y′′ = 0} and such that the morphism πU
Y has the following

expressions:

πU
Y (x′, y′) =

(
x′, (x′l)

αr,l/r y′
)
, πU

Y (x′′, y′′) =
(
x′′1 , · · · , (y′′)

r/αr,l x′′l , · · · , y′′
)
.

Let q ∈
(
πU
Y

)−1
(Y ). There are three cases. In each of them, straightforward

computations lead to the corresponding conclusions:

(1) q is the origin of the chart (x′′, y′′). Then f ◦ πU
Y is equal to (y′′)d times a

unit, thus of monomial type.
(2) q is in the domain of the chart (x′, y′) but not the origin of the chart. Then

f ◦ πU
Y is the product of a monomial and a function which is regular in y of

order less that d. This is the case where Tschirnhausen transformation is
helpful.

(3) q is the origin of the chart (x′, y′). Then f ◦ πU
Y is equal to the product

of a power of the variable x′l and a Weierstrass polynomial in y′. In this

polynomial, the coefficient (x′)α
′
ru′r(x

′) of (y′)d−r is such that α′
r,l = 0 and

α′
r,i = αr,i if i ̸= l. Thus, if αr,i = 0 for i ̸= l, we are led to a function

regular in y′ of order d − r < d. Otherwise, if αr,i ̸= 0 for some i ̸= r,
making a local blowing-up with center {y′ = x′i = 0}, the same arguments
lead to one of the favorable situations (either of monomial type or regular
in an analytic variable of order less that d) except, possibly, in the case
where we are placed at the origin of the first chart of this new blowing-up.
But in that case, the exponent αr,i vanishes. A simple induction argument
allows to conclude.
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