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Abstract. Let (X,0) be a real analytic isolated surface singularity at
the origin 0 of Rn and let g be a real analytic riemannian metric at
0 ∈ Rn. Given a real analytic function f0 : (Rn, 0) → (R, 0) singu-
lar at 0, we prove that the gradient trajectories for the metric g|X\0

of the restriction (f0|X) escaping from or ending up at 0 do not oscil-
late. Such a trajectory is thus a sub-pfaffian set. Moreover, in each
connected component of X \ 0 where the restricted gradient does not
vanish, there is always a trajectory accumulating at 0 and admitting a
formal asymptotic expansion at 0.

1. Introduction

Let f0 : (Rn,0) → R be a real analytic function such that 0 is a critical
point of f0. Let g be a real analytic Riemannian metric defined in a neigh-
borhood of 0. Let γ : [0,+∞[→ Rn be a maximal solution of the gradient
vector field ∇gf0 such that ω(γ) := limt→∞ γ(t) = 0, and let |γ | ⊂ Rn

be its image. We are not interested in any particular parameterization and
we will simply call γ and |γ | a gradient trajectory. Gradient trajectories
γ :] − ∞, 0] → Rn escaping from 0 = limt→−∞ γ(t)(= α(γ)) will be dealt
with in same way in changing the sign of f0.

The classical problem of the gradient is to know how, from an analytic
point of view, does the solution |γ | go to its limit point 0. For a long time
remained undecided Thom’s question famously known as Thom’s Gradient
Conjecture: does the trajectory have a tangent at its limit point, namely does

limt→∞
γ(t)
|γ(t)| exist ? (see [20] for an historical account by then). Eventually

Kurdyka, Mostowski and Parusiński showed that the length of the radial
projection of the curve |γ | onto Sn−1 is finite [17], thus proving Thom’s
Conjecture.

A much more challenging question about the behavior of gradient trajec-
tories at their limit point is to decide whether they oscillate or not. A tra-
jectory γ is (analytically) non-oscillating if given any (semi-)analytic subset
H ⊂ Rn the intersection |γ | ∩H has finitely many connected components.
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The plane case is well understood. In dimension n ≥ 3, but a few special
cases in dimension 3 [24, 9, 10], the non-oscillation of gradient trajectories
is not known.

It is also worth recalling that in the case of real analytic vector fields
on a 3-manifold, some very interesting properties of the Hardy field of the
real analytic function germs along a given non-oscillating trajectory have
been studied in [5], and thus allowing a partial reduction of the singularities
result.

In the special case where a real analytic isolated surface singularity is
foliated by gradient trajectories, the main result of this paper guarantees,
that they do not oscillate. In fact, we will solve the following slightly more
complicated problem.

Let X ⊂ Rn be a real analytic isolated surface singularity at the origin
0. Each connected component S0 of the germ at 0 of X \ {0} is a real
analytic submanifold of Rn. The ambient metric g induces on S0 an analytic
Riemannian metric h := g|S0

. The gradient vector field ∇h(f0|S0
) of the

restriction f0|S0
of the function f0 to S0 is thus well defined. The vector

field ∇h(f0|S0
) is called the restricted gradient vector field of f0 on S0 and

will be shortened as ∇h(f0).
The main result of this paper is the following:

Theorem 1. Let γ : R≥0 → S0 be a trajectory of the restricted gradient
vector field ∇hf0 accumulating at 0. Then γ is analytically non-oscillating.

A pleasant and cheap consequence of this result is

Corollary 2. The curve |γ| is a sub-pfaffian set.

A natural question is to ask whether there exists a trajectory γ of the
restricted gradient accumulating to the origin to apply the main theorem
to. Elementary topological arguments and some properties of a gradient
vector field show that it is always the case:

Proposition 3. There exists a non-stationary trajectory of ∇hf0 accumu-
lating to 0 either in positive or in negative time.

It is worth recalling that in the smooth context of an analytic gradient
vector field on (Rn,0), there exists furthermore a real analytic curve through
0 invariant for the gradient vector field [20], a real analytic separatrix). For
restricted gradients over isolated surface singularities we also prove here
there always exists a formal separatrix:

Theorem 4. Let S0 be a connected component of X \ {0}. If ∇hf0 does
not vanish S0, there exists a trajectory γ : R≥0 → S0 of ∇hf0 accumulating
to 0 which admits a formal asymptotic expansion at the origin such that the

associated formal curve Γ̂ is invariant for the restricted gradient vector field.
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2. Structure of the proof

We first recall the case of an analytic Euclidean gradient in R2.
Trajectories of a real analytic vector field in R2 accumulating at the origin

either ”spiral” around the origin or have a tangent. In the latter case, a
Rolle’s type argument shows that the trajectory is non-oscillating (see [6]).
The non-oscillation of a planar analytic gradient trajectory is thus given by
the existence of a tangent. Although Thom’s Gradient conjecture holds true
([17]), we sketch the usual simpler proof of the existence of a tangent in the
plane case. This will provide a flavor of some of the arguments that makes
our proof of Theorem 1 works.

Let (r, ϕ) be the polar coordinates at the origin of R2 and write

f0(r cosϕ, r sinϕ) = rk[Fk(ϕ) +O(r)]

where Fk(ϕ) is the restriction to the unit circle of the homogeneous part of
f0 of least degree. The gradient differential equation becomes a differential
equation on S1 × R≥0 and, after division by rk−1, writes as

(1) ṙ = r(kFk +O(r)) and ϕ̇ = F ′
k +O(r).

Since Fk is not identically zero, when it is constant we divide Equation (1)
by r and find that the divided vector field is transverse to C = S1 × 0 at
each point (dicritical case). If Fk is not constant, then F ′

k must vanish and
change sign along the circle C. This prevents any gradient trajectory from
accumulating on the whole bottom circle C (non-monodromic case).
In both cases, dicritical and non-monodromic, a plane gradient trajectory
does not spiral around its limit point, therefore it has a tangent and thus
does not oscillate.

The plane case is enlightening enough to provide us with some of the
elements we need to prove Theorem 1. The surface S0 on which we want
to understand the behavior of the restricted gradient trajectories at their
limit point 0, is analytically diffeomorphic to a cylinder S1×]0, ε]. We can
carry the metric h over this cylinder, so that we have a well defined gradient
differential equation. Our concern then becomes: how does a trajectory of
this differential equation behave near the bottom circle C = S1×0? There is
no canonical way to extend the inverse of the diffeomorphism onto S1× [0, ε],
and so à-priori, our differential equation is not well defined on the bottom
circle C, if defined at any point of it!

Nevertheless, we manage to prove that a limit dynamics exists on the
circle C but at finitely many points. We first show that our setting only
allows a single possible type of oscillation, that we call spiraling. To keep
up with the planar situation, we actually prove that the only possible dy-
namics of the restricted gradient vector field will either be dicritical-like or
non-monodromic-like (see Section 5 for precise definitions). Consequently,
trajectories cannot spiral and will therefore be non-oscillating.
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In Section 3, Proposition 14 provides a systematic way to parameterize
clos(S0) as the surjective image of a continuous mapping defined on S1 ×
[0, ε] which induces an analytic diffeomorphism between the open cylinder
S1×]0, ε] and S0. Such a parameterization is inherited from the resolution
of singularities of the analytic surface X and thus comes with some very
specific properties on the bottom circle C = S1 × 0.
In Section 4, we use such a parameterization to express the pull-back of the
restriction of the function f0 to S0, as well as the corresponding gradient
vector field, in polar-like coordinates (ϕ, r) ∈ S1 × [0, ǫ] as in Equation (1).
We obtain a continuous principal part along the bottom circle that will play
a similar role to that of the principal part Fk in (1).
Section 5 deals with the oscillating dynamics of a given real analytic vector
field on an isolated surface singularity (such as S0) and vanishing at the tip,
which can only be spiraling around this singular point, as we have already
suggested. Although of an independent nature, we use the results of the
previous sections for the proof. We also describe two local dynamical situ-
ations we call “dicritical” and “non-monodromic”, generalizing the planar
smooth case, and show here that such dynamics are non-oscillating.
Our notion of “dicritical-ness”: there exists an arc of the bottom circle C such
that each point is the ω-limit point of a unique trajectory, is weaker than the
usual notion requiring transversality to the exceptional divisor (here the
bottom circle). Our notion of “non-monodromic-ness” is also weaker than
the notion stated above: the function playing the role of Fk in Equation (1),
is continuous, not constant but can fail to be differentiable at finitely many
points of C.
The proof of Theorem 1 is done in Section 6. It uses all the main results
of Sections 3, 4 to obtain a differential equation on a cylinder S1 × [0, ε]
which is analytic on S1×]0, ε]. Although there is a slight cost, namely a
finite subset of the bottom circle where the differential equation is likely to
be not defined, we know enough about it to show that only the dicritical
or non-monodromic situations happen. Section 5 then guarantees the non-
oscillation of the restricted gradient trajectories.
The last section deals with two not-so-unexpected consequences of our main
result, Corollary 2 and Theorem 4.

3. Parameterization of real analytic surfaces

Let X be the germ, at the origin 0 of Rn, of a real analytic surface of
pure dimension 2. We will not distinguish between the germ of X at 0 and
a representative in a sufficiently small neighborhood of 0.
Assume that the surface X has an isolated singularity at the origin, that is
X \ {0} is a smooth embedded analytic surface of Rn.

Let S0 be a given connected component of the germ at 0 of the regular
part X \{0}. The tangent cone of S0 at 0 ∈ Rn is the subset of Sn−1 made of
the limits of the oriented secant direction pk

|pk|
taken along sequences of points



ON RESTRICTED ANALYTIC GRADIENTS 5

(pk)k in S0 converging to 0. The tangent cone C0(S0) is a compact connected
subanalytic subset of Sn−1 of dimension at most one. We distinguish two
cases:
- If C0(S0) reduces to a single point, we will speak about the cuspidal tangent
cone case (CTC for short).
- If C0(S0) is a curve we will speak of the open tangent cone case (OTC).

For any ε > 0 sufficiently small, the Local Conic Structure Theorem (see
[19, 2, 27]) states that X is homeomorphic to the cone with vertex 0 over
Xε = X∩Sn−1

ε , where Sn−1
ε is the Euclidean sphere of radius ε. Moreover, the

surface X is transverse to Sn−1
ε so that S0∩S

n−1
ε is analytically diffeomorphic

to S1 and S0 ∩ clos(B(0, ε)) is analytically diffeomorphic to S1×]0, ε].

Definition 5. Assume C0(S0) consists of the single oriented direction η ∈
Sn−1. A system of analytic coordinates (x, z) = (x1, . . . , xn−1, z) at 0 is
called adapted for S0 if the half-line R+η is the non-negative z-axis.

Given adapted coordinates (x, z) in the CTC case, taking the height
function z instead of the distance function, the proof of the Local Conic
Structure’s Theorem adapts to obtain the same conclusion: the intersec-
tion S0 ∩ {z = ε} is transverse, thus analytically diffeomorphic to S1 and
S0 ∩ {0 < z ≤ ε} is analytically diffeomorphic to S1×]0, ε] for 0 < ε ≤ ε0
once ε0 is sufficiently small.

From now on, we fix some ε0 so that in both cases OTC or CTC, the
above properties coming from the locally conic structure are satisfied. We
consider a representative of S0 in {0 < z < ε0}, where z stands for the
distance to the origin in the OTC case and for the last component of an
adapted system of coordinates in the CTC case.

In what follows we will desingularize the surface S0. First, it will be con-
venient for us to open the surface S0 by means of a single blowing-up-like
mapping β. Roughly speaking, we mean that the inverse image of S0 by β
accumulates to a one-dimensional set in the exceptional divisor.
In the OTC case, the usual polar blowing-up β : (y, r) 7→ ry, for y ∈ Sn−1

and r the distance function, “opens” the surface S0, since β−1(S0) accumu-
lates onto C0(S0) ⊂ Sn−1, a subanalytic curve.
The CTC case, however, requires more work. Starting with an adapted sys-
tem of coordinates (x, z), a first and naive candidate mapping to “open” the
surface is a “ramified blowing-up” of the form βs : (y, w) 7→ (wsy, w), where
y ∈ Rn−1, for a well chosen rational exponent s > 1. Such an exponent s
exists when the z-axis is contained in the surface S0. However the surface
β−1
s (S0) may accumulate to a single point on the divisor β−1

s (z = 0) (or
escapes to infinity) whatever the exponent s is. In such a case the surface
S0 cannot be opened with any such ramified blowing-up. In this situation,
we consider a given analytic half-branch on S0 as new non-negative z-axis,
and in these new coordinates, a ramified blowing-up as above will open the
surface.
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The next technical lemma will detail such considerations. First, an analytic
half-branch at the origin 0 of Rn is the germ at 0 of a connected component
Γ of Y \ {0}, where Y is a one-dimensional analytic set through 0. When
Γ is contained in {z > 0}, it is parametrized as the image of an analytic
mapping z 7→ (θ(z), zN ), z > 0, where θ = (θ1, . . . , θn−1) :] − ε, ε[→ Rn−1 is
analytic with θ(0) = 0 and N is a positive integer.

Lemma 6. Assume the tangent cone C0(S0) is reduced to a point. Let (x, z)
be adapted analytic coordinates at 0.
(i) There is a unique rational number ν > 1 such that the accumulation set
of the mapping S0 ∋ (x, z) → x

zν ∈ Rn−1 is a bounded subset of Rn−1 and
contains a point that is not (0, . . . , 0).
(ii) There exists a unique positive rational number e ≥ ν such that the

accumulation set of the mapping S0 × S0 ∋ ((x, z), (y, z)) → |x−y|
ze ∈ R is a

bounded subset of R containing a positive number.
(iii) Let Γ : z → (θ(z), zN ) be a real analytic half-branch at 0 such that Γ ⊂
S0. Then, the set of accumulation values of the mapping τe,Γ : S0 → Rn−1,

(x, z) 7→ x−θ(z1/N )
ze is a connected bounded subanalytic set of dimension 1.

Proof. The uniqueness of ν and e are clear.
For (i), let h(z) := sup{|x| for (x, z) ∈ S0}. The function h is subanalytic
and extends continuously to z = 0 by h(0) = 0. Writing it as a Puiseux’s
series h(z) = azν+· · · with a 6= 0, the exponent ν satisfies the required prop-
erties: the cuspidal nature of S0 and the definition of adapted coordinates
imply that ν > 1.

We show the existence of e of point (ii) similarly to point (i): We take this
time the function h to be defined as h(z) := sup{|x − y| for (x, z), (y, z) ∈
S0}.

For (iii), let Λ be the set of accumulation values of the mapping τ = τe,Γ.
Since Γ is contained in S0, the origin 0 of Rn−1 is in Λ. By definition of
the exponent e of point (ii), Λ is bounded and contains a point p 6= 0. The
connectedness and subanalyticity of Λ follow from the connectedness of S0
and the subanalyticity of τ . �

Remark 7. The numbers ν, e of Lemma 6 depend on the adapted system
of coordinates. Take in R3 the revolution surface x2 + y2− z5 = 0, then e =
ν = 5/2. Consider now the change of coordinates (x′, y′, z′) = (x+ z2, y, z),
then e′ = ν ′ = 2.

The next result synthesizes the discussion about the possible opening of
the surface S0 by a single blowing-up-like mapping. Its proof follows from
Lemma 6.

Proposition 8. In the OTC case, let M = Sn−1 ⊂ Rn with coordinates
y = (y1, . . . , yn). In the CTC case, let M = Rn−1 with coordinates y =
(y1, . . . , yn−1). Let (x, z) be adapted coordinates for S0 at 0 and let e ∈ Q>1
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be the exponent of point (ii) in Lemma 6 for these adapted coordinates and
let z 7→ (θ(z), zN ) be a parametrization of an analytic half-branch Γ in S0
such that eN ∈ N. Consider the following analytic mapping

(2)
β : M × [0, ε0] → Rn

(y, z) 7→

{
zy, OTC case,
(zeNy + θ(z), zN ), CTC case

Then β induces a diffeomorphism from M×]0, ε0] onto its image. Let S :=
β−1(S0), D := {z = 0} ⊂M ×R and E := clos(S) ∩D. Then E is a closed
bounded connected subanalytic curve of D of dimension one.

A mapping β as in (2) is called an opening blow-up of clos(S0). In the
CTC case, β depends on the adapted system of coordinates, on the given
curve Γ on S0 and on the number N in the parametrization of Γ. As we will
see, the choice of all these parameters will not matter for our purpose, so
we do not need the notation β to carry these parameters.

For the rest of this section, assume that we have picked an opening blow-
up β of the surface S0. A key element in our result relies on the construction
of an explicit diffeomorphism between S and the open cylinder S1×]0, ε0],
which extends to a global parameterization of clos(S) = S ∪E: a surjective
continuous mapping Φ : S1 × [0, ε0] → clos(S). For this purpose, we first
resolve the singularities of the surface clos(S), also providing a resolution of
the singularities of clos(S0) (up to ramification). Several formulations are
possible. The version we use is stated in the following theorem, an avatar
of the general theory on reduction of singularities of real analytic space as
found in Hironaka & Al. [13, 1] (see also [4]).

Theorem 9 (Reduction of singularities of S). There exists a non-singular

real analytic surface S̃, a normal crossing divisor Ẽ ⊂ S̃ and a proper ana-

lytic mapping σ : S̃ → U where U is an open neighborhood U of E in M ×R

such that:

(i) clos(S) ∩ U ⊂ σ(S̃) and σ−1(E) ⊂ Ẽ,

(ii) S′ = σ−1(S) is an open submanifold of S̃ and the restricted mapping
σ|S′ : S′ → S ∩ U is an isomorphism,

(iii) If E′ = clos(S′) ∩ Ẽ, then E′ = clos(S′) \ S′, it is a compact suban-

alytic connected curve of S̃ and σ(E′) = E.
(iv) If p ∈ E′, there is a fundamental system of neighborhoods {Wk} of p

in S̃ such that any connected component of Wk\Ẽ is either contained
in S′ or has empty intersection with S′.

Proof. Let X1 = clos(β−1(X \ {0})) be the strict transform of X by the
opening blowing-up β and let Z = (X1 ∪ D) ∩ U on some open neighbor-
hood U of E in M × R. The general reduction of singularities applied to
the real closed analytic set Z states there exists a proper surjective ana-

lytic mapping π : M̃ → U , composition of finitely many blowing-ups with
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closed analytic smooth centers, such that the total transform π−1(Z) has
only normal crossings. Moreover, the smooth centers of blowing-ups are
chosen either to be contained in the singular locus of the corresponding
strict transform of Z or in the divisors created along the resolution process.
Since sing(Z) ∩ clos(S) ⊂ D, the mapping π induces an isomorphism from

π−1(U \D) onto U \D. Let S̃ be the irreducible component of π−1(Z) con-

taining π−1(S). Let Ẽ = π−1(D) ∩ S̃ and put σ = π|
S̃

. Since S̃ is closed

in M̃ and σ is proper, we obtain the first inclusion in point (i). The second
inclusion is given by construction. Since S ∩ U ⊂ U \D and π is an isomor-
phism on π−1(U \D) we get point (ii). To prove point (iii), we first remark
that E′ = clos(S′) \ S′ as an easy consequence of (i). The properness of σ
ensures that E′ is the Hausdorff limit as ε → 0 of the subanalytic family

of compact sets C̃ε = σ−1(S ∩ {z = ε}), each analytically diffeomorphic to
the circle, and so E′ is subanalytic, compact and connected. It cannot be
reduced to a single point p since, otherwise the curve selection lemma would

show that S′ ∪ {p} ⊂ S̃ is locally open at p and thus p would be isolated

in Ẽ which cannot be. The properness of σ is used again to prove that
σ(E′) = E. Finally, for point (iv), let W be an affine chart at p, isomor-

phic to R2, such that W ∩ Ẽ is either one or the two coordinate axis. Let

Wk = [−1/k, 1/k]2 . A connected component of Wk \ Ẽ is either a half-space

or a quadrant. Each contains a single connected component of Wk+1 \ Ẽ.
If the property described in point (iv) does not hold, there will be points in

Wk \ Ẽ which belong to the boundary E′ = clos(S′) \ S′ of S′, thus impos-

sible since E′ ⊂ Ẽ. �

A triple R = (S̃, Ẽ, σ) satisfying the properties (i-iv) of Theorem 9 will

be called a (total) resolution of singularities of S. The curve Ẽ will simply
be called the divisor of the resolution R. The surface S′ = σ−1(S) and

E′ = clos(S′) ∩ Ẽ will be respectively called the strict transform and the
strict divisor of the resolution. We will also speak of R′ = (S′, E′, σ′ = σ|S′)
as the strict resolution of S (associated to R).

Let R = (S̃, Ẽ, σ) be a resolution and p be a point of Ẽ. Let σp : S̃1 → S̃

be the blowing-up of S̃ at p. This provides a new triple Rp = (S̃1, σ−1
p (Ẽ), σ◦

σp) which is a new resolution of singularities of S.

Definition 10. Let R1,R2 be two resolutions of the surface S = β−1(S0).
If R2 is obtained from R1 by finitely many successive points blowing-ups at
points in the successive corresponding divisors, we will say that R2 domi-
nates R1 and will write R2 � R1.

A resolution dominating a given one will be obtained when we want to
“monomialize” one or several functions on S which are restrictions of ana-
lytic functions.
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Definition 11. Let H = (h1, . . . , hk) be a k-uple of real analytic functions

in a neighborhood of E in M × R≥0. A resolution R = (S̃, Ẽ, σ) of S is
adapted to H (or briefly a (S,H)-resolution) if, for any j, the composition

h̃j = hj ◦ σ has a monomial representation at any point p ∈ S̃: There are

analytic coordinates (u, v) of S̃ at p such that h̃j = uavbGj(u, v), where
a, b ∈ N, Gj is analytic and Gj(0, 0) 6= 0.

Corollary 12. Let H = (h1, . . . , hk) be as above and suppose that the re-
striction hj |S has no critical point. Then there exists a resolution R of S
such that, for any R1 � R, R1 is a (S,H)-resolution.

Proof. From classical results in local monomialization of analytic functions
in a smooth analytic manifolds (see for instance [3]): just consider a reso-
lution of S and blow-up the points of the divisor where the corresponding
total transform of the hj have not yet a monomial representation. �

The following terminology is needed to state the principal result of this
section. Let N be a real analytic manifold with real analytic smooth bound-
ary ∂N and f : N → R be a continuous map. The function f is ramified-
analytic at a point p of ∂N , if there are l ∈ N and analytic coordinates
(x, z) at p for which N = {z ≥ 0} and ∂N = {z = 0}, such that the map-
ping (x, z) 7→ f(x, zl) is analytic at (0, 0). If h : N → M is a continuous
mapping into an analytic manifold M , the mapping h will be called ramified-
analytic at p ∈ ∂N if, in some analytic coordinates of M , its components
are ramified-analytic at p.

Remark 13. Let f : N → R be a ramified-analytic function at some point
p ∈ ∂N , with analytic coordinates (x, z) at p for which N = {z ≥ 0} and
∂N = {z = 0}. The function z∂zf extends continuously, in a neighborhood
V of p, into a function which is ramified-analytic at p and, moreover, vanishes
along the boundary V ∩ ∂N .

Proposition 14. Let R = (S̃, Ẽ, σ) be a (S, z)-resolution and R′ = (S′, E′, σ′)
be the associated strict resolution. There exist ε > 0 and a continuous map-

ping Φ̃ : S1 × [0, ε] → S̃ with the following properties:

(i) It maps S1×{r} onto σ−1(S∩{z = r}) for 0 < r ≤ ε and induces an
analytic diffeomorphism between S1×]0, ε] and σ−1(S∩{0 < z ≤ ε}).

(ii) It maps surjectively S1 × [0, ε] onto clos(S′) = S′ ∪ E′ and it maps
C = S1 × {0} onto E′.

(iii) The set Ω = Ω(Φ̃) = (Φ̃)−1(E′ ∩ sing (Ẽ)) ⊂ C is finite and Φ̃ is
uniformly ramified-analytic at any point of C \ Ω: there exists l ∈ N

such that (ϕ, r) 7→ Φ̃(ϕ, rl) is analytic at every point of C \ Ω.

Using Theorem 9, points (i), (ii) and (iii) are true for Φ := σ ◦ Φ̃ when
replacing the strict transforms S′ and E′ with the initial subsets Sand E
respectively. Namely, Φ maps surjectively S1 × [0, ε] onto clos(S) = S ∪ E,
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C onto E and S1×]0, ε] diffeomorphically onto S, sending S1 × {r} onto
S ∩ {z = r}. Moreover, Φ is uniformly ramified analytic at every point of

C \ Ω. A mapping Φ̃ (or Φ) satisfying points (i) to (iii) of Proposition 14 is
called a parameterization associated to the resolution R, and the subset Ω

in (iii) and is called the exceptional set of the parameterization Φ̃ (or Φ).

Proof. Let R = (S̃, Ẽ, σ) be a (S, z)-resolution. We construct a retraction of

a neighborhood of Ẽ in S̃ onto Ẽ by integration of a certain analytic vector
field. It is just an avatar of the construction of a Clemens structure on an
analytic manifold equipped with a normal crossings divisor (see [8, 23]).

Let g̃ be an analytic Riemannian metric on S̃, whose existence is guaranteed
by Grauert’s Theorem on the analytic embedding of analytic manifolds in

Euclidean spaces [11]. Let z̃ := z ◦ σ : S̃ → R. Let ξ = ∇g̃(−z̃2) be the
gradient vector field of −z̃2 w.r.t the metric g̃. Its singular set is exactly the

divisor Ẽ = {z̃ = 0}.

Let ε be small enough so that σ induces a diffeomorphism from σ−1(S ∩
{0 < z ≤ ε}) to S ∩ {0 < z ≤ ε}. We can now consider S just as being
S ∩ {0 < z ≤ ε}.

For r ∈]0, ε], let C̃r = z̃−1(r) = σ−1(S ∩ {z = r}). It is an embedded curve

in S̃ isomorphic to the circle S1. Let ρ : S1 → C̃ε, ϕ 7→ ρ(ϕ) be an analytic
diffeomorphism. For p ∈ S′, let γp be the maximal integral curve of ξ with
initial data γp(0) = p. The parameterized curve γp is defined for times t ≥ 0
and stays in S′. Since the function t 7→ z̃(γp(t)) strictly decreases to 0 as

t goes to infinity γp cuts (orthogonally) each curve C̃r for r ∈]0, z̃(p)] only
once. Thanks to  Lojasiewicz’s Gradient Inequality [18], the omega-limit set

ω(γp) consists of a single point R(p) ∈ E′ and the mapping R : S̃ → E′ is

continuous since Ẽ is compact. The following mapping is thus well defined:

(3) Φ̃ : S1 × [0, ε] → S̃, Φ̃(ϕ, r) =

{
C̃r∩ |γρ(ϕ) |, if r 6= 0;

R(ρ(ϕ)), if r = 0,

where | γp |⊂ S̃ is the image set of γp. The restriction of Φ̃ to the open
cylinder S1×]0, ε] is an analytic diffeomorphism onto S′, proving point (i).

In order to obtain the continuity of Φ̃ and properties (ii) and (iii), we will

show that for p ∈ E′ there exists ϕ0 ∈ S1 such that Φ̃(ϕ0, 0) = p, Φ̃ is

continuous at (ϕ0, 0) and ramified-analytic if p ∈ E′ \ sing(Ẽ).

Let p ∈ E′\singẼ. Let (u, v) be analytic coordinates at p such that z̃(u, v) =

vm with m ≥ 1 and Ẽ = {v = 0}. From point (iv) of Theorem 9, there is
a neighborhood V of p such that the half-space {v > 0} is contained in S′.
The metric writes g̃ = Adu2 + 2Bdudv + Cdv2, and we obtain

ξ = 2(det g̃)−1(Bmv2m−1 ∂
∂u −Amv2m−1 ∂

∂v ).
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Since A(p) 6= 0, the divided vector field ξ′ := v1−2mξ is not singular,

transverse to the divisor Ẽ at p and generates the same foliation as ξ on
{v 6= 0}. Thus there exists a trajectory |γ | of ξ with ω(γ) = p which ex-
tends smoothly and analytically through of p as a trajectory |γ′| of ξ′. Going

backwards in time, |γ | cuts C̃ε at a point ρ(ϕ0) for some ϕ0 ∈ S1. Thus

p = R(ρ(ϕ0)) = Φ̃(ϕ0, 0). Let γ′q be the trajectory of ξ′ through a point

q ∈ V. Since ξ′ is not singular in V and transverse to the fibers v = cst, up
to shrinking V, the following mapping

H : V×] − δ, δ[→ S̃, (q, t) 7→ H(q, t) := v−1(t) ∩ |γ′q|,

is analytic. Fix v0 > 0 such that γ cuts v−1(v0) inside V and denote ψ : S1 →

C̃
v
1/m
0

, ψ(ϕ) = Φ̃(ϕ, v
1/m
0 ), an analytic diffeomorphism. By construction the

mapping we are looking for satisfies

Φ̃(ϕ, r) = H(ψ(ϕ), r1/m)

in some neighborhood of (ϕ0, 0) and thus is ramified analytic at that point.
The number m can be chosen constant for each connected component of

E \ sing(Ẽ), which are finitely many. Thus there is a uniform ramification
index l along C \ Ω. So we get (iii).

Let p ∈ E′ ∩ sing Ẽ. Let (u, v) be analytic coordinates at p such that

z̃(u, v) = ulvm with l,m ≥ 1 and Ẽ = {uv = 0}. From point (iv) of Theorem
9 we assume that the first quadrant Q = {u > 0, v > 0} is contained in S′

for u, v small enough. The metric writes as g̃ = Adu2 + 2Bdudv + Cdv2,
and we obtain

ξ = 2(det g̃)−1u2l−1v2m−1[(−lCv +mBu) ∂
∂u + (lBv −mAu) ∂

∂v ].

Since g̃ is positive definite, the divided vector field ξ′ = u1−2lv1−2mξ has a
saddle-type singularity at p: its linear part Lp at p has two non-zero eigen-
values with opposite sign. Moreover, each eigen-direction is transverse to the

u-axis and v-axis, namely the components of Ẽ at p. The only trajectories
of ξ′ with ω-limit point p are the two connected components of W s \ {p},
where W s is the local stable manifold at p. Since ξ and ξ′ are positively
proportional on Q, the separatrix W s ∩Q ⊂ S′ is a trajectory |γq| of ξ and

thus ω(γq) = p. Going backwards in time, |γq| cuts C̃ε at a point ρ(ϕ0) for

some ϕ0 ∈ S1 and thus Φ̃(ϕ0, 0) = p. Let H : clos(Q) × [0, δ[→ S̃, where
H(q, t) is the intersection point of the trajectory of ξ′ through the point q
with the level curve {ulvm = t}. As in the previous case, continuity at p of

the mapping Φ̃ will follow from the continuity at p = (0, 0) of the mapping
H. This property is easily obtained by explicit computation when the vector
field ξ′ is linear, and we can reduce to this case using Hartman-Grobman
Theorem (see for instance [22]). �
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Definition 15. Let Ω be a finite subset of C (such as the exceptional set

of a parameterization Φ̃ in the proposition above). An analytic mapping
F : S1×]0, ε] → N , is called uniformly almost ramified-analytic (with respect
to Ω) if there exists some l ∈ N such that (ϕ, r) 7→ F (ϕ, rl) can be extended
as an analytic mapping at any point of C \ Ω. To be shorter, we will either
write Ω-u-a-r-a or simply u-a-r-a if the subset Ω is understood.

Part (iv) of Proposition 14 says that Φ̃ (or Φ) is an u-a-r-a mapping
with respect to the exceptional set Ω. Since ramified-analyticity at any
point of C \Ω is inherited from the construction of Φ and uniformity comes
from the compactness of E, another typical situation example we will come
across in the sequel is the following: if h is a continuous function in a
neighborhood of E ⊂ M × R≥0 which is ramified-analytic along E (with
respect to D = M × {0}), the composite mapping hΦ = h ◦ Φ is Ω-u-a-r-a.

4. Asymptotic expansions of restricted functions

A Q-generalized (real) formal power-series is a formal expansion G(T ) =∑
k≥0 akT

αk , where (αk)k≥0 is a strictly increasing sequence of non-negative
rational numbers and each coefficient ak is a real number. It is said conver-
gent if there exists t0 > 0 such that the sequence of m-partial sum functions
Gm : R≥0 → R, Gm(t) =

∑m
k=0 akt

αk , converges uniformly in [0, t0], thus
given rise to a continuous function, also denoted G : [0, t0] → R, analytic for
t > 0, called the sum of the convergent series. If the exponents αk are in N

l
for some positive integer l, then G(T ) is called a Puiseux series. If all but
finitely many coefficients ak are non-zero then G(T ) is a Q-generalized real
polynomial.

Let X ⊂ Rn be an analytic isolated surface singularity at 0 and let S0 be
a connected component of X \ {0}. Let β : M × R≥0 → Rn be an opening
blowing-up of S0 and denote S = β−1(S0), D = {z = 0} = M × {0},
E = clos(S) ∩D as in the previous section.

Let f : U → R be a continuous function in U , a neighborhood of E in
M × R≥0, which is ramified-analytic along D. Let fS : clos(S) → R be the

restriction of f to clos(S) = S ∪ E. Given a (S, z)-resolution R = (S̃, Ẽ, σ)

and an associated parameterization Φ̃ : S1 × [0, ε] → S̃ as in Proposition 14,

we denote by fΦ := fS ◦ Φ = fS ◦ σ ◦ Φ̃ : S1 × [0, ε] → R.

This Section is devoted to prove the following result, establishing an as-
ymptotic expansion of the restricted function fS w.r.t. the height coordinate
z : M×R → R≥0 (let again (ϕ, r) be the standard coordinates on S1× [0, ε]).

Proposition 16. Assume that f is not identically vanishing on S. One and
only one of the following two properties is satisfied:
(a) There exists a Q-generalized real formal power-series G(T ) =

∑
k≥0 akT

αk

which is an asymptotic expansion of fS in the following sense: for any posi-
tive integer m, there exists a neighborhood Vm of E in clos(S) and a bounded
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function gm : Vm → R such that, for any (y, z) ∈ Vm with z 6= 0,

(4) fS(y, z) =
m−1∑

k=0

akz
αk + zαmgm(y, z).

Moreover, the formal power series G(T ) is a convergent Puiseux series and
fS(y, z) = G(z) for any (y, z) ∈ S in a neighborhood of E.

(b) Given an initial resolution of S0, there exists a dominating resolution R0

adapted to the function z, a Q-generalized polynomial P (T ) =
∑m

k=0 akT
αk

and a rational number α > αm such that, for any resolution R � R0 and

any associated parameterization Φ̃, the mapping fΦ : S1 × [0, ε] → R writes
as

(5) fΦ(ϕ, r) = P (r) + rαF (ϕ, r),

where F is a continuous function on S1×[0, ε] and its restriction to C := S1×
{0} is not constant. Moreover, F is u-a-r-a with respect to the exceptional
set Ω of Φ.

The proof will follow from the following lemma.

Lemma 17. With the hypotheses and notations of Proposition 16, we find:
(i) There exists a unique α = α(fS) ∈ Q≥0 such that the quotient fS/z

α

is bounded on S and cannot have the value 0 as a single accumulation value
as z → 0+. The number α is called the exponent of the restricted function
fS (with respect to E).

(ii) Given an initial resolution of S0, there exists a dominating (S, z)-
resolution R0 such that, for any other resolution R � R0 and any associated
parameterization Φ : S1× [0, ε] → S, the quotient function fΦ/rα = (f/zα)◦
Φ is well defined and analytic on S1×]0, ε] and extends to a continuous
function on S1 × [0, ε]. Its restriction to the bottom circle C will be denoted
by inΦ(f) and called the initial part of the restricted function fS (relative to
Φ).

(iii) An initial part inΦ(f) like in point (ii) is constant if and only fS/z
α

has a unique accumulation value as z → 0.

Proof. By definition of a ramified-analytic function along D and since E is
a compact subset of D, there exists a positive integer l ∈ N such that the
function f : (y, z) 7→ f(y, zl) is analytic in a neighborhood of E in M × R.
If we prove the Lemma for the analytic function (f)S := f |S , we obtain the
exponent α. Then α := ᾱ/l is the exponent of fS with respect to E and it
satisfies (i)-(iii). For the rest of the proof, we suppose that f is analytic in
a neighborhood of E in M × R.

Proof of (i). The uniqueness of the exponent α is immediate from its defi-
nition. Consider the following function

µ(t) = max{|f(y, t)| for (y, t) ∈ S}.
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It is well defined since S ∩ {z = t} is compact for t > 0. The function µ is
subanalytic, continuous and identically zero only if fS is. So assuming that
fS does not vanish identically on S, there exists a positive real number a
and a non-negative rational number α such that t−αµ(t) → a as t→ 0. This
proves the claim.

Proof of (ii). Assume we are given a first resolution. Let R0 be a (S, f, z)-

resolution dominating it. Any other resolution R = (S̃, Ẽ, σ) dominating

R0 is still a resolution adapted to f and z. Let Φ̃ : S1 × [0, ε] → S̃ be a
parameterization associated with R. The function h = z−αfS is analytic,
continuous and bounded on S ∩ {0 < z < ε} for some ε > 0. Let S′ =
σ−1(S), E′ = clos(S′) \ S′ be respectively the strict transform of S and
the strict divisor of the resolution R (see the notations of Theorem 9). Let

h′ = h ◦ σ : S′ → R. Thus r−αfΦ = h′ ◦ Φ̃. Since Φ̃ is continuous and maps
C onto E′, there is just to prove that h′ extends to a continuous function up

to E′. We also write h′ = z̃−αf̃S where f̃S = fS ◦ σ and z̃ = z ◦ σ.

First, let p′ ∈ E′ \ sing(Ẽ). There are analytic coordinates (u, v) of S̃ at p′

such that Ẽ = {v = 0} and {v > 0} ⊂ S′ using (iv) of Theorem 9. Since R
is a resolution adapted to f and z, we write

f̃S(u, v) = ul1vm1U1(u, v), z̃ = vm2U2(u, v)

for some integers l1,m1,m2 ∈ N and invertible analytic functions U1, U2

with U2(0, 0) > 0. For (u, v) close to p′ = (0, 0) with v > 0, we find

(6) h′(u, v) = vm1−αm2
ul1U1(u, v)

U2(u, v)α
.

Since h′ is bounded on {v > 0} necessarily m1 ≥ αm2 and the right hand
term in Equation (6) defines a continuous function on {v ≥ 0}. If clos(S′) ⊂
{v ≥ 0} nearby p′, we get the desired conclusion. If instead {v < 0} ⊂ S′,
necessarily m2 is even since z̃ is positive on S′. In this case, the monomial
vm1−αm2 in expression (6) must be read as vm1/(vm2)α. The function h′

turns out to be continuous in a neighborhood of p′ = (0, 0).

Suppose now that p′ ∈ E′ ∩ singẼ. There are analytic coordinates (u, v) of

S̃ at p′ with Ẽ = {uv = 0} and {u > 0, v > 0} ⊂ S′ and such that we can
write

f̃S(u, v) = ul1vm1U1(u, v), z̃ = ul2vm2U2(u, v)

for some l1,m1, l2,m2 ∈ N and analytic functions U1, U2 with U1(0, 0) 6= 0,
U2(0, 0) > 0. This time, for small and positive u, v, we have

(7) h′(u, v) = ul1−αl2vm1−αm2
U1(u, v)

U2(u, v)α
.

Since the function h′ is bounded in a neighborhood of p′ in S′, l1 − αl2 and
m1 − αm2 are both non-negative. The continuity of h′ follows by the same
arguments as in the previous case.
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Proof of (iii). It follows by continuity of fΦ/rα, proved in (ii), the proper-
ness of Φ and that Φ maps C onto E = clos(S) ∩ {z = 0}. �

Proof of Proposition 16. Let α0 ∈ Q≥0 be the exponent of f with respect to
E. Let R0 be a (S, z)-resolution and Φ0 be an associated parameterization
satisfying the properties of (ii) in Lemma 17.

If the initial part inΦ0

(f) is not constant then we are in case (b) of the
proposition with P = 0 and α = α0.

Assume now inΦ0

(f) ≡ a0 ∈ R∗. The function f1 := f − a0z
α0 is ramified-

analytic along D. If f1|S ≡ 0 then we are in case (a). Otherwise, using
Lemma 17, let α1 ∈ Q≥0 be the exponent of f1 w.r.t E. By definition of the
exponent, we find α1 > α0. Let R1 be a (S, z)-resolution with R1 � R0 and

Φ1 an associated parameterization for which the initial part inΦ1

(f1) of f1
exists as in part (ii). If inΦ1

(f1) is not constant we are in case (b) as above
and we are done, otherwise we continue this process.
Suppose there exists a sequence of (S, z)-resolutions {Rk}k≥0 with Rk+1 �
Rk, associated parameterizations Φk and a Q-generalized power seriesG(T ) =∑

k≥0 akT
αk such that, for any m ≥ 0, αm is the exponent of the function

fm = f −
∑m−1

k=0 akz
αk and the principal part inΦ

m
(fm) is a constant func-

tion equal to am 6= 0. The definition of the exponent α gives directly the
asymptotic expansion of fS as in equation (4). Let Γ ⊂ S be an analytic
half-branch accumulating to a single point in E, parameterized by the vari-
able z. Let L :]0, ε] → R defined as L(z) = fS(Γ(z)). By (4), we have for
any m ≥ 0 and z sufficiently small,

L(z) −
∑m−1

k akz
αk = O(zαm),

that is, that G(T ) is the asymptotic expansion of L as z → 0+. Since
L is a semi-analytic function, G(T ) is a convergent Puiseux series. Thus
L(z) = G(z), where G is considered here as the sum of the expansion G(T ).
We define GS : S → R by GS(y, z) = G(z), an analytic function on S which
depends only on z. We have shown that the restrictions of fS and GS on Γ
coincide. Since Γ can be chosen arbitrarily, fS = GS on the whole surface
S. This proves statement (a) of the Proposition.

Finally, F = fΦ−P
rα is u-a-r-a since both fΦ and P are so. �

Remark 18. Although F depends on the resolution R and on the associated
parameterization Φ, we insist it is of the special following form:

F = g ◦ Φ with g := (f
Φ−P
rα ).

The function g is continuous in a neighborhood of E in M ×R≥0, ramified-
analytic along E, and depends on f and the opening blowing-up β only.

5. Oscillation vs Spiraling in singular surfaces

Let γ : [0,+∞[→ Rn be an analytically parameterized curve such that
limt→+∞ γ(t) = 0 ∈ Rn and 0 does not belong to |γ |, the image of γ.
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Definition 19. A parameterized curve γ is said (analytically) non-oscillating
if for any semi-analytic subset H of Rn, either |γ | is contained in the sub-
set H or the intersection |γ | ∩H consists at most of finitely many points.
If, on the contrary, there exists a semi-analytic set H such that |γ | is not
contained in H and the intersection |γ | ∩H has infinitely many points then
we will say that γ is oscillating relatively to H.

The notion of oscillation clearly depends only on the germ at 0 of the
image |γ | of the parameterized curve γ, not on any given parameterization.

In dimension 2, the notion of spiraling around a given point is a special
case of oscillation for a curve. A convenient definition is found in [6]. We
generalize this notion for a curve |γ | contained in an analytic isolated surface
singularity X ⊂ Rn at the origin 0 and accumulating at 0.

Let X be an analytic surface with an isolated singularity at 0 ∈ Rn. Let
S0 be a connected component of X \ {0}. Let Γ be an analytic half-branch
at 0 contained in S0. For a small enough simply connected neighborhood
V of (the germ at 0 of) Γ in S0, the curve Γ ∩ V separates V \ Γ into two
connected components which we call the two local sides of Γ in S0.

Definition 20. The curve γ : [0,+∞[→ S0 ⊂ X \ {0} spirals in X if, for
any analytic half-branch Γ at 0 in S0, there exists an increasing sequence
(tk)k∈N ⊂ R>0 with tk → +∞ such that for each k:

γ([tk, tk+1[) ∩ Γ = {γ(tk)}, γ(tk − εk) ∈ V− and γ(tk + εk) ∈ V+,

for εk > 0 small and where V−, V+ are the local sides of Γ in S0.

When γ is a trajectory of a real analytic vector field in a neighborhood
of 0 ∈ R2, a Rolle-Khovanskii’s argument proves that the only oscillating
dynamics at 0 is spiraling (see [6]). Proposition 21 below extends this result
to analytic isolated surfaces singularities.

Let ξ0 be an analytic vector field on S0 which extends continuously and
subanalytically to the origin by ξ0(0) = 0, as a mapping from clos(S0) to
TRn|clos(S0).

Proposition 21. Assume that ξ0 does not vanish in S0. Let γ : [0,+∞[→
S0 be a non-trivial trajectory of ξ0 accumulating at 0. Then γ is oscillating
if and only if it spirals in X.

Proof. If γ spirals then it is oscillating. Suppose that γ does not spiral.
There exists an analytic half-branch Γ in S0 such that either
(a) the germ at 0 of the intersection |γ | ∩ Γ is empty, or
(b) |γ | ∩ Γ is infinite but γ does not cross Γ from one fixed local side of Γ
to the other side at those intersection points.
If (b) happens, a Rolle’s argument implies that Γ is tangent to ξ0 at infinitely
many points accumulating to 0. The subanalyticity of ξ0 implies that the
half-branch Γ is a trajectory of ξ0, contradicting the oscillation of γ relatively
to Γ. So (b) is impossible.
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Assume we are in case (a). Since the surface S0 is analytically diffeomorphic
to a cylinder, S0 \ Γ is a simply connected analytic manifold. Using Hae-
fliger’s Theorem [12, 16, 21]), we deduce that any leaf of the real analytic
foliation induced by ξ0 in S0 \ Γ is a Rolle’s leaf. In particular, the curve
|γ | ⊂ S0 \ Γ is a Rolle’s leaf and cannot cut infinitely many times any ana-
lytic half-branch contained in S0 \ Γ. Thus γ is non-oscillating. �

Despite of the similarities between spiraling in a smooth surface and in
an analytic isolated surface singularity, there is however a very important
difference. The existence, for a trajectory γ, of a tangent at the origin,

that is the limit of secants limt→∞
γ(t)
|γ(t)| exists, prevents, in the smooth

surface situation, from spiraling around the origin. For an isolated surface
singularity, although in the OTC case this argument is still valid, in the CTC
situation, the curve γ will always have a tangent at the origin corresponding
to the direction of the tangent cone, regardless if it is spiraling or not
A criterion stronger than the existence of tangent to imply non-spiraling is
that the lifting of γ by a reduction of singularities of the surface accumulates
to a single point on the exceptional divisor.
We will use this criterion through its lifting on S1 × [0, ε] via a parameteri-
zation as in section 3.

Criterion for non-spiraling. Let R be a resolution of S = β−1(S0)
where β is an opening blowing-up of S0. Let Φ : S1 × [0, ε] → S be a
parameterization associated to R. Assume that |γ | ⊂ S0 and suppose the
ω-limit set ω(γ) of the lifted curve γ = (β ◦ Φ)−1 ◦ γ is such that C \ ω(γ)
contains an open non-empty arc. Then γ does not spiral in X.

The proof is easy: the stated property will imply that γ does not intersect a
given analytic half-branch Γ on S1× [0, ε] through a point p ∈ C \ (ω(γ)∪Ω)
where Ω is the exceptional set of Φ. Therefore, γ does not intersect the
curve Γ = (β ◦ Φ)(Γ) ⊂ S0, which is an analytic half-branch by properness
of the resolution and the property that Φ is ramified-analytic at p. Thus γ
does not spiral in X.

The next result describes, for a vector field ξ0 on S0, two types of dynamics
ensuring that none of its trajectories accumulating at the origin is spiral-
ing. These types correspond to either “dicritical” or “non-monodromic”
dynamics similar to those in the plane gradient case met in Section 2.

Proposition 22. Assume that ξ0 does not vanish in S0. Suppose that the
transformed vector field ξ = (β◦Φ)∗ξ0 on the open cylinder S1×]0, ε] satisfies
one of the following non-exclusive situations:

(a) Dicritical case: There exist a point p ∈ C \ Ω and a neighborhood U of p
in S1 × [0, ε] disjoint from Ω in which ξ writes as

(8)

{
ṙ = rµH(r, ϕ)
ϕ̇ = rµ−1+ηG(r, ϕ)
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where µ, η ∈ Q>0 and H,G are continuous on U and ramified-analytic at
any point of U ∩ C and such that H is negative on U .

(b) Non-monodromic case: There exist µ ∈ Q≥0, u-a-r-a functions G1, G2 :
S1×]0, ε] → R so that G2 vanishes on C \ Ω and an u-a-r-a function H
continuous on the whole cylinder S1 × [0, ε] such that the restricted function
H|C is not constant, in such a way that ξ writes in the open cylinder S1×]0, ε]
as

(9)

{
ṙ = rµ+1G1

ϕ̇ = rµ[∂H∂ϕ +G2].

Then any trajectory γ of ξ0 accumulating to the origin is non-spiraling and
therefore is non-oscillating.

Proof. It suffices to show that any trajectory γ of ξ0 accumulating to the
origin satisfies the non-spiraling criterion above.

In the dicritical situation (a) we prove a slightly stronger result: there exists
a non-empty arc I ⊂ U ∩ C such that each point in I is the unique ω-limit
point of a trajectory of the transformed vector field ξ.
When µ − η + 1 ≥ µ in Equation (8), dividing ξ by rµ, gives a vector field
which extends to U ∩ S1× [0, ε] as a ramified-analytic vector field transverse
to C ∩ U . Thus any point of C ∩ U is the unique accumulation point of a
trajectory of ξ living in the open cylinder S1×]0, ε].
Assume now that µ − η + 1 < µ in (8). We suppose that U is of the form
U =]ϕ1, ϕ2[×[0, δ] ∈ S1 × [0, ε] for some δ > 0 small enough. Dividing ξ by
rµ−1|H|, our vector field provides the following equations in U :

(10)

{
ṙ = −r

ϕ̇ = rη G
|H|

Up to shrinking U , and since G is ramified-analytic, we furthermore assume
that G does not vanish on U , up to increasing the exponent η. If G(p) = 0
but G|U∩C 6≡ 0, then there are points of C close to p at which G does not
vanish. Thus we can also supposeG(p) 6= 0, for instance that G is positive on
U . Up to shrinking U again, we know that K1 ≤

G
|H| ≤ K2 on [ϕ1, ϕ2]× [0, δ]

for some positive constants K1,K2. The solution of (10) through a point
(ϕ0, r0) ∈ [ϕ1, ϕ2]×]0, δ], as long as it is in that domain, lies between the
solutions through (ϕ0, r0) of the systems of equations ṙ = −r and ϕ̇ = Kir

µ

for i = 1, 2. These last curves are parameterized by

ϕ 7→ r(ϕ) = [rη0 −
η
Ki

(ϕ− ϕ0)]1/η , i = 1, 2.

We deduce that any point of ]ϕ1, ϕ2[×0 ⊂ C is the unique accumulation
point of a trajectory of the system (10), lying in {r > 0}.
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Consider now the non-monodromic situation (b). The hypothesis about H
implies its partial derivative ∂ϕH is u-a-r-a and continuous along C \Ω. Let
crit∗(H|C) be the critical locus of H|C in C \ Ω, and let

Ω′ = Ω ∪ (H|C)−1(H(crit∗(H|C)).

Since H|C is not constant, C \ Ω′ has non empty interior. To show the
criterion for non-spiraling for any trajectory γ of ξ0, it is enough to check
that the limit set ω(γ) of any trajectory γ of ξ accumulating to C is contained
in Ω′.
Assume γ is parameterized by t ∈ R≥0 and consider the real function

h = hγ : R≥0 → R, t 7→ h(t) = H(γ(t)).

The function h is C1. Let p ∈ C\Ω′ and let a := H(p). We just have to show
that a cannot be an accumulation value of h when t → +∞. The function
|∂ϕH| is bounded below on the compact set (H|C)−1(a): there exists c > 0
such that |∂ϕH| ≥ 2c > 0 on a given neighborhood V of (H|C)−1(a) in
S1 × [0, ε]. Since γ(t) = (ϕ(t), r(t)) satisfies Equations (9), if γ(t) ∈ V then,
up to shrinking V (taking into account Remark 13), we find

ḣ(t) =
∂H

∂r
(γ(t)) ṙ(t) +

∂H

∂ϕ
(γ(t)) ϕ̇(t) > c.

For ε′ > 0 sufficiently small, we assume that H−1(a)∩S1× [0, ε′] ⊂ V. Thus,
there exists some δ > 0 such that

h(t) ∈]a− δ, a + δ[⇒ γ(t) ∈ V.

From all these properties, for t ∈ h−1(]a−δ, a+δ[) large enough, ḣ(t) ≥ c/2 >
0. Thus when t→ +∞, the value a cannot be an accumulation value of h. �

Remark 23. The non-monodromic situation (b) described in Proposition 22
can be generalized as follows:
Assume that the given analytic vector field ξ0 does not vanish in S0 and that
the foliation F on S1×]0, ε] induced by ξ = (β ◦ Φ)∗ξ0 extends continuously
to C \ Ω such that C is invariant. Assume there exist, two distinct points
q1, q2 of C \ Ω where F is not singular, and two continuous germs of vector
fields ξ1 at q1 and ξ2 at q2, which are local generators of the foliation F ,
positively co-linear to ξ in the common domain of definition and ”pointing
in different directions”: if ϕ denotes a global coordinate on C ≃ S1, writing
ξi(qi) = ci∂ϕ, then c1c2 < 0. Then any trajectory of ξ0 accumulating to the
origin is non-oscillating.

6. Proof of the main result

This section is devoted to the proof of the main result of this paper,
Theorem 1.
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The next Lemma shows that the only case requiring work is when both
f0|S0

and ∇hf0 do not vanish on S0.

Lemma 24. If either f0|S0
or ∇hf0 vanishes in any neighborhood of 0 in

S0, then any trajectory of the restricted gradient ∇hf0 accumulating to the
origin is non-oscillating.

Proof. First, note that ∇hf0 extends to a continuous subanalytic mapping
∇hf0 : clos(S0) → TRn by ∇hf0(0) = 0, and that f0 vanishes on any con-
nected component of the zero locus of ∇hf0 containing 0 in its closure. The
subanalytic Curve Selection Lemma guarantees there exists a subanalytic
(thus semi-analytic) curve Γ ⊂ S0 such that 0 ∈ clos(Γ) and Γ ⊂ f−1

0 (0).
Let γ be a non-trivial trajectory of the restricted gradient ∇hf0 accumulat-
ing to 0. The function t 7→ f0(γ(t)) is increasing and tends to 0 as t → ∞.
Thus f0(γ(t)) < 0 for any t and γ does not cut Γ. Apply now Proposition 21.
�

Assume from now on that there exists a neighborhood V of 0 in X, such
that f0|S0

and ∇hf0 do not vanish in V ∩ S0.

The sketch of the proof of Theorem 1 is as follows. We first open the
surface S0 by means of a suitable opening blow-up mapping β : M ×R≥0 →
Rn as defined in Proposition 8. Then we take a suitable resolution R =

(S̃, Ẽ, σ) of the surface S = β−1(S0) as in Theorem 9. We then pick a

parametrization Φ̃ : S1 × [0, ε] → S̃ associated to R. Writing Φ = σ ◦ Φ̃, the
mapping β ◦Φ is a diffeomorphism from the open cylinder S1×]0, ε] onto S0.

Thus, the pull-back h̃ := (β◦Φ)∗h of the metric h is an analytic Riemannian
metric on the open cylinder. If fΦ denotes the composition f0 ◦ β ◦ Φ, then
the pull-back ξ̄ := (β ◦ Φ)∗∇hf0 is just the gradient vector field of fΦ with

respect to h̃, that is,

ξ̄ = (β ◦ Φ)∗∇hf0 = ∇
h̃
fΦ.

The proof will be finished, using Proposition 22, once we have proved that
ξ satisfies one of the two situations described there: either (a), dicritical or
(b), non-monodromic.

Our proof will only deal with the metric g on Rn be the Euclidean met-
ric. We can reduce to this case using Cartan-Janet’s Theorem [15, 7]: an
analytic Riemannian manifold can be locally isometrically embedded into
an Euclidean space as an analytic submanifold equipped with the induced
Riemannian structure.

Notation. Let Ω be a finite subset of C (such as for instance the excep-
tional set of a parameterization as in Proposition 14). In Definition 15 was
introduced the notion Ω-u-a-r-a function on the open cylinder S1×]0, ε]. For
any rational number ν ≥ 0, let A≥ν be the real algebra of all the Ω-u-a-r-a
functions ψ : S1×]0, ε] → R for which the function r−νψ is also an Ω-u-a-r-a
function along C. Let A>ν := ∩µ>νA≥µ be the ideal of A≥ν of the functions
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ψ such that the function r−νψ vanishes identically on C \ Ω. In particular
ψ ∈ A>ν means there exists a rational number ν ′ > ν such that ψ ∈ A≥ν′ .

We are dealing first with the CTC case in rather detailed fashion. It
requires much more work than the OTC case, and this latter will follow
from exactly the same arguments as those used in the CTC case.

Cuspidal case.

Assume that the tangent cone of S0 at the origin is reduced to a single point.
Take linear coordinates (x1, . . . , xn−1, z) at 0 adapted to S0 which are also
orthonormal coordinates for the Euclidean metric.

We consider an opening blow-up mapping of the form

β : M × R≥0 → Rn, (y, z) → (zeNy + θ(z), zN ),

where M = Rn−1 and e,N, θ are defined as in Proposition 8. We recall that
z 7→ (θ(z), z) = (θ1(z), . . . , θn−1(z), zN ) is a parametrization of an analytic
half-branch in S0. Let m+ 1 ∈ N≥1 be the minimum order at 0 with respect
to z of the components θj. The cuspidal nature of the surface S0 implies

m ≥ N .

We define the following functions on the open cylinder

R = eN(y21 + · · · + y2n−1) ◦ Φ and U =
∑

j((yj ◦ Φ)ϕ)2,

where the subscript ϕ stands for partial derivative with respect to the an-
gular variable ϕ. Again R and U depend on the resolution and on the
associated parameterization Φ considered, but both are u-a-r-a functions
with respect to the resulting exceptional set Ω.

Lemma 25. There is a non-empty open arc J of C \ Ω with non empty
interior in C \ Ω along which the restricted function U |J is positive.

Proof. We just have to show that the function U does not vanish on the
whole of C\Ω. If U |C\Ω ≡ 0, by definition of U , each yj ◦Φ is locally constant
when restricted to C \Ω, and thus constant on C by continuity. Using (iii) of
Proposition 14, this would imply the constancy of the coordinates yj along

E = σ(Φ̃(C)), which is impossible since by construction dimE = 1. �

Using the coordinates (ϕ, r) in the open cylinder, the metric h̃ writes

(11) h̃ = (β ◦ Φ)∗g = A(r, ϕ)dr2 + 2B(r, ϕ)drdϕ + C(r, ϕ)dϕ2.

The following lemma describes the coefficients of the metric h̃. The dom-
inant part of each term of interest is explicit. It is important to remark
that the statement neither deals with a fixed resolution R, nor an associ-
ated parametrization. It is very useful and necessary to obtain the needed
conclusions up to dominating resolutions of a given one as we will see.
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Lemma 26. There exists a resolution R0 of S such that, for any other
resolution R � R0 and parameterization Φ associated to R, we have the
following description: There exist s ∈ Q≥0 ∪ {+∞} with

(12) s ≥ eN +m,

an analytic power series ψ(r) with ψ(0) = 0 and an u-a-r-a function H
on S1×]0, ε] which extends continuously to the circle C in such a way that
H|C is not constant, such that we obtain the following expressions for the

coefficients of h̃ in (11):

(13)





A = r2N−2[N2 + ψ(r)] + reN+m−1A1 + r2eN−2A2

B = rsHϕ + r2eN−1Rϕ +B

C = r2eNU

where A1, A2 ∈ A≥0 and B ∈ A>2eN−1 and with the convention that the
term rsHϕ ≡ 0 if s = ∞. Moreover, s and ψ(r) depend neither on R � R0

nor on the parameterization Φ.

Proof. We start with a given resolution R1 of the surface S and adopt the
notations above. Let w = y ◦ Φ = (w1, . . . , wn−1) and θ(z) = zm+1θ(z)

with θ(0) 6= 0. Let λ(r) := (1 + m)θ(r) + rθ
′
(r) = r−mθ′(r) where the

prime denotes the usual derivative. It is an analytic mapping which does
not vanish at r = 0. From the expression of β, we deduce

(β ◦ Φ)∗dxn = NrN−1dr

(β ◦ Φ)∗dxj = [reN−1(eNwj + r(wj)r) + rmλj]dr + reN(wj)ϕdϕ.

Note that each wj is u-a-r-a and extends continuously on the whole bottom
circle C. But (wj)r could even be unbounded. However, by Remark 13, each
function r(wj)r is u-a-r-a and belongs to A>0. Taking this property into
account and since g is the Euclidean metric, we obtain

(14)

h̃ = (β ◦ Φ)∗(dx21 + · · · + dx2n)

= [N2r2N−2 + r2m
∑

j λ
2
j + reN+m−1(

∑
j eNλjwj + · · · )

+ r2eN−2(
∑

j e
2N2w2

j + · · · )]dr2 +

2[reN+m
∑

j λj(wj)ϕ + r2eN−1(
∑

j eNwj(wj)ϕ + · · · )]drdϕ

+ [r2eN
∑

j(wj)
2
ϕ]dϕ2,

where · · · stands for an element of A>0. Let ψ(r) := r2(m−N)+2
∑

j λ
2
j (r).

Since m ≥ N and e > 1 we can define A1, A2 ∈ A≥0 so that A, the coefficient
of dr2 in (14) writes as in (13). Notice that ψ(r) does not depend on the
resolution or the parameterization.
On the other hand, the second summand of the coefficient of drdϕ in (14)
is given by r2eN−1Rϕ +B where B ∈ A>2eN−1, while the coefficient of dϕ2



ON RESTRICTED ANALYTIC GRADIENTS 23

in (14) is just r2eNU .
In order to complete the expressions of (13), let us have a look at the first
summand of the coefficient of drdϕ in (14). Consider the function

h(y, z) = zeN+m
∑

j

λj(z)yj ,

defined and analytic in a neighborhood of E in M × R. Applying Propo-
sition 16 to h, there exists a resolution R0 of the surface S so that, given
any other resolution R � R0 and any associated parametrization Φ, the
composition hΦ = h ◦ Φ on the open cylinder S1×]0, ε] writes

(15) hΦ(ϕ, r) = P (r) + rsH(ϕ, r)

where s ∈ Q≥0, P (r) is a Q-generalized polynomial and H is an u-a-r-a
function that extends continuously to the bottom circle C such that H|C is
either not constant if s < +∞ or, for s = ∞, H is identically zero and
P (r) is a convergent Puiseux series. The first summand of the coefficient of
drdϕ in (14) is just the partial derivative (hΦ)ϕ (identically zero if s = ∞),
equal to rsHϕ by (15). Since H ∈ A≥0, we get Inequality (12). Moreover,
Proposition 16 also ensures that the exponent s does not depend on the
given resolution R (or on the parametrization Φ) as long as it dominates
R0. This completes the proof of the lemma. �

Now consider the function f = f0 ◦ β which is an analytic function in
a neighborhood of E in M × R. We can assume that f0(0) = 0 so that
f |E ≡ 0. Applying Proposition 16 to f , there exists a resolution R of S and
an associated parametrization Φ such that expression (5) is valid: We can
write either fΦ = fΦ(r) as a convergent Puiseux series only depending on r
or else

(16) fΦ = a0r
α0 + . . . + amr

αm + rαF (ϕ, r) = P (r) + rαF (ϕ, r),

where aj ∈ R \ {0}, 0 ≤ α0 < · · · < αm < α are non-negative rational
numbers and F is u-a-r-a and extends continuously to the whole cylinder
and the restriction F |C is not a constant function. Recall moreover that
P (r), as well as the exponent α, are independent of the parameterization
and of any resolution R′ which dominates R. Therefore, we can suppose
that R and Φ are chosen such that the expressions (13) for the coefficients
of the transformed metric in Lemma 26 also hold.

In what follows, we treat the degenerate case when fΦ only depends on
r as the case (16) with α as big as we want but without requiring that F |C
is not constant.

Up to a multiplication by a function that does not vanish on the open
cylinder, the differential equation provided by the transformed vector field
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ξ̄ writes:

(17)





ṙ = [P ′(r) + (rαF )r]C − rαFϕB

ϕ̇ = [P ′(r) + (rαF )r]B + rαFϕA

We have several cases to deal with.

Case (1): α̃ = 2N − 2 + α < min{s+ α0 − 1, 2eN + α0 − 2}.
From the expression of ϕ̇ in (17) we obtain

ϕ̇ = rα̃(N2Fϕ + ∆), whith ∆ ∈ A>0.

On the other hand, from

2eN + α− 1 ≥ 2eN + α0 − 1 > α̃+ 1 and s+ α ≥ s+ α0 > α̃+ 1

we deduce ṙ ∈ A>α̃+1. Eventually ξ̄ is in the non-monodromic case (9) of
Proposition 22.

Case (2): α̃ = 2N − 2 + α ≥ min{s+ α0 − 1, 2eN + α0 − 2}.
Using (12) in this case, we find α > α0 and thus P 6= 0 and a0α0 6= 0. We
distinguish two sub-cases:

Case (2a): 2eN + α0 − 2 < s+ α0 − 1.
We deduce first that ϕ̇ = r2eN+α0−2(Gϕ + ∆) where

(18) G =

{
α0a0R, if 2eN + α0 − 2 < α̃;

α0a0R+N2F if 2eN + α0 − 2 = α̃.

and ∆ ∈ A>0. We observe that the function r2eN+α0−2G is of the form
gΦ = g ◦Φ for some ramified-analytic function g on a neighborhood of E in
M × R≥0. Thus the function G is continuous on the cylinder and u-a-r-a.
On the other hand, the term rαFϕB in the expression for ṙ in (17) belongs
to A>2eN+α0−1. Thus ṙ = r2eN+α0−1(a0α0U + Υ) for Υ ∈ A>0.
If G|C is not constant, our situation is non-monodromic in the sense of
Proposition 22. Otherwise, thanks to Lemma 25, it is the dicritical case of
Equation (8) with µ = 2eN + α0 − 1.

Case (2b): s+ α0 − 1 ≤ 2eN + α0 − 2.
This case is the most difficult since several of the terms involved in the
expression of ϕ̇ may be of the same order with respect to r so that all the
“initial parts” which are derivatives with respect to ϕ of a function may
cancel.

From Equation (12) and m ≥ N , we first find

(19) α+ 2eN − 1 ≥ α+ s ≥ 2eN + α0 + 1.

Using Equations (13) and (19) we get rαFϕB ∈ A≥2eN+α0+1. Thus, in (17),
we obtain

(20) ṙ = r2eN+α0−1(a0α0U + Υ), for Υ ∈ A>0.
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Using again (19) we find the following estimates on the order of some terms
in the expression of ϕ̇:

P ′(r)B ∈ A>2eN+α0−2,

(rαFϕ)reN+m−1A1 ∈ A>2eN+α0
,

(rαFϕ)r2eN−2A2 ∈ A≥2eN+α0

(rαF )ϕB ∈ A≥2eN+α0
.

This allow us to write ϕ̇ as

(21) ϕ̇ = −P ′(r)[rsHϕ + r2eN−1Rϕ] + rα̃(N2 + ψ(r))Fϕ + ∆ = Gϕ + ∆,

where ∆ ∈ A>2eN+α0−2 and

G = −P ′(r)[rsH + r2eN−1R] + rα̃(N2 + ψ(r))F.

Once again G = gΦ = g ◦ Φ for some function g in a neighborhood of E in
M × R≥0 which is ramified analytic along E. From the definition of R and
Remark 18 for H and F , the function g depends only on f and β but not on
the resolution R or on an associated parameterization Φ. So, up to further
finitely many blowing-ups and applying Proposition 16, we can assume that

G(ϕ, r) = Q(r) + rρG̃(ϕ, r)

where Q is a Q-generalized polynomial, ρ ∈ Q>0 and G̃ is an u-a-r-a function

which extends continuously to the bottom circle C with, either G̃ |C is not
constant or ρ can be chosen as large as we want (we just need ρ > 2eN +
α0 − 2).
Two cases are to be considered:
- If ρ ≤ 2eN + α0 − 2, Equation (21) writes ϕ̇ = rρ(G̃ϕ + ∆̃) for ∆̃ ∈ A>0.
Combined with (20), we find a non-monodromic situation (9).
- If ρ > 2eN + α0 − 2 then we are in the dicritical situation (8) with µ =
2eN + α0 − 1 thanks to Lemma 25.

This finishes the proof of the main theorem in the CTC case.

Open tangent cone case.

Let us have a quick look at the open tangent case (OTC).
We first choose orthonormal coordinates x = (x1, . . . , xn). Consider the

opening blow-up mapping β : M×R≥0 → Rn, (y, z) → zy, whereM = Sn−1,

as in (2), and let S = β−1(S0). Let R = (S̃, Ẽ, σ) be a (S, z)-resolution of S
as in Theorem 9 and pick an associated parameterization Φ : S1× [0, ε] → S
satisfying the conditions of Proposition 14.

Let h̃ = (β ◦ Φ)∗h be the pull-back metric in the open cylinder. With
computations similar to those done in the proof of Lemma 26, and using
Remark 13, we can write

h̃ = (1 +A)dr2 + 2rBdrdϕ+ r2Udϕ2,
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where U =
∑

i(wi)
2
ϕ, A = r2

∑
i(wi)

2
r and B = r

∑
i(wi)r(wi)ϕ, since∑

iw
2
i = 1. We note that A,B ∈ A>0.

Writing fΦ = f0 ◦ β ◦ Φ, the pull-back ξ̄ = (β ◦ Φ)∗∇hf0 of the restricted
gradient vector field has the following associated system of differential equa-

tions (up to the multiplication by the determinant of the metric h̃):

(22)

{
ṙ = r2U(fΦ)r − rB(fΦ)ϕ

ϕ̇ = −rB(fΦ)r + (1 +A)(fΦ)ϕ.

We consider cases (a) or (b) of Proposition 16 for the function f := f0 ◦β.

In case (a) the function f depends only on z and thus (fΦ)ϕ ≡ 0. Dividing
(22) by r(fΦ)r, which does not vanish on the open cylinder, we obtain the
dicritical situation of Proposition 22.

In case (b), we assume that the resolution R is such that

fΦ(ϕ, r) = P (r) + rαF (ϕ, r),

where P (r) = a0r
α0 + · · · + amr

αm, αm < α if a0 6= 0, and F extends
continuously to the bottom circle C and its restriction F |C is not constant.
If α ≤ 1, Equations (22) become

ṙ ∈ A≥α+1 and ϕ̇ = rα[Fϕ + ∆],

where ∆ ∈ A>0. We have a non-monodromic situation as in (9) and we are
done.
If α > 1, we have two sub-cases:
- Case α = α0. This means that P ≡ 0. Thus

r(fΦ)r = rα(αF + rFr) and (fΦ)ϕ = rαFϕ.

Using Remark 13 and Equation (22), we find ϕ̇ = rα(Fϕ + ∆) where ∆ ∈
A>0. We still have ṙ ∈ A≥α+1 and thus we obtain a non-monodromic
situation.
Case α > α0. We deduce

ṙ = rα0+1(a0α0U + Υ) and ϕ̇ ∈ A>α0

with Υ ∈ A>0. We obtain the dicritical situation (8) with µ = α0 +1 thanks
to Lemma 25.

This finishes all the cases and the proof of the Main Theorem 1.

7. Consequences

Now we prove Corollary 2 and Theorem 4 as consequences of our main
result, Theorem 1. We also sketch a proof of the more elementary Proposi-
tion 3.

Proof of Corollary 2. Suppose that |γ | ⊂ S0, a connected component of

X \ {0}. Let β be an opening blowing-up of S0 and let R = (S̃, Ẽ, σ)
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be a resolution of the surface S = β−1(S0). Theorem 1 ensures that the

lifting L = (β ◦ σ)−1(|γ |) accumulates at a single point p of Ẽ. Thus
L is contained in a simply connected semi-analytic open set of the strict
transform S′ = σ−1(S) where the foliation F has no singularities. Using
Haefliger’s theorem ([12, 21, 25]), we deduce that L is a Rolle’s leaf of F
and thus a pfaffian set. Its image |γ | = β(σ(L)) is a sub-pfaffian set in Rn

since σ and β are proper mappings. �

Proof of Proposition 3. Let S0 be a connected component of X \{0}, home-
omorphic to the semi-open cylinder S1×]0, ε] for ε small. Denote by Cε the
image of S1 × {ε} by such homeomorphism. We consider two cases.

Case 1: The function f0|S0
is negative and has no critical point.

Let a0 < 0 be the minimum of the function f0 restricted to Cε. Consider a
point p ∈ S0 for which a0 < f0(p) < 0 and let γp be the trajectory of the
restricted gradient vector field ∇hf0 starting at p. Since t → f0(γp(t)) is
increasing, γp is defined for all positive t and limt→∞ γp(t) = 0.

Case 2. Suppose f−1
0 (0) ∩ S0 6= ∅.

Up to taking −f20 instead of f0, we assume that f0 ≤ 0 on clos(S0) and that

Z0 = f−1
0 (0) ∩ clos(S0)(= crit(f0 |S0

)) intersects with S0.
Let U be a connected component of S0 \ Z0. Since S0 is topologically a
cylinder and Z0 consist of finitely many analytic half-branches at 0 (up to
taking ε smaller), the component U is simply connected. In fact, we can
take a triangle Σ in the plane with sides σ1, σ2, σ3 and a continuous map
κ : Σ → clos(U) restricting to a diffeomorphism between Σ \ (σ1 ∪ σ2) and
U , sending each of the sides σ1 or σ2 homeomorphically to a half-branch
of Z0 and sending the side σ3 onto clos(U) ∩ Cε. Note that, if there are
at least two half-branches of Z0 then κ is a homeomorphism, otherwise
clos(U) = clos(S0) and κ is just a quotient map gluing the two sides σ1, σ2
together.

Since clos(U) is invariant, we can carry ∇hf0 onto Σ via κ (which is
singular along σ1 ∩ σ2). It will be denoted by χ0 while we will denote
g0 = κ∗f0 and v = σ1 ∩ σ2 = κ−1(0). We just have to prove that there
exists a trajectory of χ0 accumulating to v.

We use the following properties:

(1) Up to taking a smaller ε, each point x ∈ σ1 ∪ σ2 \ {v} is the accu-
mulation point of a unique trajectory of χ0.

(2) No non-stationary trajectory of χ0 can have its α-limit point and its
ω-limit point both in σ1 ∪ σ2 \ {v}.

The first property is easy to prove using local coordinates or using the clas-
sical  Lojasiewicz’s retraction map of the gradient (cf. [18]). The second one
is a consequence of the fact that g0(σ1 ∪σ2) = 0 and that g0 increases along
trajectories of χ0.
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Claim. There exists tε < 0 such that for t ∈]tε, 0[, the fiber g−1
0 (t) ⊂ Σ is

connected.
Proof of the Claim. Each connected component of a (non-empty) fiber g−1

0 (t)
with t < 0 is either homeomorphic to a circle or to a closed segment with
extremities on σ3. Since g0 has no critical points in the interior of the
triangle Σ, the first case cannot occur. On the other hand, the restriction
g0|σ3

vanishes only at the extremities. If we take tε equal to the maximum
of the critical values of this restriction, g0 takes any value t ∈]tε, 0[ exactly
twice along σ3 and this proves the claim. �

For i = 1, 2, choose xi ∈ σi \ {v} and let γi be the trajectory of χ0 accumu-
lating to xi. Take t0 with tε < t0 < 0 such that γi cuts the fiber g−1

0 (t0),

necessarily in a single point yi. Let I be the closed segment in g−1
0 (t0) joining

y1 and y2. Consider the domain Λ in Σ enclosed by the piecewise smooth
closed curve formed by the segments [xi,v] in σi, [yi, xi] in γi and I. By
construction, χ0 enters Λ only through the segment I and leaves Λ positively
invariant.

For each z in one of the semi-open sides [x1,v[ or [x2,v[, thanks to prop-
erties (1) and (2) above, there exists a unique point τ(z) ∈ I such that the
trajectory starting at τ(z) accumulates to z for positive infinite time. More-
over, orienting positively I from y1 to y2, we find that τ(z) < τ(w) whenever
z ∈ [x1,v[ and w ∈ [x2,v[, or z ∈ [x1,v[ and w ∈]z,v[, or w ∈ [x2,v[ and
z ∈]w,v[.

Let a = sup{τ(z)/z ∈ [x1,v[} and b = inf{τ(z)/z ∈ [x2,v[}. Thus a ≤ b
and for every point y ∈ [a, b] in the segment I, the trajectory of χ0 starting
at y accumulates to v. �

Proof of Theorem 4. We begin with the definition of formal asymptotic

expansion. A formal curve Γ̂ at the origin of Rn is a formal Puiseux pa-

rameterization Γ̂(T ) = (Γ̂1(T ), . . . , Γ̂n−1(T ), TN ), where each Γ̂i is a formal
power series in the single indeterminate T with no constant term. A tra-

jectory γ has an asymptotic expansion Γ̂ at the origin if it can be smoothly
parameterized as

z → γ(z) = (γ1(z), . . . , γn−1(z), zN ), z > 0

and the component γi admits Γ̂i as expansion.

If the critical locus of f0|S0
is not empty then, each connected component

of this locus in a semi-analytic invariant set the restricted gradient, so point
(ii) is true.

We assume the restricted gradient of f0 does not vanish in S0.
Since any restricted gradient trajectory γ is not oscillating at 0, the function
z ◦ γ(t) decreases strictly to 0 as t → +∞. Thus it admits a continuous
parameterization z → γ(z) = (γ1(z), . . . , γn−1(z), z), for z ≥ 0, which is
analytic for z > 0.
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Let β be an opening blowing-up of S0 and S = β−1(S0). Let R = (S̃, Ẽ, σ)
be a resolution of S and let R′ = (S′, E′, σ′) be the strict resolution asso-

ciated to R as in Theorem 9. Let h̃ = (β ◦ σ)∗g and f̃ = f0 ◦ β ◦ σ. The

metric h̃ degenerates along the divisor Ẽ, so the gradient vector field ∇
h̃
f̃

is defined only on S̃ \ Ẽ. However, we can define a one-dimensional analytic

foliation F̃ in S̃ whose singular set sing(F̃) is a finite subset of Ẽ and such

that ∇
h̃
f̃ is a local generator of F̃ at any point of S̃ \ Ẽ.

The reduction of singularities of an analytic foliation on a smooth surface

([26]) and the compactness of Ẽ ensure we can assume that any singularity

p ∈ sing(F̃) is simple: a local generator ξp has a non-nilpotent linear part
at p with eigenvalues λ and µ 6= 0.

Let Σ := E′ ∩ sing(Ẽ) be the finite set of singular points of the strict
divisor E′.

In order to complete the proof, we will show that only situations (1) or (2)
below happen and the result holds true in both cases.

(1) Dicritical situation: There is a point p ∈ E′ \Σ, not singular for F̃ , and

such that E′ is transverse to F̃ at p. The leave Lp of F̃ through p is a non-
singular analytic curve and transverse to E′ at p. The image β ◦ σ(Lp ∩ S

′)
is an analytic separatrix for the restricted gradient on S0 accumulating to
the origin. In fact through each point q ∈ E′ in a neighborhood of p, there
is a unique analytic separatrix through q.

(2) A non corner singularity: The strict divisor E′ is an invariant set of F̃

and there is a point p ∈ (E′ \Σ)∩sing(F̃). A local generator ξp of F̃ at p has
a linear part with two real eigenvalues. One eigen-direction is tangent to E′

and the other one is transverse to E′. The theory of local invariant manifolds

(see for instance [14]) provides a formal invariant non-singular manifold Ŵ
at p which is tangent to the transverse eigen-direction1. We also get a C∞

invariant manifold W through p having Ŵ as asymptotic expansion at p.
The image β ◦ σ(W ∩ S′) is the desired characteristic trajectory γ of the
restricted gradient.

In order to find a contradiction, we assume that neither case (1) or (2) above

holds. Thus E′ is invariant for F̃ and sing(F̃) ∩ E′ = Σ.

Since any point p ∈ Σ is a simple singularity, the two components of Ẽ at p

are the two local analytic separatrices of F̃ at p.

Let {Qj
p}j=1,2,3,4 be the open “quadrants” of Up \ Ẽ in a small coordinate

neighborhood Up of p in S̃. Let J(p) ⊂ {1, 2, 3, 4} be the subset of j for

which Qj
p ⊂ S′ (see part (iv) of Theorem 9). For j ∈ J(p), the quadrant Qj

p

is either:
- of saddle type, if any trajectory of the restricted gradient ∇

h̃
f̃ through a

1If the corresponding eigenvalue is non-zero, Briot-Bouquet’s theorem guarantees the

convergence of Ŵ
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point in Qj
p escapes from Qj

p for positive and negative time;
- of node-source type, if any trajectory escapes for positive time but accu-
mulates to p for negative time;
- of node-sink type, if each trajectory escapes for negative time but accumu-
lates to p for positive time.

We have two possibilities:

(a) Each quadrant Qj
p is of saddle-type for all p ∈ Σ and all j ∈ J(p) or

there are no singularities at all (Σ = ∅). In this case, classical arguments
show that the dynamics is “monodromic” in a neighborhood of E′ in S′:
there exist an analytic half-branch Λ through a point q ∈ E′ \Σ contained in

S′, transverse to F̃ , a neighborhood Λ0 of q in Λ and a Poincaré first return
map P : Λ0 → Λ such that for x ∈ Λ0 given, the leaf Lx through x cuts

again Λ at P (x) after visiting all the quadrants Qj
p. Since a gradient vector

field cannot have closed orbits, P has no fixed points. Poincaré-Bendixson’s

type arguments imply there are leaves of F̃ in S′ accumulating to the whole
divisor E′, thus producing spiraling trajectories of the restricted gradient,
which contradicts Theorem 1.

(b) There is a quadrant Qj0
p0 ⊂ S′ of node type for some singularity p0 ∈ Σ

and some j0 ∈ J(p0). Suppose for instance that it is of node-source type
(the case of node-sink type is analogous in reversing time). Consider one of

the local analytic separatrices of F̃ at p0. There is a connected component
of E′ \ Σ, say E1, which meets such a separatrix. Since E′ is invariant, E1
is a leaf of F̃ . Let p1 ∈ Σ be the other accumulation point of E1, different

from p0. The flow-box theorem shows that there is a point q0 ∈ Qj0
p0 such

that the trajectory γ0 issued from the point q0 visits a point in a quadrant

Qj1
p1 for some j1 ∈ J(p1).

By definition of a node-source type, the quadrant Qj1
p1 cannot be of node-

source type. If Qj1
p1 is of saddle-type, we consider the connected component

E2 of E′ \ Σ meeting the local analytic separatrix at p1 which is not con-
tained in E1 and the point p2 ∈ Σ such that clos(E2) \ E2 = {p1, p2}. In

this case, choosing q0 in the initial quadrant Qj0
p0 sufficiently close to p0, we

can suppose that the trajectory γ0 also visits some quadrant Qj2
p2 for some

j2 ∈ J(p2).
Continuing this way, if all the visited quadrants are of saddle-type we con-
struct a sequence of singularities p1, p2, . . . different from p0. Since Σ is finite,
we create a cycle pl, pl+1, . . . , pm = pl, with l minimum for this property.
Since Em is not equal to El (otherwise pm−1 = pl−1 against the minimality
of l) we find three local analytic separatrices through pl, say El, El+1, Em,
which is a contradiction with the fact that pl is a simple singularity.

Thus, there exist pk ∈ Σ, for some k ≥ 1 and a quadrant Qjk
pk of node-sink

type, for some jk ∈ J(pk), which intersects the trajectory γ0. Then p0 is
the α-limit point of γ0 and pk a ω-limit point. Its image β ◦ σ ◦ γ0 is a
trajectory of the restricted gradient for which the origin is the α and the ω
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limit point which is impossible since the function f0 increases strictly along
this trajectory.
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ometŕıa y Topoloǵıa of the University of Valladolid for the support and the
working conditions provided while visiting to complete this work.

The second author was partially supported by the research projects VA059-
A07 (Junta de Castilla y León) and MTM2007-66262 (Ministerio de Edu-
cación y Ciencia) and by Plan Nacional de Movilidad de RR.HH. 2008/11,
Modalidad ”José Castillejo”.
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