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1 Preliminaries

Let F be a germ of singular holomorphic foliation at (C2,0) given by the
differential 1-form w = a(z, y)dz + b(z, y)dy. Recall that a separatriz of F at
0 is a germ of irreducible analytic curve I" through 0 such that I' \ {0} is a
leaf of F. Denote by Sepo(F) the set of separatrices. It is a non-empty set
[4] and F is called non-dicritical iff it is finite. In this case, the union of the
separatrices is a plane curve S with a finite number of branches.

We will consider the index Io(F,I") € C associated to each separatrix I’
defined by Lins Neto in [14]. The main properties of the index are the following
ones:

1) Let m : M — (C?,0) be the blowing-up of the origin and let ' be the
strict transform of F by 7. If P = I"Nxw~1(0), with I’ the strict transform
of I, then

IP(]:/vpl) = IO(‘Fv F) - mO(F)2

where mq(I") is the multiplicity of I" at the origin (see [3,22]).
2) Let F be a holomorphic foliation on a complex surface M and let D be a
non-singular complex compact curve in M invariant by F. Then

> Ip(F,D)=D-D

PeD

where D - D is the self-intersection of D (see [4,14]).
3) Assume that I' = {y = 0} and w = y{(A + ¢)dx — (ux + ¢)dy/y}, where
©(0) =0 and v(¢) > 2. If p # 0, then Io(F,I") = A/ p.

Recall that the origin is a simple singularity of F if w has the form w =
(Aydx — pxdy) + w1 where the coefficients of wy have order > 2 and A, p are
complex numbers such that one of them, say p, is non zero and A/ & Qxg.
In the hyperbolic case, A # 0, the set of separatrices Sepy(F) consists of
exactly two non singular branches Sy, .S; with transversal tangent lines at 0. If
A = 0, the origin is a saddle-node singularity: we have two formal non singular
separatrices at 0 but, in general, only one of them is convergent [2].

A reduction of singularities ([21], see also [15]) of a singular foliation F
is a morphism o : M — (C?,0) obtained as a finite composition of blowing-
ups at points such that all the singular points Sing(F’) of the transformed
foliation ' on M are simple ones. In the case that F is non dicritical, each
component of the divisor E = 771(0) is invariant by F'. We say that F is
a complex generalized curve (CGC) if in one (and hence in any) reduction of
singularities there are no saddle-nodes (see [5]). This is equivalent to say that
all the Lins Neto indices at the simple singularities are non-zero. A reduction of
singularities of F gives a reduction of singularities of the curve S of separatrices
of F at 0 in the sense that o~1(S) is a normal crossing divisor. The reciprocal
is true for a non dicritical CGC.
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The simplest example of a CGC is the foliation {df = 0} for a holomorphic
function f. A more general example is a logarithmic foliation Ly r given by
wy,r = 0 where

WA,FZfl"'frz/\ji_j-
J fJ

)

Here F = (f1,..., f») is a r-uple of relatively prime irreducible germs of holo-
morphic functions with f;(0) =0 and A = (A1,..., Ar) € (C*)". We will also
write Ly p = {d(f" --- f}) = 0}.

In this article we will only consider the most elementary properties of lo-
garithmic foliations (see [8,16,17] for other results):

1. The curves S; = {f; =0}, j =1,...,r are separatrices of L) r.
2. The foliations £ r and L, r coincide iff [A] = [u] € Pt
3. We have -

T )\ .
Io(Lar.85) = =D 5 (Sk 5o, j=1,...r (1)
k=1 7

k#j

where (S, S;)o is the intersection number of the branches Sy and S; at
the origin. (Do a similar calculation as in [14]; see also [20]).

The above properties are true for £, r dicritical or not. Now let us remark
some statements and properties concerning dicriticalness.
We say that the logarithmic foliation £ = £ r has the main resonance if

Z )\jmo(Sj) =0
j=1

where mg(S;) is the multiplicity of S; at the origin.

Proposition 1 Suppose that L = Ly r does not have the main resonance.
Let m: M — (C?,0) be the blowing-up at the origin and consider L' the strict
transform of L by w. Then the exceptional divisor E = w~1(0) is invariant by
L' and the tangent cone Co(L) = Sing(L) N E of L at 0 corresponds exactly
to the tangents of the separatrices S;, j=1,...,7.

Proof Let v +1 = Z;Zl mo(S;) and write w = wy r = a(z,y)dz + b(z, y)dy.
One can show that za + yb has order v + 1 and that the zeroes of the homo-
geneous term (xza + yb), 41 of degree v + 1 are precisely the tangents of the
separatrices S; at the origin. Thus v is the minimum of the orders of a or b
and the tangent cone za, + yb, = 0 of w is equal to (za + yb),+1 = 0. The
conclusion follows.
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2 Foliations with prescribed indices

In this paragraph we refine the arguments in [9,10] to construct logarithmic
foliations with prescribed indices along the branches of a given curve.

Let us consider pairs A = (M % (C2,0),5), where S C (C2,0) is an
analytic curve with finitely many branches S = U7_;S; and 0 : M — (C%,0)
is the composition of a finite sequence of punctual blowing-ups. Denote by
SS9 C M the strict transform of S and by E = 0~1(0) the exceptional divisor.
A blowing-up 7 : M’ — M with center P € E is called irredundant for A iff
E U 57 does not have normal crossings at P. There is a number n(A) such
that after exactly n(A) irredundant blowing-ups we get a new pair A= (G :
M — (C2,0), S) such that £ U S% has normal crossings at each point.

A system of indices T = T4 is a family {Ip}pecgr where Ip is a function
that assigns a complex number Ip(I") € C to each irreducible component I" of
the germ of EUS? at P. Given a blowing-up 7 : M’ — M with center P € F
and a system of indices Z' on A" = (M’ it (C?,0),5), where ¢/ = o o, we
can blow-down I’ as follows. For a component I" of FU S at Q we define

[ IL(T) ifQ#£ P
fo(I) = {Iﬁ(r’) +Imo(D)? if Q=P

where I is the strict transform of I' by m, Q' = I"" N E’ and mg(I") is the
multiplicity of I" at Q.

Definition 1 Let Z be a system of indices on A and put n = n(A). If n = 0,
we say that Z is Lins-compatible iff the following properties are satisfied:

a) If P is a non singular point of F U S7, then Ip(E) = 0.

b) If D is an irreducible component of E, then ), ., Ip(D) =D - D.

¢) If P is a singular point of EUS? and Iy, I'; are the two branches of EUS?
at P, then Ip(Fl) IP(FQ) =1 and IP(FZ) Q/@ZQ, 1= 1,2.

If n > 0, we say that Z is Lins-compatible iff there is an irredundant blowing-

up M’ 5 M and a Lins-compatible system of indices Z' on A’ = (M’ ,
(C2,0),S), where 0/ = o o, such that Z is the blowing-down of Z'.

Proposition 2 The indices on the branches of S° determine the indices over
the divisor in a Lins-compatible system of indices. Moreover a Lins-compatible
system of indices can be blown-up and blown-down in a unique way.

Proof Note that the blowing-down of a system of indices is uniquely defined
and that an irredundant blowing-down transforms Lins-compatible systems of
indices into Lins-compatible systems. Consider a Lins-compatible system of
indices Z on A with n = n(A) and let us first prove the following statements
by induction on n:

A(n): The indices on E are determined by the indices on the branches of S7.
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B(n): Given 7w : M’ — M an irredundant blowing-up with center P € E,
there is a unique Lins-compatible system of indices 7/ = 7#*Z on A" =

(M’ Lt (C2,0),5), where 0/ = o o, such that Z is the blowing-down of

7.
If n = 0, then B(0) is trivial since there are no irredundant blowing-ups. To
prove A(0) it is enough to use the fact that the dual graph of E is connected.
The fact that A(n—1), B(n—1) implies A(n) is evident from the definition of a
Lins-compatible system of indices: just take the irredundant blowing-up given
in the definition. Let us prove B(n). First, note that the uniqueness stated
in B(n) is consequence of the definition of blowing-down of Lins-compatible
indices and the induction hypothesis A(n—1) applied to A’. If 7 is the blowing-
up given in the definition, then B(n) is a consequence of A(n — 1) applied to

A = (M it (C2,0), ). Otherwise, let m : M7 — M be the blowing-up of
the definition, with center @@ # P, and let Z; be the Lins-compatible system
of indices on A; = (M; 3 (C2,0),S), 01 = 0 o my, that projects to Z by ;.
Consider the following diagram of irredundant blowing-ups

M =5 M

frlT Tﬂ'l
M, —T My

where P, = m; ' (P) is the center of 7@ and Q' = 7~ (Q) is the center of 7.
By the induction hypothesis B(n — 1) applied to .A; we have a unique Lins-
compatible system of indices 7, = #*Z; on A} = (M} 2% (C2,0), S). Since
71 is irredundant then, by definition, the blowing-down Z’ of Z7 over A’ is a
Lins-compatible system, that obviously gives Z by projection.

It remains to prove the existence of the transform of a Lins-compatible
system of indices under a redundant blowing-up or blowing-down. We proceed
again by induction on n = n(A). In order to pass from n to n — 1 consider a
diagram of four blowing-ups as above, where 7 and 7 are redundant and 7; and
7 are irredundant. Finally, assume that n = 0. The first case is that the center
of m: M’ — M is a non singular point P of EUS?. Assume first that Z is a Lins-
compatible system of indices given on A. Then we know that Ip(E) = 0. Let
E™ be the strict transform of E by 7 and P’ = E*"ND, where D = 7~ 1(P). We
define a system of indices Z’ on A’ by I, (E™) = =1 = I, (D) and I, (D) = 0
for Q" € D, Q' # P’. Verify that 7’ is Lins-compatible using the fact that D
has self-intersection equal to —1. On the other hand, if Z’ is a Lins compatible
system of indices on A’, then the only non singular point of DU E™ in D is
P’ and hence Ip/(D) = D -D = —1, and Ip(E™) = —1 in view of the fact
that Ip, (D) - Ip, (E™) = 1. Thus, the blowing-down Z of 7’ verifies Ip(E) = 0.
We use the same kind of arguments for the case that P is a singular point of
EuSe.

Remark 1 Let T be a Lins-compatible system of indices on A. Then Ip(E) =0
at any non-singular point of E'U S’ and also ) p.p, Ip(D) = D - D for any
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component D of E. We get these properties by blowing-down the transform
of T under a chain of n(A) irredundant blowing-ups, using the definition of
blowing-down a system of indices and the fact that the self-intersection of the
strict transform of a connected component D of E by a blowing-up at a point
of D decreases by one with respect to the self-intersection of D.

The above constructions show also that we can localize a Lins-compatible
system of indices Z at a point P € M. More precisely, the new pair is given
by the germs (M, P) ~ (C2,0) and (S° U E, P). The system of indices will be
just Zp = {Ip}. To see that Zp is Lins-compatible the best is to consider a
sequence of n = n(A) irredundant blowing-ups

M, =% M, 1 — - % M % (C?,0)

and to look Zp as the direct image of the restriction of (m o -+ 0 m,)*Z to
(ry0---omy,) Y (M, P).

Example 1 Let F be a non dicritical CGC in (C2,0) with S as curve of sep-
aratrices. Put 1y(S;) = Io(F,Si). We get a Lins-compatible system of in-
dices Z(F) on ((C?,0),8). Moreover, let o : M — (C2,0) be any sequence of
blowing-ups. We can define in the same way the system of indices Z(c*F) on
A= (M2 (C?0),S). Then we have that

I(c"F) = o*I(F).

This is a consequence of the uniqueness of blowing-up, blowing-down and the
fact that after reduction of singularities (even redundant), the system of indices
giwen by F is obviously Lins-compatible.

A system of exponents A = {[A\p|} per on a pair A = (M % (C?,0),9) is
a collection of classes [Ap], where

Ap : {branches at P of FUS?} — C*

under the equivalence Ap ~ Np iff Ap = cAp, c € C*.

Let 7 : M" — M be the blowing-up with center P and A" = {[A\p]} be a
system of exponents on A’. We define the blowing-down A = w, A’ as follows.
For any Q # P, we put [\q] = [N, -1 (] For each Q" € D = 7~ (P), select
Agr € [My/] with the property that Af, (D) = 1 and put, for any branch I" of
EUS? at P,

Ap(I') = Xp(I7),
where I is the strict transform of I" and P/ = I'"' N D.
In order to transform a system of exponents A by blowing-up, we must

avoid the main resonance. More precisely, we say that A is transformable at a
point P € E iff

Z/\P(F) -mp(I") # 0,
T



O©CO~NOOOTA~AWNPE

where I varies over the branches of £ U S? at P. In this case, we define the
transform A’ = 7* A of A by the blowing-up 7 : M’ — M with center P by

putting
AQ/ Z )\P )

for any Q' € 7~ 1(P) and Np, (I"") = A\p(I') if P’ € 7~ }(E) is in the strict
transform I of a branch I" of EU S°.

We say that A is indefinitely transformable at P € E iff A is transformable
at P, its transform A' by the blowing-up 7, at P is transformable at any point
P e 7T1_1(P), the transform of A' by the blowing up m at any such point Py
is transformable at any point P, € 7, *(P;) and so on. Roughly speaking, A
is indefinitely transformable if its transform is transformable at any infinitely
near point of P. We say finally that A is indefinitely transformable if it is so
at any point P € EU S°.

Proposition 3 Given a Lins-compatible system of indices T on A, there is a
unique indefinitely transformable system of exponents A(T) such that for any

P e EUS? and any branch I' of EUS? at P, we have that

Ap(D)-Ip(D)+ Y Ap(I™)-(I*,T)p =0, (%)

=4I

where I'* varies over all branches of EU S at P. Moreover, the system A(Z)
satisfies 7 (A(Z)) = A(7*ZI) for any blowing-up @ : M’ — M.

Proof The result is local at each point P € M and thus we can assume that
M = (C?,0), S = Uj_;S; and Z = {Ip}. Let us do induction on n = n(A).
Assume that n = 0: if S = S; has a single non singular branch, we put
A0(S1) = 1 (note that in this case Ip(S1) = 0); if S = S1US; define A\o(S1) = 1,
Ao(S2) = —=1/16(S2) = —Io(S1). Moreover, A is indefinitely transformable
since by blowing-up at 0 the situation repeats. Consider now the case n > 0.
Let 7 : M — (C2%,0) be the blowing-up of the origin and let Q1,Qs, ..., Qk
be the points where S™ = U’_; S} cuts the divisor D = 7~ "(0). Denote 4; =
{7:8,0D =@}, forl =1,... k. Let us localize ' = 7*T to get systems of
indices Zj at (); and take the systems of exponents A; = {[\(,]} given by the
induction hypothesis. Choose \g, € [Ag,], 1 =1,...,k, such that A\ (D) =1
and define Ao : {S;}7_; — C* by

o(S5) = Mg, (S5) =XA; if je A

In view of the property () for A;, we get for any I

0=\p, (D) I, (D) + Y X,(S)) - (D, S))q,
JEA
=15,(D) + Y Ajmo(S))
JEA,
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Taking the summation over all [ = 1,... k, we obtain that

k r r
0=""15,(D)+ > Amo(S;) = 1+ > \jmo(S;)
=1 j=1 j=1

Since Z;:1 Ajmo(S;) = 1, the system A = {[Ao]} is transformable at the origin
and it is indefinitely transformable because its blowing-up is, by construction,
an indefinitely transformable system on A’ = (M 5 (C2,0), S). Let us show
(%) for A. Fix j € {1,...,r} and let @; € D such that j € A;. Then

A To(S5) + Y N+ (Si, i)

i#£]
A (15, (S)) +mo(S;)?) + > Nilmo(Si) - ma(S;) + (57, 5)) ]
i#j
(2)
= XI5, (S)) + > XS] S, + mo(S Z/\m0
i#£]
AQL (SI) IQL SI + Z )\I l (57{75_;)@[ + AQL (D)(S;7D)Ql = 07

I€EA;

the last equality by the property (x) for A;. Now we prove uniqueness of system
A. Suppose that there exists another system of indices A = {[dp]} indefinitely
transformable and satisfying (x) at the origin. Denote by A" = {[65]}qen
the blowing-up of A by m. Fix dg € [do] and consider for any | = 1,...,k
the element dg € [dg,] defined by dg (S7) = d0(S;) = §; for j € A; and
66, (D) =371, 5 mO(S) From the equat1on

;i 10(S;) + Y6+ (Si,8)0 =0
i#j

for j € Ay and I € {1,...,k} we prove, exactly as in (2) replacing A by 0,
that the localized of 7*(A) at Q; satisfies the property (x) with respect to the
branches S} with j € A;, for any [. Consequently it is enough to prove the
property (*) also for the branch D at @; and then we get that 7*(A) = 7*(A)
and A = A by the induction hypothesis. From

ANilg,(S5) + 3 ica,ing 2i(Si: S} + A (D)(D, Sj)q, =0
6;10,(S%) + > ica, iz 0:(Si, S5)q + 00, (D) (D, S%)q, =0

we obtain

iDL AlSHS)a + 00 (D)(D, g, =
1€Al i#£]

i 6i(S1 S, + Aidg,(D)(D, S},

1€Al i#£]
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Summing for all j € A;, we have that

A, (D) Y 6;(D,S)q, =60 (D) > (D, S,

JEA; JEA,

Since Aq, (D)1, (D) + - e, Mi(D,S7)q, = 0 by (x) for 7*(A) at @i, then we
get

8q,(D)Iq,(D) + Y 6;(D,S))q
JEA,

after dividing by Ag, (D), which is the required equation.

Theorem 1 Let S = Uj_,S; be an analytic curve at 0 € C*. Let T = {Iy} be a
Lins-compatible system of indices on A = ((C?,0),S) and A = A(Z) = {[No]}-
Take A = (A1,...,A\r) with \j = Ao(S;). Then, for any F = (f1,..., fr) with
f;i a reduced equation of S;, the logarithmic foliation L = Ly r satisfies:

a) L is a non dicritical CGC with curve of separatrices S and Io(L,S;) =
1o(S;) for any j.

b) Let o : M — (C2,0) be any finite sequence of blowing-ups, then o*T gives
the Lins Neto indices of o*L at all the separatrices.

Proof The property b) follows from a) in view of the Example 1. Let us prove
a) by induction on n = n(A).

Assume that n = 0. Then S has normal crossings at 0 and either S = S}
or S =51 USs. In the first case, £ = {df; = 0} is non singular, hence a non
dicritical CGC and I(L£, S1) = 0. Since 0 is a non singular point of SUE = Sy,
we have also that Ip(S1) = 0. In the second case, L = {1 fodft + Ao f1df2}
with f1, fo a system of coordinates at 0. We know that Iy(L,S1) = —A2/ A1,
In(L,S2) = —A\1 /A2 and these values coincide with I(S1), In(S2) respectively,
in view of the property () for A. Moreover, —A3/A\1 & Q>0 since Z is Lins-
compatible. Thus, 0 is a hyperbolic simple singularity of £ and a) follows.

Assume that n > 0. Let 7 : (C%,0) — (C?,0) be the blowing-up at the
origin. Since A is transformable, £ does not have the main resonance. Denote
by A" ={[Np] : P € m 1(0)} the transform of A. In view of Proposition 1, we
know that D = 7=1(0) is invariant for £’ = 7* £ and the singularities of £’ over
D are exactly the points Q1,...,Qx where the strict transform S™ = U;zlSé
cuts D. Let 4; = {j : 87N D = Q}. Choose \p, € [\, ] with

X, (D Z Ajmo (S

Hence A\, (S5) = A; for j € A; by the definition of A". Let Z be the localization
of 7' at Q;. We know that A(Z}) = {[\,]}, in view of Proposition 3. In order
to end the proof, by our induction hypothesis, let us show that ﬁ’Ql has a
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logarithmic expression associated to SEZ) = D U (Ujea, 5;) with X, as vector

of exponents. In fact, we have that ﬁ’Ql is given by

d((zug) P - T £7) = 0;

JEA

where x = 0 is a reduced equation of D at @y, fJ’ is the strict transform of f;
at Q; and u;) is a unit given by

A

J
1 A5 (D)
ugy = [T £

JEAL

A consequence of the theorem above is the existence of a logarithmic model
for a non dicritical CGC:

Corollary 1 ([9,10]) Given F a non dicritical CGC there exists a non dicrit-
ical logarithmic foliation L such that Sepo(F) = Sepo(L) and Z(F) = Z(L).

3 Real logarithmic models

Let F be a singular foliation at 0 € C2. We say that F is a real foliation
if it can be defined by a holomorphic 1-form w = a(z,y)dx + b(x,y)dy such
that the coefficients a,b € R{z,y}. In this case F is invariant by the complex
conjugation (x,y) — (Z,y). More generally, a real foliation F in a complex
surface M with a self-conjugation p : M — M ([13]) will be called a real
foliation if p*F = F. It induces a real analytic foliation Fr over the real
surface My consisting of the set of fixed points of p, also called real points. We
have that

1. P € Sing(F) iff p(P) € Sing(F).
2. I' € Sepp(F) iff p(I") € Sep,p)(F).
3. Ip(F,I') = Lyp)(F, p(P))-

If P is a real point, a real separatriz of F at P is a p-invariant separatrix
I' € Sepp(F) and thus Ip(F,I") € R. This is equivalent to say that the
real part Sg = S N Mg is a real analytic curve through P (of topological
dimension 1) invariant by Fg. Denote by RSepp(F) the set of real separatrices
at P € Mg. A real foliation F is called non real-dicritical at 0 if RSepo(F) is
finite.

Let 0 : M — (C2,0) be a composition of blowing-ups at real points. Then
the conjugation of C? lifts to a self-conjugation p of M and the transform F’
of F is a real foliation with respect to p. If F is non real-dicritical, then every
component of the divisor E = ¢~1(0) is invariant by F. The morphism o is
called a real reduction of singularities of F if every singular real point of F’ is
a simple singularity. Also, the singular foliation F is called a real generalized
curve (RGC for short) if no real point of M is a saddle-node singularity of F'.
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Examples of RGC foliations which are not CGG can be easily obtained (see
19).

In this paragraph we want to construct real logarithmic models for real
foliations. To be precise, we adopt the following definition:

Definition 2 Let F be a real foliation at 0 € C? which is a real generalized
curve and non real-dicritical. A real logarithmic model of F is a non dicritical
logarithmic foliation £ which is a real foliation and such that:

i) RSepo(F) = RSepo(L)

ii) 7 and £ have a common real reduction of singularities o : M — (C?,0)
such that if 7' and £ are the transforms of F and £ by o, then F’ and
L’ have the same real singular points.

iii) For any real point P in ¢~1(0) and any real separatrix I" of 7' at P, we
have Ip(F, ') = Ip(L', ).

We remark that it is not true, in general, that the minimal reduction of the real
separatrices gives a real reduction of singularities of a non real-dicritical RGC
foliation, even in the case of a real CGC. For example, consider the singular
foliation given by {d(y(z* + y?)) = 0}. It has a non simple singularity at
the origin and a single non singular real separatrix. Thus, a real logarithmic
model must bear in mind also the non real separatrices {x + iy = 0} and
{z — iy = 0}. This example also shows that real logarithmic models are far
from being unique: all foliations of the type {d(y(z?+\y?)) = 0} with A € R+
have the same real reduction of singularities with the same indices at the real
points.

On the other hand, condition iii) implies that the Lins Neto indices of F
and L along real separatrices at 0 coincide. However, this last property alone
does not guarantee that £ and F satisfy condition iii) since the indices at the
real corners are not determined by the indices of the real separatrices at 0.

Theorem 2 Let F be a real analytic foliation at 0 € C? and suppose that F is
a non real-dicritical real generalized curve. Then there exists a real logarithmic

model L of F.

Proof Let o : M — (C?,0) be a real reduction of singularities of F and
p: M — M be the self-conjugation that lifts the conjugation of C2. Consider
the decomposition E = E; U...U E, of the total divisor E = ¢~!(0) into
irreducible components and let us suppose that n > 1, i.e., that we make at
least a blowing-up, even if the singularity of F is already simple at the origin.
Since F is non real-dicritical, F; is invariant for any j by the strict transform
F' of F. Moreover, since ¢ is a composition of blowing-ups at real points, the
corners of F are all real points and the indices at these corners of the strict
transform along the components of E are real numbers.

Let A be the set of points P € E N Sing(F') such that P is not a corner
of E and Re(Ip(F',E)) # 0. We have obviously that A is invariant by p.
Moreover, we prove that A is non-empty by using the following claim.
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Claim: Given a real foliation F and a divisor E recursively constructed
by blowing-up at real points, there exists a point P in E such that either
P is not a corner and Re(Ip(F, E)) # 0 or P is a corner and if Dy, Dy
are the components of E through P then Ip(F,D1) - Ip(F, D3) # 1.

The proof of the claim is completely analogous to the proof given in [7] con-
cerning a property named (x) there. It is broadly as follows. If E has a single
component, there are no corners and then the index along E at one of the
singularities appearing in F has non-zero real part since the sum of the in-
dices along F must be equal to —1. Now, suppose that @ is a real point of
some divisor E as in the hypothesis which has the required properties and let
mg be the blowing-up at (). We have to show that there is a point P in the
exceptional divisor D = wél(Q) with the required properties. We analyze the
two cases:

1) @ is not a corner and Re(Ig(F, E)) # 0. Let Dy be the strict transform
by mg of the component of I/ where @ belongs. Either there is a singular
point of D which is not a corner having index along D with non-zero real
part or, otherwise, the index at the corner P = D N D; with respect to D
is equal to —1, since it is real. The index at P with respect to D; cannot
be —1 since Re(Ig(F, E)) # 0 and we are done;

2) Q is a corner with Io(F,D1)Ig(F, D) # 1, where Dy, Dy are the com-
ponents through @. If there are no non-corners in D for which the real
part of the index along D is non-zero, we have two corners P, P, in D
corresponding to the tangent lines of Dy, Dy respectively with Ip, (F, D)+

Ip,(F,D) = —1 since these indices are real. We conclude from the fact
that Ig(F,D1)Ig(F,D2) # 1 that the same property holds either for P
or PQ.

We continue with the proof of the theorem. Consider the subset A; = {P €
A : Re(Ip(F',E)) € Qs0}. Note that A; is invariant by p and does not have
real points. It is possible that A; is the empty set. Otherwise, we make the fol-
lowing construction for any pair of points P, p(P) € A;: let E; be the (unique)
component of E such that P € E; and consider two different points @, Q' € E;

close to P with Q,Q" ¢ A, and put Bp = B,p) = {Q,Q’, p(Q), p(Q")}. Con-
sider the set A" = (A \ A1) U (Upea, Bp) written as

A/ = {Plv" '7P55Q15p(Q1)7" '7Qt7p(Qt)}

in such a way that P; is real and Qj, p(Q;) are not real. Each P; is a sim-
ple hyperbolic singularity of F’, since F is a RGC. Then, there exists a
non singular real separatrix S7 of F " at P; transversal to E. For each pair
Qj,p(Q5), 5 =1,...,t, take non singular curves S¢, 5, 1, 57,9, = p(Si2;_1)
transversal to £ at Q; and at p(Q;), respectively. Then S = o(U}_,57) =
UZ_1S5j, r = s+ 2t, is a complex curve at the origin. Consider equations F' =
(h1,...,hs, 91,97, .. g, g ) of the branches S; at the origin, where h; is real
over R? and g;, g are not real. Consider the pair A = (¢ : M — (C?,0), 5).
Note that n(.A) = 0. Let us define a system of indices Z = {Ip}pcp on A as
follows.
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1. For j=1,...,s, put Ip,(E) = Ip,(F/, E) and Ip,(S7) = Ip, (F, 57).

2. Forany k € {1,...,t} such that Qy € AN\ Ay, define I, (E) = I,q,)(F) =
Re(Iq,(F',E)) and 1q, (SZ ap—1) = Lp@y) (STiar) = 1/Re(Iq, (F', E)).

3. If Bp = {Qky, Qry» p(Qky )s p(Qky)} for some P € Ay, choose aq,aq irra-
tional numbers such that a; + as = Re(Ip(F', E)) and define Ig., (E) =

Ip(ij)(E) = a; and Iij (Sg+2kjf1) = Ip(ij)(Sng%j) =1/ay,j=1,2.

Finally, define Ip = 0 if P € A’. By construction, Z is Lins-compatible. The
logarithmic foliation £ = £, r associated to Z in Theorem 1 is a real foliation
and a real logarithmic model of F.

Remark 2 The system of indices T constructed in the above proof satisfy also
that the associated exponents can be chosen to be real and equal for the conju-
gated branches. We deduce that we can get a real logarithmic model of the type
L={d(h} ---h)m) =0}, m = s +t, where h; is real over R? and \; € R.

4 Examples

Let F be a real foliation at 0 € C? and suppose that F is a non dicritical
CGC. Then it can be shown easily that there exist complex logarithmic models
given by Corollary 1 which are also real logarithmic models. The following
example shows that sometimes we can construct a simpler real logarithmic
model without using the whole complex reduction of singularities.

Ezample 2 Let F = Ly p with F = (y — 2,y +iz?,y—iz?) and A = (1,1, —i),
i =+—1. Let 0 : M — (C2%,0) be the composition of two blowing-ups that
gives the minimal reduction of singularities of the parabolas S = S U Sy U Ss,
separatrices of F. Then the strict transforms S, Sy and S4 cut the divisor
E = 07Y(0) at three different simple singular points Py, Py and P3 where the
indices of the transform F' are

Ip (F',Sy) = =2, Ip,(F', S%) = 2i, Ip,(F', S4) = —2i.

The real part of the indices relative to Sy and S% is zero. Hence £ = {d(y —
2?) = 0} is a real logarithmic model of F. This exzample also shows that
not every real logarithmic foliation has a multivalued first integral of the type
hi‘l <R with h; real over real points and \; € R, although real logarithmic
models having this property always exists as mentioned in Remark 2.

It is well known that the multiplicity of a non dicritical CGC at the origin is
given by m — 1 where m is the multiplicity of its set of separatrices. Moreover,
as it is shown in [11], two non dicritical CGC sharing a complex logarithmic
model (equivalently with the same set of separatrices and with the same system
of indices) of multiplicity v are defined by 1-forms with the same v-jet when
we fix the coordinates. In the real case these properties are not satisfied.
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Ezample 3 Let F = {w = y3dx + (2? + y*> — 23)dy = 0}. It is a RGC but not a
CGC. It has a single non singular real separatriz S1 at 0. The (non singular)
foliation £ = {df1 = 0} is a real logarithmic model of F, where fi =0 is a
real equation of Si.

5 Applications to center-focus foliations

Let us finish by discussing the relation between center-focus real foliations and
existence of real separatrices.

Recall that a real analytic foliation F at 0 € C? is said to be of center-
focus type if there is a first returning map P : £ — £ of the real leaves of F
on a (germ of a) half straight real line ¢ through 0, transversal to F. This is
equivalent (see [18,1,6,12]) to any of the following properties:

a) there are no real leaves of F which accumulate to the origin with a well
defined tangent (characteristic orbits).

b) F is non real-dicritical and if 7 : M — (C2,0) is a real resolution of
singularities of F the real singular points of the transform F’ are situated at
corners of the divisor E = 771(0) and are all of saddle type (with indices of
opposite sign along the two separatrices).

If 7 is a RGC of center-focus type then any of its real logarithmic models
is also of center-focus type, but we can not distinguish, using real logarithmic
models, if the original foliation is a center (first returning map P equal to the
identity) or a focus (P # id). For instance, the foliations

F1={d((a* +y*)(z +iay)'(z — iay)~") = 0}
Fa = {d((2® + y*)(2* + a®y?)) = 0}

are real logarithmic models one of each other, 77 having a focus and F, having
a center at the origin.

Evidently, center-focus foliations can not have real analytic separatrices,
but the converse is not true. An explicit example is given for instance in [19]:

F = {(zy + 2® + 2%y)dx — (—y* + 2*)dy = 0}.

For this foliation, all the characteristic orbits are (infinitely) tangent with a
formal, non convergent (real) separatrix S at 0.

In general, any formal non convergent real separatrix S of a real analytic
foliation F corresponds to a saddle-node in the real reduction of singularities
(and thus such a foliation is not a RGC) and it has associated at least a
characteristic orbit with the same tangent as 5 (actually the same iterated
tangents, see [6]).

Hence, a center-focus vector field can not have formal or convergent real
separatrices. Our final example shows that the converse is not true, neither
for real CGC: there can be characteristic orbits without formal or convergent
real separatrix. The example is giving by using the construction in Theorem 1
of a logarithmic foliation with prescribed indices.
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Example 4 Let w1 : My — (C20) be the blowing up at the origin and o :
M — M be the blowing up at a real point in the exceptional divisor 7T1_1(0) of
m1. Let m = myomg. The exceptional divisor E of w consists of two components
E = FEy U Es, where Es is the exceptional divisor of mo and Ey is the strict
transform of 7r1_1(0) by o, intersecting at a real point P € M. Consider
P, € E;, i = 1,2 non real points and ST a (germ of a) non singular complex
analytic curve thmugh P; transversal to E;. Let p(P;), p(SF) be the images of
P;, ST by the complez self-conjugation p: M — M. Then S = n(ST)Un(ST)U
7(p(ST)) Un(p(ST)) is a complex curve at the origin of C? for which 7 is the
minimal reduction of singularities. Consider the pair A = (M = (C2,0),5)
and a system of indices T on A given as follows: let X\ be an irrational positive
number and put

Ip (Ey) = =(1+A/2), Ip(ST) =1/1p (Er)
Ip,(E2) = —(A+ 1)/2)\ IPl(Sér) 1/1p,(E2)
p(Pl)( ) :Ipl(El) Pl)(SIr) 1/ (P1)(E1)
p(Pz ( ): Pz(E2)7 P2)(S7T) 1/ p(P2) (EQ)
In(E) = A Ip(B) = Un

A calculation shows that T is a Lins-compatible system of indices on A. By
Theorem 1, there exists a logarithmic non-dicritical foliation F with Sepo(F) =
S so that the strict transform F' by w has indices given by T. On the other
hand, the choice of the curves ST,p(SF) and the system of indices implies
that F is a real foliation and 7 is a real reduction of singularities of it. Fi-
nally, there is no real singular points of the transform F' except for the point
P = Ey N Ey where F' has a focus with eigenvalues 1, \ and E1, Es as the
only real separatrices at P. We conclude that F is not a center-focus foliation.
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