# Editorial Manager(tm) for Revista Matemática Complutense <br> Manuscript Draft 

Manuscript Number:
Title: Real logarithmic models for real analytic foliations in the plane
Article Type: Original Paper
Keywords: singular holomorphic foliation; logarithmic foliations; generalized curves; center-focus plane vector fields

Corresponding Author: Dr. Nuria Corral,
Corresponding Author's Institution: Universidad de Cantabria
First Author: Nuria Corral
Order of Authors: Nuria Corral; Fernando Sanz
Abstract: Let $S$ be a germ of a holomorphic curve at the origin of $\mathrm{C}^{2}$ with finitely many branches S_1,...,S_r and let I=(I_1,...,I_r) [] C^r\$. We show that there exists a nondicriticalholomorphic foliation of logarithmic type at the origin of $\mathrm{C}^{2}$ whose set of separatrices is S and having index I_i along S_i in the sense of Lins Neto if the following (necessary) condition holds: after a reduction of singularities $\pi$ :M --> ( $\mathrm{C}^{2}, 0$ ) of S , the vector I gives rise, by the usual rules of transformation of indices by blowing-ups, to systems of indices along components of the total transform $\hat{S}$ of $S$ at points of the divisor $E=\pi^{\wedge}\{-1\}(0)$ satisfying: a) at any singular point of $\hat{S}$ the two indices along the branches of $\hat{S}$ are not positive rational numbers and they are mutually inverse; b) the sum of the indices along a component D of E for all points in D is equal to the self-intersection of D in M . This construction is used to show the existence of logarithmic models of real analytic foliations which are real generalized curves. Applications to real center-focus foliations are considered.

## Manuscript

```
manuscript No.
(will be inserted by the editor)
```


# Real logarithmic models for real analytic foliations in the plane 

Nuria CORRAL • Fernando SANZ

Received: September 27, 2010/ Accepted: date


#### Abstract

Let $S$ be a germ of a holomorphic curve at $\left(\mathbb{C}^{2}, 0\right)$ with finitely many branches $S_{1}, \ldots, S_{r}$ and let $\mathcal{I}=\left(I_{1}, \ldots, I_{r}\right) \in \mathbb{C}^{r}$. We show that there exists a non-dicritical holomorphic foliation of logarithmic type at $0 \in \mathbb{C}^{2}$ whose set of separatrices is $S$ and having index $I_{i}$ along $S_{i}$ in the sense of [14] if the following (necessary) condition holds: after a reduction of singularities $\pi: M \rightarrow\left(\mathbb{C}^{2}, 0\right)$ of $S$, the vector $\mathcal{I}$ gives rise, by the usual rules of transformation of indices by blowing-ups, to systems of indices along components of the total transform $\bar{S}$ of $S$ at points of the divisor $E=\pi^{-1}(0)$ satisfying: a) at any singular point of $\bar{S}$ the two indices along the branches of $\bar{S}$ do not belong to $\mathbb{Q} \geq 0$ and they are mutually inverse; b) the sum of the indices along a component $D$ of $E$ for all points in $D$ is equal to the self-intersection of $D$ in $M$. This construction is used to show the existence of logarithmic models of real analytic foliations which are real generalized curves. Applications to real center-focus foliations are considered.


Keywords Singular holomorphic foliation • logarithmic foliations • generalized curves • center-focus plane vector fields

[^0]Mathematics Subject Classification (2000) 32S65 • 37C10

## 1 Preliminaries

Let $\mathcal{F}$ be a germ of singular holomorphic foliation at $\left(\mathbb{C}^{2}, 0\right)$ given by the differential 1-form $\omega=a(x, y) d x+b(x, y) d y$. Recall that a separatrix of $\mathcal{F}$ at 0 is a germ of irreducible analytic curve $\Gamma$ through 0 such that $\Gamma \backslash\{0\}$ is a leaf of $\mathcal{F}$. Denote by $\operatorname{Sep}_{0}(\mathcal{F})$ the set of separatrices. It is a non-empty set [4] and $\mathcal{F}$ is called non-dicritical iff it is finite. In this case, the union of the separatrices is a plane curve $S$ with a finite number of branches.

We will consider the index $I_{0}(\mathcal{F}, \Gamma) \in \mathbb{C}$ associated to each separatrix $\Gamma$ defined by Lins Neto in [14]. The main properties of the index are the following ones:

1) Let $\pi: M \longrightarrow\left(\mathbb{C}^{2}, 0\right)$ be the blowing-up of the origin and let $\mathcal{F}^{\prime}$ be the strict transform of $\mathcal{F}$ by $\pi$. If $P=\Gamma^{\prime} \cap \pi^{-1}(0)$, with $\Gamma^{\prime}$ the strict transform of $\Gamma$, then

$$
I_{P}\left(\mathcal{F}^{\prime}, \Gamma^{\prime}\right)=I_{0}(\mathcal{F}, \Gamma)-m_{0}(\Gamma)^{2}
$$

where $m_{0}(\Gamma)$ is the multiplicity of $\Gamma$ at the origin (see $[3,22]$ ).
2) Let $\mathcal{F}$ be a holomorphic foliation on a complex surface $M$ and let $D$ be a non-singular complex compact curve in $M$ invariant by $\mathcal{F}$. Then

$$
\sum_{P \in D} I_{P}(\mathcal{F}, D)=D \cdot D
$$

where $D \cdot D$ is the self-intersection of $D$ (see $[4,14]$ ).
3) Assume that $\Gamma=\{y=0\}$ and $\omega=y\{(\lambda+\varphi) d x-(\mu x+\psi) d y / y\}$, where $\varphi(0)=0$ and $\nu(\psi) \geq 2$. If $\mu \neq 0$, then $I_{0}(\mathcal{F}, \Gamma)=\lambda / \mu$.
Recall that the origin is a simple singularity of $\mathcal{F}$ if $\omega$ has the form $\omega=$ $(\lambda y d x-\mu x d y)+\omega_{1}$ where the coefficients of $\omega_{1}$ have order $\geq 2$ and $\lambda, \mu$ are complex numbers such that one of them, say $\mu$, is non zero and $\lambda / \mu \notin \mathbb{Q}>0$. In the hyperbolic case, $\lambda \mu \neq 0$, the set of separatrices $\operatorname{Sep}_{0}(\mathcal{F})$ consists of exactly two non singular branches $S_{1}, S_{2}$ with transversal tangent lines at 0 . If $\lambda=0$, the origin is a saddle-node singularity: we have two formal non singular separatrices at 0 but, in general, only one of them is convergent [2].

A reduction of singularities ([21], see also [15]) of a singular foliation $\mathcal{F}$ is a morphism $\sigma: M \rightarrow\left(\mathbb{C}^{2}, 0\right)$ obtained as a finite composition of blowingups at points such that all the singular points $\operatorname{Sing}\left(\mathcal{F}^{\prime}\right)$ of the transformed foliation $\mathcal{F}^{\prime}$ on $M$ are simple ones. In the case that $\mathcal{F}$ is non dicritical, each component of the divisor $E=\pi^{-1}(0)$ is invariant by $\mathcal{F}^{\prime}$. We say that $\mathcal{F}$ is a complex generalized curve (CGC) if in one (and hence in any) reduction of singularities there are no saddle-nodes (see [5]). This is equivalent to say that all the Lins Neto indices at the simple singularities are non-zero. A reduction of singularities of $\mathcal{F}$ gives a reduction of singularities of the curve $S$ of separatrices of $\mathcal{F}$ at 0 in the sense that $\sigma^{-1}(S)$ is a normal crossing divisor. The reciprocal is true for a non dicritical CGC.

The simplest example of a CGC is the foliation $\{d f=0\}$ for a holomorphic function $f$. A more general example is a logarithmic foliation $\mathcal{L}_{\underline{\lambda}, F}$ given by $\omega_{\underline{\lambda}, F}=0$ where

$$
\omega_{\underline{\boldsymbol{\lambda}}, F}=f_{1} \cdots f_{r} \sum_{j=1}^{r} \lambda_{j} \frac{d f_{j}}{f_{j}}
$$

Here $F=\left(f_{1}, \ldots, f_{r}\right)$ is a $r$-uple of relatively prime irreducible germs of holomorphic functions with $f_{j}(0)=0$ and $\underline{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{r}\right) \in\left(\mathbb{C}^{*}\right)^{r}$. We will also write $\mathcal{L}_{\underline{\boldsymbol{\lambda}}, F}=\left\{d\left(f_{1}^{\lambda_{1}} \cdots f_{r}^{\lambda_{r}}\right)=0\right\}$.

In this article we will only consider the most elementary properties of logarithmic foliations (see [8, 16, 17] for other results):

1. The curves $S_{j}=\left\{f_{j}=0\right\}, j=1, \ldots, r$ are separatrices of $\mathcal{L}_{\underline{\lambda}, F}$.
2. The foliations $\mathcal{L}_{\underline{\lambda}, F}$ and $\mathcal{L}_{\mu, F}$ coincide iff $[\underline{\lambda}]=[\underline{\mu}] \in \mathbf{P}_{\mathbb{C}}^{r-1}$.
3. We have

$$
\begin{equation*}
I_{0}\left(\mathcal{L}_{\underline{\lambda}, F}, S_{j}\right)=-\sum_{\substack{k=1 \\ k \neq j}}^{r} \frac{\lambda_{k}}{\lambda_{j}}\left(S_{k}, S_{j}\right)_{0}, \quad j=1, \ldots, r \tag{1}
\end{equation*}
$$

where $\left(S_{k}, S_{j}\right)_{0}$ is the intersection number of the branches $S_{k}$ and $S_{j}$ at the origin. (Do a similar calculation as in [14]; see also [20]).

The above properties are true for $\mathcal{L}_{\underline{\lambda}, F}$ dicritical or not. Now let us remark some statements and properties concerning dicriticalness.

We say that the logarithmic foliation $\mathcal{L}=\mathcal{L}_{\underline{\lambda}, F}$ has the main resonance if

$$
\sum_{j=1}^{r} \lambda_{j} m_{0}\left(S_{j}\right)=0
$$

where $m_{0}\left(S_{j}\right)$ is the multiplicity of $S_{j}$ at the origin.

Proposition 1 Suppose that $\mathcal{L}=\mathcal{L}_{\underline{\lambda}, F}$ does not have the main resonance. Let $\pi: M \rightarrow\left(\mathbb{C}^{2}, 0\right)$ be the blowing-up at the origin and consider $\mathcal{L}^{\prime}$ the strict transform of $\mathcal{L}$ by $\pi$. Then the exceptional divisor $E=\pi^{-1}(0)$ is invariant by $\mathcal{L}^{\prime}$ and the tangent cone $C_{0}(\mathcal{L})=\operatorname{Sing}\left(\mathcal{L}^{\prime}\right) \cap E$ of $\mathcal{L}$ at 0 corresponds exactly to the tangents of the separatrices $S_{j}, j=1, \ldots, r$.

Proof Let $\nu+1=\sum_{j=1}^{r} m_{0}\left(S_{j}\right)$ and write $\omega=\omega_{\underline{\lambda}, F}=a(x, y) d x+b(x, y) d y$. One can show that $x a+y b$ has order $\nu+1$ and that the zeroes of the homogeneous term $(x a+y b)_{\nu+1}$ of degree $\nu+1$ are precisely the tangents of the separatrices $S_{j}$ at the origin. Thus $\nu$ is the minimum of the orders of $a$ or $b$ and the tangent cone $x a_{\nu}+y b_{\nu}=0$ of $\omega$ is equal to $(x a+y b)_{\nu+1}=0$. The conclusion follows.

## 2 Foliations with prescribed indices

In this paragraph we refine the arguments in $[9,10]$ to construct logarithmic foliations with prescribed indices along the branches of a given curve.

Let us consider pairs $\mathcal{A}=\left(M \xrightarrow{\sigma}\left(\mathbb{C}^{2}, 0\right), S\right)$, where $S \subset\left(\mathbb{C}^{2}, 0\right)$ is an analytic curve with finitely many branches $S=\cup_{j=1}^{r} S_{j}$ and $\sigma: M \rightarrow\left(\mathbb{C}^{2}, 0\right)$ is the composition of a finite sequence of punctual blowing-ups. Denote by $S^{\sigma} \subset M$ the strict transform of $S$ and by $E=\sigma^{-1}(0)$ the exceptional divisor. A blowing-up $\pi: M^{\prime} \rightarrow M$ with center $P \in E$ is called irredundant for $\mathcal{A}$ iff $E \cup S^{\sigma}$ does not have normal crossings at $P$. There is a number $n(\mathcal{A})$ such that after exactly $n(\mathcal{A})$ irredundant blowing-ups we get a new pair $\widetilde{\mathcal{A}}=(\tilde{\sigma}$ : $\left.\tilde{M} \rightarrow\left(\mathbb{C}^{2}, 0\right), S\right)$ such that $\tilde{E} \cup S^{\tilde{\sigma}}$ has normal crossings at each point.

A system of indices $\mathcal{I}=\mathcal{I}_{\mathcal{A}}$ is a family $\left\{I_{P}\right\}_{P \in E}$ where $I_{P}$ is a function that assigns a complex number $I_{P}(\Gamma) \in \mathbb{C}$ to each irreducible component $\Gamma$ of the germ of $E \cup S^{\sigma}$ at $P$. Given a blowing-up $\pi: M^{\prime} \rightarrow M$ with center $P \in E$ and a system of indices $\mathcal{I}^{\prime}$ on $\mathcal{A}^{\prime}=\left(M^{\prime} \xrightarrow{\sigma^{\prime}}\left(\mathbb{C}^{2}, 0\right), S\right)$, where $\sigma^{\prime}=\sigma \circ \pi$, we can blow-down $\mathcal{I}^{\prime}$ as follows. For a component $\Gamma$ of $E \cup S^{\sigma}$ at $Q$ we define

$$
I_{Q}(\Gamma)= \begin{cases}I_{Q^{\prime}}^{\prime}\left(\Gamma^{\prime}\right) & \text { if } Q \neq P \\ I_{Q^{\prime}}^{\prime}\left(\Gamma^{\prime}\right)+\left[m_{Q}(\Gamma)\right]^{2} & \text { if } Q=P\end{cases}
$$

where $\Gamma^{\prime}$ is the strict transform of $\Gamma$ by $\pi, Q^{\prime}=\Gamma^{\prime} \cap E^{\prime}$ and $m_{Q}(\Gamma)$ is the multiplicity of $\Gamma$ at $Q$.

Definition 1 Let $\mathcal{I}$ be a system of indices on $\mathcal{A}$ and put $n=n(\mathcal{A})$. If $n=0$, we say that $\mathcal{I}$ is Lins-compatible iff the following properties are satisfied:
a) If $P$ is a non singular point of $E \cup S^{\sigma}$, then $I_{P}(E)=0$.
b) If $D$ is an irreducible component of $E$, then $\sum_{P \in D} I_{P}(D)=D \cdot D$.
c) If $P$ is a singular point of $E \cup S^{\sigma}$ and $\Gamma_{1}, \Gamma_{2}$ are the two branches of $E \cup S^{\sigma}$ at $P$, then $I_{P}\left(\Gamma_{1}\right) \cdot I_{P}\left(\Gamma_{2}\right)=1$ and $I_{P}\left(\Gamma_{i}\right) \notin \mathbb{Q} \geq 0, i=1,2$.

If $n>0$, we say that $\mathcal{I}$ is Lins-compatible iff there is an irredundant blowing$\operatorname{up} M^{\prime} \xrightarrow{\pi} M$ and a Lins-compatible system of indices $\mathcal{I}^{\prime}$ on $\mathcal{A}^{\prime}=\left(M^{\prime} \xrightarrow{\sigma^{\prime}}\right.$ $\left.\left(\mathbb{C}^{2}, 0\right), S\right)$, where $\sigma^{\prime}=\sigma \circ \pi$, such that $\mathcal{I}$ is the blowing-down of $\mathcal{I}^{\prime}$.

Proposition 2 The indices on the branches of $S^{\sigma}$ determine the indices over the divisor in a Lins-compatible system of indices. Moreover a Lins-compatible system of indices can be blown-up and blown-down in a unique way.

Proof Note that the blowing-down of a system of indices is uniquely defined and that an irredundant blowing-down transforms Lins-compatible systems of indices into Lins-compatible systems. Consider a Lins-compatible system of indices $\mathcal{I}$ on $\mathcal{A}$ with $n=n(\mathcal{A})$ and let us first prove the following statements by induction on $n$ :
$A(n)$ : The indices on $E$ are determined by the indices on the branches of $S^{\sigma}$.
$B(n)$ : Given $\pi: M^{\prime} \rightarrow M$ an irredundant blowing-up with center $P \in E$, there is a unique Lins-compatible system of indices $\mathcal{I}^{\prime}=\pi^{*} \mathcal{I}$ on $\mathcal{A}^{\prime}=$ $\left(M^{\prime} \xrightarrow{\sigma^{\prime}}\left(\mathbb{C}^{2}, 0\right), S\right)$, where $\sigma^{\prime}=\sigma \circ \pi$, such that $\mathcal{I}$ is the blowing-down of $\mathcal{I}^{\prime}$.
If $n=0$, then $B(0)$ is trivial since there are no irredundant blowing-ups. To prove $A(0)$ it is enough to use the fact that the dual graph of $E$ is connected. The fact that $A(n-1), B(n-1)$ implies $A(n)$ is evident from the definition of a Lins-compatible system of indices: just take the irredundant blowing-up given in the definition. Let us prove $B(n)$. First, note that the uniqueness stated in $B(n)$ is consequence of the definition of blowing-down of Lins-compatible indices and the induction hypothesis $A(n-1)$ applied to $\mathcal{A}^{\prime}$. If $\pi$ is the blowingup given in the definition, then $B(n)$ is a consequence of $A(n-1)$ applied to $\mathcal{A}^{\prime}=\left(M^{\prime} \xrightarrow{\sigma^{\prime}}\left(\mathbb{C}^{2}, 0\right), S\right)$. Otherwise, let $\pi_{1}: M_{1} \rightarrow M$ be the blowing-up of the definition, with center $Q \neq P$, and let $\mathcal{I}_{1}$ be the Lins-compatible system of indices on $\mathcal{A}_{1}=\left(M_{1} \xrightarrow{\sigma_{ł}}\left(\mathbb{C}^{2}, 0\right), S\right), \sigma_{1}=\sigma \circ \pi_{1}$, that projects to $\mathcal{I}$ by $\pi_{1}$. Consider the following diagram of irredundant blowing-ups

where $P_{1}=\pi_{1}^{-1}(P)$ is the center of $\tilde{\pi}$ and $Q^{\prime}=\pi^{-1}(Q)$ is the center of $\tilde{\pi}_{1}$. By the induction hypothesis $B(n-1)$ applied to $\mathcal{A}_{1}$ we have a unique Linscompatible system of indices $\mathcal{I}_{1}^{\prime}=\tilde{\pi}^{*} \mathcal{I}_{1}$ on $\mathcal{A}_{1}^{\prime}=\left(M_{1}^{\prime} \xrightarrow{\sigma_{1} \circ \tilde{\pi}}\left(\mathbb{C}^{2}, 0\right), S\right)$. Since $\tilde{\pi}_{1}$ is irredundant then, by definition, the blowing-down $\mathcal{I}^{\prime}$ of $\mathcal{I}_{1}^{\prime}$ over $\mathcal{A}^{\prime}$ is a Lins-compatible system, that obviously gives $\mathcal{I}$ by projection.

It remains to prove the existence of the transform of a Lins-compatible system of indices under a redundant blowing-up or blowing-down. We proceed again by induction on $n=n(\mathcal{A})$. In order to pass from $n$ to $n-1$ consider a diagram of four blowing-ups as above, where $\pi$ and $\tilde{\pi}$ are redundant and $\pi_{1}$ and $\tilde{\pi}_{1}$ are irredundant. Finally, assume that $n=0$. The first case is that the center of $\pi: M^{\prime} \rightarrow M$ is a non singular point $P$ of $E \cup S^{\sigma}$. Assume first that $\mathcal{I}$ is a Linscompatible system of indices given on $\mathcal{A}$. Then we know that $I_{P}(E)=0$. Let $E^{\pi}$ be the strict transform of $E$ by $\pi$ and $P^{\prime}=E^{\pi} \cap D$, where $D=\pi^{-1}(P)$. We define a system of indices $\mathcal{I}^{\prime}$ on $\mathcal{A}^{\prime}$ by $I_{P^{\prime}}^{\prime}\left(E^{\pi}\right)=-1=I_{P^{\prime}}^{\prime}(D)$ and $I_{Q^{\prime}}^{\prime}(D)=0$ for $Q^{\prime} \in D, Q^{\prime} \neq P^{\prime}$. Verify that $\mathcal{I}^{\prime}$ is Lins-compatible using the fact that $D$ has self-intersection equal to -1 . On the other hand, if $\mathcal{I}^{\prime}$ is a Lins compatible system of indices on $\mathcal{A}^{\prime}$, then the only non singular point of $D \cup E^{\pi}$ in $D$ is $P^{\prime}$ and hence $I_{P^{\prime}}^{\prime}(D)=D \cdot D=-1$, and $I_{P}^{\prime}\left(E^{\pi}\right)=-1$ in view of the fact that $I_{P^{\prime}}^{\prime}(D) \cdot I_{P^{\prime}}^{\prime}\left(E^{\pi}\right)=1$. Thus, the blowing-down $\mathcal{I}$ of $\mathcal{I}^{\prime}$ verifies $I_{P}(E)=0$. We use the same kind of arguments for the case that $P$ is a singular point of $E \cup S^{\sigma}$.

Remark 1 Let $\mathcal{I}$ be a Lins-compatible system of indices on $\mathcal{A}$. Then $I_{P}(E)=0$ at any non-singular point of $E \cup S^{\sigma}$ and also $\sum_{P \in D} I_{P}(D)=D \cdot D$ for any
component $D$ of $E$. We get these properties by blowing-down the transform of $\mathcal{I}$ under a chain of $n(\mathcal{A})$ irredundant blowing-ups, using the definition of blowing-down a system of indices and the fact that the self-intersection of the strict transform of a connected component $D$ of $E$ by a blowing-up at a point of $D$ decreases by one with respect to the self-intersection of $D$.

The above constructions show also that we can localize a Lins-compatible system of indices $\mathcal{I}$ at a point $P \in M$. More precisely, the new pair is given by the germs $(M, P) \simeq\left(\mathbb{C}^{2}, 0\right)$ and $\left(S^{\sigma} \cup E, P\right)$. The system of indices will be just $\mathcal{I}_{P}=\left\{I_{P}\right\}$. To see that $\mathcal{I}_{P}$ is Lins-compatible the best is to consider a sequence of $n=n(\mathcal{A})$ irredundant blowing-ups

$$
M_{n} \xrightarrow{\pi_{n}} M_{n-1} \longrightarrow \cdots \xrightarrow{\pi_{1}} M \xrightarrow{\sigma}\left(\mathbb{C}^{2}, 0\right)
$$

and to look $\mathcal{I}_{P}$ as the direct image of the restriction of $\left(\pi_{1} \circ \cdots \circ \pi_{n}\right)^{*} \mathcal{I}$ to $\left(\pi_{1} \circ \cdots \circ \pi_{n}\right)^{-1}(M, P)$.

Example 1 Let $\mathcal{F}$ be a non dicritical $C G C$ in $\left(\mathbb{C}^{2}, 0\right)$ with $S$ as curve of separatrices. Put $I_{0}\left(S_{i}\right)=I_{0}\left(\mathcal{F}, S_{i}\right)$. We get a Lins-compatible system of indices $\mathcal{I}(\mathcal{F})$ on $\left(\left(\mathbb{C}^{2}, 0\right), S\right)$. Moreover, let $\sigma: M \rightarrow\left(\mathbb{C}^{2}, 0\right)$ be any sequence of blowing-ups. We can define in the same way the system of indices $\mathcal{I}\left(\sigma^{*} \mathcal{F}\right)$ on $\mathcal{A}=\left(M \xrightarrow{\sigma}\left(\mathbb{C}^{2}, 0\right), S\right)$. Then we have that

$$
\mathcal{I}\left(\sigma^{*} \mathcal{F}\right)=\sigma^{*} \mathcal{I}(\mathcal{F})
$$

This is a consequence of the uniqueness of blowing-up, blowing-down and the fact that after reduction of singularities (even redundant), the system of indices given by $\mathcal{F}$ is obviously Lins-compatible.

A system of exponents $\Lambda=\left\{\left[\lambda_{P}\right]\right\}_{P \in E}$ on a pair $\mathcal{A}=\left(M \xrightarrow{\sigma}\left(\mathbb{C}^{2}, 0\right), S\right)$ is a collection of classes $\left[\lambda_{P}\right]$, where

$$
\lambda_{P}:\left\{\text { branches at } P \text { of } E \cup S^{\sigma}\right\} \rightarrow \mathbb{C}^{*}
$$

under the equivalence $\lambda_{P} \sim \lambda_{P}^{\prime}$ iff $\lambda_{P}=c \lambda_{P}^{\prime}, c \in \mathbb{C}^{*}$.
Let $\pi: M^{\prime} \rightarrow M$ be the blowing-up with center $P$ and $\Lambda^{\prime}=\left\{\left[\lambda_{Q}^{\prime}\right]\right\}$ be a system of exponents on $\mathcal{A}^{\prime}$. We define the blowing-down $\Lambda=\pi_{*} \Lambda^{\prime}$ as follows. For any $Q \neq P$, we put $\left[\lambda_{Q}\right]=\left[\lambda_{\pi^{-1}(Q)}^{\prime}\right]$. For each $Q^{\prime} \in D=\pi^{-1}(P)$, select $\lambda_{Q^{\prime}}^{\prime} \in\left[\lambda_{Q^{\prime}}^{\prime}\right]$ with the property that $\lambda_{Q^{\prime}}^{\prime}(D)=1$ and put, for any branch $\Gamma$ of $E \cup S^{\sigma}$ at $P$,

$$
\lambda_{P}(\Gamma)=\lambda_{P^{\prime}}^{\prime}\left(\Gamma^{\prime}\right)
$$

where $\Gamma^{\prime}$ is the strict transform of $\Gamma$ and $P^{\prime}=\Gamma^{\prime} \cap D$.
In order to transform a system of exponents $\Lambda$ by blowing-up, we must avoid the main resonance. More precisely, we say that $\Lambda$ is transformable at a point $P \in E$ iff

$$
\sum_{\Gamma} \lambda_{P}(\Gamma) \cdot m_{P}(\Gamma) \neq 0
$$

where $\Gamma$ varies over the branches of $E \cup S^{\sigma}$ at $P$. In this case, we define the transform $\Lambda^{\prime}=\pi^{*} \Lambda$ of $\Lambda$ by the blowing-up $\pi: M^{\prime} \rightarrow M$ with center $P$ by putting

$$
\lambda_{Q^{\prime}}^{\prime}\left(\pi^{-1}(P)\right)=\sum_{\Gamma} \lambda_{P}(\Gamma) \cdot m_{P}(\Gamma)
$$

for any $Q^{\prime} \in \pi^{-1}(P)$ and $\lambda_{P^{\prime}}^{\prime}\left(\Gamma^{\prime}\right)=\lambda_{P}(\Gamma)$ if $P^{\prime} \in \pi^{-1}(E)$ is in the strict transform $\Gamma^{\prime}$ of a branch $\Gamma$ of $E \cup S^{\sigma}$.

We say that $\Lambda$ is indefinitely transformable at $P \in E$ iff $\Lambda$ is transformable at $P$, its transform $\Lambda^{1}$ by the blowing-up $\pi_{1}$ at $P$ is transformable at any point $P_{1} \in \pi_{1}^{-1}(P)$, the transform of $\Lambda^{1}$ by the blowing up $\pi_{2}$ at any such point $P_{1}$ is transformable at any point $P_{2} \in \pi_{2}^{-1}\left(P_{1}\right)$ and so on. Roughly speaking, $\Lambda$ is indefinitely transformable if its transform is transformable at any infinitely near point of $P$. We say finally that $\Lambda$ is indefinitely transformable if it is so at any point $P \in E \cup S^{\sigma}$.

Proposition 3 Given a Lins-compatible system of indices $\mathcal{I}$ on $\mathcal{A}$, there is a unique indefinitely transformable system of exponents $\Lambda(\mathcal{I})$ such that for any $P \in E \cup S^{\sigma}$ and any branch $\Gamma$ of $E \cup S^{\sigma}$ at $P$, we have that

$$
\lambda_{P}(\Gamma) \cdot I_{P}(\Gamma)+\sum_{\Gamma^{*} \neq \Gamma} \lambda_{P}\left(\Gamma^{*}\right) \cdot\left(\Gamma^{*}, \Gamma\right)_{P}=0
$$

where $\Gamma^{*}$ varies over all branches of $E \cup S^{\sigma}$ at $P$. Moreover, the system $\Lambda(\mathcal{I})$ satisfies $\pi^{*}(\Lambda(\mathcal{I}))=\Lambda\left(\pi^{*} \mathcal{I}\right)$ for any blowing-up $\pi: M^{\prime} \rightarrow M$.

Proof The result is local at each point $P \in M$ and thus we can assume that $M=\left(\mathbb{C}^{2}, 0\right), S=\cup_{j=1}^{r} S_{j}$ and $\mathcal{I}=\left\{I_{0}\right\}$. Let us do induction on $n=n(\mathcal{A})$. Assume that $n=0$ : if $S=S_{1}$ has a single non singular branch, we put $\lambda_{0}\left(S_{1}\right)=1$ (note that in this case $I_{0}\left(S_{1}\right)=0$ ); if $S=S_{1} \cup S_{2}$ define $\lambda_{0}\left(S_{1}\right)=1$, $\lambda_{0}\left(S_{2}\right)=-1 / I_{0}\left(S_{2}\right)=-I_{0}\left(S_{1}\right)$. Moreover, $\Lambda$ is indefinitely transformable since by blowing-up at 0 the situation repeats. Consider now the case $n>0$. Let $\pi: M \rightarrow\left(\mathbb{C}^{2}, 0\right)$ be the blowing-up of the origin and let $Q_{1}, Q_{2}, \ldots, Q_{k}$ be the points where $S^{\pi}=\cup_{j=1}^{r} S_{j}^{\prime}$ cuts the divisor $D=\pi^{-1}(0)$. Denote $A_{l}=$ $\left\{j: S_{j}^{\prime} \cap D=Q_{l}\right\}$, for $l=1, \ldots, k$. Let us localize $\mathcal{I}^{\prime}=\pi^{*} \mathcal{I}$ to get systems of indices $\mathcal{I}_{l}^{\prime}$ at $Q_{l}$ and take the systems of exponents $\Lambda_{l}^{\prime}=\left\{\left[\lambda_{Q_{l}}^{\prime}\right]\right\}$ given by the induction hypothesis. Choose $\lambda_{Q_{l}}^{\prime} \in\left[\lambda_{Q_{l}}^{\prime}\right], l=1, \ldots, k$, such that $\lambda_{Q_{l}}^{\prime}(D)=1$ and define $\lambda_{0}:\left\{S_{j}\right\}_{j=1}^{r} \rightarrow \mathbb{C}^{*}$ by

$$
\lambda_{0}\left(S_{j}\right)=\lambda_{Q_{l}}^{\prime}\left(S_{j}^{\prime}\right)=\lambda_{j} \quad \text { if } \quad j \in A_{l} .
$$

In view of the property $(\star)$ for $\Lambda_{l}^{\prime}$, we get for any $l$

$$
\begin{aligned}
0 & =\lambda_{Q_{l}}^{\prime}(D) \cdot I_{Q_{l}}(D)+\sum_{j \in A_{l}} \lambda_{Q_{l}}^{\prime}\left(S_{j}^{\prime}\right) \cdot\left(D, S_{j}^{\prime}\right)_{Q_{l}}= \\
& =I_{Q_{l}}^{\prime}(D)+\sum_{j \in A_{l}} \lambda_{j} m_{0}\left(S_{j}\right)
\end{aligned}
$$

Taking the summation over all $l=1, \ldots, k$, we obtain that

$$
0=\sum_{l=1}^{k} I_{Q_{l}}^{\prime}(D)+\sum_{j=1}^{r} \lambda_{j} m_{0}\left(S_{j}\right)=-1+\sum_{j=1}^{r} \lambda_{j} m_{0}\left(S_{j}\right) .
$$

Since $\sum_{j=1}^{r} \lambda_{j} m_{0}\left(S_{j}\right)=1$, the system $\Lambda=\left\{\left[\lambda_{0}\right]\right\}$ is transformable at the origin and it is indefinitely transformable because its blowing-up is, by construction, an indefinitely transformable system on $\mathcal{A}^{\prime}=\left(M \xrightarrow{\pi}\left(\mathbb{C}^{2}, 0\right), S\right)$. Let us show $(\star)$ for $\Lambda$. Fix $j \in\{1, \ldots, r\}$ and let $Q_{l} \in D$ such that $j \in A_{l}$. Then

$$
\begin{align*}
& \lambda_{j} I_{0}\left(S_{j}\right)+\sum_{i \neq j} \lambda_{i} \cdot\left(S_{i}, S_{j}\right)_{0}= \\
& =\lambda_{j}\left(I_{Q_{l}}^{\prime}\left(S_{j}^{\prime}\right)+m_{0}\left(S_{j}\right)^{2}\right)+\sum_{i \neq j} \lambda_{i}\left[m_{0}\left(S_{i}\right) \cdot m_{0}\left(S_{j}\right)+\left(S_{i}^{\prime}, S_{j}^{\prime}\right)_{Q_{l}}\right] \\
& =\lambda_{j} I_{Q_{l}}^{\prime}\left(S_{j}^{\prime}\right)+\sum_{i \neq j} \lambda_{i}\left(S_{i}^{\prime}, S_{j}^{\prime}\right)_{Q_{l}}+m_{0}\left(S_{j}\right) \sum_{i=1}^{r} \lambda_{i} m_{0}\left(S_{i}\right)  \tag{2}\\
& =\lambda_{Q_{l}}^{\prime}\left(S_{j}^{\prime}\right) \cdot I_{Q_{l}}^{\prime}\left(S_{j}^{\prime}\right)+\sum_{i \in A_{l}} \lambda_{Q_{l}}^{\prime}\left(S_{i}^{\prime}\right) \cdot\left(S_{i}^{\prime}, S_{j}^{\prime}\right)_{Q_{l}}+\lambda_{Q_{l}}^{\prime}(D) \cdot\left(S_{j}^{\prime}, D\right)_{Q_{l}}=0
\end{align*}
$$

the last equality by the property $(\star)$ for $\Lambda_{l}^{\prime}$. Now we prove uniqueness of system 1. Suppose that there exists another system of indices $\Delta=\left\{\left[\delta_{0}\right]\right\}$ indefinitely transformable and satisfying $(\star)$ at the origin. Denote by $\Delta^{\prime}=\left\{\left[\delta_{Q}^{\prime}\right]\right\}_{Q \in D}$ the blowing-up of $\Delta$ by $\pi$. Fix $\delta_{0} \in\left[\delta_{0}\right]$ and consider for any $l=1, \ldots, k$ the element $\delta_{Q_{l}}^{\prime} \in\left[\delta_{Q_{l}}^{\prime}\right]$ defined by $\delta_{Q_{l}}^{\prime}\left(S_{j}^{\prime}\right)=\delta_{0}\left(S_{j}\right)=\delta_{j}$ for $j \in A_{l}$ and $\delta_{Q_{l}}^{\prime}(D)=\sum_{i=1}^{r} \delta_{i} m_{0}\left(S_{i}\right)$. From the equation

$$
\delta_{j} I_{0}\left(S_{j}\right)+\sum_{i \neq j} \delta_{i} \cdot\left(S_{i}, S_{j}\right)_{0}=0
$$

for $j \in A_{l}$ and $l \in\{1, \ldots, k\}$ we prove, exactly as in (2) replacing $\lambda$ by $\delta$, that the localized of $\pi^{*}(\Delta)$ at $Q_{l}$ satisfies the property $(\star)$ with respect to the branches $S_{j}^{\prime}$ with $j \in A_{l}$, for any $l$. Consequently it is enough to prove the property $(\star)$ also for the branch $D$ at $Q_{l}$ and then we get that $\pi^{*}(\Delta)=\pi^{*}(\Lambda)$ and $\Delta=\Lambda$ by the induction hypothesis. From

$$
\begin{gathered}
\lambda_{j} I_{Q_{l}}\left(S_{j}^{\prime}\right)+\sum_{i \in A_{l}, i \neq j} \lambda_{i}\left(S_{i}^{\prime}, S_{j}^{\prime}\right)_{Q_{l}}+\lambda_{Q_{l}}(D)\left(D, S_{j}^{\prime}\right)_{Q_{l}}=0 \\
\delta_{j} I_{Q_{l}}\left(S_{j}^{\prime}\right)+\sum_{i \in A_{l}, i \neq j} \delta_{i}\left(S_{i}^{\prime}, S_{j}^{\prime}\right)_{Q_{l}}+\delta_{Q_{l}}(D)\left(D, S_{j}^{\prime}\right) Q_{Q_{l}}=0
\end{gathered}
$$

we obtain

$$
\begin{aligned}
& \delta_{j} \sum_{i \in A_{l}, i \neq j} \lambda_{i}\left(S_{i}^{\prime}, S_{j}^{\prime}\right)_{Q_{l}}+\delta_{j} \lambda_{Q_{l}}(D)\left(D, S_{j}^{\prime}\right)_{Q_{l}}= \\
& \lambda_{j} \sum_{i \in A_{l}, i \neq j} \delta_{i}\left(S_{i}^{\prime}, S_{j}^{\prime}\right)_{Q_{l}}+\lambda_{j} \delta_{Q_{l}}(D)\left(D, S_{j}^{\prime}\right)_{Q_{l}} .
\end{aligned}
$$

Summing for all $j \in A_{l}$, we have that

$$
\lambda_{Q_{l}}(D) \sum_{j \in A_{l}} \delta_{j}\left(D, S_{j}^{\prime}\right)_{Q_{l}}=\delta_{Q_{l}}(D) \sum_{j \in A_{l}} \lambda_{j}\left(D, S_{j}^{\prime}\right)_{Q_{l}}
$$

Since $\lambda_{Q_{l}}(D) I_{Q_{l}}(D)+\sum_{j \in A_{l}} \lambda_{j}\left(D, S_{j}^{\prime}\right)_{Q_{l}}=0$ by $(\star)$ for $\pi^{*}(\Lambda)$ at $Q_{l}$, then we get

$$
\delta_{Q_{l}}(D) I_{Q_{l}}(D)+\sum_{j \in A_{l}} \delta_{j}\left(D, S_{j}^{\prime}\right)_{Q_{l}}=0
$$

after dividing by $\lambda_{Q_{l}}(D)$, which is the required equation.
Theorem 1 Let $S=\cup_{j=1}^{r} S_{j}$ be an analytic curve at $0 \in \mathbb{C}^{2}$. Let $\mathcal{I}=\left\{I_{0}\right\}$ be a Lins-compatible system of indices on $\mathcal{A}=\left(\left(\mathbb{C}^{2}, 0\right), S\right)$ and $\Lambda=\Lambda(\mathcal{I})=\left\{\left[\lambda_{0}\right]\right\}$. Take $\underline{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ with $\lambda_{j}=\lambda_{0}\left(S_{j}\right)$. Then, for any $F=\left(f_{1}, \ldots, f_{r}\right)$ with $f_{j}$ a reduced equation of $S_{j}$, the logarithmic foliation $\mathcal{L}=\mathcal{L}_{\underline{\lambda}}, F$ satisfies:
a) $\mathcal{L}$ is a non dicritical $C G C$ with curve of separatrices $S$ and $I_{0}\left(\mathcal{L}, S_{j}\right)=$ $I_{0}\left(S_{j}\right)$ for any $j$.
b) Let $\sigma: M \rightarrow\left(\mathbb{C}^{2}, 0\right)$ be any finite sequence of blowing-ups, then $\sigma^{*} \mathcal{I}$ gives the Lins Neto indices of $\sigma^{*} \mathcal{L}$ at all the separatrices.

Proof The property b) follows from a) in view of the Example 1. Let us prove a) by induction on $n=n(\mathcal{A})$.

Assume that $n=0$. Then $S$ has normal crossings at 0 and either $S=S_{1}$ or $S=S_{1} \cup S_{2}$. In the first case, $\mathcal{L}=\left\{d f_{1}=0\right\}$ is non singular, hence a non dicritical CGC and $I\left(\mathcal{L}, S_{1}\right)=0$. Since 0 is a non singular point of $S \cup E=S_{1}$, we have also that $I_{0}\left(S_{1}\right)=0$. In the second case, $\mathcal{L}=\left\{\lambda_{1} f_{2} d f_{1}+\lambda_{2} f_{1} d f_{2}\right\}$ with $f_{1}, f_{2}$ a system of coordinates at 0 . We know that $I_{0}\left(\mathcal{L}, S_{1}\right)=-\lambda_{2} / \lambda_{1}$, $I_{0}\left(\mathcal{L}, S_{2}\right)=-\lambda_{1} / \lambda_{2}$ and these values coincide with $I_{0}\left(S_{1}\right), I_{0}\left(S_{2}\right)$ respectively, in view of the property $(\star)$ for $\Lambda$. Moreover, $-\lambda_{2} / \lambda_{1} \notin \mathbb{Q} \geq 0$ since $\mathcal{I}$ is Linscompatible. Thus, 0 is a hyperbolic simple singularity of $\mathcal{L}$ and a) follows.

Assume that $n>0$. Let $\pi: \widetilde{\left(\mathbb{C}^{2}, 0\right)} \rightarrow\left(\mathbb{C}^{2}, 0\right)$ be the blowing-up at the origin. Since $\Lambda$ is transformable, $\mathcal{L}$ does not have the main resonance. Denote by $\Lambda^{\prime}=\left\{\left[\lambda_{P}^{\prime}\right]: P \in \pi^{-1}(0)\right\}$ the transform of $\Lambda$. In view of Proposition 1 , we know that $D=\pi^{-1}(0)$ is invariant for $\mathcal{L}^{\prime}=\pi^{*} \mathcal{L}$ and the singularities of $\mathcal{L}^{\prime}$ over $D$ are exactly the points $Q_{1}, \ldots, Q_{k}$ where the strict transform $S^{\pi}=\cup_{j=1}^{r} S_{j}^{\prime}$ cuts $D$. Let $A_{l}=\left\{j: S_{j}^{\prime} \cap D=Q_{l}\right\}$. Choose $\lambda_{Q_{l}}^{\prime} \in\left[\lambda_{Q_{l}}^{\prime}\right]$ with

$$
\lambda_{Q_{l}}^{\prime}(D)=\sum_{j=1}^{r} \lambda_{j} m_{0}\left(S_{j}\right)
$$

Hence $\lambda_{Q_{l}}^{\prime}\left(S_{j}^{\prime}\right)=\lambda_{j}$ for $j \in A_{l}$ by the definition of $\Lambda^{\prime}$. Let $\mathcal{I}_{l}^{\prime}$ be the localization of $\mathcal{I}^{\prime}$ at $Q_{l}$. We know that $\Lambda\left(\mathcal{I}_{l}^{\prime}\right)=\left\{\left[\lambda_{Q_{l}}^{\prime}\right]\right\}$, in view of Proposition 3. In order to end the proof, by our induction hypothesis, let us show that $\mathcal{L}_{Q_{l}}^{\prime}$ has a
logarithmic expression associated to $S_{(l)}^{\prime}=D \cup\left(\cup_{j \in A_{l}} S_{j}^{\prime}\right)$ with $\lambda_{Q_{l}}^{\prime}$ as vector of exponents. In fact, we have that $\mathcal{L}_{Q_{l}}^{\prime}$ is given by

$$
d\left(\left(x u_{(l)}\right)^{\lambda_{Q_{l}}^{\prime}(D)} \cdot \prod_{j \in A_{l}} f_{j}^{\prime \lambda_{j}}\right)=0
$$

where $x=0$ is a reduced equation of $D$ at $Q_{l}, f_{j}^{\prime}$ is the strict transform of $f_{j}$ at $Q_{l}$ and $u_{(l)}$ is a unit given by

$$
u_{(l)}=\prod_{j \notin A_{l}} f_{j}^{\frac{\lambda_{j}}{\lambda_{Q_{l}}^{\prime(D)}}} .
$$

A consequence of the theorem above is the existence of a logarithmic model for a non dicritical CGC:

Corollary $1([\mathbf{9}, \mathbf{1 0}])$ Given $\mathcal{F}$ a non dicritical $C G C$ there exists a non dicritical logarithmic foliation $\mathcal{L}$ such that $\operatorname{Sep}_{0}(\mathcal{F})=\operatorname{Sep}_{0}(\mathcal{L})$ and $\mathcal{I}(\mathcal{F})=\mathcal{I}(\mathcal{L})$.

## 3 Real logarithmic models

Let $\mathcal{F}$ be a singular foliation at $0 \in \mathbb{C}^{2}$. We say that $\mathcal{F}$ is a real foliation if it can be defined by a holomorphic 1-form $\omega=a(x, y) d x+b(x, y) d y$ such that the coefficients $a, b \in \mathbb{R}\{x, y\}$. In this case $\mathcal{F}$ is invariant by the complex conjugation $(x, y) \mapsto(\bar{x}, \bar{y})$. More generally, a real foliation $\mathcal{F}$ in a complex surface $M$ with a self-conjugation $\rho: M \longrightarrow M$ ([13]) will be called a real foliation if $\rho^{*} \mathcal{F}=\mathcal{F}$. It induces a real analytic foliation $\mathcal{F}_{\mathbb{R}}$ over the real surface $M_{\mathbb{R}}$ consisting of the set of fixed points of $\rho$, also called real points. We have that

1. $P \in \operatorname{Sing}(\mathcal{F})$ iff $\rho(P) \in \operatorname{Sing}(\mathcal{F})$.
2. $\Gamma \in \operatorname{Sep}_{P}(\mathcal{F})$ iff $\rho(\Gamma) \in \operatorname{Sep}_{\rho(P)}(\mathcal{F})$.
3. $I_{P}(\mathcal{F}, \Gamma)=\overline{I_{\rho(P)}(\mathcal{F}, \rho(P))}$.

If $P$ is a real point, a real separatrix of $\mathcal{F}$ at $P$ is a $\rho$-invariant separatrix $\Gamma \in \operatorname{Sep}_{P}(\mathcal{F})$ and thus $I_{P}(\mathcal{F}, \Gamma) \in \mathbb{R}$. This is equivalent to say that the real part $S_{\mathbb{R}}=S \cap M_{\mathbb{R}}$ is a real analytic curve through $P$ (of topological dimension 1) invariant by $\mathcal{F}_{\mathbb{R}}$. Denote by $\mathbb{R} \operatorname{Sep}_{P}(\mathcal{F})$ the set of real separatrices at $P \in M_{\mathbb{R}}$. A real foliation $\mathcal{F}$ is called non real-dicritical at 0 if $\mathbb{R} S e p_{0}(\mathcal{F})$ is finite.

Let $\sigma: M \longrightarrow\left(\mathbb{C}^{2}, 0\right)$ be a composition of blowing-ups at real points. Then the conjugation of $\mathbb{C}^{2}$ lifts to a self-conjugation $\rho$ of $M$ and the transform $\mathcal{F}^{\prime}$ of $\mathcal{F}$ is a real foliation with respect to $\rho$. If $\mathcal{F}$ is non real-dicritical, then every component of the divisor $E=\sigma^{-1}(0)$ is invariant by $\mathcal{F}$. The morphism $\sigma$ is called a real reduction of singularities of $\mathcal{F}$ if every singular real point of $\mathcal{F}^{\prime}$ is a simple singularity. Also, the singular foliation $\mathcal{F}$ is called a real generalized curve (RGC for short) if no real point of $M$ is a saddle-node singularity of $\mathcal{F}^{\prime}$.

Examples of RGC foliations which are not CGG can be easily obtained (see [19]).

In this paragraph we want to construct real logarithmic models for real foliations. To be precise, we adopt the following definition:

Definition 2 Let $\mathcal{F}$ be a real foliation at $0 \in \mathbb{C}^{2}$ which is a real generalized curve and non real-dicritical. A real logarithmic model of $\mathcal{F}$ is a non dicritical logarithmic foliation $\mathcal{L}$ which is a real foliation and such that:
i) $\mathbb{R} S e p_{0}(\mathcal{F})=\mathbb{R} S e p_{0}(\mathcal{L})$
ii) $\mathcal{F}$ and $\mathcal{L}$ have a common real reduction of singularities $\sigma: M \longrightarrow\left(\mathbb{C}^{2}, 0\right)$ such that if $\mathcal{F}^{\prime}$ and $\mathcal{L}^{\prime}$ are the transforms of $\mathcal{F}$ and $\mathcal{L}$ by $\sigma$, then $\mathcal{F}^{\prime}$ and $\mathcal{L}^{\prime}$ have the same real singular points.
iii) For any real point $P$ in $\sigma^{-1}(0)$ and any real separatrix $\Gamma$ of $\mathcal{F}^{\prime}$ at $P$, we have $I_{P}\left(\mathcal{F}^{\prime}, \Gamma\right)=I_{P}\left(\mathcal{L}^{\prime}, \Gamma\right)$.

We remark that it is not true, in general, that the minimal reduction of the real separatrices gives a real reduction of singularities of a non real-dicritical RGC foliation, even in the case of a real CGC. For example, consider the singular foliation given by $\left\{d\left(y\left(x^{2}+y^{2}\right)\right)=0\right\}$. It has a non simple singularity at the origin and a single non singular real separatrix. Thus, a real logarithmic model must bear in mind also the non real separatrices $\{x+i y=0\}$ and $\{x-i y=0\}$. This example also shows that real logarithmic models are far from being unique: all foliations of the type $\left\{d\left(y\left(x^{2}+\lambda y^{2}\right)\right)=0\right\}$ with $\lambda \in \mathbb{R}_{>0}$ have the same real reduction of singularities with the same indices at the real points.

On the other hand, condition iii) implies that the Lins Neto indices of $\mathcal{F}$ and $\mathcal{L}$ along real separatrices at 0 coincide. However, this last property alone does not guarantee that $\mathcal{L}$ and $\mathcal{F}$ satisfy condition iii) since the indices at the real corners are not determined by the indices of the real separatrices at 0 .

Theorem 2 Let $\mathcal{F}$ be a real analytic foliation at $0 \in \mathbb{C}^{2}$ and suppose that $\mathcal{F}$ is a non real-dicritical real generalized curve. Then there exists a real logarithmic model $\mathcal{L}$ of $\mathcal{F}$.

Proof Let $\sigma: M \longrightarrow\left(\mathbb{C}^{2}, 0\right)$ be a real reduction of singularities of $\mathcal{F}$ and $\rho: M \longrightarrow M$ be the self-conjugation that lifts the conjugation of $\mathbb{C}^{2}$. Consider the decomposition $E=E_{1} \cup \ldots \cup E_{n}$ of the total divisor $E=\sigma^{-1}(0)$ into irreducible components and let us suppose that $n \geq 1$, i.e., that we make at least a blowing-up, even if the singularity of $\mathcal{F}$ is already simple at the origin. Since $\mathcal{F}$ is non real-dicritical, $E_{j}$ is invariant for any $j$ by the strict transform $\mathcal{F}^{\prime}$ of $\mathcal{F}$. Moreover, since $\sigma$ is a composition of blowing-ups at real points, the corners of $E$ are all real points and the indices at these corners of the strict transform along the components of $E$ are real numbers.

Let $A$ be the set of points $P \in E \cap \operatorname{Sing}\left(\mathcal{F}^{\prime}\right)$ such that $P$ is not a corner of $E$ and $\operatorname{Re}\left(I_{P}\left(\mathcal{F}^{\prime}, E\right)\right) \neq 0$. We have obviously that $A$ is invariant by $\rho$. Moreover, we prove that $A$ is non-empty by using the following claim.

Claim: Given a real foliation $\mathcal{F}$ and a divisor $E$ recursively constructed by blowing-up at real points, there exists a point $P$ in $E$ such that either $P$ is not a corner and $\operatorname{Re}\left(I_{P}(\mathcal{F}, E)\right) \neq 0$ or $P$ is a corner and if $D_{1}, D_{2}$ are the components of $E$ through $P$ then $I_{P}\left(\mathcal{F}, D_{1}\right) \cdot I_{P}\left(\mathcal{F}, D_{2}\right) \neq 1$.

The proof of the claim is completely analogous to the proof given in [7] concerning a property named $(*)$ there. It is broadly as follows. If $E$ has a single component, there are no corners and then the index along $E$ at one of the singularities appearing in $E$ has non-zero real part since the sum of the indices along $E$ must be equal to -1 . Now, suppose that $Q$ is a real point of some divisor $E$ as in the hypothesis which has the required properties and let $\pi_{Q}$ be the blowing-up at $Q$. We have to show that there is a point $P$ in the exceptional divisor $D=\pi_{Q}^{-1}(Q)$ with the required properties. We analyze the two cases:

1) $Q$ is not a corner and $\operatorname{Re}\left(I_{Q}(\mathcal{F}, E)\right) \neq 0$. Let $D_{1}$ be the strict transform by $\pi_{Q}$ of the component of $E$ where $Q$ belongs. Either there is a singular point of $D$ which is not a corner having index along $D$ with non-zero real part or, otherwise, the index at the corner $P=D \cap D_{1}$ with respect to $D$ is equal to -1 , since it is real. The index at $P$ with respect to $D_{1}$ cannot be -1 since $\operatorname{Re}\left(I_{Q}(\mathcal{F}, E)\right) \neq 0$ and we are done;
2) $Q$ is a corner with $I_{Q}\left(\mathcal{F}, D_{1}\right) I_{Q}\left(\mathcal{F}, D_{2}\right) \neq 1$, where $D_{1}, D_{2}$ are the components through $Q$. If there are no non-corners in $D$ for which the real part of the index along $D$ is non-zero, we have two corners $P_{1}, P_{2}$ in $D$ corresponding to the tangent lines of $D_{1}, D_{2}$ respectively with $I_{P_{1}}(\mathcal{F}, D)+$ $I_{P_{2}}(\mathcal{F}, D)=-1$ since these indices are real. We conclude from the fact that $I_{Q}\left(\mathcal{F}, D_{1}\right) I_{Q}\left(\mathcal{F}, D_{2}\right) \neq 1$ that the same property holds either for $P_{1}$ or $P_{2}$.
We continue with the proof of the theorem. Consider the subset $A_{1}=\{P \in$ $\left.A: \operatorname{Re}\left(I_{P}\left(\mathcal{F}^{\prime}, E\right)\right) \in \mathbb{Q}_{>0}\right\}$. Note that $A_{1}$ is invariant by $\rho$ and does not have real points. It is possible that $A_{1}$ is the empty set. Otherwise, we make the following construction for any pair of points $P, \rho(P) \in A_{1}$ : let $E_{j}$ be the (unique) component of $E$ such that $P \in E_{j}$ and consider two different points $Q, Q^{\prime} \in E_{j}$ close to $P$ with $Q, Q^{\prime} \notin A$, and put $B_{P}=B_{\rho(P)}=\left\{Q, Q^{\prime}, \rho(Q), \rho\left(Q^{\prime}\right)\right\}$. Consider the set $A^{\prime}=\left(A \backslash A_{1}\right) \cup\left(\cup_{P \in A_{1}} B_{P}\right)$ written as

$$
A^{\prime}=\left\{P_{1}, \ldots, P_{s}, Q_{1}, \rho\left(Q_{1}\right), \ldots, Q_{t}, \rho\left(Q_{t}\right)\right\}
$$

in such a way that $P_{j}$ is real and $Q_{j}, \rho\left(Q_{j}\right)$ are not real. Each $P_{j}$ is a simple hyperbolic singularity of $\mathcal{F}^{\prime}$, since $\mathcal{F}$ is a RGC. Then, there exists a non singular real separatrix $S_{j}^{\sigma}$ of $\mathcal{F}^{\prime}$ at $P_{j}$ transversal to $E$. For each pair $Q_{j}, \rho\left(Q_{j}\right), j=1, \ldots, t$, take non singular curves $S_{s+2 j-1}^{\sigma}, S_{s+2 j}^{\sigma}=\rho\left(S_{s+2 j-1}^{\sigma}\right)$ transversal to $E$ at $Q_{j}$ and at $\rho\left(Q_{j}\right)$, respectively. Then $S=\sigma\left(\cup_{j=1}^{r} S_{j}^{\sigma}\right)=$ $\cup_{j=1}^{r} S_{j}, r=s+2 t$, is a complex curve at the origin. Consider equations $F=$ $\left(h_{1}, \ldots, h_{s}, g_{1}, g_{1}^{\rho}, \ldots, g_{t}, g_{t}^{\rho}\right)$ of the branches $S_{j}$ at the origin, where $h_{j}$ is real over $\mathbb{R}^{2}$ and $g_{j}, g_{j}^{\rho}$ are not real. Consider the pair $\mathcal{A}=\left(\sigma: M \rightarrow\left(\mathbb{C}^{2}, 0\right), S\right)$. Note that $n(\mathcal{A})=0$. Let us define a system of indices $\mathcal{I}=\left\{I_{P}\right\}_{P \in E}$ on $\mathcal{A}$ as follows.

1. For $j=1, \ldots, s$, put $I_{P_{j}}(E)=I_{P_{j}}\left(\mathcal{F}^{\prime}, E\right)$ and $I_{P_{j}}\left(S_{j}^{\sigma}\right)=I_{P_{j}}\left(\mathcal{F}^{\prime}, S_{j}^{\sigma}\right)$.
2. For any $k \in\{1, \ldots, t\}$ such that $Q_{k} \in A \backslash A_{1}$, define $I_{Q_{k}}(E)=I_{\rho\left(Q_{k}\right)}(E)=$ $\operatorname{Re}\left(I_{Q_{k}}\left(\mathcal{F}^{\prime}, E\right)\right)$ and $I_{Q_{k}}\left(S_{s+2 k-1}^{\sigma}\right)=I_{\rho\left(Q_{k}\right)}\left(S_{s+2 k}^{\sigma}\right)=1 / \operatorname{Re}\left(I_{Q_{k}}\left(\mathcal{F}^{\prime}, E\right)\right)$.
3. If $B_{P}=\left\{Q_{k_{1}}, Q_{k_{2}}, \rho\left(Q_{k_{1}}\right), \rho\left(Q_{k_{2}}\right)\right\}$ for some $P \in A_{1}$, choose $\alpha_{1}, \alpha_{2}$ irrational numbers such that $\alpha_{1}+\alpha_{2}=\operatorname{Re}\left(I_{P}\left(\mathcal{F}^{\prime}, E\right)\right)$ and define $I_{Q_{k_{j}}}(E)=$ $I_{\rho\left(Q_{k_{j}}\right)}(E)=\alpha_{j}$ and $I_{Q_{k_{j}}}\left(S_{s+2 k_{j}-1}^{\sigma}\right)=I_{\rho\left(Q_{k_{j}}\right)}\left(S_{s+2 k_{j}}^{\sigma}\right)=1 / \alpha_{j}, j=1,2$.

Finally, define $I_{P}=0$ if $P \notin A^{\prime}$. By construction, $\mathcal{I}$ is Lins-compatible. The logarithmic foliation $\mathcal{L}=\mathcal{L}_{\underline{\lambda}, F}$ associated to $\mathcal{I}$ in Theorem 1 is a real foliation and a real logarithmic model of $\mathcal{F}$.

Remark 2 The system of indices $\mathcal{I}$ constructed in the above proof satisfy also that the associated exponents can be chosen to be real and equal for the conjugated branches. We deduce that we can get a real logarithmic model of the type $\mathcal{L}=\left\{d\left(h_{1}^{\lambda_{1}} \cdots h_{m}^{\lambda_{m}}\right)=0\right\}, m=s+t$, where $h_{i}$ is real over $\mathbb{R}^{2}$ and $\lambda_{i} \in \mathbb{R}$.

## 4 Examples

Let $\mathcal{F}$ be a real foliation at $0 \in \mathbb{C}^{2}$ and suppose that $\mathcal{F}$ is a non dicritical CGC. Then it can be shown easily that there exist complex logarithmic models given by Corollary 1 which are also real logarithmic models. The following example shows that sometimes we can construct a simpler real logarithmic model without using the whole complex reduction of singularities.

Example 2 Let $\mathcal{F}=\mathcal{L}_{\underline{\lambda}, F}$ with $F=\left(y-x^{2}, y+i x^{2}, y-i x^{2}\right)$ and $\underline{\lambda}=(1, i,-i)$, $i=\sqrt{-1}$. Let $\sigma: M \longrightarrow\left(\mathbb{C}^{2}, 0\right)$ be the composition of two blowing-ups that gives the minimal reduction of singularities of the parabolas $S=S_{1} \cup S_{2} \cup S_{3}$, separatrices of $\mathcal{F}$. Then the strict transforms $S_{1}^{\prime}, S_{2}^{\prime}$ and $S_{3}^{\prime}$ cut the divisor $E=\sigma^{-1}(0)$ at three different simple singular points $P_{1}, P_{2}$ and $P_{3}$ where the indices of the transform $\mathcal{F}^{\prime}$ are

$$
I_{P_{1}}\left(\mathcal{F}^{\prime}, S_{1}^{\prime}\right)=-2, I_{P_{2}}\left(\mathcal{F}^{\prime}, S_{2}^{\prime}\right)=2 i, I_{P_{3}}\left(\mathcal{F}^{\prime}, S_{3}^{\prime}\right)=-2 i
$$

The real part of the indices relative to $S_{2}^{\prime}$ and $S_{3}^{\prime}$ is zero. Hence $\mathcal{L}=\{d(y-$ $\left.\left.x^{2}\right)=0\right\}$ is a real logarithmic model of $\mathcal{F}$. This example also shows that not every real logarithmic foliation has a multivalued first integral of the type $h_{1}^{\lambda_{1}} \cdots h_{m}^{\lambda_{m}}$, with $h_{j}$ real over real points and $\lambda_{i} \in \mathbb{R}$, although real logarithmic models having this property always exists as mentioned in Remark 2.

It is well known that the multiplicity of a non dicritical CGC at the origin is given by $m-1$ where $m$ is the multiplicity of its set of separatrices. Moreover, as it is shown in [11], two non dicritical CGC sharing a complex logarithmic model (equivalently with the same set of separatrices and with the same system of indices) of multiplicity $\nu$ are defined by 1 -forms with the same $\nu$-jet when we fix the coordinates. In the real case these properties are not satisfied.

Example 3 Let $\mathcal{F}=\left\{\omega=y^{3} d x+\left(x^{2}+y^{2}-x^{3}\right) d y=0\right\}$. It is a RGC but not a CGC. It has a single non singular real separatrix $S_{1}$ at 0 . The (non singular) foliation $\mathcal{L}=\left\{d f_{1}=0\right\}$ is a real logarithmic model of $\mathcal{F}$, where $f_{1}=0$ is a real equation of $S_{1}$.

## 5 Applications to center-focus foliations

Let us finish by discussing the relation between center-focus real foliations and existence of real separatrices.

Recall that a real analytic foliation $\mathcal{F}$ at $0 \in \mathbb{C}^{2}$ is said to be of centerfocus type if there is a first returning map $P: \ell \rightarrow \ell$ of the real leaves of $\mathcal{F}$ on a (germ of a) half straight real line $\ell$ through 0 , transversal to $\mathcal{F}$. This is equivalent (see $[18,1,6,12]$ ) to any of the following properties:
a) there are no real leaves of $\mathcal{F}$ which accumulate to the origin with a well defined tangent (characteristic orbits).
b) $\mathcal{F}$ is non real-dicritical and if $\pi: M \longrightarrow\left(\mathbb{C}^{2}, 0\right)$ is a real resolution of singularities of $\mathcal{F}$ the real singular points of the transform $\mathcal{F}^{\prime}$ are situated at corners of the divisor $E=\pi^{-1}(0)$ and are all of saddle type (with indices of opposite sign along the two separatrices).

If $\mathcal{F}$ is a RGC of center-focus type then any of its real logarithmic models is also of center-focus type, but we can not distinguish, using real logarithmic models, if the original foliation is a center (first returning map $P$ equal to the identity) or a focus $(P \neq i d)$. For instance, the foliations

$$
\begin{aligned}
& \mathcal{F}_{1}=\left\{d\left(\left(x^{2}+y^{2}\right)(x+i a y)^{i}(x-i a y)^{-i}\right)=0\right\} \\
& \mathcal{F}_{2}=\left\{d\left(\left(x^{2}+y^{2}\right)\left(x^{2}+a^{2} y^{2}\right)\right)=0\right\}
\end{aligned}
$$

are real logarithmic models one of each other, $\mathcal{F}_{1}$ having a focus and $\mathcal{F}_{2}$ having a center at the origin.

Evidently, center-focus foliations can not have real analytic separatrices, but the converse is not true. An explicit example is given for instance in [19]:

$$
\mathcal{F}=\left\{\left(x y+x^{3}+x^{3} y\right) d x-\left(-y^{2}+x^{4}\right) d y=0\right\} .
$$

For this foliation, all the characteristic orbits are (infinitely) tangent with a formal, non convergent (real) separatrix $\widehat{S}$ at 0 .

In general, any formal non convergent real separatrix $\widehat{S}$ of a real analytic foliation $\mathcal{F}$ corresponds to a saddle-node in the real reduction of singularities (and thus such a foliation is not a RGC) and it has associated at least a characteristic orbit with the same tangent as $\widehat{S}$ (actually the same iterated tangents, see [6]).

Hence, a center-focus vector field can not have formal or convergent real separatrices. Our final example shows that the converse is not true, neither for real CGC: there can be characteristic orbits without formal or convergent real separatrix. The example is giving by using the construction in Theorem 1 of a logarithmic foliation with prescribed indices.

Example 4 Let $\pi_{1}: M_{1} \rightarrow\left(\mathbb{C}^{2}, 0\right)$ be the blowing up at the origin and $\pi_{2}$ : $M \rightarrow M_{1}$ be the blowing up at a real point in the exceptional divisor $\pi_{1}^{-1}(0)$ of $\pi_{1}$. Let $\pi=\pi_{1} \circ \pi_{2}$. The exceptional divisor $E$ of $\pi$ consists of two components $E=E_{1} \cup E_{2}$, where $E_{2}$ is the exceptional divisor of $\pi_{2}$ and $E_{1}$ is the strict transform of $\pi_{1}^{-1}(0)$ by $\pi_{2}$, intersecting at a real point $P \in M$. Consider $P_{i} \in E_{i}, i=1,2$ non real points and $S_{i}^{\pi}$ a (germ of a) non singular complex analytic curve through $P_{i}$ transversal to $E_{i}$. Let $\rho\left(P_{i}\right), \rho\left(S_{i}^{\pi}\right)$ be the images of $P_{i}, S_{i}^{\pi}$ by the complex self-conjugation $\rho: M \rightarrow M$. Then $S=\pi\left(S_{1}^{\pi}\right) \cup \pi\left(S_{2}^{\pi}\right) \cup$ $\pi\left(\rho\left(S_{1}^{\pi}\right)\right) \cup \pi\left(\rho\left(S_{1}^{\pi}\right)\right)$ is a complex curve at the origin of $\mathbb{C}^{2}$ for which $\pi$ is the minimal reduction of singularities. Consider the pair $\mathcal{A}=\left(M \xrightarrow{\pi}\left(\mathbb{C}^{2}, 0\right), S\right)$ and a system of indices $\mathcal{I}$ on $\mathcal{A}$ given as follows: let $\lambda$ be an irrational positive number and put

$$
\begin{aligned}
& I_{P_{1}}\left(E_{1}\right)=-(1+\lambda / 2), \quad I_{P_{1}}\left(S_{1}^{\pi}\right)=1 / I_{P_{1}}\left(E_{1}\right) \\
& I_{P_{2}}\left(E_{2}\right)=-(\lambda+1) / 2 \lambda, \quad I_{P_{1}}\left(S_{2}^{\pi}\right)=1 / I_{P_{2}}\left(E_{2}\right) \\
& I_{\rho\left(P_{1}\right)}\left(E_{1}\right)=I_{P_{1}}\left(E_{1}\right), \quad I_{\rho\left(P_{1}\right)}\left(S_{1}^{\pi}\right)=1 / I_{\rho\left(P_{1}\right)}\left(E_{1}\right) \\
& I_{\rho\left(P_{2}\right)}\left(E_{2}\right)=I_{P_{2}}\left(E_{2}\right), \quad I_{\rho\left(P_{2}\right)}\left(S_{2}^{\pi}\right)=1 / I_{\rho\left(P_{2}\right)}\left(E_{2}\right) \\
& I_{P}\left(E_{1}\right)=\lambda, I_{P}\left(E_{2}\right)=1 / \lambda .
\end{aligned}
$$

A calculation shows that $\mathcal{I}$ is a Lins-compatible system of indices on $\mathcal{A}$. By Theorem 1, there exists a logarithmic non-dicritical foliation $\mathcal{F}$ with $\operatorname{Sep}_{0}(\mathcal{F})=$ $S$ so that the strict transform $\mathcal{F}^{\prime}$ by $\pi$ has indices given by $\mathcal{I}$. On the other hand, the choice of the curves $S_{i}^{\pi}, \rho\left(S_{i}^{\pi}\right)$ and the system of indices implies that $\mathcal{F}$ is a real foliation and $\pi$ is a real reduction of singularities of it. Finally, there is no real singular points of the transform $\mathcal{F}^{\prime}$ except for the point $P=E_{1} \cap E_{2}$ where $\mathcal{F}^{\prime}$ has a focus with eigenvalues $1, \lambda$ and $E_{1}, E_{2}$ as the only real separatrices at $P$. We conclude that $\mathcal{F}$ is not a center-focus foliation.

Acknowledgements We want to thank professors F. Cano and J.-J. Risler for their comments and interest in this work.

## Bibliography

1. Bendixon, I.: Sur les courbes définies par des équations différentielles. Acta Mathematica 24, 1-88 (1899).
2. Briot-Bouquet: Recherches sur les propriétés des fonctions définies par des équations différentielles. J. École Polytechnique 21, n 36 , 133-198 (1856).
3. Brunella, M.: Birational Geometry of Foliations. First Latin American Congress of Mathematicians, Pub. IMPA, (2000).
4. Camacho, C., Sad, P.: Invariants varieties through singularities of holomorphic vector fields. Ann. of Math. 115, 579-595 (1982).
5. Camacho, C., Lins Neto, A., Sad, P.: Topological invariants and equidesingularisation for holomorphic vector fields. J. Differential Geometry, 20, 143-174 (1984).
6. Cano, F., Moussu, R., Sanz, F.: Oscillation, spiralement, tourbillonnement. Comm. Math. Helv. 75, 284-318 (2000).
7. Cano, J.: Construction of invariant curves for singular holomorphic vector fields. Proc. Amer. Math. Soc. 125, 9, 2649-2650 (1997).
8. Cerveau, D., Mattei, J.-F.: Formes intégrables holomorphes singulières. Astérisque 97, (1982).
9. Corral, N.: Courbes polaires d'un feuilletage singulier. C. R. Acad. Sci. Paris Série I, 331, 51-54 (2000).
10. Corral, N.: Sur la topologie des courbes polaires de certains feuilletages singuliers. Ann. Inst. Fourier (Grenoble) 53, 3, 787-814 (2003).
11. Corral, N.: Infinitesimal initial part of a singular foliation. An. Acad. Brasil. Ciênc., 81, 4, 633-640 (2009).
12. Dumortier, F.: Singularities of vector fields in the plane. J. Differential Equations 23, 53-106 (1977).
13. Hironaka, H.: Introduction to real-analytic sets and real-analytic maps, Instituto Matematico "L. Tonelli", Pisa, (1973).
14. Lins Neto, A.: Algebraic solution of polynomial differential equation and foliations in dimension Two. Holomorphic Dynamics (Mexico, 1986), Lecture Notes in Math. 1345, 192-232 (1988).
15. Mattei, J.-F., Moussu, R.: Holonomie et intégrales premières. Ann. Sci. École Normal Sup. 13, 469-523 (1980).
16. Paul, E.: Classification topologique des germes de formes logarithmiques génériques. Ann. Inst. Fourier, Grenoble 39, 4, 909-927 (1989).
17. Paul, E.: Cycles évanescents d'une fonction de Liouville de type $f_{1}^{\lambda_{1}} \cdots f_{p}^{\lambda_{p}}$. Ann. Inst. Fourier, Grenoble 45, 1, 31-63 (1995).
18. Poincaré, H.: Mémoire sur les courbes définies par une équation différentielle. Journal de Mathématiques VII, 375-422 (1881).
19. Risler, J.-J.: Invariant curves and topological invariants for real plane analytic vector fields. J. Differential Equations 172 212-226 (2001).
20. Rouillé, P.: Courbes polaires et courbure. PhD. Thesis. Université de Bourgogne, Dijon, (1996).
21. Seidenberg, A.:Reduction of singularities of the differentiable equation $A d Y=B d X$. Amer. Journal of Math. 90, 248-259 (1968).
22. Suwa, T.: Indices of vector fields and residues of holomorphic foliations. Actualités Math., Hermann, Paris, (1998).

[^0]:    Both authors were partially supported by the research project MTM2007-66262 (Ministerio de Ciencia e Innovación). The first author was also partially supported by the research projects MTM2009-14464-C02-02 (Ministerio de Ciencia e Innovación) and Incite09 207215 PR (Xunta de Galicia).

    Nuria Corral
    Departamento de Matemáticas, Estadística y Computación. Universidad de Cantabria. Facultad de Ciencias. Avda. de los Castros s/n. 39005 Santander. Spain
    Tel.: +34-942 202288
    Fax: +34-942 201402
    E-mail: nuria.corral@unican.es
    Fernando Sanz
    Departamento de Álgebra, Geometría y Topología. Universidad de Valladolid. Facultad de Ciencias. Paseo Prado de la Magdalena s/n. 47005 Valladolid. Spain
    E-mail: fsanz@agt.uva.es

