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are mutually inverse; b) the sum of the indices along a component D of E for
all points in D is equal to the self-intersection of D in M . This construction
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Mathematics Subject Classification (2000) 32S65 · 37C10

1 Preliminaries

Let F be a germ of singular holomorphic foliation at (C2, 0) given by the
differential 1-form ω = a(x, y)dx + b(x, y)dy. Recall that a separatrix of F at
0 is a germ of irreducible analytic curve Γ through 0 such that Γ r {0} is a
leaf of F . Denote by Sep0(F) the set of separatrices. It is a non-empty set
[4] and F is called non-dicritical iff it is finite. In this case, the union of the
separatrices is a plane curve S with a finite number of branches.

We will consider the index I0(F , Γ ) ∈ C associated to each separatrix Γ
defined by Lins Neto in [14]. The main properties of the index are the following
ones:

1) Let π : M −→ (C2, 0) be the blowing-up of the origin and let F ′ be the
strict transform of F by π. If P = Γ ′∩π−1(0), with Γ ′ the strict transform
of Γ , then

IP (F ′, Γ ′) = I0(F , Γ )−m0(Γ )
2

where m0(Γ ) is the multiplicity of Γ at the origin (see [3,22]).
2) Let F be a holomorphic foliation on a complex surface M and let D be a

non-singular complex compact curve in M invariant by F . Then
∑

P∈D

IP (F , D) = D ·D

where D ·D is the self-intersection of D (see [4,14]).
3) Assume that Γ = {y = 0} and ω = y{(λ + ϕ)dx − (µx + ψ)dy/y}, where

ϕ(0) = 0 and ν(ψ) ≥ 2. If µ 6= 0, then I0(F , Γ ) = λ/µ.

Recall that the origin is a simple singularity of F if ω has the form ω =
(λydx − µxdy) + ω1 where the coefficients of ω1 have order ≥ 2 and λ, µ are
complex numbers such that one of them, say µ, is non zero and λ/µ 6∈ Q>0.
In the hyperbolic case, λµ 6= 0, the set of separatrices Sep0(F) consists of
exactly two non singular branches S1, S2 with transversal tangent lines at 0. If
λ = 0, the origin is a saddle-node singularity: we have two formal non singular
separatrices at 0 but, in general, only one of them is convergent [2].

A reduction of singularities ([21], see also [15]) of a singular foliation F
is a morphism σ : M → (C2, 0) obtained as a finite composition of blowing-
ups at points such that all the singular points Sing(F ′) of the transformed
foliation F ′ on M are simple ones. In the case that F is non dicritical, each
component of the divisor E = π−1(0) is invariant by F ′. We say that F is
a complex generalized curve (CGC) if in one (and hence in any) reduction of
singularities there are no saddle-nodes (see [5]). This is equivalent to say that
all the Lins Neto indices at the simple singularities are non-zero. A reduction of
singularities of F gives a reduction of singularities of the curve S of separatrices
of F at 0 in the sense that σ−1(S) is a normal crossing divisor. The reciprocal
is true for a non dicritical CGC.
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The simplest example of a CGC is the foliation {df = 0} for a holomorphic
function f . A more general example is a logarithmic foliation Lλ,F given by
ωλ,F = 0 where

ωλ,F = f1 · · · fr
r∑

j=1

λj
dfj
fj
.

Here F = (f1, . . . , fr) is a r-uple of relatively prime irreducible germs of holo-
morphic functions with fj(0) = 0 and λ = (λ1, . . . , λr) ∈ (C∗)r . We will also

write Lλ,F = {d(fλ1
1 · · · fλr

r ) = 0}.
In this article we will only consider the most elementary properties of lo-

garithmic foliations (see [8,16,17] for other results):

1. The curves Sj = {fj = 0}, j = 1, . . . , r are separatrices of Lλ,F .

2. The foliations Lλ,F and Lµ,F coincide iff [λ] = [µ] ∈ Pr−1
C

.
3. We have

I0(Lλ,F , Sj) = −
r∑

k=1
k 6=j

λk
λj

(Sk, Sj)0, j = 1, . . . , r. (1)

where (Sk, Sj)0 is the intersection number of the branches Sk and Sj at
the origin. (Do a similar calculation as in [14]; see also [20]).

The above properties are true for Lλ,F dicritical or not. Now let us remark
some statements and properties concerning dicriticalness.

We say that the logarithmic foliation L = Lλ,F has the main resonance if

r∑

j=1

λjm0(Sj) = 0

where m0(Sj) is the multiplicity of Sj at the origin.

Proposition 1 Suppose that L = Lλ,F does not have the main resonance.
Let π :M → (C2, 0) be the blowing-up at the origin and consider L′ the strict
transform of L by π. Then the exceptional divisor E = π−1(0) is invariant by
L′ and the tangent cone C0(L) = Sing(L′) ∩ E of L at 0 corresponds exactly
to the tangents of the separatrices Sj, j = 1, . . . , r.

Proof Let ν + 1 =
∑r

j=1m0(Sj) and write ω = ωλ,F = a(x, y)dx + b(x, y)dy.
One can show that xa+ yb has order ν + 1 and that the zeroes of the homo-
geneous term (xa + yb)ν+1 of degree ν + 1 are precisely the tangents of the
separatrices Sj at the origin. Thus ν is the minimum of the orders of a or b
and the tangent cone xaν + ybν = 0 of ω is equal to (xa + yb)ν+1 = 0. The
conclusion follows.
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2 Foliations with prescribed indices

In this paragraph we refine the arguments in [9,10] to construct logarithmic
foliations with prescribed indices along the branches of a given curve.

Let us consider pairs A = (M
σ→ (C2, 0), S), where S ⊂ (C2, 0) is an

analytic curve with finitely many branches S = ∪r
j=1Sj and σ : M → (C2, 0)

is the composition of a finite sequence of punctual blowing-ups. Denote by
Sσ ⊂M the strict transform of S and by E = σ−1(0) the exceptional divisor.
A blowing-up π : M ′ → M with center P ∈ E is called irredundant for A iff
E ∪ Sσ does not have normal crossings at P . There is a number n(A) such

that after exactly n(A) irredundant blowing-ups we get a new pair Ã = (σ̃ :
M̃ → (C2, 0), S) such that Ẽ ∪ Sσ̃ has normal crossings at each point.

A system of indices I = IA is a family {IP }P∈E where IP is a function
that assigns a complex number IP (Γ ) ∈ C to each irreducible component Γ of
the germ of E ∪Sσ at P . Given a blowing-up π :M ′ →M with center P ∈ E

and a system of indices I ′ on A′ = (M ′ σ′

→ (C2, 0), S), where σ′ = σ ◦ π, we
can blow-down I ′ as follows. For a component Γ of E ∪ Sσ at Q we define

IQ(Γ ) =

{
I ′Q′(Γ ′) if Q 6= P

I ′Q′(Γ ′) + [mQ(Γ )]
2 if Q = P

where Γ ′ is the strict transform of Γ by π, Q′ = Γ ′ ∩ E′ and mQ(Γ ) is the
multiplicity of Γ at Q.

Definition 1 Let I be a system of indices on A and put n = n(A). If n = 0,
we say that I is Lins-compatible iff the following properties are satisfied:

a) If P is a non singular point of E ∪ Sσ, then IP (E) = 0.
b) If D is an irreducible component of E, then

∑
P∈D IP (D) = D ·D.

c) If P is a singular point of E∪Sσ and Γ1, Γ2 are the two branches of E∪Sσ

at P , then IP (Γ1) · IP (Γ2) = 1 and IP (Γi) 6∈ Q≥0, i = 1, 2.

If n > 0, we say that I is Lins-compatible iff there is an irredundant blowing-

up M ′ π→ M and a Lins-compatible system of indices I ′ on A′ = (M ′ σ′

→
(C2, 0), S), where σ′ = σ ◦ π, such that I is the blowing-down of I ′.

Proposition 2 The indices on the branches of Sσ determine the indices over
the divisor in a Lins-compatible system of indices. Moreover a Lins-compatible
system of indices can be blown-up and blown-down in a unique way.

Proof Note that the blowing-down of a system of indices is uniquely defined
and that an irredundant blowing-down transforms Lins-compatible systems of
indices into Lins-compatible systems. Consider a Lins-compatible system of
indices I on A with n = n(A) and let us first prove the following statements
by induction on n:

A(n): The indices on E are determined by the indices on the branches of Sσ.
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B(n): Given π : M ′ → M an irredundant blowing-up with center P ∈ E,
there is a unique Lins-compatible system of indices I ′ = π∗I on A′ =

(M ′ σ′

→ (C2, 0), S), where σ′ = σ ◦ π, such that I is the blowing-down of
I ′.

If n = 0, then B(0) is trivial since there are no irredundant blowing-ups. To
prove A(0) it is enough to use the fact that the dual graph of E is connected.
The fact that A(n−1), B(n−1) implies A(n) is evident from the definition of a
Lins-compatible system of indices: just take the irredundant blowing-up given
in the definition. Let us prove B(n). First, note that the uniqueness stated
in B(n) is consequence of the definition of blowing-down of Lins-compatible
indices and the induction hypothesis A(n−1) applied to A′. If π is the blowing-
up given in the definition, then B(n) is a consequence of A(n− 1) applied to

A′ = (M ′ σ′

→ (C2, 0), S). Otherwise, let π1 : M1 → M be the blowing-up of
the definition, with center Q 6= P , and let I1 be the Lins-compatible system
of indices on A1 = (M1

σ1→ (C2, 0), S), σ1 = σ ◦ π1, that projects to I by π1.
Consider the following diagram of irredundant blowing-ups

M ′ π−−−−→ M

π̃1

x
xπ1

M ′
1

π̃−−−−→ M1

where P1 = π−1
1 (P ) is the center of π̃ and Q′ = π−1(Q) is the center of π̃1.

By the induction hypothesis B(n − 1) applied to A1 we have a unique Lins-

compatible system of indices I ′
1 = π̃∗I1 on A′

1 = (M ′
1

σ1◦π̃−→ (C2, 0), S). Since
π̃1 is irredundant then, by definition, the blowing-down I ′ of I ′

1 over A′ is a
Lins-compatible system, that obviously gives I by projection.

It remains to prove the existence of the transform of a Lins-compatible
system of indices under a redundant blowing-up or blowing-down. We proceed
again by induction on n = n(A). In order to pass from n to n − 1 consider a
diagram of four blowing-ups as above, where π and π̃ are redundant and π1 and
π̃1 are irredundant. Finally, assume that n = 0. The first case is that the center
of π :M ′ →M is a non singular point P ofE∪Sσ . Assume first that I is a Lins-
compatible system of indices given on A. Then we know that IP (E) = 0. Let
Eπ be the strict transform of E by π and P ′ = Eπ∩D, whereD = π−1(P ). We
define a system of indices I ′ on A′ by I ′P ′ (Eπ) = −1 = I ′P ′(D) and I ′Q′(D) = 0
for Q′ ∈ D, Q′ 6= P ′. Verify that I ′ is Lins-compatible using the fact that D
has self-intersection equal to −1. On the other hand, if I ′ is a Lins compatible
system of indices on A′, then the only non singular point of D ∪ Eπ in D is
P ′ and hence I ′P ′(D) = D · D = −1, and I ′P (E

π) = −1 in view of the fact
that I ′P ′(D) · I ′P ′ (Eπ) = 1. Thus, the blowing-down I of I ′ verifies IP (E) = 0.
We use the same kind of arguments for the case that P is a singular point of
E ∪ Sσ.

Remark 1 Let I be a Lins-compatible system of indices on A. Then IP (E) = 0
at any non-singular point of E ∪ Sσ and also

∑
P∈D IP (D) = D · D for any



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

6

component D of E. We get these properties by blowing-down the transform
of I under a chain of n(A) irredundant blowing-ups, using the definition of
blowing-down a system of indices and the fact that the self-intersection of the
strict transform of a connected component D of E by a blowing-up at a point
of D decreases by one with respect to the self-intersection of D.

The above constructions show also that we can localize a Lins-compatible
system of indices I at a point P ∈ M . More precisely, the new pair is given
by the germs (M,P ) ≃ (C2, 0) and (Sσ ∪E,P ). The system of indices will be
just IP = {IP }. To see that IP is Lins-compatible the best is to consider a
sequence of n = n(A) irredundant blowing-ups

Mn
πn−→Mn−1 −→ · · · π1−→M

σ−→ (C2, 0)

and to look IP as the direct image of the restriction of (π1 ◦ · · · ◦ πn)∗I to
(π1 ◦ · · · ◦ πn)−1(M,P ).

Example 1 Let F be a non dicritical CGC in (C2, 0) with S as curve of sep-
aratrices. Put I0(Si) = I0(F , Si). We get a Lins-compatible system of in-
dices I(F) on ((C2, 0), S). Moreover, let σ : M → (C2, 0) be any sequence of
blowing-ups. We can define in the same way the system of indices I(σ∗F) on

A = (M
σ→ (C2, 0), S). Then we have that

I(σ∗F) = σ∗I(F).

This is a consequence of the uniqueness of blowing-up, blowing-down and the
fact that after reduction of singularities (even redundant), the system of indices
given by F is obviously Lins-compatible.

A system of exponents Λ = {[λP ]}P∈E on a pair A = (M
σ→ (C2, 0), S) is

a collection of classes [λP ], where

λP : {branches at P of E ∪ Sσ} → C∗

under the equivalence λP ∼ λ′P iff λP = cλ′P , c ∈ C∗.
Let π : M ′ → M be the blowing-up with center P and Λ′ = {[λ′Q]} be a

system of exponents on A′. We define the blowing-down Λ = π∗Λ
′ as follows.

For any Q 6= P , we put [λQ] = [λ′
π−1(Q)]. For each Q′ ∈ D = π−1(P ), select

λ′Q′ ∈ [λ′Q′ ] with the property that λ′Q′(D) = 1 and put, for any branch Γ of
E ∪ Sσ at P ,

λP (Γ ) = λ′P ′(Γ ′),

where Γ ′ is the strict transform of Γ and P ′ = Γ ′ ∩D.
In order to transform a system of exponents Λ by blowing-up, we must

avoid the main resonance. More precisely, we say that Λ is transformable at a
point P ∈ E iff ∑

Γ

λP (Γ ) ·mP (Γ ) 6= 0,



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

7

where Γ varies over the branches of E ∪ Sσ at P . In this case, we define the
transform Λ′ = π∗Λ of Λ by the blowing-up π : M ′ → M with center P by
putting

λ′Q′ (π−1(P )) =
∑

Γ

λP (Γ ) ·mP (Γ )

for any Q′ ∈ π−1(P ) and λ′P ′(Γ ′) = λP (Γ ) if P ′ ∈ π−1(E) is in the strict
transform Γ ′ of a branch Γ of E ∪ Sσ.

We say that Λ is indefinitely transformable at P ∈ E iff Λ is transformable
at P , its transform Λ1 by the blowing-up π1 at P is transformable at any point
P1 ∈ π−1

1 (P ), the transform of Λ1 by the blowing up π2 at any such point P1

is transformable at any point P2 ∈ π−1
2 (P1) and so on. Roughly speaking, Λ

is indefinitely transformable if its transform is transformable at any infinitely
near point of P . We say finally that Λ is indefinitely transformable if it is so
at any point P ∈ E ∪ Sσ.

Proposition 3 Given a Lins-compatible system of indices I on A, there is a
unique indefinitely transformable system of exponents Λ(I) such that for any
P ∈ E ∪ Sσ and any branch Γ of E ∪ Sσ at P , we have that

λP (Γ ) · IP (Γ ) +
∑

Γ∗ 6=Γ

λP (Γ
∗) · (Γ ∗, Γ )P = 0, (⋆)

where Γ ∗ varies over all branches of E ∪ Sσ at P . Moreover, the system Λ(I)
satisfies π∗(Λ(I)) = Λ(π∗I) for any blowing-up π :M ′ →M .

Proof The result is local at each point P ∈ M and thus we can assume that
M = (C2, 0), S = ∪r

j=1Sj and I = {I0}. Let us do induction on n = n(A).
Assume that n = 0: if S = S1 has a single non singular branch, we put
λ0(S1) = 1 (note that in this case I0(S1) = 0); if S = S1∪S2 define λ0(S1) = 1,
λ0(S2) = −1/I0(S2) = −I0(S1). Moreover, Λ is indefinitely transformable
since by blowing-up at 0 the situation repeats. Consider now the case n > 0.
Let π : M → (C2, 0) be the blowing-up of the origin and let Q1, Q2, . . . , Qk

be the points where Sπ = ∪r
j=1S

′
j cuts the divisor D = π−1(0). Denote Al =

{j : S′
j ∩D = Ql}, for l = 1, . . . , k. Let us localize I ′ = π∗I to get systems of

indices I ′
l at Ql and take the systems of exponents Λ′

l = {[λ′Ql
]} given by the

induction hypothesis. Choose λ′Ql
∈ [λ′Ql

], l = 1, . . . , k, such that λ′Ql
(D) = 1

and define λ0 : {Sj}rj=1 → C∗ by

λ0(Sj) = λ′Ql
(S′

j) = λj if j ∈ Al.

In view of the property (⋆) for Λ′
l, we get for any l

0 = λ′Ql
(D) · IQl

(D) +
∑

j∈Al

λ′Ql
(S′

j) · (D,S′
j)Ql

=

= I ′Ql
(D) +

∑

j∈Al

λjm0(Sj).
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Taking the summation over all l = 1, . . . , k, we obtain that

0 =

k∑

l=1

I ′Ql
(D) +

r∑

j=1

λjm0(Sj) = −1 +

r∑

j=1

λjm0(Sj).

Since
∑r

j=1 λjm0(Sj) = 1, the system Λ = {[λ0]} is transformable at the origin
and it is indefinitely transformable because its blowing-up is, by construction,
an indefinitely transformable system on A′ = (M

π→ (C2, 0), S). Let us show
(⋆) for Λ. Fix j ∈ {1, . . . , r} and let Ql ∈ D such that j ∈ Al. Then

λjI0(Sj) +
∑

i6=j

λi · (Si, Sj)0 =

= λj(I
′
Ql
(S′

j) +m0(Sj)
2) +

∑

i6=j

λi[m0(Si) ·m0(Sj) + (S′
i, S

′
j)Ql

]

= λjI
′
Ql
(S′

j) +
∑

i6=j

λi(S
′
i, S

′
j)Ql

+m0(Sj)

r∑

i=1

λim0(Si)

= λ′Ql
(S′

j)·I ′Ql
(S′

j) +
∑

i∈Al

λ′Ql
(S′

i)·(S′
i, S

′
j)Ql

+ λ′Ql
(D)·(S′

j , D)Ql
= 0,

(2)

the last equality by the property (⋆) for Λ′
l. Now we prove uniqueness of system

Λ. Suppose that there exists another system of indices ∆ = {[δ0]} indefinitely
transformable and satisfying (⋆) at the origin. Denote by ∆′ = {[δ′Q]}Q∈D

the blowing-up of ∆ by π. Fix δ0 ∈ [δ0] and consider for any l = 1, . . . , k
the element δ′Ql

∈ [δ′Ql
] defined by δ′Ql

(S′
j) = δ0(Sj) = δj for j ∈ Al and

δ′Ql
(D) =

∑r
i=1 δim0(Si). From the equation

δjI0(Sj) +
∑

i6=j

δi · (Si, Sj)0 = 0

for j ∈ Al and l ∈ {1, . . . , k} we prove, exactly as in (2) replacing λ by δ,
that the localized of π∗(∆) at Ql satisfies the property (⋆) with respect to the
branches S′

j with j ∈ Al, for any l. Consequently it is enough to prove the
property (⋆) also for the branch D at Ql and then we get that π∗(∆) = π∗(Λ)
and ∆ = Λ by the induction hypothesis. From

λjIQl
(S′

j) +
∑

i∈Al,i6=j λi(S
′
i, S

′
j)Ql

+ λQl
(D)(D,S′

j)Ql
= 0

δjIQl
(S′

j) +
∑

i∈Al,i6=j δi(S
′
i, S

′
j)Ql

+ δQl
(D)(D,S′

j)Ql
= 0

we obtain

δj
∑

i∈Al,i6=j

λi(S
′
i, S

′
j)Ql

+ δjλQl
(D)(D,S′

j)Ql
=

λj
∑

i∈Al,i6=j

δi(S
′
i, S

′
j)Ql

+ λjδQl
(D)(D,S′

j)Ql
.
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Summing for all j ∈ Al, we have that

λQl
(D)

∑

j∈Al

δj(D,S
′
j)Ql

= δQl
(D)

∑

j∈Al

λj(D,S
′
j)Ql

Since λQl
(D)IQl

(D) +
∑

j∈Al
λj(D,S

′
j)Ql

= 0 by (⋆) for π∗(Λ) at Ql, then we
get

δQl
(D)IQl

(D) +
∑

j∈Al

δj(D,S
′
j)Ql

= 0

after dividing by λQl
(D), which is the required equation.

Theorem 1 Let S = ∪r
j=1Sj be an analytic curve at 0 ∈ C2. Let I = {I0} be a

Lins-compatible system of indices on A = ((C2, 0), S) and Λ = Λ(I) = {[λ0]}.
Take λ = (λ1, . . . , λr) with λj = λ0(Sj). Then, for any F = (f1, . . . , fr) with
fj a reduced equation of Sj, the logarithmic foliation L = Lλ,F satisfies:

a) L is a non dicritical CGC with curve of separatrices S and I0(L, Sj) =
I0(Sj) for any j.

b) Let σ : M → (C2, 0) be any finite sequence of blowing-ups, then σ∗I gives
the Lins Neto indices of σ∗L at all the separatrices.

Proof The property b) follows from a) in view of the Example 1. Let us prove
a) by induction on n = n(A).

Assume that n = 0. Then S has normal crossings at 0 and either S = S1

or S = S1 ∪ S2. In the first case, L = {df1 = 0} is non singular, hence a non
dicritical CGC and I(L, S1) = 0. Since 0 is a non singular point of S∪E = S1,
we have also that I0(S1) = 0. In the second case, L = {λ1f2df1 + λ2f1df2}
with f1, f2 a system of coordinates at 0. We know that I0(L, S1) = −λ2/λ1,
I0(L, S2) = −λ1/λ2 and these values coincide with I0(S1), I0(S2) respectively,
in view of the property (⋆) for Λ. Moreover, −λ2/λ1 6∈ Q≥0 since I is Lins-
compatible. Thus, 0 is a hyperbolic simple singularity of L and a) follows.

Assume that n > 0. Let π : (̃C2, 0) → (C2, 0) be the blowing-up at the
origin. Since Λ is transformable, L does not have the main resonance. Denote
by Λ′ = {[λ′P ] : P ∈ π−1(0)} the transform of Λ. In view of Proposition 1, we
know that D = π−1(0) is invariant for L′ = π∗L and the singularities of L′ over
D are exactly the points Q1, . . . , Qk where the strict transform Sπ = ∪r

j=1S
′
j

cuts D. Let Al = {j : S′
j ∩D = Ql}. Choose λ′Ql

∈ [λ′Ql
] with

λ′Ql
(D) =

r∑

j=1

λjm0(Sj).

Hence λ′Ql
(S′

j) = λj for j ∈ Al by the definition of Λ′. Let I ′
l be the localization

of I ′ at Ql. We know that Λ(I ′
l) = {[λ′Ql

]}, in view of Proposition 3. In order
to end the proof, by our induction hypothesis, let us show that L′

Ql
has a



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

10

logarithmic expression associated to S′
(l) = D ∪ (∪j∈Al

S′
j) with λ

′
Ql

as vector

of exponents. In fact, we have that L′
Ql

is given by

d((xu(l))
λ′
Ql

(D) ·
∏

j∈Al

f ′
j
λj ) = 0;

where x = 0 is a reduced equation of D at Ql, f
′
j is the strict transform of fj

at Ql and u(l) is a unit given by

u(l) =
∏

j 6∈Al

f ′
j

λj

λ′
Ql

(D)
.

A consequence of the theorem above is the existence of a logarithmic model
for a non dicritical CGC:

Corollary 1 ([9,10]) Given F a non dicritical CGC there exists a non dicrit-
ical logarithmic foliation L such that Sep0(F) = Sep0(L) and I(F) = I(L).

3 Real logarithmic models

Let F be a singular foliation at 0 ∈ C2. We say that F is a real foliation
if it can be defined by a holomorphic 1-form ω = a(x, y)dx + b(x, y)dy such
that the coefficients a, b ∈ R{x, y}. In this case F is invariant by the complex
conjugation (x, y) 7→ (x̄, ȳ). More generally, a real foliation F in a complex
surface M with a self-conjugation ρ : M −→ M ([13]) will be called a real
foliation if ρ∗F = F . It induces a real analytic foliation FR over the real
surfaceMR consisting of the set of fixed points of ρ, also called real points. We
have that

1. P ∈ Sing(F) iff ρ(P ) ∈ Sing(F).
2. Γ ∈ SepP (F) iff ρ(Γ ) ∈ Sepρ(P )(F).

3. IP (F , Γ ) = Iρ(P )(F , ρ(P )).
If P is a real point, a real separatrix of F at P is a ρ-invariant separatrix
Γ ∈ SepP (F) and thus IP (F , Γ ) ∈ R. This is equivalent to say that the
real part SR = S ∩ MR is a real analytic curve through P (of topological
dimension 1) invariant by FR. Denote by RSepP (F) the set of real separatrices
at P ∈MR. A real foliation F is called non real-dicritical at 0 if RSep0(F) is
finite.

Let σ :M −→ (C2, 0) be a composition of blowing-ups at real points. Then
the conjugation of C2 lifts to a self-conjugation ρ of M and the transform F ′

of F is a real foliation with respect to ρ. If F is non real-dicritical, then every
component of the divisor E = σ−1(0) is invariant by F . The morphism σ is
called a real reduction of singularities of F if every singular real point of F ′ is
a simple singularity. Also, the singular foliation F is called a real generalized
curve (RGC for short) if no real point of M is a saddle-node singularity of F ′.
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Examples of RGC foliations which are not CGG can be easily obtained (see
[19]).

In this paragraph we want to construct real logarithmic models for real
foliations. To be precise, we adopt the following definition:

Definition 2 Let F be a real foliation at 0 ∈ C2 which is a real generalized
curve and non real-dicritical. A real logarithmic model of F is a non dicritical
logarithmic foliation L which is a real foliation and such that:

i) RSep0(F) = RSep0(L)
ii) F and L have a common real reduction of singularities σ : M −→ (C2, 0)

such that if F ′ and L′ are the transforms of F and L by σ, then F ′ and
L′ have the same real singular points.

iii) For any real point P in σ−1(0) and any real separatrix Γ of F ′ at P , we
have IP (F ′, Γ ) = IP (L′, Γ ).

We remark that it is not true, in general, that the minimal reduction of the real
separatrices gives a real reduction of singularities of a non real-dicritical RGC
foliation, even in the case of a real CGC. For example, consider the singular
foliation given by {d(y(x2 + y2)) = 0}. It has a non simple singularity at
the origin and a single non singular real separatrix. Thus, a real logarithmic
model must bear in mind also the non real separatrices {x + iy = 0} and
{x − iy = 0}. This example also shows that real logarithmic models are far
from being unique: all foliations of the type {d(y(x2+λy2)) = 0} with λ ∈ R>0

have the same real reduction of singularities with the same indices at the real
points.

On the other hand, condition iii) implies that the Lins Neto indices of F
and L along real separatrices at 0 coincide. However, this last property alone
does not guarantee that L and F satisfy condition iii) since the indices at the
real corners are not determined by the indices of the real separatrices at 0.

Theorem 2 Let F be a real analytic foliation at 0 ∈ C2 and suppose that F is
a non real-dicritical real generalized curve. Then there exists a real logarithmic
model L of F .

Proof Let σ : M −→ (C2, 0) be a real reduction of singularities of F and
ρ :M −→ M be the self-conjugation that lifts the conjugation of C2. Consider
the decomposition E = E1 ∪ . . . ∪ En of the total divisor E = σ−1(0) into
irreducible components and let us suppose that n ≥ 1, i.e., that we make at
least a blowing-up, even if the singularity of F is already simple at the origin.
Since F is non real-dicritical, Ej is invariant for any j by the strict transform
F ′ of F . Moreover, since σ is a composition of blowing-ups at real points, the
corners of E are all real points and the indices at these corners of the strict
transform along the components of E are real numbers.

Let A be the set of points P ∈ E ∩ Sing(F ′) such that P is not a corner
of E and Re(IP (F ′, E)) 6= 0. We have obviously that A is invariant by ρ.
Moreover, we prove that A is non-empty by using the following claim.



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

12

Claim: Given a real foliation F and a divisor E recursively constructed
by blowing-up at real points, there exists a point P in E such that either
P is not a corner and Re(IP (F , E)) 6= 0 or P is a corner and if D1, D2

are the components of E through P then IP (F , D1) · IP (F , D2) 6= 1.

The proof of the claim is completely analogous to the proof given in [7] con-
cerning a property named (∗) there. It is broadly as follows. If E has a single
component, there are no corners and then the index along E at one of the
singularities appearing in E has non-zero real part since the sum of the in-
dices along E must be equal to −1. Now, suppose that Q is a real point of
some divisor E as in the hypothesis which has the required properties and let
πQ be the blowing-up at Q. We have to show that there is a point P in the
exceptional divisor D = π−1

Q (Q) with the required properties. We analyze the
two cases:

1) Q is not a corner and Re(IQ(F , E)) 6= 0. Let D1 be the strict transform
by πQ of the component of E where Q belongs. Either there is a singular
point of D which is not a corner having index along D with non-zero real
part or, otherwise, the index at the corner P = D ∩D1 with respect to D
is equal to −1, since it is real. The index at P with respect to D1 cannot
be −1 since Re(IQ(F , E)) 6= 0 and we are done;

2) Q is a corner with IQ(F , D1)IQ(F , D2) 6= 1, where D1, D2 are the com-
ponents through Q. If there are no non-corners in D for which the real
part of the index along D is non-zero, we have two corners P1, P2 in D
corresponding to the tangent lines of D1, D2 respectively with IP1(F , D)+
IP2(F , D) = −1 since these indices are real. We conclude from the fact
that IQ(F , D1)IQ(F , D2) 6= 1 that the same property holds either for P1

or P2.

We continue with the proof of the theorem. Consider the subset A1 = {P ∈
A : Re(IP (F ′, E)) ∈ Q>0}. Note that A1 is invariant by ρ and does not have
real points. It is possible that A1 is the empty set. Otherwise, we make the fol-
lowing construction for any pair of points P, ρ(P ) ∈ A1: let Ej be the (unique)
component of E such that P ∈ Ej and consider two different points Q,Q′ ∈ Ej

close to P with Q,Q′ 6∈ A, and put BP = Bρ(P ) = {Q,Q′, ρ(Q), ρ(Q′)}. Con-
sider the set A′ = (ArA1) ∪ (∪P∈A1BP ) written as

A′ = {P1, . . . , Ps, Q1, ρ(Q1), . . . , Qt, ρ(Qt)}
in such a way that Pj is real and Qj , ρ(Qj) are not real. Each Pj is a sim-
ple hyperbolic singularity of F ′, since F is a RGC. Then, there exists a
non singular real separatrix Sσ

j of F ′ at Pj transversal to E. For each pair
Qj , ρ(Qj), j = 1, . . . , t, take non singular curves Sσ

s+2j−1, S
σ
s+2j = ρ(Sσ

s+2j−1)
transversal to E at Qj and at ρ(Qj), respectively. Then S = σ(∪r

j=1S
σ
j ) =

∪r
j=1Sj , r = s+ 2t, is a complex curve at the origin. Consider equations F =

(h1, . . . , hs, g1, g
ρ
1 , . . . , gt, g

ρ
t ) of the branches Sj at the origin, where hj is real

over R2 and gj , g
ρ
j are not real. Consider the pair A = (σ : M → (C2, 0), S).

Note that n(A) = 0. Let us define a system of indices I = {IP }P∈E on A as
follows.
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1. For j = 1, . . . , s, put IPj
(E) = IPj

(F ′, E) and IPj
(Sσ

j ) = IPj
(F ′, Sσ

j ).
2. For any k ∈ {1, . . . , t} such that Qk ∈ ArA1, define IQk

(E) = Iρ(Qk)(E) =
Re(IQk

(F ′, E)) and IQk
(Sσ

s+2k−1)= Iρ(Qk)(S
σ
s+2k)= 1/Re(IQk

(F ′, E)).
3. If BP = {Qk1 , Qk2 , ρ(Qk1), ρ(Qk2)} for some P ∈ A1, choose α1, α2 irra-

tional numbers such that α1 + α2 = Re(IP (F ′, E)) and define IQkj
(E) =

Iρ(Qkj
)(E) = αj and IQkj

(Sσ
s+2kj−1) = Iρ(Qkj

)(S
σ
s+2kj

) = 1/αj , j = 1, 2.

Finally, define IP = 0 if P 6∈ A′. By construction, I is Lins-compatible. The
logarithmic foliation L = Lλ,F associated to I in Theorem 1 is a real foliation
and a real logarithmic model of F .

Remark 2 The system of indices I constructed in the above proof satisfy also
that the associated exponents can be chosen to be real and equal for the conju-
gated branches. We deduce that we can get a real logarithmic model of the type
L = {d(hλ1

1 · · ·hλm
m ) = 0}, m = s+ t, where hi is real over R2 and λi ∈ R.

4 Examples

Let F be a real foliation at 0 ∈ C2 and suppose that F is a non dicritical
CGC. Then it can be shown easily that there exist complex logarithmic models
given by Corollary 1 which are also real logarithmic models. The following
example shows that sometimes we can construct a simpler real logarithmic
model without using the whole complex reduction of singularities.

Example 2 Let F = Lλ,F with F = (y−x2, y+ ix2, y− ix2) and λ = (1, i,−i),
i =

√
−1. Let σ : M −→ (C2, 0) be the composition of two blowing-ups that

gives the minimal reduction of singularities of the parabolas S = S1 ∪ S2 ∪ S3,
separatrices of F . Then the strict transforms S′

1, S
′
2 and S′

3 cut the divisor
E = σ−1(0) at three different simple singular points P1, P2 and P3 where the
indices of the transform F ′ are

IP1(F ′, S′
1) = −2, IP2(F ′, S′

2) = 2i, IP3 (F ′, S′
3) = −2i.

The real part of the indices relative to S′
2 and S′

3 is zero. Hence L = {d(y −
x2) = 0} is a real logarithmic model of F . This example also shows that
not every real logarithmic foliation has a multivalued first integral of the type
hλ1
1 · · ·hλm

m , with hj real over real points and λi ∈ R, although real logarithmic
models having this property always exists as mentioned in Remark 2.

It is well known that the multiplicity of a non dicritical CGC at the origin is
given by m− 1 where m is the multiplicity of its set of separatrices. Moreover,
as it is shown in [11], two non dicritical CGC sharing a complex logarithmic
model (equivalently with the same set of separatrices and with the same system
of indices) of multiplicity ν are defined by 1-forms with the same ν-jet when
we fix the coordinates. In the real case these properties are not satisfied.
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Example 3 Let F = {ω = y3dx+(x2 + y2−x3)dy = 0}. It is a RGC but not a
CGC. It has a single non singular real separatrix S1 at 0. The (non singular)
foliation L = {df1 = 0} is a real logarithmic model of F , where f1 = 0 is a
real equation of S1.

5 Applications to center-focus foliations

Let us finish by discussing the relation between center-focus real foliations and
existence of real separatrices.

Recall that a real analytic foliation F at 0 ∈ C2 is said to be of center-
focus type if there is a first returning map P : ℓ → ℓ of the real leaves of F
on a (germ of a) half straight real line ℓ through 0, transversal to F . This is
equivalent (see [18,1,6,12]) to any of the following properties:

a) there are no real leaves of F which accumulate to the origin with a well
defined tangent (characteristic orbits).

b) F is non real-dicritical and if π : M −→ (C2, 0) is a real resolution of
singularities of F the real singular points of the transform F ′ are situated at
corners of the divisor E = π−1(0) and are all of saddle type (with indices of
opposite sign along the two separatrices).

If F is a RGC of center-focus type then any of its real logarithmic models
is also of center-focus type, but we can not distinguish, using real logarithmic
models, if the original foliation is a center (first returning map P equal to the
identity) or a focus (P 6= id). For instance, the foliations

F1 = {d((x2 + y2)(x+ iay)i(x − iay)−i) = 0}
F2 = {d((x2 + y2)(x2 + a2y2)) = 0}

are real logarithmic models one of each other, F1 having a focus and F2 having
a center at the origin.

Evidently, center-focus foliations can not have real analytic separatrices,
but the converse is not true. An explicit example is given for instance in [19]:

F = {(xy + x3 + x3y)dx− (−y2 + x4)dy = 0}.

For this foliation, all the characteristic orbits are (infinitely) tangent with a

formal, non convergent (real) separatrix Ŝ at 0.

In general, any formal non convergent real separatrix Ŝ of a real analytic
foliation F corresponds to a saddle-node in the real reduction of singularities
(and thus such a foliation is not a RGC) and it has associated at least a

characteristic orbit with the same tangent as Ŝ (actually the same iterated
tangents, see [6]).

Hence, a center-focus vector field can not have formal or convergent real
separatrices. Our final example shows that the converse is not true, neither
for real CGC: there can be characteristic orbits without formal or convergent
real separatrix. The example is giving by using the construction in Theorem 1
of a logarithmic foliation with prescribed indices.
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Example 4 Let π1 : M1 → (C2, 0) be the blowing up at the origin and π2 :
M →M1 be the blowing up at a real point in the exceptional divisor π−1

1 (0) of
π1. Let π = π1 ◦π2. The exceptional divisor E of π consists of two components
E = E1 ∪ E2, where E2 is the exceptional divisor of π2 and E1 is the strict
transform of π−1

1 (0) by π2, intersecting at a real point P ∈ M . Consider
Pi ∈ Ei, i = 1, 2 non real points and Sπ

i a (germ of a) non singular complex
analytic curve through Pi transversal to Ei. Let ρ(Pi), ρ(S

π
i ) be the images of

Pi, S
π
i by the complex self-conjugation ρ :M →M . Then S = π(Sπ

1 )∪π(Sπ
2 )∪

π(ρ(Sπ
1 )) ∪ π(ρ(Sπ

1 )) is a complex curve at the origin of C2 for which π is the

minimal reduction of singularities. Consider the pair A = (M
π→ (C2, 0), S)

and a system of indices I on A given as follows: let λ be an irrational positive
number and put

IP1(E1) = −(1 + λ/2), IP1(S
π
1 ) = 1/IP1(E1)

IP2(E2) = −(λ+ 1)/2λ, IP1(S
π
2 ) = 1/IP2(E2)

Iρ(P1)(E1) = IP1 (E1), Iρ(P1)(S
π
1 ) = 1/Iρ(P1)(E1)

Iρ(P2)(E2) = IP2 (E2), Iρ(P2)(S
π
2 ) = 1/Iρ(P2)(E2)

IP (E1) = λ, IP (E2) = 1/λ.

A calculation shows that I is a Lins-compatible system of indices on A. By
Theorem 1, there exists a logarithmic non-dicritical foliation F with Sep0(F) =
S so that the strict transform F ′ by π has indices given by I. On the other
hand, the choice of the curves Sπ

i , ρ(S
π
i ) and the system of indices implies

that F is a real foliation and π is a real reduction of singularities of it. Fi-
nally, there is no real singular points of the transform F ′ except for the point
P = E1 ∩ E2 where F ′ has a focus with eigenvalues 1, λ and E1, E2 as the
only real separatrices at P . We conclude that F is not a center-focus foliation.
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20. Rouillé, P.: Courbes polaires et courbure. PhD. Thesis. Université de Bourgogne, Dijon,
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