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NON OSCILLATING SOLUTIONS
OF ANALYTIC GRADIENT VECTOR FIELDS

by Fernando SANZ^

1. Introduction and statement of the results.

Let $ be an analytic vector field defined in an analytic real manifold
M. This paper gives a contribution to the local study at a singular point
P in the case of a gradient vector field ^ = V(y /, where / is a real analytic
function and g is an analytic riemannian metric on M. In view of an
inequality of Lojasiewicz [10], any positive solution 7 : t \—> 7(^), t ^ 0
of Vg / contained in a neighbourhood of P has a finite length. Thus the <jj-
limit set u^(^) is a single point. Suppose that 0^(7) = {P}' Rene Thorn [16]
has asked if 7 has a well defined "tangent" at this point. A positive answer
to this question is known from the beginning for the two dimensional case
and under certain hypotheses [6], [7], [11] for higher dimensions. Recently,
a general proof of the existence of tangent for M = R71 and the euclidean
canonical metric has been announced in [9].

Fix a positive solution 7 : t i—>- 7(^)5 t ^ 0 of the vector field ^ such
that ^(7) = {P}.

A condition stronger than the existence of a tangent is the non
oscillation property: 7 is non oscillating at P if for every locally closed
analytic hypersurface H through P we have that either 7 is contained in
H or 7 cuts H only finitely many times. If M is two dimensional then
both properties are equivalent by using finiteness Khovanski's theory [12].
In view of Thorn's question, R. Moussu has proposed the following.

(*) Partially supported by DGICYT; PB94-1124 and TMR; ERBFMRXCT96-0040.
Key words: Vector field - Gradient - Tangent - Oscillation - Blowing-up - Desingulari-
zation - Center manifold.
Math. classification: 34C05 - 34C45 - 32S45.
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Strong gradient conjecture: Any solution 7 of V^ / with a single
o;-limit point is non oscillating.

For the rest of this paper we restrict ourselves to the case that M is
three dimensional. The main result is the following:

THEOREM 1. — Let M be a. three dimensional analytic manifold and
f an analytic function on M. Assume that the hessian Hessf(P) is not
zero at any singular point P of f. Then for any analytic riemannian metric
g on M the strong gradient conjecture is true for V^ /.

Non oscillation in terms of blowing-ups. We can make an interpre-
tation of the non oscillation property for 7 in terms of the existence of
"iterated generalized tangents".

To say that 7 has a tangent at P means that the lift 71 of 7 by the
blowing-up at P has a single d;-limit point Pi. Then 71 has also a tangent
if its lift 72 by the blowing-up at Pi has a single c<;-limit point ?2 and so
on. We say that 7 has the property of existence of all iterated tangents
at P if this process can be continued indefinitely. The sequence of points
{Pi}i^o so constructed is called the sequence of iterated tangents of 7 and
denoted by IT(^f). Recall that for an irreducible formal curve F through P
the sequence of tangents IT(T) (or infinitely near points) is well defined.

The non oscillation property implies the existence of all iterated
tangents. In fact, suppose that for a sequence of quadratic transformations
(blowing-ups of points) TT : M —>• M, the lift of 7 has two different o;-limit
points Pi and ?2 in the last exceptional divisor D. By the projective nature
of the blowing-up, we can take a surface H through P such that the strict
transform offf separates Pi and ?2 in two different connected components.
Thus, 7 is oscillating with respect to H. Nevertheless, the non oscillation
condition is generally stronger than the property of existence of iterated
tangents. Take, for example the vector field ^ in R3 given by

(1) ^=(-x-y^+(-y+xz)^-z2^.

Any solution 7 : [0, oo) —> R3 not contained in the (re, y ) plane or in the
2-axis turns around this axis and is infinitely tangent to it. Then 7 has all
iterated tangents but it is oscillating with respect to any plane containing
the z-axis.
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In order to get the non oscillation condition we need to consider the
existence of the iterated generalized tangents, given in terms of a large class
of blowing-ups and not only quadratic ones. Let Y be either a point or a
smooth analytic curve of M. We say that Y is admissible for (^, 7) if it is
invariant by $ and 7 does not cut V. Suppose that a; (7) is a single point
P. We say that 7 has the property of existence of the iterated generalized
tangents at P if for every sequence of admissible blowing-ups

(2) M^Mo^M^'-'^Mn

the last lift 7^ of 7 has a single d;-limit point Pyi. In §2 we give a proof of
the following:

PROPOSITION 1. — If 7 has the property of existence of all the iterated
generalized tangents at P then it is non oscillating at P.

Non nilpotent analytic vector fields. In §3 we study the local dynamics
of a vector field $ in a neighbourhood of a singular point P which has a
non nilpotent linear part Lp{^) (semihyperbolic vector field). We first recall
some known facts about local invariant manifolds through P, related to the
stable, unstable and central parts of Lp(^): the stable, unstable and center
manifold. We look to the local topological reduction of the dynamics to
the center manifold and we compare the velocities of the solutions outside
and inside this invariant manifold. This allows us to reduce the problem of
existence of a tangent to a lower dimensional case.

To look for the existence of iterated generalized tangents, we need to
study also the asymptotic behaviour of the solutions of certain vector fields
in a neighbourhood of a circle. These vector fields are naturally obtained
by admissible blowing-ups.

Finally, in §4, we define a class Go(M'^P) of three dimensional
semihyperbolic vector fields for which any solution that converges to P
is non oscillating.

Gradient vector fields. In §5 we finish the proof of the main
theorem showing that the gradient vector field $ = V^ / belongs to the
class ^o(M;P) for every singular point P of /. This justifies the letter Q
for this class. The subindex 0 indicates that we expect to find larger classes
of non oscillating vector fields whose union contains all the gradient vector
fields.

The results in this paper have been announced in [14].



1048 FERNANDO SANZ

2. Non oscillating curves
and iterated generalized tangents.

In this section we give the proof of Proposition 1. Suppose, by contra-
diction, that 7 has all iterated generalized tangents and it is oscillating
with respect to an analytic surface H. Let TT : M' —> M be an admissi-
ble blowing-up. There is a unique analytic vector field $' on Mf such that
^^ = ^ called the (total) transform of $ by TT. The lift 7' of 7 by TT is a
solution of $'. If H ' denotes the strict transform of H and uj(^') = {?'},
then P' € H ' and 7' is oscillating with respect to H ' at its unique cj-limit
point P' e H ' .

First case: H non singular. Let C C H be the set of points where ^ is
tangent to H. Since 1̂  is not invariant by ^ we have C ^ H and C is an
analytic set of dimension ^ 1. We consider first the following situation:

(A) The set C is contained in D D H , where D U H is a normal
crossings divisor and D is invariant by $.

Fix local coordinates at P such that H U D is union of coordinate
planes. Since D is invariant, we have that 17 |n D = 0 and the points where
7 cuts H are all in a single connected component L of H \ H H D. Denote
by z a local coordinate such that H = (z = 0). The function dz(^) has
constant sign over L since C D L = 0. Thus, the derivative of t ̂  z{^(t))
has a constant sign at any of its zeroes, contradicting the hypotheses that
there exists at least two of them.

We will now reduce us to the situation (A) after some admissible
blowing-ups. The behaviour of C under admissible blowing-up is described
by the following:

LEMMA 1. — Let TT : M' — ^ M b e a n admissible blowing-up with
center Y C H. Let H ' be the strict transform ofH by TT and define C' C H '
as the set of points where the transform ^f is tangent to H ' . Then C' is the
union of the strict transform ofC and, eventually, the curve H ' D TT'^V).

The proof is immediate.

Let IT(^) = {P^}^o De tne sequence of tangents of 7. We have two
possibilities:

a) The sequence IT(^) is not the sequence of infinitely near points of
a branch of (7. That is, for a certain index ZQ, the point P^o is not in the
corresponding strict transform of C. At this point, using Lemma 1 we have
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C C D D H where D is the invariant divisor created by the blowing-ups at
the points P%, i < io and D U H is a normal crossings divisor.

b) The sequence IT(^) coincides with the sequence of infinitely near
points IT(Y) of a branch Y of C. For a certain index %o w^ ca11 suppose
that Y is a smooth curve. The points Pi, i ̂  ZQ are singular points not only
for the corresponding (total) transform of ^ but for the strict transform
at Pi (obtained after division as much as possible by an equation of the
exceptional divisor at P^). Then we have that Y is invariant and hence
admissible. Blowing-up Y at the io-th stage we get the situation C C D D H
as in the previous case.

Second case: H singular. For any Q € M denote by VQ^H) the
multiplicity of H at Q. We shall work by induction on v == vp(H\

Recall that an analytic curve Y C H is called equimultiple if ^q{H)
is constant for Q € V. We will reduce our problem to the same one
with smaller multiplicity by means of a finite sequence of admissible and
equimultiple blowing-ups. Our method is derived from the reduction of
singularities of surfaces by using maximal contact theory and characteristic
polygons [I], [4].

Maximal contact. We say that a germ of a non singular surface W
through P has maximal contact with H iff locally at P we have that

i) If VQ{H) = J^p(H) = v, then Q € W.

ii) Let TT : M' —> M be the blowing-up with center either the point
P or a non singular equimultiple curve Y C H. Denote by W\ H ' the strict
transforms of W, H by TT. For any Q' G H ' ' , we know that V Q ' { H ' ) ^ v. If
i^Qf(H') = v then Q' € W. Moreover the same properties i) and ii) repeat
at Q ' .

We can get a maximal contact surface W to be the plane {z = 0) if
an equation for H is written as:

^ + /^-2(^ 2/)^-2 + - + h°{x, y) = 0.

This can be obtained from the Weierstrass preparation theorem, followed
by a Tschirnhausen's transformation.

For any sequence of admissible and equimultiple blowing-ups (2), the
successive strict transforms Hi of H satisfy

(3) z^(^)^
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where 7, is the lift of7,-i by TT, and ^(7,) = {PJ. If the inequality in (3) is
strict at one stage, then we are done. Hence we assume, by contradiction,
that the equality holds in (3) for any sequence of admissible blowing-ups.

Let us fix a maximal contact surface W and let C^ C H be the set
of points where the multiplicity of H is equal to v. It is an analytic set
contained in W near P. If TT : M' —^ M is a blowing-up with smooth
equimultiple center Y 3 P and C^ C H1 is the set of points where the
multiplicity of H ' is equal to v, then, by the properties of the Maximal
Contact, C^ is the union of the strict transform of Cy and, eventually, the
curve W H TT'^V). From this, making only admissible and equimultiple
blowing-ups, we reduce us, as in cases a) or b) above, to the situation

(4) Cy C D H W

where D U W is a normal crossings divisor and D is invariant by ^.
Furthermore, this property persists under admissible and equimultiple
blowing-up near the unique cc;-limit point of the lift of 7.

Let us construct now a particular sequence of admissible and equi-
multiple blowing-ups as follows: if there is an admissible curve Y C Cy
through Po = P then blow-up it, otherwise blow-up the point P. Let Pi
be the unique cj-limit point of the lift of 7. We follow the same criteria to
choose the next center through P\ to blow-up and so on.

Take coordinates (x, y , z) at P such that W = (z = 0) and D in (4) is
contained in (xy = 0). Let {h =• 0) be an equation for H near P and write

h(x,y,z) = ^ hi^xiy3zk

i+j-^-k^y

^(0(^,0) = ̂  c^y.
i+j'̂ i

Consider the following discrete set of points:

N = {(j7^p ̂ k) 5 ̂  + ̂  v > ̂  U { ( i j ) ; c,, + 0}

in the plane R^). The y-axis is admissible and contained in C^ if and
only if N C {u ^ 1}. Similar conditions for the a--axis and the set
{v ^ 1}. Let A be the convex hull of N + R^ in R^. We call A to be
the Characteristic Polygon at stage 0. Let (a,/?) e A (resp. (a7,/?')) be the
vertex of smallest abscissa of A (resp. smallest ordinate). The numbers /3
and a' will be the main invariants to control the singularity in our particular
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sequence of blowing-ups. Namely, we can choose coordinates (a^,^,2^) at
Pi, inductively for i = 1,2,..., which are related to the ones at P^_i by
one of the following transformations:

(Tl, C) : a^-i = Xi, ^-i = Xi(yi + C), Zz-\ = XiZi
(T2) : ^-i = ^T/,, z/,-i = z/,, ^-i = z/^,
(T3) : ;r,-i = ̂ , 2/,-i = yi, Zi-t = a^
(T4) : ^-i = ̂ , ^-i = yi, ^_i = ̂ ,.

Let AI be the Characteristic Polygon at stage z, and the corresponding
vertices (ai, /3^), (a^, /?^), as above. Due to the fact that we choose a curve as
a center when it is admissible and equimultiple, we get that /3z ^ ftz-\ and
the inequality is strict in cases (T2) or (T4), (see [4]). So, we can suppose
that all transformations are (Tl,^) or (T3) and, thus, /?' < 1. Furthermore,
by a formal change of variables y i—>- y — 0(a"), all ^ can be assumed to be
0. Now we have

a/ < ai--[1

which is not possible infinitely many times. This is the desired contradic-
tion.

3. Solutions near center manifolds and circles.

Let M be an analytic real manifold and let ^ be an analytic vector
field on M. Assume that ^(P) = 0 for a point P € M and that the linear
part of ^ at P, denoted by Lp{^), is non nilpotent. Let TV^, N8, N° be
the eigenspaces in TpM of Lp(^) corresponding to the eigenvalues with
positive, negative and zero real part, respectively. For any k 6 N there
exists a neighbourhood V of P and invariant manifolds for ^ through P in
V of class (^

w.w^w^w^.w08

whose tangent spaces at P are respectively TV^, TV8, N°^ TV^QTV^, N S ( B N C .
They are called the unstable, stable, center, center-unstable and center-
stable manifold. The stable and unstable ones are unique and analytic.
Solutions of^ starting at a point of W8 (resp. W'11) tend to P exponentially
as t goes to oo (resp. —oo). Also, if V is sufficiently small then any positive
solution 7 of ^ such that | 7 |c V is contained in all the center-stable
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manifolds in V. Similarly, any center manifold Wc contains the solutions
denned for all t (E R that remain bounded in a neighbourhood of P. For
instance, any singular point near P belongs to W°. (See e.g. [5], [15]).

As we can see in [2], the A;-jet of any center manifold of class C1 with
I ^ k is uniquely determined. Hence there is a unique formal manifold Wc

formally invariant by ^ and tangent to N°. It is called the formal center
manifold of ^ at P.

LEMMA 2. — Let ^ be an analytic vector field in a neighbourhood of
a singularity P € M. Assume that

dim N°(P) > dim? Sing (Q ^ 0.

Then there is an integer k ^ 0 and a center manifold Wc of class C^ such
that ^c = ̂  \wc is a vector field of class C^ for which the k-jet ^^(P) is
not zero.

Proof. — Let us reason by contradiction, assuming that j1^^ \wc (P) =
0 for all center manifold W° of class C^, A; ^ 0. This means that if Wc is
the formal center manifold of ^ at 0 then the formal restriction of ^ to Wc

satisfies

^w^°-

So we have Wc C Sing ($) formally. This contradicts our hypotheses about
the dimension of the singular set of ^.

There is a global version of the topological reduction to a center
manifold ([13]) along an invariant compact (^-submanifold S of M. We
state here a special version.

PROPOSITION 2. — Let ^ be an analytic vector field defined in a
neighbourhood U of S = S1 x {0} C S1 x Rn x R771, written in coordinates
(0,x,y) as

r\ r\ r\

^=Q(0^^)-^+{Ax+f(0^x^))-^-{-(By+g(0^x^))^

where A, B are matrices whose eigenvalues have zero and negative real
parts, respectively; the functions 9,/,^ are 27r-periodic in the variable 0
and zero over S and /, g are of order two in the variables x ^ y . Then:

1) There is a center manifold W° {S) of class C2, in a neighbourhood
of S, invariant by ^ and tangent to S1 x R71 x 0 at any point of S.
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2) Let W^S) be such a center manifold and 7 : [0,oo) —^ U a
solution of ^ such that ^(7) C S, there is to ^ 0 and a unique solution
a : [to, oo) —> W^S) of^ [w^s) that approaches 7 in the sense that

(5) |7(^)-^)|^e-^ t^to

for some K^e > 0.

Remark 1. — If ^ does not depend on 0 then S reduces to a singular
point P and 2) holds for a local center manifold through P. We also deduce
from the proof of Proposition 2 that a in 5 reduces to the singular point P
if and only if 7 is contained in the stable manifold of ^ at P.

The solutions contained in a center manifold can not accumulate
exponentially to the singular point, as we see in the following lemma,
deduced also from the proof of Proposition 2.

LEMMA 3. — Let ^ be a C2-vector field singular at the origin of If
whose linear part has all eigenvalues with zero real part. If a : [0, oo) —^ R/1

is a non constant solution such that ^(cr) = {0}, then for any e > 0 we
have

(6) lim e^ \a(t)\=oo.
t—^00

Using the estimations (5) and (6) and Remark 1 we can show the
following:

COROLLARY 1. — Suppose that ^(7) = {P} and 7 is not contained
in the stable manifold. Then 7 is tangent to any center manifold W°.
That is, blowing-up the singular point P, the lift 7' of 7 accumulates to
the projectivized of the tangent space of W° at P. Moreover, if the (non
constant) solution a in the center manifold that approaches 7 has a well
defined tangent then so does 7.

Limit sets on a circle. Consider a circle S = S1 x 0 C S1 x R71 and
let $ be a vector field of class Ck, k ^ 1, defined in a neighbourhood V of
S. Assume that S is an invariant circle for ^ and that ^ has only finitely
many singular points over 6'. Fix a solution 7 : [0, oo) —^ V such that
0 7^ ^(7) C 5. We consider the covering

R x R71 -> S1 x R71

(a,x) i-̂  (expia.x).
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Then there is a lift 7 : [0,oo) -^ R x R71 of 7 given by 7^) = {0(t),x(t}).
In this situation the o;-limit set c<;(7) is either a single point or the whole
circle 5'. Moreover, if ^(7) = S then 7 "turns" around 5'. More precisely,
we have the following result:

LEMMA 4. — The limit lim 6(t} exists and it is either finite, or +00,
t—>00or —oo.

Proof. — Let ^ be the lift of ^ to R x R71. Then 7 is a solution of
^. Moreover ^ has a discrete set of singular points over the invariant line
R x {0}. We know that if 7 = {0(t),x(t)) then

lim x(t) = 0
t^oo ' '

due to the fact that 0 ^ ^(7) C 5'. Assume, by contradiction that
0[t) accumulates in two (finite or infinite) points as t —> oo, call them
ai.o^, o'i < Q'2- There is a non singular point P = (o;,0) of ^ such that
ai < a < 02. Taking a flow-box around P for ^, we get 6 > 0 such that if
\x(t) |^ 6 and 0 = a then -r(t) has a constant sign, for instance positive.dc _
We take t ^ to so that | .r(^) |^ 6. There is a point t^ > to such that
6{t\) > a since 0(^) accumulates in 02. Now, for any t ^ t\ we have that
^) > a since ̂ ) is an increasing function when 0(t) = a. So ai can not
be an accumulation value of 0(1).

We are going to use this lemma in the following situation:

COROLLARY 2. — Assume that dimM = 3. Let ^ be an analytic
vector field defined in a neighbourhood V of P € M. Consider a solution
7of$ such that ^(7) = {P} and let TT : M' —»V be the blowing-up with
center an admissible curve Y C V through P. Assume that

1. The transform ^' of ^ has only finitely many singular points over
^TT-^P).

2. There is a germ of ̂ -surface H ' at a point ofF which is transversal
to F and does not cut the lifted solution 7'.

Then uj (7') is a single point.

Proof. — Take the cylindric blowing-up p : S1 x U C S1 x R2 -^ V of
center Y. The transform ^ of ^ by p and any of the two lifts 7 of 7 satisfy the
hypotheses of Lemma 4 where the circle S is the fiber p'^P) = S1 x {0}.
The strict transform of 7r(H1) by p gives two C1 local surfaces transversal to
S at antipodal points which do not cut 7. They separate a neighbourhood of
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S in two connected components, each containing points of S. Thus uj{^) ̂  S
and it is a single point.

Also, in the two dimensional case, Lemma 4 gives us the following
corollary:

COROLLARY 3. — Let ^ be a Ck vector field in a neighbourhood of
0 € R2. Suppose that $(0) = 0 and that j^(0) ̂  0 for some £ < k. Assume
that there is a C2 invariant regular curve through 0. Let 7 be a non singular
solution off, such that ^(7) = {0}. Then 7 has a well defined tangent.

4. A class of non oscillating vector fields.

Assume that dim M = 3 and fix a point P € M. We denote by
SR(M, P) the set of analytic vector fields $ such that ^(P) = 0, the linear
part Lp(^) is non nilpotent and its eigenvalues are real ones (the symbols
SR stand for semihyperbolic real). Given an element ^ E SR{M', P), denote
by c(^; P) the dimension of the center manifolds of ^ at P. Obviously we
have that c(^; P) € {0,1,2}.

PROPOSITION 3. — Let ^ € SR(M\ P) and TT : M' —> M a blowing-
up with center Y, non singular and invariant. Let ^f be the transform of
^ by TT and consider a point P ' e TT'^P) such that $'(?') = 0. Then
^f e<SP(M';P').

The proof is an easy computation.

DEFINITION 1. — Given $ € SR(M', P) we say that ^ belongs to
./VO(M;P) if any solution 7 of ̂  such that LJ(^) = {P} is non oscillating
at P. In this paragraph we prove the following theorem:

THEOREM 2. — Take ^ a vector field in <SP(M;P). Then $ €
J\TO{M\ P) if and only if one of the following conditions holds:

A. The dimension of the center manifolds is c(^; P) = 0 (hyperbolic
case).

B. The dimension of the center manifolds is c(^; P) = 1 and one of
the following is true:

B-l. The vector field ^ does not have an analytic center manifold at P.

B-2. The two non zero eigenvalues of Lp(^) are different or they are
equal and positive.
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B-3. There is an analytic center manifold W of$, the linear part Lp(^)
has a double negative eigenvalue and, moreover, there is a non singular germ
of analytic surface N D W such that any solution 7 with uj{^) = {P} is
non oscillating with respect to N .

C. The dimension of the center manifolds is c($; P) = 2 and there
is a center manifold W such that any solution 7 contained in W with
^(7) = {P} nas a wen defined tangent.

Let Qo(M', P) be the class of vector fields $ € SR(M', P) such that ^
satisfies one of the conditions A, B or C. It is easy to see that

M)(M;P)c0o(M;P).

Now we show the other inclusion (?o(M; P) C A/"0(M; P). In fact we
prove the following:

PROPOSITION 4. — Consider an analytic vector field £, G Go(M', P) and
a solution 7 such that 0^(7) = {P}. Then 7 has the property of existence
of iterated generalized tangents. In particular, 7 is non oscillating. More
precisely, ifn : M' —^ M is an admissible blowing-up for (^,7), there is
a unique point P' € TT-^P) such that o;(7') = {?'} and ^f e Go(M/',P/)
where 7' denotes the lift of 7 and ^/ is the transform of^ by TT.

Proof of Proposition 4. — Before the proof we make the following
useful remark:

Remark 2. — Consider $ € SR(M; P). Then $ e (?o(M; P) if we check
the following conditions. These are naturally obtained the most part of the
cases after admissible blowing-up.

a) Assume that c(^; P) = 1 and conditions B-l, B-2 do not hold.
Then we get condition B-3 if there is an analytic smooth invariant surface
N transversal to the stable manifold W8 of ^ at P. In fact, in this case
N must contain the formal center manifold W° which coincides with the
analytic one W since B-l is not satisfied. Thus B-3 holds.

b) Assume that c(^; P) = 2. If dim? Sing(^) = 2 then there is a center
manifold W of ^ at P made of singular points. Thus C trivially holds and
£, € Go(M'^P). Suppose that dimpSing(^) < 2 and there is an analytic
smooth invariant surface D transversal to the formal center manifold Wc.
Then for any center manifold W0 of class C2 we get a regular (^-curve
D H W° inside W0. Take W° such that ^ \w^ has a non zero finite jet
(by using Lemma 2) and apply Corollary 3. Then condition C holds and
^e9o(M;P).
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Define the following partition of SR{M', P):

7] € SR^^M; P) iff 0(77; P) = 0 and not all the eigenvalues have
the same sign,

rj C SR^^M', P) iff c(yy; P) = 1 and all the eigenvalues are different,

rj e SR^^M', P) iff 0(77; P) = 2,

rj € SR^^M', P) iff c(r]\ P) = 1 and there is a double non zero eigenvalue,

rf € SR^^M', P) iff c(y/; P) = 0 and all the eigenvalues have the same sign.

Put now

^\M;P)=^o(M;P)n5^)(M;P), i= 1,2,3,4,5

and denote by SR{2\M',P)± the subclass of ^ e SR^^M'.P) such
that the non zero eigenvalues of I/p(0 have different sign. Note that
^(M; P) = 5^)(M; P) for z = 1,2,5.

FIRST CASE. — The blowing-up TT is quadratic, that is, the center of
TT is the point P.

I) We consider first the following situation: the stable manifold W8

of ^ at P has dimension ^ 2 and | 7 |c W8. Then ^ \w« is an hyperbolic
vector field (in smaller dimension) with real eigenvalues and 7 is a solution
of ^ \w«' This implies that 7 has a well defined tangent as a curve in W8

and hence as a curve in M. The fact that P' is in the strict transform of W8

and that there are at most two negative eigenvalues (dim W8 ^ 2) gives
after elementary computation

$' € SR^^M'^P') U^^M';?')

and hence ̂  C 0o(M'; P'). Moreover, if $ e ̂ ^(M; P) U SR(2\M•, P)±

and the transform $' is in SR^^M'-, P') then also $' € SR^^M'; P')^.

II) Assume that |7^ W8. Then ^ e ^(M;P) for % e {2,3,4}. In
view of Corollary 1 we can assume that 7 is contained in a fixed center
manifold W0 in order to prove the result. The fact that uj(^') = {?'} is
a consequence of the definition of Go(M; P) in case i = 3 and of the fact
that the center manifold is of dimension 1 if i == 2,4. Moreover, P' is in the
projectivized tangent space of the formal center manifold of ^ at P. This
implies that the linear parts Lp(^) and Lp/(^') have the same eigenvalues
(same characteristic polynomials) and thus

$ e 5^(M; P) ̂  $' e ̂ ^(M'; P')
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for i = 2,3,4. If i = 2 then ^ C SR^^M'^P') = gw(Mf',Pf) and we
are done. (Note also that ^ € SR^^M'.P^ ^ ^/ e ^^(M';?')^). If
z = 3 , the (two dimensional) formal center manifold l^ of ^' at P' cuts
transversally the exceptional divisor D = TT'^P). Then ^/ e ̂ (M';?')
by Remark 2, b). Finally, if i = 4, conditions B-l, B-2 or B-3 for ^' at P'
are given directly by the same conditions for ^ at P by taking transforms
by the blowing-up TT. Thus $' € Q^\M'', P').

Ill) Assume that dim W8 = 3. Thus ^ G SR{5\M^P). In the case
that $ is a linear vector field, we get directly that uj{Y) = {?'}• Since
all eigenvalues of Lp(^) are real non zero and negative, we have a C1-
conjugacy between ^ and its linear part (this is a strong version of the
Hartman-Grobman theorem for the case that all the eigenvalues have real
parts of the same sign, see [3]). Thus (^(Y) = {P'}. The point P' is the
projectivized of a proper line of Lp(^). We know that ^' € SR(M'\ P').

If ^ 6 SR^^M'-,?') then D = TT-^P) is a center manifold of $'
at P'. Moreover, there is an invariant projective line I C D through P',
obtained as the projectivized of an invariant plane of the linear part Z/p(^).
Then condition C holds and ^/ € Q^\M'',P') either because ^ \D= 0 or
applying Corollary 3.

If$' € SR^\M'', P') then D is invariant and transversal to the stable
manifold of £ , ' at P'. Thus ^ € Q^\M1', P ' ) by Remark 2, a).

SECOND CASE. — The blowing-up TT is monoidal, that is, the center
Y of TT is an admissible curve for (^, 7) such that P € V. Then the curve
Y is tangent to a proper line of the linear part Lp(^) and it has normal
crossings with the stable and the unstable manifolds of ^ at P. Denote
by D = Tr'^y), F = Tr""^?) the exceptional divisor and the fiber over
P, respectively. Both are invariant by the transform ^' and we have that
a;(y) C F.

I) Assume that dim W8 ̂  2 and |7|C W8. We consider two cases:

1-1. The center Y is not tangent to W8. Then the tangent direction
of 7 is not tangent to Y. This implies that ci^Y) = {?'} where P' € P is
in the strict transform of W8 by TT. The following description is obtained
by elementary computation:

If £, ^ ^1)(M;P) ^hen Y is contained in Wu and hence ^ C
^^(M'; P') U SR^^M'-, P')^
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If $ € Q^\M',P) then either V = ^u or V is a center manifold
of $ at P. In the first case ^ € ^^(M';?') and, in the second case,
$' € SR^^M'^P') U^^M';?'). Moreover, if ^/ e SR^^M'-.P')
then jD is transversal to the stable manifold of ^' at P'. Thus in any
case ^ e go(Mf',Pf) by Remark 2, a). Also, if ^ € <?^(2)(M;P)± then
^e^^M';?')^

If $ € GW(M•, P) then dim IVs = 1 and Y is tangent to the formal
center manifold. We have that $' € SR^^M'; P')^

If $ € (^ ^(M;?) then Y is a center manifold and we have that
$' € SR^^M'-.P'Y The divisor D is a center manifold of ^/ at P ' and
F C D is an invariant curve through P7. Thus $' e G^\M'\P') either
because $' |j^= 0 or by Corollary 3.

1-2. The center Y is contained in W8. If dim W8 = 1 then Y is not
admissible for (^,7) since |7|c IVs. Assume that dim W8 = 2. The strict
transform of W8 by TT cuts P in a unique point P'. Thus ^(7') = {?'}. We
have that ^/ € ̂ ^(M'; P') in all possible cases.

II) Assume that dim W8 ^ 2, | 7 \(f_ W8 and $ ^ Q^\M;P). We
already know that 7 has a well defined tangent in the projectivized of the
tangent space of the formal center manifold W°. We study first the easier
cases $ € G^\M\ P) for i = 2,3 and leave the case ^ e Q^\M; P) for the
end of the paragraph. We distinguish the two situations:

II-l. The curve Y is not tangent to W^. Then ^(Y) = {?'}, where
P' € P is in the strict transform by TT of the tangent space of W°. The
eigenvalues of the linear part Lp/(^') coincide with those of Lp(^) and
hence ^' belongs to ̂ ^(M7; P') or SR^^M'-, P') just as ^ does. In this
last case we also have that ^f e GW(Mf', P') by Remark 2, b), since D is
transversal to the formal center manifold Wc of $' at P7.

11-2. The curve Y is tangent to TV^.

Assume that $ € G^\M', P). Then V is a center manifold of $ at P.
Since the two non zero eigenvalues Ai, As of Lp(^) are different, there are
only two singular points Pi,P2 of ^/ over P. The linear part Lp^(^) has
eigenvalues 0, A^, A^ - \i for {z, j} = {1,2}. The last written one (non zero)
is associated to the tangent direction of F at P^. Thus F is not tangent to
the center manifolds of ^' at Pi or ?2. We have that

(7) ^' e SR^^M'-, Pi) n SR^^M'; ?2)
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where % i , Z 2 € {2,4}. Moreover, at one of these points, say Pi, the two
non zero eigenvalues of the linear part have different sign (=^ ?i =2) . In
particular there are center-stable and center-unstable manifolds of $' at P\
of dimension two and of class C1. They cut in a center manifold so one
of them is transversal to F at Pi. This shows, by applying Corollary 2
that a;(7') = {Pi} or o;(7') = {P^}. To see that $' belongs to the class
Go at the o^-limit point of 7' we only have to consider the case i^ == 4
and ^(7') = {P^}. The result follows as usual by using the divisor D and
Remark 2, a).

Assume that ^ G Go (M;P). There are only two singular points
PI ? ?2 of ^ over F where we have

$' e ̂ ^(M'; P^ n ̂ ^(M'; ?2).

At Pi we find an invariant regular (^-surface transversal to F (a center-
stable or a center-unstable manifold as above). Thus ^(7') is a single point
by Corollary 3. If o;(7') = {Pi} then ^' 6 Q^\M'-, Pi)^ and we are done.
If ^(V) = {PJ then ^ ' C Q^\M'\ P^) by applying Remark 2, b) since D
is transversal to the formal center manifold of ^ ' at ?2.

Ill) Assume that dim W8 = 3, that is, ^ € G^\M;P). We have
several possibilities depending on the eigenvalues of Lp{^) not associated
to the tangent direction of Y.

III-l. If they are different, there are two singular points Pi,?2 of ^/

in F such that

^/ € SR{l\Mf', Pi) n ̂ ^(M'; ?2).

In this case we only have to show that c<;(7') is a single point. We see that
the stable manifold of ^' at Pi is a regular invariant surface transversal to
F. Thus we finish by Corollary 2.

III-2. If they coincide then either F has a single singular point of ^' or
F is made of singularities. In any case, for any P' € F such that ^'(P') = 0
we have

(8) $' € ^^(M';?'), z = 2 or 4.

Moreover, at any such singular point, P is a center manifold of ^' and the
stable manifold is two dimensional and transversal to F. By Corollary 2
again, c^') is a unique point P'. It remains to show that ^/ G Qo^M'-, P').
This is obvious if i = 2 in (8) and holds if i = 4 by Remark 2, a) applied
to the invariant divisor D, transversal to the stable manifold of ^/ at P'.
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Remark 3. — The subclass Go(M', P) c Go(M', P) given by

ft)(M; P) = ̂ (M; P) U ̂ (M; ̂  U ̂ (M; P)

is stable by admissible blowing-up. Namely, in the hypothesis of Proposi-
tion 4, if $ e <7o(M;P) then ^(7') = {?'} and ^ € ^(M';?'). Hence,
at this moment of the proof of Proposition 4, if $ e G^\M\ P), then any
solution 7 of $ with ^(7) = {P} is non oscillating.

IV) Assume that \^\(^. W8 and $ e ̂ (M; P). We can suppose that
^ does not have a center manifold consisting of singular points. Otherwise,
only the solutions contained in W8 can accumulate to the point P.

IV-1. Assume first that the center of the blowing-up Y is tangent to
Wc. Then Y is itself an analytic center manifold of $ at P and condition
B-l does not hold. Thus condition B-2 or B-3 is true for ^ at P.

Condition B-2 means that the double non zero eigenvalue of Lp(^) is
positive. In this case the center-stable manifolds are the center ones and,
since ^(7) = {P}, | 7 | is contained in any center manifold. In particular,
Y can not be admissible for (^,7), so B-2 does not hold.

Assume then that B-3 holds. We show first that the lift 7' accumulates
to a single point of F.

Take p : S1 x U C S1 x R2 —^ M the cylindric blowing-up of center
Y and denote by S the circle p'^P) =8^ {0}. Let ^ be the transform
of ^ by p. Then S is invariant and, either it is made of singularities of $
or it has finitely many of them. In order to prove that c<;(7') = {?'} it is
enough to see that the o;-limit set 0^(7) of any of the two lifts 7 of 7 by p
is a single point. We will show that either 7 accumulates to a single point
of S or it "turns" around S as t —> oo. This last possibility can not occur
because, by condition B-3, 7 must cut the strict transform N of N by p
finitely many times if |7|(Z1 N.

If S has finitely many singular points then either 7 accumulates to
a single point of S or it "turns" around 5, by Lemma 4. Suppose that S
consists of singular points of $. The restriction of ^ to a neighbourhood of S
satisfies the hypothesis of Proposition 2. Moreover, the divisor E = p'^V)
is a center manifold of $ along S. We have that the restriction ^ \E is
not identically zero since we have supposed that Y does not consists of
singularities of ^. After dividing $ \E by a power of an equation of S we
can suppose that it has finitely many singular points over S and thus, it is
in the hypotheses of Lemma 4. Then the solutions a of $ \E outside S with
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uj{a) C S either accumulate to a single point or they "turn" around 5'. By
using Proposition 2, the same happens with 7.

Hence 0^(7') = {?'} where P' € P is a singular point of ^/. We have
that

^ e^P^M';?')

and the divisor D is a center manifold of^' at P ' . Moreover F is an invariant
smooth curve through P', so ^ G ̂ (M'; P') by Corollary 3.

IV-2. Assume finally that Y is transversal to the formal center
manifold W° of $ at P. Then V is not tangent to the tangent direction of 7
and cc^') = {?'} where P' € P is the unique point in the strict transform
of Wc by TT. Also, the eigenvalues of the linear parts Lp(^) and Lp/($')
are the same. Thus we have ^ € ^^(M'; P'). To get $' € ^o(M'; P') it
remains to show that condition B-l, B-2 or B-3 hold.

Condition B-2 holds at P ' directly if it does at P. Condition B-l
holds at P' if it does at P by means of the map TT. Finally, condition B-3
at P' can be obtained from the same condition at P by taking the strict
transform N! of N by TT if N is transversal to the center V. Otherwise N '
can be singular. The fact that N is transversal to Y can be assumed if
condition B-3 holds for any smooth surface containing the analytic center
manifold W and not only for a fixed one N. More precisely, we have the
following:

LEMMA 5. — Consider^ € SR^^M', P) and assume that B-l and B-2
do not hold for ^ at P. Let W be the analytic center manifold and consider
a solution 7 of ^ such that 0^(7) = {P} and \ 7 \(jL W. Let TT : M' —> M
be the blowing-up with center W and suppose that the lift 7' of 7 by
TT accumulates to a single point P ' (=. 7^~1(P). Then 7 is non oscillating
with respect to any analytic smooth surface containing W. In particular
^G^\M;P).

Proof. — We know that $' € (^(M';?') so, by Remark 3, 7' is
non oscillating at P' as a solution of the vector field $'. Suppose, by
contradiction, that there is an analytic smooth surface N-^ D W such that
7 is oscillating with respect to JVi. If TV/ denotes the strict transform then
P ' G M/ and 7' is oscillating with respect to N\' at P'.

This lemma ends the proof of Proposition 4 and Theorem 2.
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5. The case of a gradient vector field.

In this section we proof Theorem 1 about the non oscillation property
of the gradient vector field $ == V^ /. Let P be a singular point of /. We
will show that ^ belongs to the class Go(M', P) and apply Theorem 2.

The eigenvalues of the linear part Lp(^) are precisely the ones of the
hessian quadratic form Hess /(P) with respect to coordinates for which the
matrix of g{P) is the identity. Then we have that $ belongs to SR(M', P).

If the rank of the hessian is 3 then ^ e SR^^M', P) U SR^\M; P)
and we are done.

Assume that the rank of Hess/(P) is equal to 1. Then ^ e
SR^^M'.P). We can suppose that there is no center manifold consisting
only of singularities, otherwise condition C holds automatically. Let W0 be
a center manifold for $ at P of class Ck such that the fc-jet of ^c = $ |^c
is not zero. Then ^c is the gradient vector field of a function of class Ck

with non zero fc-jet at P. In the same way as Thorn's proof [11] for the
analytic two dimensional case, the strict transform of S0 by means of the
polar blowing-up p : W —^ W° at P € W° restricts to a gradient vector
field over the exceptional divisor p'^P) ^ S1 with only finitely many sin-
gularities. This allows us to prove that any solution of ^c that accumulates
to P has a well defined tangent. Then, $ satisfies condition C at P and
^^(M;?).

Finally, assume that the rank of the hessian is 2. Then ^ C
SR^\M\P), Suppose that conditions B-l and B-2 do not hold for $ at
P and let W be the analytic (one dimensional) center manifold, which we
can suppose not made of singularities. Let TT : M' —> M be the blowing-up
with center W. By Lemma 5, it suffices to proof that for any solution 7 of
$ with uj(^) = {P}, its lift by TT converges to a single point. We proof now
this property.

The fiber F = 7^~1(P) is a projective line made of singular points
of the transform ^'. At any of these points, the exceptional divisor D =
7^~1(W) is a center manifold and, by means of a cylindric blowing-up
instead of TT, the global situation of ^/ around F is like in Proposition 2.
We only have to show that the solutions of ^' inside D that accumulates
to F have a single o;-limit point. The rest of this paragraph is devoted to
prove this result.



1064 FERNANDO SANZ

Take local coordinates ( x ^ y ^ z ) at P such that W = (x = y = 0).
For any series q € R{x,y,z} denote by q(z) = g(0,0,2;). The number i/(q)
denotes its usual order. Write the vector field ^ in these coordinates as:

(9) (^i + y^-g^ + O^i + y^-o- + c.-.
Consider the usual chart ( x ' , y ' , z ' ) of M such that the blowing-up TT is
written as x = x ' ^ y = x ' y ' , z = z ' . The exceptional divisor D is given by
( x ' = 0) and the fiber F is the ^'-axis. The restriction of ^/ to D is in this
chart

(10) ^ \D= (mo(^) + ̂ 'mi(^) - y^m^))-^ + c^')^,

where we put rriQ = &i; mi = 62 - ̂ i; ̂ 2 = 02. Note that c has finite order
since we have supposed that the center manifold is not made of singular
points.

There are several favorable cases for which we are done:

i) Suppose that h = v(c) ^ min{^(mo),^(mi),;/(m2)} = h' Then,
dividing (10) by z / 1 we obtain a new vector field in D transversal to F
whose integral curves coincide with those of ^ \D outside F.

ii) Suppose that l^ < l\ and that v{m^} < min{i/(mo),^(m2)}.
Then, we can divide this time by z'12 so that the resulting vector field
has a semihyperbolic singularity at the origin P ' = ( y ' = 0,z' = 0). The
curve F is a real separatrix through P ' and there is another one (or a
center manifold) which is transversal to it. Thus, solutions of (10) can not
accumulate to the whole fiber F.

iii) Suppose that h < h, ̂ (rno) == ^(m^) ^ z^(mi) and that the initial
parts of mo and 7712 coincide. Then, dividing again (10) by z'12 we obtain
two semihyperbolic singularities in F and we reason as above.

Now we prove that no further possibilities can arrive for a gradient
vector field. Let G = (^)i^j^3 be the inverse of the matrix of the metric
g with respect to the given coordinates ( x ^y . z ) . The components of (9)
are obtained as the product of G with the column vector of all the partial
derivatives of /. We can suppose the coordinates chosen so that G(0) is the

identity matrix and / = -(x2 + y2) + h{x, y , z), where A is negative and h
has order ^ 3. Write

h= E M^W.
i+J'̂ 0
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The invariance of the z-axis and the fact that g is nowhere degenerated
implies /i == ^(/loo) — I? which is a finite number. A calculation shows that
the series

rn'i = \(g22 - g11) 4- 2(^o2 - ̂ ^o)
(11) m'o =A^+2^/120+^n

m'2 ^A^^^/^+P11/^!

project to the same element in the ring Ti{z}/{z11) as the series mi, mo,
m2, respectively.

Assume that the case i) above is not true. Then we have that

/2 = min{i/(m^)} < l\.

Suppose that v{m'o) ^ v(m'lz) or that ^(m/o) == ^(m^) but the initial
parts of m'o and m'2 are different. Then we will show that v(m\) <
mm{v{m'Q),v(mt'z)}. This completes the proof because either the case ii)
or iii) is true.

If, for example, ^(m'o) ^ ^(^'2), the assumption implies that it
is equal to the order of m'2 — m'o. In view of the formulae (11) put
p = 2/102 - 2/i20, q = 911 - S22, s = g12, t = /in, u = g22, v = X + 2/120 and
apply the following lemma.

LEMMA 6. — Let p, g, 5, t, n, v be series in one variable such that
p, q, s, t are of order ^ 1 and u, v are unities. If i/(sp + tq) = v{ui 4- vs) =
v < oo then v(up — vq) < v.

Proof. — Assume by contradiction that v{up — vq) ^ v\ We write
00

6 = ̂  CiZ'1 for any series e € R{^}. Write for short A = sp-\-tq, B = ut-\-vs,
i=o

C = up — vq. We want to show that A = 0, contradicting the hypotheses.

Suppose that for k ^ 1 we have A^ = 0, C, ^ k. Since ^(A) = v{B) ^
v(C), the same is true for B and C. We can construct nested matrices
Ai , . . . , A/c such that for £ ^ k:

tt = A^ Sf,
p^ = -A^ ̂

where, for e = p, 9, s, ^, we denote by e^ the transpose of the vector
(e i , . . . , e^ ) . Denote also by e/ the column vector obtained by reversing
the order of the indices. Write A^ = (^ -). It is easy to see that

^,/3 =<^+Z,/3+^ v^
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so that, ift^ = Afc'5^' then A^' is the transpose of A^. Finally we have

Afc+i == <s.k,P^ >+<tk,q^ >
< s^ -A^' > + < A^,^' >
< -Afcs^^/ > 4- < Afc^,^' > =0

so A = 0 as wanted.
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