Gradient Vector Fields Do Not Generate Twister Dynamics

P. Fortuny and F. Sanz ${ }^{1}$
Departamento de Álgebra, Geometría y Topología, Universidad de Valladolid, Prado de la Magdalena s/n, 47008 Valladolid, Spain E-mail: pfortuny@agt.uva.es, fsanz@agt.uva.es

Received August 2, 1999

Abstract

Thom's Gradient Conjecture states that a solution γ of an analytic gradient vector field X approaching to a singularity P of X has a tangent at P. A stronger version asserts that γ does not meet an analytic hypersurface an infinite number of times (it is non-oscillating). We prove, in dimension 3, that if γ is "infinitely near" an analytic curve Γ not composed of singularities of X, then γ is non-oscillating and, moreover, it does not spiral around Γ in a precise sense. © 2001 Academic Press Key Words: trajectories of vector fields; gradient conjecture; oscillation; spiraling.

INTRODUCTION

Let $X=\nabla_{g} f$ be the gradient of an analytic function in \mathbb{R}^{n} with respect to an analytic Riemannian metric g. In [3], S. Łojasiewicz proved that if γ is a solution of X which remains bounded in a relatively compact set, then γ accumulates at a single point P. Afterwards, R. Thom conjectured (cf. [4]) that γ has a tangent at P. That is to say, the transformation of γ after the blowing-up of \mathbb{R}^{n} at P accumulates at a single point in the exceptional divisor. This result is proved in a recent manuscript of Kurdyka, Mostowski and Parusinski [2].

In a more general way, R. Moussu has proposed the "strong gradient conjecture": solutions of analytic gradient vector fields are non-oscillating. This means that γ meets each analytic hypersurface not containing it only a finite number of times.

In [1], Cano et al. they study the relation between nonoscillation and the existence of "all iterated tangents," that is, the existence of a tangent for the transform of γ after any number of point blow-ups. In an ambient space

[^0]of dimension 3, nonoscillation for γ is equivalent to the following conditions:
(a) The solution γ has all iterated tangents, and
(b) There is no "spiraling axis" Γ for γ.

The aim of this paper is to prove property (b) for analytic gradient vector fields when Γ is not a union of stationary points. These axes are called "twister axes," and they give rise to a twister dynamics locally around them, as shown in [1]. To be precise, our main result is the following

Theorem 5.1. Let g be an analytic metric on a three-dimensional analytic manifold M. Given an analytic function f on M, the gradient vector field $\nabla_{g} f$ has no non-degenerate twister axes.

This paper is structured as follows: in Section 1 we present the notions of spiraling, oscillation, iterated tangents, and twister axis. In Section 2, we establish a necessary condition for a smooth invariant axis Γ not to be a spiraling axis. This condition is given in terms of the linear term of the "normal" component of X with respect to Γ. Then we prove (Section 3) that spiraling axes are preserved by ramifications. This leads in a natural way to the study, made in Section 4, of a generalization of gradient vector fields: those arising from a bilinear form obtained as the ramification of a Riemannian metric. We prove that if $X=\nabla_{g} f$ is an ordinary gradient in M, Γ is a semi-branch and $\rho: M^{\prime} \rightarrow M$ is a ramification with $\rho^{-1}(\Gamma)$ smooth, then this new branch cannot be a spiraling axis for the generalized gradient $X^{\prime}=\nabla_{\rho^{* g}} \rho^{*} f$. The essence of this proof is the appearance of the Hessian of $\rho^{*} f$ in the normal component of X with respect to Γ. The symmetry inherent to the Hessian is the obstruction to the existence of spiraling. Theorem 5.1 is deduced in the last section as a consequence of all these results.

1. PRELIMINARIES

Let X be an analytic vector field on a three-dimensional real analytic manifold M. Let γ be a trajectory of X whose ω-limit set $\omega(\gamma)$ is a single point P. By an analytic semi-branch at P, we mean the image of $(0, \varepsilon)$ by a non-constant analytic map $\sigma:(-\varepsilon, \varepsilon) \rightarrow M$ with $\sigma(0)=P$. The semibranch Γ is smooth (or non-singular) at P if $\sigma(-\varepsilon, \varepsilon)$ is a non-singular analytic curve. Suppose Γ is a semi-branch at P and let $\pi: \tilde{M} \rightarrow M$ be a sequence of blow-ups of points such that $\pi^{-1}(\Gamma)$ is a smooth semi-branch at a point $\widetilde{P} \in \pi^{-1}(P)$. Fix a local coordinate system (x, y, z) at \widetilde{P} such that
$\pi^{-1}(\Gamma)=\{x=y=0, z>0\}$. Let $\tilde{\gamma}=\pi^{-1}(\gamma)$. The definition of spiraling axis for X is introduced in [1]. We give here an equivalent property:

Definition 1.1. The curve γ spirals around Γ (or equivalently, Γ is a spiraling axis for γ) if $\tilde{\gamma}$ admits a parametrization

$$
\tilde{\gamma}(t)=(\rho(t) \cos (\varphi(t)), \rho(t) \sin (\varphi(t)), z(t)), \quad t \in(0, \infty),
$$

where ρ, φ, z are analytic in $t, \lim \left(\rho(t) / z(t)^{n}\right)=0$ for all $n \geqslant 0$, and $\lim _{t \rightarrow \infty}(\varphi(t))=\infty$.

Any spiraling axis is invariant for X (see [1]) and the property is preserved by blowing up P. Moreover, if Γ is non-singular, γ spirals around it and $\eta: M^{\prime} \rightarrow M$ is the blowing-up of M at P with center Γ; then $\eta^{-1}(\gamma)$ is the whole projective line $\eta^{-1}(P)$.

Definition 1.2. The curve γ is said to have all the iterated tangents if for any sequence of point blow-ups

$$
M_{n} \xrightarrow{\pi_{n-1}} M_{n-1} \xrightarrow{\pi_{n-2}} \cdots \xrightarrow{\pi_{1}} M_{1} \xrightarrow{\pi_{0}} M_{0}=M
$$

with π_{0} centered at P, the ω-limit set of $\pi_{n-1}^{-1}(\gamma)$ is a single point. If this is the case, then one defines the sequence $T I(\gamma)=\left\{P_{n}\right\}$ recursively: $P_{0}=P$, $P_{i+1}=\omega\left(\pi_{i}^{-1}\left(\gamma_{i}\right)\right)$, where π_{i} is the blowing-up of M_{i} with center P_{i} and γ_{i} is the pull-back of γ by $\pi_{i-1} \circ \cdots \circ \pi_{0}$.

Notice that if Γ is a spiraling axis for γ, then γ has all the iterated tangents and $T I(\gamma)$ is exactly the sequence of infinitely near points of Γ. We remark also that γ has all the iterated tangents and $T I(\gamma)$ is the sequence of infinitely near points of an analytic branch Γ if and only if for any semianalytic open set $V \supset \Gamma$, one has $\gamma(t) \in V$ for $t \gg 0$.

Definition 1.3. The trajectory γ is said to oscillate at P if there is an analytic surface $f=0$ such that $\gamma \not \subset(f=0)$ but the set $(f=0) \cap|\gamma|$ is infinite.

The main result from [1] which we are going to use is the following
Proposition [1]. If the trajectory γ has all the iterated tangents at P and oscillates, then there is an analytic semi-branch Γ which is a spiraling axis for γ.

Definition 1.4. The semi-branch Γ is a twister axis for X if there is a positively invariant neighbourhood U of Γ such that for every $Q \in U-\Gamma$, the trajectory of X passing through Q spirals around Γ.

When Γ is non-degenerate (which means that it is not composed of singularities of X), then Γ is a spiraling axis if and only if it is a twister axis [1]. Thus, in order to know if a non-degenerate semi-branch is a twister axis, one need only test the existence of one solution spiraling around it.

Let π : $\tilde{M} \rightarrow M$ be the blowing-up of M with center P. Denote by $\tilde{\Gamma}, \tilde{\gamma}$, and \tilde{X} the transforms of Γ, γ, and X by π. We know (see [1]) that Γ is a spiraling axis for γ, if and only if $\tilde{\Gamma}$ is a spiraling axis for $\tilde{\gamma}$.

2. SUFFICIENT CONDITIONS FOR NON-SPIRALING

Let X, M be as above. In this section, Γ will denote a non-singular analytic semi-branch at a point P, invariant and non-degenerate for X. Let $r \geqslant 0$ be the order of X along Γ, that is, the algebraic order at the origin of the restriction of X to the analytic curve in M containing Γ. Consider a system of coordinates (x, y, z) in a neighbourhood of P such that $\Gamma \equiv$ $\{x=y=0, z>0\}$. In these coordinates, $r=v_{z}(X(z))$. Write X as follows,

$$
X=\sum_{i=0}^{\infty} L_{i} z^{i}+v(x, y, z) \frac{\partial}{\partial z}+\tilde{X}
$$

where the L_{i} are linear vector fields in the variables (x, y) and

$$
\tilde{X}=a(x, y, z) \frac{\partial}{\partial x}+b(x, y, z) \frac{\partial}{\partial y},
$$

with $v_{x, y}(a, b) \geqslant 2$. Let $k=\min \left\{i: L_{i}\right.$ is not a radial vector field $\}$. This number k is independent of the chosen coordinate system. As Γ is nondegenerate, then $v(0,0, z)=z^{r} u(z)$, with $\alpha=u(0) \neq 0$.

Proposition 2.1. If X and Γ satisfy one of the following conditions:
(0) $\alpha>0$,
(1) $\alpha<0$ and $k \geqslant r$,
(2) $\alpha<0, k \leqslant r-1$, and L_{k} has two different real eigenvalues,
then Γ is not a twister axis for X.
Proof. Each of those conditions is stable under blowing-up of P. After making $2 r$ blow-ups we can write X as follows, up to multiplication by an analytic unit

$$
X=\sum_{i=0}^{r-1} L_{i} z^{i}+z^{r}\left(\alpha \frac{\partial}{\partial z}+Z\right),
$$

where L_{i} are linear vector fields in (x, y), and Z is a vector field with $Z(z) \equiv 0$ and $v_{x, y}(Z(x), Z(y)) \geqslant 1$. If condition (0) holds, then Γ is not positively invariant. Assume that either (1) or (2) holds. Let γ be a trajectory of X such that $\omega(\gamma)=P$ and suppose, in order to obtain a contradiction, that γ spirals around Γ. By the expression of X above, there is a parametrization $\gamma(z)=(x(z), y(z), z)$ for $z>0$ (not necessarily analytic at $z=0$). Let η be the blowing-up of M along the z-axis, with local equations $x=x^{\prime}, y=x^{\prime} y^{\prime}, z=z^{\prime}$. The curve $\gamma^{\prime}=\eta^{-1}(\gamma)$ admits a parametrization $\gamma^{\prime}\left(z^{\prime}\right)=\left(x^{\prime}\left(z^{\prime}\right), y^{\prime}\left(z^{\prime}\right), z^{\prime}\right)$. If condition (1) holds, then we have

$$
\frac{d}{d z^{\prime}}\left(y^{\prime}\left(z^{\prime}\right)\right)=A\left(x^{\prime}\left(z^{\prime}\right), y^{\prime}\left(z^{\prime}\right), z^{\prime}\right)
$$

where A is an analytic function. As γ^{\prime} accumulates along the whole $\eta^{-1}(0)$, there is a z_{0}^{\prime} such that $1>z_{0}^{\prime}>0$ and $\left|y^{\prime}\left(z_{0}^{\prime}\right)\right|<1$. Then $\left|\frac{d}{d z^{\prime}}\left(y^{\prime}\left(z^{\prime}\right)\right)\right|$ is bounded for $0<z^{\prime}<z_{0}^{\prime}$, which implies that $\left|y^{\prime}\left(z^{\prime}\right)\right|$ is also bounded near $z^{\prime}=0$, contradicting the accumulation of γ^{\prime} along $\eta^{-1}(0)$. If condition (2) holds, then the transform of X by η is

$$
X=\lambda\left(z^{\prime}\right) x^{\prime} \frac{\partial}{\partial x^{\prime}}+\mu z^{\prime k} y^{\prime} \frac{\partial}{\partial y^{\prime}}+z^{\prime k+1} Y,
$$

where $k \in \mathbb{Z}_{+}, \lambda$ is a polynomial in z^{\prime} of degree at most k, μ is a non-zero constant, and Y is analytic. This gives

$$
\frac{d}{d z^{\prime}}\left(y^{\prime}\left(z^{\prime}\right)\right)=\frac{1}{\alpha z^{\prime r-k}}\left(\mu y^{\prime}\left(z^{\prime}\right)+z^{\prime} B\left(x^{\prime}\left(z^{\prime}\right), y^{\prime}\left(z^{\prime}\right), z^{\prime}\right)\right),
$$

B being an analytic function. From this equation we infer that near the points $P_{1}=(0,1,0), P_{2}=(0,-1,0), \frac{d}{d z^{\prime}}\left(y^{\prime}\left(z^{\prime}\right)\right)$ has opposite signs for z^{\prime} positive. This contradicts again the accumulation of $y^{\prime}(z)$ along the whole real line.

3. RAMIFICATIONS

Let Γ be a (not necessarily smooth) semi-branch at a point $P \in M$. Take local analytic coordinates (x, y, z) at P such that $\Gamma \subset\{z>0\}$. We consider the ramification-rectification morphism

$$
\begin{aligned}
& \rho: M^{\prime} \rightarrow M \\
& \left(x^{\prime}, y^{\prime}, t\right) \mapsto(x, y, z)=\left(x^{\prime}+\alpha(t), y^{\prime}+\beta(t), t^{q}\right),
\end{aligned}
$$

where $\left(\alpha(t), \beta(t), t^{q}\right)$ is a Puiseux parametrization of Γ for $t>0$. Denote $\Gamma^{\prime}=\rho^{-1}(\Gamma)$. We shall assume that ρ is an algebraic morphism, which can be accomplished after an analytic coordinate change in M (see [5]).

Given an analytic vector field X in M, let us consider the analytic vector field X^{\prime} in M^{\prime} such that $\rho_{\star}\left(X^{\prime}\right)=z X$. Notice that Γ is a spiraling axis for X if and only if it is so for $z X$.

Proposition 3.1. Suppose Γ is a spiraling axis for X. Then Γ^{\prime} is also a spiraling axis for X^{\prime}.

Proof. Let γ be a trajectory of X spiraling around Γ and take $\gamma^{\prime}=\rho^{-1}(\gamma)$, which is a trajectory of X^{\prime}. We may suppose that $|\gamma| \subset\{z>0\}$ and $\left|\gamma^{\prime}\right| \subset\{t>0\}$. As ρ is a homeomorphism between $\{t \geqslant 0\}$ and $\{z \geqslant 0\}$, the set $\omega(\gamma)=\rho^{-1}(P)$ consists of a single point. Let us prove that γ^{\prime} spirals around Γ^{\prime}. It is clearly oscillating, since γ is so. Thus, we shall finish if we prove that γ^{\prime} has all the iterated tangents and $T I\left(\gamma^{\prime}\right)$ is the set of infinitely near points of Γ^{\prime}. With the system of coordinates we are using, it suffices to prove that for any $k=1,2, \ldots, \gamma^{\prime}(t)$ is in the open cone

$$
C_{k}^{\prime}=\left\{x^{\prime 2}+y^{\prime 2}<t^{2 k}\right\}
$$

for $t \gg 0$. Since these cones are algebraic, they project by ρ into semianalytic sets C_{k} containing Γ in their interior. Thus, $\gamma(t)$ is in C_{k} for $t \gg 0$ because $T I(\gamma)$ coincides with the sequence of infinitely near points of Γ. So, for any $k=1,2, \ldots, \gamma^{\prime}(t) \in C_{k}^{\prime}$ for $t \gg 0$, which implies that $T I\left(\gamma^{\prime}\right)$ exists and is the sequence of infinitely near points of Γ^{\prime}, which completes the proof.

Note that the converse is also true.

4. RAMIFIED GRADIENTS

Let g be an analytic symmetric bilinear form on M. Given a point P, denote by \mathscr{M}_{P} the field of germs of meromorphic functions at P, that is, the field of quotients of the ring \mathcal{O}_{P} of germs of analytic functions at P. Let Θ_{P} be the \mathcal{O}_{P}-module of germs of analytic vector fields. The bilinear operator $g_{P}: \Theta_{P} \times \Theta_{P} \rightarrow \mathcal{O}_{P}$ induces a symmetric bilinear form $\tilde{g}: \widetilde{\Theta}_{P} \times \widetilde{\Theta}_{P} \rightarrow \mathscr{M}_{P}$, with $\widetilde{\Theta}_{P}=\Theta_{P} \otimes \mathscr{M}_{P}$. If \tilde{g} is non-degenerate, we shall call $\Psi_{\tilde{g}}$ to the natural isomorphism

$$
\Psi_{\tilde{g}}: \widetilde{\Theta}_{P} \rightarrow \widetilde{\Theta}_{P}^{\star}=\operatorname{Hom}\left(\widetilde{\Theta}_{P}, \mathscr{M}_{P}\right)
$$

induced by \tilde{g}. Taking into account that $\widetilde{\Theta}_{P}^{\star}$ is the \mathscr{M}_{P}-vector space of germs of meromorphic 1 -forms at P, we give the following

Definition 4.1. For $f \in \mathscr{M}_{P}$, the generalized gradient of f with respect to g is the meromorphic vector field

$$
\nabla_{g} f=\Psi_{\tilde{g}}^{-1}(d f) .
$$

Consider a non-singular divisor $D \subset M$ containing P. Let g be as before and let $q \geqslant 0$ be a non-negative integer,

Definition 4.2. The form g is a metric of q-ramified type relative to D if there is a local coordinate system (x, y, z) at P with $D=\{z=0\}$ such that

1. The restriction $g_{\mathcal{N}}$ of \tilde{g} to the \mathcal{O}_{P}-module \mathscr{N} generated by the meromorphic vector fields $\left\{\partial / \partial x, \partial / \partial y\right.$ and $\left.z^{-q} \partial / \partial z\right\}$ is an \mathcal{O}_{P}-bilinear form, that is, $g_{\mathcal{N}}(\mathcal{N} \times \mathscr{N}) \subset \mathcal{O}_{P}$.
2. The specialization $g_{\mathcal{N}}(P)=g_{\mathcal{N}} \otimes \mathbb{R}$ defines a positive definite bilinear form on the three-dimensional real vector space $\mathcal{N} \otimes \mathbb{R}$.

In these conditions, we shall say that the coordinate system (x, y, z) is appropriate for g.

Notice that a coordinate change of the form

$$
x^{\prime} \mapsto \varphi(x, y)+z^{q+1} \varphi_{1}, \quad y^{\prime} \mapsto \psi(x, y)+z^{q+1} \psi_{1}, \quad z^{\prime} \mapsto z u(x, y, z)
$$

respects the lattice $\mathcal{N} \subset A \widetilde{\Theta}_{P}$ and gives another appropriate system. If the matrix of $g_{\mathcal{N}}(P)$ is the identity for the base of $\mathcal{N} \otimes \mathbb{R}$ corresponding to $\left\{\partial / \partial x, \partial / \partial y, z^{-q} \partial / \partial z\right\}$, we say that the coordinate system (x, y, z) is normal for g. Making coordinate changes as above, we can always get a normal system; we remark that the curve $x=y=0$ need not be preserved under these changes.

Proposition 4.1. Let g be a metric of q-ramified type relative to a divisor D at P. Consider an appropriate and normal system of coordinates (x, y, z) and a germ of analytic function $f \in \mathcal{O}_{P}$. The meromorphic vector field $X=z^{2 q} \nabla_{g} f$ is in fact analytic. If the curve $Y=\{x=y=0\}$ is invariant and non-degenerate for X, then the branch $\Gamma=Y \cap\{z>0\}$ is not a twister axis for X.

Proof. Let A be the matrix of $g_{\mathcal{N}}$ in the basis $\left\{\partial / \partial x, \partial / \partial y, z^{-q} \partial / \partial z\right\}$. Notice that A is invertible and, in fact, the coefficients of A^{-1} belong to \mathcal{O}_{P}, since $A(0)$ is the identity matrix. Put

$$
G=\left(G^{i j}\right)=\left(\begin{array}{lll}
z^{q} & & \\
& z^{q} & \\
& & 1
\end{array}\right) A^{-1}\left(\begin{array}{lll}
z^{q} & & \\
& z^{q} & \\
& & 1
\end{array}\right)
$$

The vector field $X=z^{2 q} \nabla_{g} f=a \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}+c \frac{\partial}{\partial z}$ is analytic, for

$$
\left(\begin{array}{lll}
a & b & c
\end{array}\right)=\left(\begin{array}{lll}
f_{x} & f_{y} & f_{z}
\end{array}\right) G^{t},
$$

where subindices indicate partial derivation. From now on, we shall write \bar{h} to indicate the restriction of an analytic function h in M to the curve Y. The following bounds follow from the fact that $A^{-1}(0)$ is the identity matrix

$$
\begin{align*}
& v_{z}\left(\overline{G^{i i}}\right)=2 q, v_{z}\left(\overline{G_{x}^{i i}}, \overline{G_{y}^{i i}}\right) \geqslant 2 q \\
& v_{z}\left(\overline{G^{12}}\right) \geqslant 2 q+1, v_{z}\left(\overline{G_{x}^{12}}, \overline{G_{y}^{12}}\right) \geqslant 2 q \tag{1}\\
& v_{z}\left(\overline{G^{i 3}}\right) \geqslant q+1, v_{z}\left(\overline{G_{x}^{i 3}}, \overline{G_{y}^{i 3}}\right) \geqslant q, v_{z}\left(\overline{G^{33}}\right)=0,
\end{align*}
$$

where $i=1,2$. Let us show that X and Γ satisfy one of the conditions of Proposition 2.1. Let r be the order of X along the curve Y and let k be the least integer such that L_{k} is not radial in the expression

$$
X=\sum_{i=0}^{\infty} L_{i} z^{i}+v(x, y, z) \frac{\partial}{\partial z}+\tilde{X}
$$

used in Section 2. If $k \geqslant r$, then condition (0) or (1) holds. Thus, assume $k<r$. First, we note that the invariant r is equal to $v_{z}\left(\bar{f}_{z}\right)$. This follows from the fact that $\left.X\right|_{Y}=z^{2 q} \nabla_{\left.g\right|_{Y}} \bar{f}$ and that the matrix of $\left.g\right|_{Y}$ is exactly $\left(\overline{G^{33}}\right)$ in the basis $\left\{z^{-q} \partial / \partial z\right\}$.

In the expression of X above, one can write the linear part normal to Γ :

$$
\sum_{i=0}^{\infty} L_{i} z^{i}=\left(\begin{array}{ll}
x & y
\end{array}\right)(N+H)\binom{\partial / \partial x}{\partial / \partial y},
$$

where N is the 2×2 matrix
and H is obtained from the Hessian of f as follows:

$$
H=\left(\begin{array}{ll}
\overline{G^{11}} & \overline{G^{12}} \\
G^{12} & \overline{G^{22}}
\end{array}\right)\left(\begin{array}{cc}
\bar{f}_{x x} & \bar{f}_{x y} \\
\bar{f}_{x y} & \bar{f}_{y y}
\end{array}\right) .
$$

Notice that this Hessian H can be written $H=z^{2 q}\left(\sum A_{i} z^{i}\right)\left(\sum B_{i} z^{i}\right)$ where A_{0} is the identity and A_{i}, B_{i} are symmetric matrices. Then, the first nonradial term appearing in the power series expansion of H is symmetric and so it has two different real eigenvalues. Thus, we shall finish if we prove that $v_{z}(N) \geqslant r$, for we are assuming $k<r$, from which we infer that the first non-radial term in the linear part of X normal to Γ comes, in fact, from H.

To see that $v_{z}(N) \geqslant r$, take $l=\min \left\{v_{z}\left(\overline{f_{x}}\right), v_{z}\left(\overline{f_{y}}\right), v_{z}\left(\overline{f_{z}}\right)\right\}$. From the bound (1), one sees that $v_{z}(N) \geqslant q+l$. There are two possibilities: if $l=$ $v_{z}\left(\bar{f}_{z}\right)=r$ then $v_{z}(N) \geqslant r$. If $l<r$ assume, by symmetry, that $l=v_{z}\left(\bar{f}_{x}\right)$. As Y is an invariant curve for X, one must have

$$
\bar{a}={\overline{G^{11}} f}_{x}+{\overline{G^{12}} f}_{y}+{\overline{G^{13}} f_{z}}^{2}=0 .
$$

Since $v_{z}\left(\overline{G^{12} f_{y}}\right)>v_{z}\left(\overline{G^{11} f_{x}}\right)$ then $v_{z}\left(\overline{G^{11} f_{x}}\right)=v_{z}\left(\overline{G^{13} f_{z}}\right)$, whence $2 q+l=$ $v_{z}\left(G^{13}\right)+r \geqslant q+1+r$, from where $v_{z}(N)=q+l>r$ and we are done.

5. GRADIENTS DO NOT GENERATE TWISTER AXES

Theorem 5.1. Let g be an analytic metric on a three-dimensional analytic manifold M. Given an analytic function f on M, the gradient vector field $\nabla_{g} f$ has no non-degenerate twister axes.

Proof. Suppose, on the contrary, that Γ is a twister axis for X at P. Let (x, y, z) be a coordinate system appropriate for g and normal at P. Moreover, we can take (x, y, z) such that Γ is tangent to $x=y=0$ and is contained in $z>0$. Let $\rho: M^{\prime} \rightarrow M$ be an algebraic ramification-rectification morphism as in Section 3

$$
\rho\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x^{\prime}+\sigma\left(z^{\prime}\right), y^{\prime}+\tau\left(z^{\prime}\right), \frac{1}{q+1} z^{\prime q+1}\right)
$$

such that $\Gamma^{\prime}=\rho^{-1}(\Gamma)=\left\{x^{\prime}=y^{\prime}=0, z^{\prime}>0\right\}$. Let $g^{\prime}=\rho^{\star} g$ be the transformed bilinear form. A computation shows that g^{\prime} is a metric of q-ramified type relative to $\left\{z^{\prime}=0\right\}$ and ($x^{\prime}, y^{\prime}, z^{\prime}$) is a coordinate system appropriate and normal for g^{\prime}. Let $X^{\prime}=\nabla_{g^{\prime}}\left(\rho^{\star} f\right)$. By Proposition 4.1, Γ^{\prime} cannot be a twister axis for $z^{2 q} X^{\prime}$, in contradiction with Proposition 3.1, since $\rho_{\star} X^{\prime}=X$.

REFERENCES

1. F. Cano, R. Moussu, and F. Sanz, Oscillation, spiralement, tourbillonement, Comment. Math. Helv. 75 (2000), 284-318.
2. K. Kurdyka, T. Mostowski, and A. Parusinski, Proof of the gradient conjecture of R. Thom, Ann. of Math., in press.
3. S. Łojasiewicz, Une propriété topologique des sous-ensembles analytiques réels, in "Colloq. Intern. du C.N.R.S. Les equations aux dérivées partielles," 1962.
4. R. Thom, Gradients of analytic functions, in "Proc. of the 7th National Math. Conf.," 1977.
5. O. Zariski, "Le problème des modules pour les branches planes," École Polytechnique, Paris, 1973. Rédigé par François Kmety et Michel Merle.

[^0]: ${ }^{1}$ Both authors partially supported by The European Commission, TMR Network "Singularidades de Ecuaciones Diferenciales y Foliaciones" ERBF MRXCT 96-0040. The second author thanks the University of Bourgogne for several stays during which this work was developed.

