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Gradient Vector Fields Do Not Generate
Twister Dynamics
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Thom's Gradient Conjecture states that a solution # of an analytic gradient
vector field X approaching to a singularity P of X has a tangent at P. A stronger
version asserts that # does not meet an analytic hypersurface an infinite number of
times (it is non-oscillating). We prove, in dimension 3, that if # is ``infinitely near''
an analytic curve 1 not composed of singularities of X, then # is non-oscillating
and, moreover, it does not spiral around 1 in a precise sense. � 2001 Academic Press
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INTRODUCTION

Let X={g f be the gradient of an analytic function in Rn with respect to
an analytic Riemannian metric g. In [3], S. 4ojasiewicz proved that if # is
a solution of X which remains bounded in a relatively compact set, then #
accumulates at a single point P. Afterwards, R. Thom conjectured (cf. [4])
that # has a tangent at P. That is to say, the transformation of # after the
blowing-up of Rn at P accumulates at a single point in the exceptional
divisor. This result is proved in a recent manuscript of Kurdyka, Mostowski
and Parusinski [2].

In a more general way, R. Moussu has proposed the ``strong gradient
conjecture'': solutions of analytic gradient vector fields are non-oscillating.
This means that # meets each analytic hypersurface not containing it only
a finite number of times.

In [1], Cano et al. they study the relation between nonoscillation and
the existence of ``all iterated tangents,'' that is, the existence of a tangent for
the transform of # after any number of point blow-ups. In an ambient space
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of dimension 3, nonoscillation for # is equivalent to the following condi-
tions:

(a) The solution # has all iterated tangents, and

(b) There is no ``spiraling axis'' 1 for #.

The aim of this paper is to prove property (b) for analytic gradient vector
fields when 1 is not a union of stationary points. These axes are called
``twister axes,'' and they give rise to a twister dynamics locally around
them, as shown in [1]. To be precise, our main result is the following

Theorem 5.1. Let g be an analytic metric on a three-dimensional
analytic manifold M. Given an analytic function f on M, the gradient vector
field {g f has no non-degenerate twister axes.

This paper is structured as follows: in Section 1 we present the notions
of spiraling, oscillation, iterated tangents, and twister axis. In Section 2, we
establish a necessary condition for a smooth invariant axis 1 not to be a
spiraling axis. This condition is given in terms of the linear term of the
``normal'' component of X with respect to 1. Then we prove (Section 3)
that spiraling axes are preserved by ramifications. This leads in a natural
way to the study, made in Section 4, of a generalization of gradient vector
fields: those arising from a bilinear form obtained as the ramification of a
Riemannian metric. We prove that if X={g f is an ordinary gradient in M,
1 is a semi-branch and \: M$ � M is a ramification with \&1(1) smooth,
then this new branch cannot be a spiraling axis for the generalized gradient
X$={\*g\*f. The essence of this proof is the appearance of the Hessian of
\*f in the normal component of X with respect to 1. The symmetry
inherent to the Hessian is the obstruction to the existence of spiraling.
Theorem 5.1 is deduced in the last section as a consequence of all these
results.

1. PRELIMINARIES

Let X be an analytic vector field on a three-dimensional real analytic
manifold M. Let # be a trajectory of X whose |-limit set |(#) is a single
point P. By an analytic semi-branch at P, we mean the image of (0, =) by
a non-constant analytic map _: (&=, =) � M with _(0)=P. The semi-
branch 1 is smooth (or non-singular) at P if _(&=, =) is a non-singular
analytic curve. Suppose 1 is a semi-branch at P and let ?: M� � M be a
sequence of blow-ups of points such that ?&1(1 ) is a smooth semi-branch
at a point P� # ?&1(P). Fix a local coordinate system (x, y, z) at P� such that
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?&1(1)=[x= y=0, z>0]. Let #~ =?&1(#). The definition of spiraling axis
for X is introduced in [1]. We give here an equivalent property:

Definition 1.1. The curve # spirals around 1 (or equivalently, 1 is a
spiraling axis for #) if #~ admits a parametrization

#~ (t)=(\(t) cos(.(t)), \(t) sin(.(t)), z(t)), t # (0, �),

where \, ., z are analytic in t, lim(\(t)�z(t)n)=0 for all n�0, and
limt � �(.(t))=�.

Any spiraling axis is invariant for X (see [1]) and the property is pre-
served by blowing up P. Moreover, if 1 is non-singular, # spirals around
it and ': M$ � M is the blowing-up of M at P with center 1; then '&1(#)
is the whole projective line '&1(P).

Definition 1.2. The curve # is said to have all the iterated tangents if
for any sequence of point blow-ups

Mn ww�
?n&1 Mn&1 ww�

?n&2 } } } ww�
?1 M1 ww�

?0 M0=M

with ?0 centered at P, the |-limit set of ?&1
n&1(#) is a single point. If this is

the case, then one defines the sequence TI(#)=[Pn] recursively: P0=P,
Pi+1=|(?&1

i (# i)), where ? i is the blowing-up of Mi with center Pi and #i

is the pull-back of # by ?i&1 b } } } b ?0 .

Notice that if 1 is a spiraling axis for #, then # has all the iterated
tangents and TI(#) is exactly the sequence of infinitely near points of 1. We
remark also that # has all the iterated tangents and TI(#) is the sequence
of infinitely near points of an analytic branch 1 if and only if for any semi-
analytic open set V#1, one has #(t) # V for t>>0.

Definition 1.3. The trajectory # is said to oscillate at P if there is an
analytic surface f =0 such that #/3 ( f =0) but the set ( f =0) & |#| is
infinite.

The main result from [1] which we are going to use is the following

Proposition [1]. If the trajectory # has all the iterated tangents at P
and oscillates, then there is an analytic semi-branch 1 which is a spiraling
axis for #.

Definition 1.4. The semi-branch 1 is a twister axis for X if there is a
positively invariant neighbourhood U of 1 such that for every Q # U&1,
the trajectory of X passing through Q spirals around 1.
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When 1 is non-degenerate (which means that it is not composed of
singularities of X ), then 1 is a spiraling axis if and only if it is a twister axis
[1]. Thus, in order to know if a non-degenerate semi-branch is a twister
axis, one need only test the existence of one solution spiraling around it.

Let ?: M� � M be the blowing-up of M with center P. Denote by 1� , #~ ,
and X� the transforms of 1, #, and X by ?. We know (see [1]) that 1 is a
spiraling axis for #, if and only if 1� is a spiraling axis for #~ .

2. SUFFICIENT CONDITIONS FOR NON-SPIRALING

Let X, M be as above. In this section, 1 will denote a non-singular
analytic semi-branch at a point P, invariant and non-degenerate for X. Let
r�0 be the order of X along 1, that is, the algebraic order at the origin of
the restriction of X to the analytic curve in M containing 1. Consider a
system of coordinates (x, y, z) in a neighbourhood of P such that 1#

[x= y=0, z>0]. In these coordinates, r=&z(X(z)). Write X as follows,

X= :
�

i=0

Lizi+v(x, y, z)
�
�z

+X� ,

where the Li are linear vector fields in the variables (x, y) and

X� =a(x, y, z)
�

�x
+b(x, y, z)

�
�y

,

with &x, y(a, b)�2. Let k=min[i : L i is not a radial vector field]. This
number k is independent of the chosen coordinate system. As 1 is non-
degenerate, then v(0, 0, z)=zru(z), with :=u(0){0.

Proposition 2.1. If X and 1 satisfy one of the following conditions:

(0) :>0,

(1) :<0 and k�r,

(2) :<0, k�r&1, and Lk has two different real eigenvalues,

then 1 is not a twister axis for X.

Proof. Each of those conditions is stable under blowing-up of P. After
making 2r blow-ups we can write X as follows, up to multiplication by an
analytic unit

X= :
r&1

i=0

Li zi+zr \:
�
�z

+Z+ ,
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where Li are linear vector fields in (x, y), and Z is a vector field with
Z(z)#0 and &x, y(Z(x), Z( y))�1. If condition (0) holds, then 1 is not
positively invariant. Assume that either (1) or (2) holds. Let # be a trajec-
tory of X such that |(#)=P and suppose, in order to obtain a contradic-
tion, that # spirals around 1. By the expression of X above, there is a
parametrization #(z)=(x(z), y(z), z) for z>0 (not necessarily analytic at
z=0). Let ' be the blowing-up of M along the z-axis, with local equations
x=x$, y=x$y$, z=z$. The curve #$='&1(#) admits a parametrization
#$(z$)=(x$(z$), y$(z$), z$). If condition (1) holds, then we have

d
dz$

( y$(z$))=A(x$(z$), y$(z$), z$),

where A is an analytic function. As #$ accumulates along the whole '&1(0),
there is a z$0 such that 1>z$0>0 and |y$(z$0)|<1. Then | d

dz$ ( y$(z$))| is
bounded for 0<z$<z$0 , which implies that |y$(z$)| is also bounded near
z$=0, contradicting the accumulation of #$ along '&1(0). If condition (2)
holds, then the transform of X by ' is

X=*(z$) x$
�

�x$
++z$ky$

�
�y$

+z$k+1Y,

where k # Z+ , * is a polynomial in z$ of degree at most k, + is a non-zero
constant, and Y is analytic. This gives

d
dz$

( y$(z$))=
1

:z$r&k (+y$(z$)+z$B(x$(z$), y$(z$), z$)),

B being an analytic function. From this equation we infer that near the
points P1=(0, 1, 0), P2=(0, &1, 0), d

dz$ ( y$(z$)) has opposite signs for z$
positive. This contradicts again the accumulation of y$(z) along the whole
real line. K

3. RAMIFICATIONS

Let 1 be a (not necessarily smooth) semi-branch at a point P # M. Take
local analytic coordinates (x, y, z) at P such that 1/[z>0]. We consider
the ramification-rectification morphism

\: M$ � M

(x$, y$, t) [ (x, y, z)=(x$+:(t), y$+;(t), tq),
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where (:(t), ;(t), tq) is a Puiseux parametrization of 1 for t>0. Denote
1 $=\&1(1 ). We shall assume that \ is an algebraic morphism, which can
be accomplished after an analytic coordinate change in M (see [5]).

Given an analytic vector field X in M, let us consider the analytic vector
field X$ in M$ such that \C(X$)=zX. Notice that 1 is a spiraling axis for
X if and only if it is so for zX.

Proposition 3.1. Suppose 1 is a spiraling axis for X. Then 1 $ is also a
spiraling axis for X$.

Proof. Let # be a trajectory of X spiraling around 1 and take
#$=\&1(#), which is a trajectory of X$. We may suppose that |#|/[z>0]
and |#$|/[t>0]. As \ is a homeomorphism between [t�0] and [z�0],
the set |(#)=\&1(P) consists of a single point. Let us prove that #$ spirals
around 1 $. It is clearly oscillating, since # is so. Thus, we shall finish if we
prove that #$ has all the iterated tangents and TI(#$) is the set of infinitely
near points of 1 $. With the system of coordinates we are using, it suffices
to prove that for any k=1, 2, ..., #$(t) is in the open cone

C$k=[x$2+ y$2<t2k]

for t>>0. Since these cones are algebraic, they project by \ into semi-
analytic sets Ck containing 1 in their interior. Thus, #(t) is in Ck for t>>0
because TI(#) coincides with the sequence of infinitely near points of 1.
So, for any k=1, 2, ..., #$(t) # C$k for t>>0, which implies that TI(#$) exists
and is the sequence of infinitely near points of 1 $, which completes the
proof. K

Note that the converse is also true.

4. RAMIFIED GRADIENTS

Let g be an analytic symmetric bilinear form on M. Given a point P,
denote by MP the field of germs of meromorphic functions at P, that is, the
field of quotients of the ring OP of germs of analytic functions at P. Let 3P

be the OP-module of germs of analytic vector fields. The bilinear operator
gP : 3P_3P � OP induces a symmetric bilinear form g~ : 3� P_3� P � MP , with
3� P=3P �MP . If g~ is non-degenerate, we shall call 9g~ to the natural
isomorphism

9g~ : 3� P � 3� C
P =Hom(3� P , MP)
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induced by g~ . Taking into account that 3� C
P is the MP-vector space of germs

of meromorphic 1-forms at P, we give the following

Definition 4.1. For f # MP , the generalized gradient of f with respect to
g is the meromorphic vector field

{g f =9 &1
g~ (df ).

Consider a non-singular divisor D/M containing P. Let g be as before
and let q�0 be a non-negative integer,

Definition 4.2. The form g is a metric of q-ramified type relative to D
if there is a local coordinate system (x, y, z) at P with D=[z=0] such
that

1. The restriction gN of g~ to the OP -module N generated by the
meromorphic vector fields [���x, ���y and z&q���z] is an OP -bilinear form,
that is, gN(N_N)/OP .

2. The specialization gN(P)= gN �R defines a positive definite
bilinear form on the three-dimensional real vector space N�R.

In these conditions, we shall say that the coordinate system (x, y, z) is
appropriate for g.

Notice that a coordinate change of the form

x$ [ .(x, y)+zq+1.1 , y$ [ �(x, y)+zq+1�1 , z$ [ zu(x, y, z)

respects the lattice N/A3� P and gives another appropriate system. If the
matrix of gN(P) is the identity for the base of N�R corresponding to
[���x, ���y, z&q���z], we say that the coordinate system (x, y, z) is normal
for g. Making coordinate changes as above, we can always get a normal
system; we remark that the curve x= y=0 need not be preserved under
these changes.

Proposition 4.1. Let g be a metric of q-ramified type relative to a
divisor D at P. Consider an appropriate and normal system of coordinates
(x, y, z) and a germ of analytic function f # OP . The meromorphic vector field
X=z2q{g f is in fact analytic. If the curve Y=[x= y=0] is invariant and
non-degenerate for X, then the branch 1=Y & [z>0] is not a twister axis
for X.
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Proof. Let A be the matrix of gN in the basis [���x, ���y, z&q���z].
Notice that A is invertible and, in fact, the coefficients of A&1 belong to OP ,
since A(0) is the identity matrix. Put

zq zq

G=(G ij)=\ zq + A&1 \ zq +1 1

The vector field X=z2q{g f =a �
�x+b �

�y+c �
�z is analytic, for

(a b c)=( fx fy fz) G t,

where subindices indicate partial derivation. From now on, we shall write
h� to indicate the restriction of an analytic function h in M to the curve Y.
The following bounds follow from the fact that A&1(0) is the identity
matrix

&z(G ii)=2q, &z(G ii
x, G ii

y)�2q

&z(G 12)�2q+1, &z(G 12
x , G 12

y )�2q (1)

&z(G i3)�q+1, &z(G i3
x , G i3

y )�q, &z(G33)=0,

where i=1, 2. Let us show that X and 1 satisfy one of the conditions of
Proposition 2.1. Let r be the order of X along the curve Y and let k be the
least integer such that Lk is not radial in the expression

X= :
�

i=0

Lizi+v(x, y, z)
�
�z

+X�

used in Section 2. If k�r, then condition (0) or (1) holds. Thus, assume
k<r. First, we note that the invariant r is equal to &z( f� z). This follows
from the fact that X |Y=z2q{g |Y

f� and that the matrix of g | Y is exactly
(G33) in the basis [z&q���z].

In the expression of X above, one can write the linear part normal to 1:

:
�

i=0

Lizi=(x y)(N+H ) \���x
���y+ ,

where N is the 2_2 matrix

\G 11
x f x+G 12

x f y+G 13
x f z+G13f xz

G 11
y f x+G 12

y f y+G 13
y f z+G 13f yz

G 12
x f x+G 22

x f y+G 23
x f z+G23f xz

G 12
y f x+G 22

y f y+G 23
y f z+G23f yz+
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and H is obtained from the Hessian of f as follows:

H=\G 11

G 12

G 12

G 22+\ f� xx

f� xy

f� xy

f� yy+ .

Notice that this Hessian H can be written H=z2q(� Ai zi)(� Bizi) where
A0 is the identity and Ai , Bi are symmetric matrices. Then, the first non-
radial term appearing in the power series expansion of H is symmetric and
so it has two different real eigenvalues. Thus, we shall finish if we prove
that &z(N )�r, for we are assuming k<r, from which we infer that the first
non-radial term in the linear part of X normal to 1 comes, in fact, from H.

To see that &z(N )�r, take l=min[&z( fx ), &z( fy ), &z( fz )]. From the
bound (1), one sees that &z(N )�q+l. There are two possibilities: if l=
&z( f� z)=r then &z(N )�r. If l<r assume, by symmetry, that l=&z( f� x). As
Y is an invariant curve for X, one must have

a� =G11f x+G12f y+G 13f z=0.

Since &z(G12fy )>&z(G11fx ) then &z(G11f x)=&z(G13f z), whence 2q+l=
&z(G13)+r�q+1+r, from where &z(N )=q+l>r and we are done. K

5. GRADIENTS DO NOT GENERATE TWISTER AXES

Theorem 5.1. Let g be an analytic metric on a three-dimensional
analytic manifold M. Given an analytic function f on M, the gradient vector
field {g f has no non-degenerate twister axes.

Proof. Suppose, on the contrary, that 1 is a twister axis for X at P. Let
(x, y, z) be a coordinate system appropriate for g and normal at P.
Moreover, we can take (x, y, z) such that 1 is tangent to x= y=0 and is
contained in z>0. Let \: M$ � M be an algebraic ramification-rectification
morphism as in Section 3

\(x$, y$, z$)=\x$+_(z$), y$+{(z$),
1

q+1
z$q+1+

such that 1 $=\&1(1)=[x$= y$=0, z$>0]. Let g$=\Cg be the transformed
bilinear form. A computation shows that g$ is a metric of q-ramified type
relative to [z$=0] and (x$, y$, z$) is a coordinate system appropriate and
normal for g$. Let X$={g$(\Cf ). By Proposition 4.1, 1 $ cannot be a twister
axis for z2qX$, in contradiction with Proposition 3.1, since \CX$=X. K
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