Gradient Vector Fields Do Not Generate Twister Dynamics

P. Fortuny and F. Sanz¹

Departamento de Álgebra, Geometría y Topología, Universidad de Valladolid, Prado de la Magdalena s/n, 47008 Valladolid, Spain E-mail: pfortuny@agt.uva.es, fsanz@agt.uva.es

Received August 2, 1999

Thom's Gradient Conjecture states that a solution γ of an analytic gradient vector field X approaching to a singularity P of X has a tangent at P. A stronger version asserts that γ does not meet an analytic hypersurface an infinite number of times (it is non-oscillating). We prove, in dimension 3, that if γ is "infinitely near" an analytic curve Γ not composed of singularities of X, then γ is non-oscillating and, moreover, it does not spiral around Γ in a precise sense. © 2001 Academic Press

Key Words: trajectories of vector fields; gradient conjecture; oscillation; spiraling.

INTRODUCTION

Let $X = \nabla_g f$ be the gradient of an analytic function in \mathbb{R}^n with respect to an analytic Riemannian metric g. In [3], S. Łojasiewicz proved that if γ is a solution of X which remains bounded in a relatively compact set, then γ accumulates at a single point P. Afterwards, R. Thom conjectured (cf. [4]) that γ has a tangent at P. That is to say, the transformation of γ after the blowing-up of \mathbb{R}^n at P accumulates at a single point in the exceptional divisor. This result is proved in a recent manuscript of Kurdyka, Mostowski and Parusinski [2].

In a more general way, R. Moussu has proposed the "strong gradient conjecture": solutions of analytic gradient vector fields are non-oscillating. This means that γ meets each analytic hypersurface not containing it only a finite number of times.

In [1], Cano *et al.* they study the relation between nonoscillation and the existence of "all iterated tangents," that is, the existence of a tangent for the transform of γ after any number of point blow-ups. In an ambient space

¹ Both authors partially supported by The European Commission, TMR Network "Singularidades de Ecuaciones Diferenciales y Foliaciones" ERBF MRXCT 96-0040. The second author thanks the University of Bourgogne for several stays during which this work was developed.

of dimension 3, nonoscillation for γ is equivalent to the following conditions:

- (a) The solution γ has all iterated tangents, and
- (b) There is no "spiraling axis" Γ for γ .

The aim of this paper is to prove property (b) for analytic gradient vector fields when Γ is not a union of stationary points. These axes are called "twister axes," and they give rise to a twister dynamics locally around them, as shown in [1]. To be precise, our main result is the following

THEOREM 5.1. Let g be an analytic metric on a three-dimensional analytic manifold M. Given an analytic function f on M, the gradient vector field $\nabla_{\sigma} f$ has no non-degenerate twister axes.

This paper is structured as follows: in Section 1 we present the notions of spiraling, oscillation, iterated tangents, and twister axis. In Section 2, we establish a necessary condition for a smooth invariant axis Γ not to be a spiraling axis. This condition is given in terms of the linear term of the "normal" component of X with respect to Γ . Then we prove (Section 3) that spiraling axes are preserved by ramifications. This leads in a natural way to the study, made in Section 4, of a generalization of gradient vector fields: those arising from a bilinear form obtained as the ramification of a Riemannian metric. We prove that if $X = \nabla_{\sigma} f$ is an ordinary gradient in M, Γ is a semi-branch and $\rho: M' \to M$ is a ramification with $\rho^{-1}(\Gamma)$ smooth, then this new branch cannot be a spiraling axis for the generalized gradient $X' = \nabla_{\rho*\sigma} \rho^* f$. The essence of this proof is the appearance of the Hessian of $\rho^* f$ in the normal component of X with respect to Γ . The symmetry inherent to the Hessian is the obstruction to the existence of spiraling. Theorem 5.1 is deduced in the last section as a consequence of all these results.

1. PRELIMINARIES

Let X be an analytic vector field on a three-dimensional real analytic manifold M. Let γ be a trajectory of X whose ω -limit set $\omega(\gamma)$ is a single point P. By an *analytic semi-branch at* P, we mean the image of $(0, \varepsilon)$ by a non-constant analytic map $\sigma: (-\varepsilon, \varepsilon) \to M$ with $\sigma(0) = P$. The semibranch Γ is *smooth* (or *non-singular*) at P if $\sigma(-\varepsilon, \varepsilon)$ is a non-singular analytic curve. Suppose Γ is a semi-branch at P and let $\pi: \tilde{M} \to M$ be a sequence of blow-ups of points such that $\pi^{-1}(\Gamma)$ is a smooth semi-branch at a point $\tilde{P} \in \pi^{-1}(P)$. Fix a local coordinate system (x, y, z) at \tilde{P} such that $\pi^{-1}(\Gamma) = \{x = y = 0, z > 0\}$. Let $\tilde{\gamma} = \pi^{-1}(\gamma)$. The definition of spiraling axis for X is introduced in [1]. We give here an equivalent property:

DEFINITION 1.1. The curve γ spirals around Γ (or equivalently, Γ is a spiraling axis for γ) if $\tilde{\gamma}$ admits a parametrization

$$\tilde{\gamma}(t) = (\rho(t)\cos(\varphi(t)), \rho(t)\sin(\varphi(t)), z(t)), \quad t \in (0, \infty),$$

where ρ, φ, z are analytic in t, $\lim(\rho(t)/z(t)^n) = 0$ for all $n \ge 0$, and $\lim_{t \to \infty} (\varphi(t)) = \infty$.

Any spiraling axis is invariant for X (see [1]) and the property is preserved by blowing up P. Moreover, if Γ is non-singular, γ spirals around it and $\eta: M' \to M$ is the blowing-up of M at P with center Γ ; then $\eta^{-1}(\gamma)$ is the whole projective line $\eta^{-1}(P)$.

DEFINITION 1.2. The curve γ is said to have all the iterated tangents if for any sequence of point blow-ups

$$M_n \xrightarrow{\pi_{n-1}} M_{n-1} \xrightarrow{\pi_{n-2}} \cdots \xrightarrow{\pi_1} M_1 \xrightarrow{\pi_0} M_0 = M_0$$

with π_0 centered at *P*, the ω -limit set of $\pi_{n-1}^{-1}(\gamma)$ is a single point. If this is the case, then one defines the sequence $TI(\gamma) = \{P_n\}$ recursively: $P_0 = P$, $P_{i+1} = \omega(\pi_i^{-1}(\gamma_i))$, where π_i is the blowing-up of M_i with center P_i and γ_i is the pull-back of γ by $\pi_{i-1} \circ \cdots \circ \pi_0$.

Notice that if Γ is a spiraling axis for γ , then γ has all the iterated tangents and $TI(\gamma)$ is exactly the sequence of infinitely near points of Γ . We remark also that γ has all the iterated tangents and $TI(\gamma)$ is the sequence of infinitely near points of an analytic branch Γ if and only if for any semi-analytic open set $V \supset \Gamma$, one has $\gamma(t) \in V$ for $t \gg 0$.

DEFINITION 1.3. The trajectory γ is said to *oscillate* at P if there is an analytic surface f = 0 such that $\gamma \neq (f = 0)$ but the set $(f = 0) \cap |\gamma|$ is infinite.

The main result from [1] which we are going to use is the following

PROPOSITION [1]. If the trajectory γ has all the iterated tangents at P and oscillates, then there is an analytic semi-branch Γ which is a spiraling axis for γ .

DEFINITION 1.4. The semi-branch Γ is a *twister axis* for X if there is a positively invariant neighbourhood U of Γ such that for every $Q \in U - \Gamma$, the trajectory of X passing through Q spirals around Γ .

When Γ is non-degenerate (which means that it is not composed of singularities of X), then Γ is a spiraling axis if and only if it is a twister axis [1]. Thus, in order to know if a non-degenerate semi-branch is a twister axis, one need only test the existence of *one* solution spiraling around it.

Let $\pi: \widetilde{M} \to M$ be the blowing-up of M with center P. Denote by $\widetilde{\Gamma}$, $\widetilde{\gamma}$, and \widetilde{X} the transforms of Γ , γ , and X by π . We know (see [1]) that Γ is a spiraling axis for γ , if and only if $\widetilde{\Gamma}$ is a spiraling axis for $\widetilde{\gamma}$.

2. SUFFICIENT CONDITIONS FOR NON-SPIRALING

Let X, M be as above. In this section, Γ will denote a *non-singular* analytic semi-branch at a point P, invariant and non-degenerate for X. Let $r \ge 0$ be the *order of X along* Γ , that is, the algebraic order at the origin of the restriction of X to the analytic curve in M containing Γ . Consider a system of coordinates (x, y, z) in a neighbourhood of P such that $\Gamma \equiv \{x = y = 0, z > 0\}$. In these coordinates, $r = v_z(X(z))$. Write X as follows,

$$X = \sum_{i=0}^{\infty} L_i z^i + v(x, y, z) \frac{\partial}{\partial z} + \tilde{X},$$

where the L_i are linear vector fields in the variables (x, y) and

$$\tilde{X} = a(x, y, z) \frac{\partial}{\partial x} + b(x, y, z) \frac{\partial}{\partial y},$$

with $v_{x, y}(a, b) \ge 2$. Let $k = \min\{i : L_i \text{ is not a radial vector field}\}$. This number k is independent of the chosen coordinate system. As Γ is non-degenerate, then $v(0, 0, z) = z^r u(z)$, with $\alpha = u(0) \neq 0$.

PROPOSITION 2.1. If X and Γ satisfy one of the following conditions:

- (0) $\alpha > 0$,
- (1) $\alpha < 0$ and $k \ge r$,
- (2) $\alpha < 0, k \leq r 1$, and L_k has two different real eigenvalues,

then Γ is not a twister axis for X.

Proof. Each of those conditions is stable under blowing-up of P. After making 2r blow-ups we can write X as follows, up to multiplication by an analytic unit

$$X = \sum_{i=0}^{r-1} L_i z^i + z^r \left(\alpha \frac{\partial}{\partial z} + Z \right),$$

where L_i are linear vector fields in (x, y), and Z is a vector field with $Z(z) \equiv 0$ and $v_{x, y}(Z(x), Z(y)) \ge 1$. If condition (0) holds, then Γ is not positively invariant. Assume that either (1) or (2) holds. Let γ be a trajectory of X such that $\omega(\gamma) = P$ and suppose, in order to obtain a contradiction, that γ spirals around Γ . By the expression of X above, there is a parametrization $\gamma(z) = (x(z), y(z), z)$ for z > 0 (not necessarily analytic at z = 0). Let η be the blowing-up of M along the z-axis, with local equations x = x', y = x'y', z = z'. The curve $\gamma' = \eta^{-1}(\gamma)$ admits a parametrization $\gamma'(z') = (x'(z'), y'(z'), z')$. If condition (1) holds, then we have

$$\frac{d}{dz'}(y'(z')) = A(x'(z'), y'(z'), z'),$$

where *A* is an analytic function. As γ' accumulates along the whole $\eta^{-1}(0)$, there is a z'_0 such that $1 > z'_0 > 0$ and $|y'(z'_0)| < 1$. Then $|\frac{d}{dz'}(y'(z'))|$ is bounded for $0 < z' < z'_0$, which implies that |y'(z')| is also bounded near z' = 0, contradicting the accumulation of γ' along $\eta^{-1}(0)$. If condition (2) holds, then the transform of *X* by η is

$$X = \lambda(z') x' \frac{\partial}{\partial x'} + \mu z'^{k} y' \frac{\partial}{\partial y'} + z'^{k+1} Y,$$

where $k \in \mathbb{Z}_+$, λ is a polynomial in z' of degree at most k, μ is a non-zero constant, and Y is analytic. This gives

$$\frac{d}{dz'}(y'(z')) = \frac{1}{\alpha z'^{r-k}}(\mu y'(z') + z'B(x'(z'), y'(z'), z')),$$

B being an analytic function. From this equation we infer that near the points $P_1 = (0, 1, 0)$, $P_2 = (0, -1, 0)$, $\frac{d}{dz'}(y'(z'))$ has opposite signs for z' positive. This contradicts again the accumulation of y'(z) along the whole real line.

3. RAMIFICATIONS

Let Γ be a (not necessarily smooth) semi-branch at a point $P \in M$. Take local analytic coordinates (x, y, z) at P such that $\Gamma \subset \{z > 0\}$. We consider the ramification-rectification morphism

$$\rho: M' \to M$$
$$(x', y', t) \mapsto (x, y, z) = (x' + \alpha(t), y' + \beta(t), t^q),$$

where $(\alpha(t), \beta(t), t^q)$ is a Puiseux parametrization of Γ for t > 0. Denote $\Gamma' = \rho^{-1}(\Gamma)$. We shall assume that ρ is an algebraic morphism, which can be accomplished after an analytic coordinate change in M (see [5]).

Given an analytic vector field X in M, let us consider the analytic vector field X' in M' such that $\rho_{\star}(X') = zX$. Notice that Γ is a spiraling axis for X if and only if it is so for zX.

PROPOSITION 3.1. Suppose Γ is a spiraling axis for X. Then Γ' is also a spiraling axis for X'.

Proof. Let γ be a trajectory of X spiraling around Γ and take $\gamma' = \rho^{-1}(\gamma)$, which is a trajectory of X'. We may suppose that $|\gamma| \subset \{z > 0\}$ and $|\gamma'| \subset \{t > 0\}$. As ρ is a homeomorphism between $\{t \ge 0\}$ and $\{z \ge 0\}$, the set $\omega(\gamma) = \rho^{-1}(P)$ consists of a single point. Let us prove that γ' spirals around Γ' . It is clearly oscillating, since γ is so. Thus, we shall finish if we prove that γ' has all the iterated tangents and $TI(\gamma')$ is the set of infinitely near points of Γ' . With the system of coordinates we are using, it suffices to prove that for any $k = 1, 2, ..., \gamma'(t)$ is in the open cone

$$C'_k = \{ x'^2 + y'^2 < t^{2k} \}$$

for $t \gg 0$. Since these cones are algebraic, they project by ρ into semianalytic sets C_k containing Γ in their interior. Thus, $\gamma(t)$ is in C_k for $t \gg 0$ because $TI(\gamma)$ coincides with the sequence of infinitely near points of Γ . So, for any $k = 1, 2, ..., \gamma'(t) \in C'_k$ for $t \gg 0$, which implies that $TI(\gamma')$ exists and is the sequence of infinitely near points of Γ' , which completes the proof.

Note that the converse is also true.

4. RAMIFIED GRADIENTS

Let g be an analytic symmetric bilinear form on M. Given a point P, denote by \mathcal{M}_P the field of germs of meromorphic functions at P, that is, the field of quotients of the ring \mathcal{O}_P of germs of analytic functions at P. Let \mathcal{O}_P be the \mathcal{O}_P -module of germs of analytic vector fields. The bilinear operator $g_P: \mathcal{O}_P \times \mathcal{O}_P \to \mathcal{O}_P$ induces a symmetric bilinear form $\tilde{g}: \tilde{\mathcal{O}}_P \times \tilde{\mathcal{O}}_P \to \mathcal{M}_P$, with $\tilde{\mathcal{O}}_P = \mathcal{O}_P \otimes \mathcal{M}_P$. If \tilde{g} is non-degenerate, we shall call $\Psi_{\tilde{g}}$ to the natural isomorphism

$$\Psi_{\tilde{g}}: \tilde{\Theta}_P \to \tilde{\Theta}_P^{\star} = \operatorname{Hom}(\tilde{\Theta}_P, \mathcal{M}_P)$$

induced by \tilde{g} . Taking into account that $\tilde{\Theta}_{P}^{\star}$ is the \mathcal{M}_{P} -vector space of germs of meromorphic 1-forms at P, we give the following

DEFINITION 4.1. For $f \in \mathcal{M}_P$, the generalized gradient of f with respect to g is the meromorphic vector field

$$\nabla_{\mathbf{g}} f = \Psi_{\tilde{\mathbf{\sigma}}}^{-1}(df).$$

Consider a non-singular divisor $D \subset M$ containing P. Let g be as before and let $q \ge 0$ be a non-negative integer,

DEFINITION 4.2. The form g is a metric of q-ramified type relative to D if there is a local coordinate system (x, y, z) at P with $D = \{z = 0\}$ such that

1. The restriction $g_{\mathcal{N}}$ of \tilde{g} to the \mathcal{O}_P -module \mathcal{N} generated by the meromorphic vector fields $\{\partial/\partial x, \partial/\partial y \text{ and } z^{-q}\partial/\partial z\}$ is an \mathcal{O}_P -bilinear form, that is, $g_{\mathcal{N}}(\mathcal{N} \times \mathcal{N}) \subset \mathcal{O}_P$.

2. The specialization $g_{\mathcal{N}}(P) = g_{\mathcal{N}} \otimes \mathbb{R}$ defines a positive definite bilinear form on the three-dimensional real vector space $\mathcal{N} \otimes \mathbb{R}$.

In these conditions, we shall say that the coordinate system (x, y, z) is *appropriate* for g.

Notice that a coordinate change of the form

$$x' \mapsto \varphi(x, y) + z^{q+1}\varphi_1, \qquad y' \mapsto \psi(x, y) + z^{q+1}\psi_1, \qquad z' \mapsto zu(x, y, z)$$

respects the lattice $\mathcal{N} \subset A\tilde{\Theta}_P$ and gives another appropriate system. If the matrix of $g_{\mathcal{N}}(P)$ is the identity for the base of $\mathcal{N} \otimes \mathbb{R}$ corresponding to $\{\partial/\partial x, \partial/\partial y, z^{-q}\partial/\partial z\}$, we say that the coordinate system (x, y, z) is *normal* for *g*. Making coordinate changes as above, we can always get a normal system; we remark that the curve x = y = 0 need not be preserved under these changes.

PROPOSITION 4.1. Let g be a metric of q-ramified type relative to a divisor D at P. Consider an appropriate and normal system of coordinates (x, y, z) and a germ of analytic function $f \in \mathcal{O}_P$. The meromorphic vector field $X = z^{2q} \nabla_g f$ is in fact analytic. If the curve $Y = \{x = y = 0\}$ is invariant and non-degenerate for X, then the branch $\Gamma = Y \cap \{z > 0\}$ is not a twister axis for X.

Proof. Let A be the matrix of $g_{\mathcal{N}}$ in the basis $\{\partial/\partial x, \partial/\partial y, z^{-q}\partial/\partial z\}$. Notice that A is invertible and, in fact, the coefficients of A^{-1} belong to \mathcal{O}_P , since A(0) is the identity matrix. Put

$$G = (G^{ij}) = \begin{pmatrix} z^{q} & & \\ & z^{q} & \\ & & 1 \end{pmatrix} A^{-1} \begin{pmatrix} z^{q} & & \\ & z^{q} & \\ & & 1 \end{pmatrix}$$

The vector field $X = z^{2q} \nabla_g f = a \frac{\partial}{\partial x} + b \frac{\partial}{\partial y} + c \frac{\partial}{\partial z}$ is analytic, for

$$(a \quad b \quad c) = (f_x \quad f_y \quad f_z) \ G^t,$$

where subindices indicate partial derivation. From now on, we shall write \bar{h} to indicate the restriction of an analytic function h in M to the curve Y. The following bounds follow from the fact that $A^{-1}(0)$ is the identity matrix

$$\begin{aligned} v_{z}(\overline{G^{ii}}) &= 2q, \, v_{z}(\overline{G^{ii}_{x}}, \overline{G^{ii}_{y}}) \geqslant 2q \\ v_{z}(\overline{G^{12}}) &\geq 2q+1, \, v_{z}(\overline{G^{12}_{x}}, \overline{G^{12}_{y}}) \geqslant 2q \\ v_{z}(\overline{G^{i3}}) &\geq q+1, \, v_{z}(\overline{G^{i3}_{x}}, \overline{G^{i3}_{y}}) \geqslant q, \, v_{z}(\overline{G^{33}}) = 0, \end{aligned}$$

$$(1)$$

where i = 1, 2. Let us show that X and Γ satisfy one of the conditions of Proposition 2.1. Let r be the order of X along the curve Y and let k be the least integer such that L_k is not radial in the expression

$$X = \sum_{i=0}^{\infty} L_i z^i + v(x, y, z) \frac{\partial}{\partial z} + \tilde{X}$$

used in Section 2. If $k \ge r$, then condition (0) or (1) holds. Thus, assume k < r. First, we note that the invariant r is equal to $v_z(\bar{f}_z)$. This follows from the fact that $X|_Y = z^{2q} \nabla_{g|_Y} \bar{f}$ and that the matrix of $g|_Y$ is exactly (\bar{G}^{33}) in the basis $\{z^{-q}\partial/\partial z\}$.

In the expression of X above, one can write the linear part normal to Γ :

$$\sum_{i=0}^{\infty} L_i z^i = (x \ y)(N+H) \begin{pmatrix} \partial/\partial x \\ \partial/\partial y \end{pmatrix},$$

where N is the 2×2 matrix

$$\left(\frac{\overline{G_{x}^{11}f}_{x} + \overline{G_{x}^{12}f}_{y} + \overline{G_{y}^{13}f}_{z} + \overline{G_{y}^{13}f}_{z} + \overline{G_{y}^{13}f}_{z}}{\overline{G_{y}^{11}f}_{x} + \overline{G_{y}^{12}f}_{y} + \overline{G_{y}^{12}f}_{y} + \overline{G_{y}^{23}f}_{z} + \overline{G_{y}^{23}f}_{zz} + \overline{G_{y}^{23}f}_{z} + \overline{G_{y}^{23}f}_{z} + \overline{G_{y}^{23}f}_{zz} + \overline{G_{y}^{23}f}_{z} + \overline{G_{y}^{23}f}_{z} + \overline{G_{y}^{23}f}_{z} + \overline{G_{y}^{23}f}_{zz} + \overline{G_{y}^{$$

and H is obtained from the Hessian of f as follows:

$$H = \begin{pmatrix} G^{11} & G^{12} \\ \overline{G^{12}} & \overline{G^{22}} \end{pmatrix} \begin{pmatrix} \bar{f}_{xx} & \bar{f}_{xy} \\ \bar{f}_{xy} & \bar{f}_{yy} \end{pmatrix}.$$

Notice that this Hessian *H* can be written $H = z^{2q}(\sum A_i z^i)(\sum B_i z^i)$ where A_0 is the identity and A_i , B_i are symmetric matrices. Then, the first non-radial term appearing in the power series expansion of *H* is symmetric and so it has two different real eigenvalues. Thus, we shall finish if we prove that $v_z(N) \ge r$, for we are assuming k < r, from which we infer that the first non-radial term in the linear part of *X* normal to Γ comes, in fact, from *H*.

To see that $v_z(N) \ge r$, take $l = \min\{v_z(\overline{f_x}), v_z(\overline{f_y}), v_z(\overline{f_z})\}$. From the bound (1), one sees that $v_z(N) \ge q + l$. There are two possibilities: if $l = v_z(\overline{f_z}) = r$ then $v_z(N) \ge r$. If l < r assume, by symmetry, that $l = v_z(\overline{f_x})$. As Y is an invariant curve for X, one must have

$$\bar{a} = \overline{G^{11}f}_x + \overline{G^{12}f}_y + \overline{G^{13}f}_z = 0.$$

Since $v_z(\overline{G^{12}f_y}) > v_z(\overline{G^{11}f_x})$ then $v_z(\overline{G^{11}f_x}) = v_z(\overline{G^{13}f_z})$, whence $2q + l = v_z(\overline{G^{13}}) + r \ge q + 1 + r$, from where $v_z(N) = q + l > r$ and we are done.

5. GRADIENTS DO NOT GENERATE TWISTER AXES

THEOREM 5.1. Let g be an analytic metric on a three-dimensional analytic manifold M. Given an analytic function f on M, the gradient vector field $\nabla_{\alpha} f$ has no non-degenerate twister axes.

Proof. Suppose, on the contrary, that Γ is a twister axis for X at P. Let (x, y, z) be a coordinate system appropriate for g and normal at P. Moreover, we can take (x, y, z) such that Γ is tangent to x = y = 0 and is contained in z > 0. Let $\rho: M' \to M$ be an algebraic ramification-rectification morphism as in Section 3

$$\rho(x', y', z') = \left(x' + \sigma(z'), y' + \tau(z'), \frac{1}{q+1} z'^{q+1}\right)$$

such that $\Gamma' = \rho^{-1}(\Gamma) = \{x' = y' = 0, z' > 0\}$. Let $g' = \rho^* g$ be the transformed bilinear form. A computation shows that g' is a metric of q-ramified type relative to $\{z' = 0\}$ and (x', y', z') is a coordinate system appropriate and normal for g'. Let $X' = \nabla_{g'}(\rho^* f)$. By Proposition 4.1, Γ' cannot be a twister axis for $z^{2q}X'$, in contradiction with Proposition 3.1, since $\rho_* X' = X$.

FORTUNY AND SANZ

REFERENCES

- F. Cano, R. Moussu, and F. Sanz, Oscillation, spiralement, tourbillonement, *Comment. Math. Helv.* 75 (2000), 284–318.
- 2. K. Kurdyka, T. Mostowski, and A. Parusinski, Proof of the gradient conjecture of R. Thom, *Ann. of Math.*, in press.
- S. Łojasiewicz, Une propriété topologique des sous-ensembles analytiques réels, in "Colloq. Intern. du C.N.R.S. Les equations aux dérivées partielles," 1962.
- 4. R. Thom, Gradients of analytic functions, in "Proc. of the 7th National Math. Conf.," 1977.
- O. Zariski, "Le problème des modules pour les branches planes," École Polytechnique, Paris, 1973. Rédigé par François Kmety et Michel Merle.