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descanso para conseguir los medios necesarios que me han permitido optar a un buen futuro
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este reto de superación durante 6 años.
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Abstract

Recent unpredictable world economy challenges, such as the coronavirus pandemic and global
energy crisis, have impacted the manufacturing industry, forcing production plants to reduce
costs and improve productivity and sustainability. The demand for disruptive solutions and spe-
cialised workers under the Industry 4.0 paradigm has become an increasingly important digital
priority for the manufacturing industry, which pushes technological upgrades towards building
new cyber-physical ecosystems and supporting the skills improvement of the workforce. De-
spite the rapid adoption of next-generation Information Technologies, the accomplishment of
this cyber-physical convergence remains an open issue in traditional manufacturing. In this way,
the evolution of digital twins leveraged by progressive cyber-physical convergence has provided
smart manufacturing systems with knowledge-generation ecosystems based on new models of
collaboration between the workforce and industrial processes. However, industry will need to
face the challenges of building and supporting new technical and digital infrastructures, while
workers’ skills development eventually manages to include the increased complexity of industrial
processes. Similarly, academia faces the challenges of providing technological research programs
and experts in line with complex manufacturing life cycle processes. From the point of view
falling between industry and academia, this PhD thesis is intended to reach a better under-
standing of human-machine learning opportunities offered by emerging Industry 4.0 digital twin
ecosystems in manufacturing. To overcome knowledge acquisition barriers associated with tra-
ditional manufacturing, the proposed research activities have contributed to a set of incremental
results obtained in industrial environments, which are summarised as follows: (i) understanding
of the current enablers and challenges found in the digital twin cyber-physical convergence con-
cerning human–machine collaborative ecosystems; (ii) original definition of Digital Twin Learn-
ing Ecosystem (DTLE) and presentation of its three-layer DTLE conceptual architecture; (iii)
application of two case studies in traditional manufacturing to address both digital retrofitting
and human-machine integration, without interfering in working conditions; (iv) development of
a three-tier digital twin-based methodology and the knowledge modelling process focused on
a non-intrusive cyber-physical twinned interaction between skilled workers and legacy systems,
for building an adaptive DTLE in manufacturing; and (v) implementation and replication of a
DTLE in two different traditional manufacturing Small and Medium-sized Enterprises (SMEs)
under the actual human-machine work conditions.
The results derived from this research culminated in a compendium of three publications. Based
on these findings, the research priorities presented in this PhD thesis are considered a recognised
basis in industry, which should help digital twins with the objective of progressive integration
as a future learning ecosystem.





Resumen

Recientes e impredecibles desaf́ıos para la economı́a mundial, entre los que se encuentran la pan-
demia de coronavirus y una crisis energética global, han impactado directamente en la industria
de fabricación, exigiendo a las plantas productivas una reducción de costes a la vez que se mejora
la productividad y la sostenibilidad. La demanda de soluciones disruptivas y de perfiles especial-
izados, bajo el nuevo paradigma de la Industria 4.0, se ha convertido en una creciente prioridad
para la digitalización de la industria manufacturera, potenciando la modernización tecnológica
como base para la construcción de nuevos ecosistemas ciberf́ısicos y la mejora de las competen-
cias de los trabajadores. Pese a la rápida adopción de las Tecnoloǵıas de la Información de nueva
generación, la ejecución de esa convergencia ciberf́ısica es todav́ıa un tema no resuelto en la fabri-
cación tradicional. De esta forma, la evolución del gemelo digital, impulsada por una progresiva
convergencia ciberf́ısica, ha proporcionado ecosistemas de generación de conocimiento a los sis-
temas de fabricación inteligentes a partir de nuevos modelos de colaboración entre el conjunto
de los trabajadores y los procesos industriales. Pero la industria se encuentra en la necesidad
de enfrentarse a los desaf́ıos que supone construir y soportar nuevas infraestructuras digitales
y técnicas al mismo tiempo que el desarrollo de las capacidades de los trabajadores se adapta
para dar respuesta a la creciente complejidad de los procesos industriales. De la misma man-
era, el mundo académico se enfrenta a los desaf́ıos de proporcionar programas de investigación
tecnológica y expertos formados en el conocimiento del ciclo de vida de procesos de fabricación
complejos. Desde un punto de vista a caballo entre la industria y el mundo académico, esta
tesis doctoral pretende conseguir una mejor comprensión de las oportunidades de aprendizaje
hombre-máquina que ofrecen los ecosistemas de gemelos digitales emergentes de la Industria
4.0 en la fabricación. Para superar las barreras de adquisición de conocimiento asociadas a la
fabricación tradicional, nuestro trabajo contribuye con un conjunto de resultados obtenidos en
entornos industriales de forma progresiva, que se resumen a continuación: (i) comprensión de los
habilitadores y retos actuales encontrados en la convergencia ciberf́ısica de gemelos digitales rel-
ativos a los ecosistemas de colaboración hombre-máquina; (ii) definición original de Digital Twin
Learning Ecosystem (DTLE) y presentación de su arquitectura conceptual de tres capas; (iii)
aplicación de dos estudios de investigación en entornos de fabricación tradicional para abordar
tanto la modernización digital como la integración hombre-máquina, sin interferir en las condi-
ciones de trabajo; (iv) desarrollo de una metodoloǵıa basada en un gemelo digital de tres niveles
y el proceso de generación de conocimiento centrado en una interacción ciberf́ısica, que aúna
trabajadores expertos y sistemas heredados, para la construcción de un DTLE adaptativo en la
industria de fabricación; y (v) implementación y reproducción de un DTLE en dos pequeñas y
medianas (PYMES) diferentes de fabricación tradicional atendiendo a las condiciones existentes
de trabajo hombre-máquina.
Los resultados obtenidos durante la investigación han dado lugar a un compendio de tres pub-
licaciones. Sobre la base de estos resultados, las prioridades de investigación presentadas en
esta tesis doctoral se consideran reconocidas en la industria y, como tales, debeŕıan ayudar a
cumplir el objetivo de la progresiva integración del gemelo digital hacia un futuro ecosistema de
conocimiento.
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Chapter 1

Introduction

1.1 Motivation

Digital twins, as one of the most promising Industry 4.0 enabling-technologies, are called to

accomplish the integration of physical and digital worlds in manufacturing (Liu et al. 2021).

In this regard, digital twins have the advantage of representing an abstraction of the reality

of manufacturing systems, allowing for multiple interaction levels between processes, systems

and workers within the virtual space (Semeraro et al. 2021). Therefore, digital twins build and

connect new research environments, driving human-machine learning.

Figure 1.1: Conceptual Ideal for PLM (Grieves 2003)
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However, the concept of digital twin is not new in manufacturing. Originally, Grieves

(Grieves 2003) conceived digital twin on a conceptual level linked to Product Lifecycle Man-

agement (PLM). He defined a conceptual model containing three main parts, as depicted in

Figure 1.1: (i) Real Space (physical products), (ii) Virtual Space (virtual products), and (iii)

bidirectional data flow links between them, including virtual sub-spaces. Grieves (Grieves 2014)

extended his own digital twin concept in manufacturing through Virtual Factory Replication,

where the physical product and virtual product can be viewed and compared simultaneously in

a closed loop. Moreover, in (Grieves and Vickers 2017) this definition was completed to rely on

when referring to the digital twin and its different manifestations.

Nevertheless, during the last decade, the digital twin role has been improved with differ-

ent approaches and definitions (Negri, Fumagalli, and Macchi 2017) and has focused on the

manufacturing domain, considering that digital twin is gradually stepping out of its infancy

(Liu et al. 2021). Consequently, the evolution of digital twins, leveraged by progressive cyber-

physical convergence (Tao et al. 2019), has provided a manufacturing industry with connected

ecosystems that are growing in factories enhanced by new models of digital collaboration and

human-machine interaction (Cimini et al. 2022), as shown in Figure 1.2.

Figure 1.2: Human-machine interaction based on a Cyber-Physical System schema

Throughout the connection process, required to realise the potential of Industry 4.0, the

paradigm shift advanced by Kagermann et al. (Kagermann, Wahlster, and Helbig 2013) in

human-technology and human-environment interaction is tacking place in manufacturing plants

by gathering data operations in real time:
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“In the future, businesses will establish global networks that incorporate their machinery, ware-

housing systems and production facilities in the shape of Cyber-Physical Systems (CPS). In the

manufacturing environment, these CPS comprise smart machines, storage systems and produc-

tion facilities capable of autonomously exchanging information, triggering actions and controlling

each other independently. This facilitates fundamental improvements to the industrial processes

involved in manufacturing, engineering, material usage and supply chain and life cycle manage-

ment”.

Despite the significant impact of the rapid adoption of next-generation Information Tech-

nologies in the manufacturing industry (Raptis, Passarella, and Conti 2019), the achievement

of cyber-physical convergence in manufacturing Small and Medium-sized Enterprises (SMEs)

remains an unresolved issue (Mittal et al. 2018; Doyle and Cosgrove 2019; Li 2022). The inte-

gration of digital twin technology in production is still in its early stages, as it requires overcoming

traditional machinery and specific technological barriers (Cimino, Negri, and Fumagalli 2019).

Thus, it is undeniable that the traditional industry must confront the challenges of supporting

legacy manufacturing systems and constructing new digital infrastructure while ensuring the

skill development of workers to handle the growing complexity of industrial processes (Horváth

and Szabó 2019). Under these considerations:

(i) The traditional manufacturing industry has relied for decades on skilled work-

ers for supervisory control of systems and processes. On this basis, human knowledge is

indispensable as part of the digital twin learning process to maintain and improve manufacturing

systems, while the causes of the problems which may occur are identified and solved to prevent

them in the future.

(ii) The recent COVID-19 outbreak impact on the world economy has joined

business needs, forcing manufacturing plants to adapt to changes in a predictive

way to guarantee the performance and continuity of industrial production in real-time. In this

context, very few SMEs with traditional equipment have anticipated the latest human-machine

technological upgrades impeded by technical and economic barriers.

With regard to the first challenge, the increasing business requirements motivated by en-

hancing factors over the entire manufacturing life-cycle, such as the maintainability of the whole

production process, systems, and services, make highly skilled workers remain necessary for

transforming legacy manufacturing systems into smart manufacturing systems (Burke et al.

2017). Nevertheless, the traditional manufacturing workforce requires upgrading to the skills

3
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needed to cope with upcoming digital technologies (Deloitte 2018). Furthermore, this is an

important consideration when discussing lifelong learning and training in industry Li (2022),

which are increasingly dependent on experienced workers and digital changes to improve work-

ing methods (Toivonen et al. 2018). In practice, the digital twin of the manufacturing system

(Graessler and Poehler 2018b) can tackle the challenge of providing industrial workers with a

deeper understanding and skills development, being a decision-making solution underpinned by

real-time communication between humans, systems, and processes (Zhong et al. 2017). Thus,

both the interaction of workers and the integration of digital information with the real environ-

ment provide the plant ecosystem with cyber–physical connections and digital twin data flows

towards Human-in-the-Loop CPPS (Cimini et al. 2020), as shown in Figure 1.3.

Figure 1.3: Milling machine‘s worker provided with personalised digital twin support for
training in maintenance tasks (Fundación Cidaut)

In this context, the potential of digital twins and their real-time cooperation between ma-

chines and human resources offer continuous learning opportunities to clear away obstacles in

technological environments (Berisha-Gawlowski, Caruso, and Harteis 2021).

Regarding the second challenge, smart monitoring (Zhong et al. 2017) and new human-

machine collaborative maintenance models add value to the improvement of manufacturing

processes (Albano et al. 2018; Fantini, Pinzone, and Taisch 2020). However, the adoption of

collaborative ecosystems implicitly requires a digital integration, connecting knowledge with

management tools to benefit from predictive maintenance technologies (Baglee et al. 2017; Zonta

et al. 2020). Thus, the progress that still needs to be made in SMEs for the successful and timely

reimplementation of Industry 4.0 concepts has barriers to overcome, such as interoperability, vir-

tualization, decentralization, real-time capability, service orientation and modularity (Hermann,
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Pentek, and Otto 2015). Furthermore, the integration of advanced Industry 4.0 strategies in

manufacturing SMEs to monitor and enhance the actual condition of an asset, such as predic-

tive maintenance and condition monitoring techniques (Albano et al. 2018; Baglee et al. 2017)

is not always directly possible. It is common to find a lack of information connectivity models

inherited from older manufacturing systems (Chesworth 2018). Similarly, (Cimino, Negri, and

Fumagalli 2019) considers that digital twin in production environments faces many common

scenarios where manufacturing systems are equipped with traditional machinery. This legacy

approach means that digital twin services are limited without a bidirectional connection to in-

terchange information between the virtual space and its physical counterpart. Conversely, the

concept of retrofitting provides manufacturing with opportunities to connect traditional ma-

chines by applying Industry 4.0 key enabling technologies (Wan, Cai, and Zhou 2015; Lins and

Oliveira 2020). The retrofitting process opens up a legacy method for upgrading machines with

the introduction of new digital features based on infrastructure and communication at the shop

floor (Orellana and Torres 2019), while tailoring such assets by using protocols (Contreras, Cano,

and Garćia 2018), electronic data capture systems and new HMI control applications (Quatrano

et al. 2017; Ayani, Ganebäck, and Ng 2018). In the case of SMEs, such adaptive methodologies

based on hardware and software provide a more feasible alternative to include updated features

in legacy machines, as shown in Figure 1.4.

Figure 1.4: Human-machine integration based on hardware and software interfaces on a
retrofitted legacy milling machine (Fundación Cidaut)

Due to the aforementioned challenges for workers and systems posed by Industry 4.0 in

traditional manufacturing environments, this PhD thesis investigates a non-intrusive and adap-

tive twinned interaction between skilled workers and legacy systems for manufacturing SMEs.
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Digital twins are expected to be a decision-making solution to provide manufacturing workers

with a deeper understanding and skills development (Kokkonen et al. 2023). However, despite

the fact that the advent of Industry 4.0 having provided SMEs with a new digital transforma-

tion movement (Han and Trimi 2022), it is not clear in the industry what features a digital

twin should have or how it should work in different ecosystems. Both academia and industry

are facing real problems in providing research programs, technological solutions and experts, in

line with the predictive and complex requirements of newly evolving industrial processes (Onaji

et al. 2022). This is the main reason why all research efforts have been focused on reviewing

and understanding the implementation of an adaptive knowledge management process, which

includes the cyber-physical convergence of both retrofitted legacy production systems and skilled

workers. Thus, this convergence is considered the first step towards the building process of a

connected Digital Twin Learning Ecosystem regardless of the level of digitisation.

1.2 Objectives

The motivation and research context outlined in the previous section determined the objectives

of this PhD thesis. Although both investment in economic or technical resources and resistance

to change can be obstacles to innovation in SMEs, the proposed hypothesis that introduces a non-

intrusive and adaptive Digital Twin Learning Ecosystem in manufacturing is aimed at achieving

a reasonable trade-off between workers and machines in traditional environments. As such, it

explores diverse ways to cope with upcoming digital technologies and the required workers’ skills

at the shop floor, while closing to the minimum the lack of confidence of the workforce on them.

Given this hypothesis, the global objective can be summarised as follows:

The integration of an adaptive human-machine Digital Twin Learning Ecosystem

(DTLE) in a traditional manufacturing environment to facilitate the development

of predictive models in a non-intrusive way, regardless of the level of digitisation.

From a point of view falling between industry and academia, the proposed concept of DTLE

is intended to support a holistic approach to the manufacturing environment based on an adap-

tive behaviour management of systems, workers and processes, regardless of the level of digitisa-

tion. Therefore, as shown in the thesis schema depicted in Figure 1.5, three partial and specific

objectives are also defined below to attain the aforementioned global objective:
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Integration of an adaptive human-machine Digital Twin Learning Ecosystem (DTLE) in a traditional
manufacturing environment for the development of predictive models in a non-intrusive way regardless of
the level of digitization

Two case studies applied in 
traditional manufacturing to 
deploy both digital retrofitting 
and human-machine integration 
without interfering with 
working conditions, updating 
workers and industrial systems 
collaboratively with augmented 
digital strategies and predictive 
models to confront non-intrusive 
challenges in SMEs

CONTEXT

GLOBAL OBJECTIVE

CONTRIBUTIONS

EVALUATION

Traditional SMEs face a 
low adoption rate of  
Industry 4.0 enabling 
technologies and digital 
maturity models 

PO2: To analyse and implement 
human-machine tools 
and integration strategies for 
non-intrusive management of 
industrial knowledge in 
traditional manufacturing 
environments such as SMEs

PO1: To review and define 
the specific requirements of a 
DTLE in manufacturing to 
support new models of 
adaptive human-machine 
collaboration in a 
bidirectional approach

Review of the enablers and 
challenges of a connected DTLE 
in manufacturing providing an 
original definition and 
conceptual layered architecture 
to reach a better understanding 
of learning opportunities offered 
by both emerging Industry 4.0 
connected systems and the 
empowerment of workforce skills 
and competencies

A three-tier digital twin-based 
methodology and knowledge 
modelling process focused on a non-
intrusive twinned interaction 
between skilled workers and legacy 
systems, supporting the 
implementation of an adaptive 
DTLE in two different 
manufacturing SMEs to improve 
both maintenance  strategies and 
traditional manufacturing processes 

Implementation of non-intrusive cyber-
physical strategies for the reduction of 
SMEs’ industrial maintenance 
investment in two already existing 
traditional manufacturing scenarios by 
the retrofitting of older systems 
simplifying the commissioning of 
condition monitoring and empowering 
workers through learning models. Both 
case studies are supported by the 
knowledge of experienced operators.

Assessment of DLTE implementation and 
replicability of the methodology in SMEs by 
building an interconnected human-machine 
knowledge generation infrastructure that 
models the physical values monitored from 
diverse retrofitted manufacturing systems by 
applying a rapid and flexible semi-supervised 
learning method while receiving the feedback 
of the workers at different manufacturing 
approaches in the SME sector regardless of 
the level of digitization

Manufacturing paradigm 
shift in collaborative 
models between the 
workforce and industrial 
processes

Industry 4.0 Digital Twin as 
an adaptive and predictive 
cyber-physical learning 
ecosystem for 
manufacturing

 The digital twin of the manufacturing system is a decision-making solution that provides industrial workers 
with cyber–physical connections, learning opportunities and skills development

 Adaptive methodologies based on hardware and software retrofitting provide a more feasible alternative 
to include human-machine collaborative models in traditional manufacturing

PARTIAL OBJECTIVES
PO3: To Overcome the knowledge barriers 
associated with older manufacturing
systems in SMEs by implementing a DT 
methodology to build an interconnected 
learning infrastructure to improve both 
maintenance strategies and traditional 
manufacturing processes

Use of augmented 
procedures for adaptive 
digital learning applied 
to the human-machine 
interaction during 
manufacturing processes, 
laying the foundation for 
digital twin-based 
methodologies

Figure 1.5: General overview of the context, goal, objectives, contributions and evaluation of
the thesis
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Introduction

1. To review and define the specific requirements of a DTLE in manufacturing,

supporting new models of adaptive human-machine collaboration using a bidi-

rectional approach.

This objective addresses knowledge-generation strategies based on new cyber-physical

models of collaboration between the workforce and industrial processes. In this way, some

of the main outputs explored concerning physical-digital learning are aligned with worker

training programs oriented towards required digital skills. As a result, the objective in-

cludes three different phases:

• Reviewing Industry 4.0 driven applications of digital twins, which offer human–machine

cooperation opportunities in smart manufacturing ecosystems from both academia

and industry.

• Understanding emerging Digital Twin Learning Ecosystems, focusing the research

topic on both theoretical virtual factories and real collaborative manufacturing ecosys-

tems connected.

• Reviewing the current enablers, challenges and research priorities in developing In-

dustry 4.0 Digital Twin Learning Ecosystems.

2. To analyse and implement human-machine tools as well as integration strate-

gies that facilitate and support a non-intrusive management of industrial knowl-

edge in traditional manufacturing environments, such as SMEs.

This objective considers the background for the advanced maintenance of old manufactur-

ing machines and explores the evolution of non-intrusive convergent retrofitting technology

applied in manufacturing. The approach aims to implement a human–machine Industry

4.0 integration, updating workers and industrial systems with digital strategies. In this

way, it also facilitates traditional environments to interact with and benefit from predictive

maintenance technologies based on sustainable and collaborative human-machine models.

3. To overcome the knowledge barriers associated with old manufacturing sys-

tems in SMEs by implementing a digital twin methodology and building an

interconnected learning infrastructure to improve both maintenance strategies

and traditional manufacturing processes.

This objective aims to help SMEs build their own interconnected learning infrastructure

at different manufacturing levels as a basis for the implementation of an adaptive Digi-

tal Twin Learning Ecosystem. For this purpose, it pursues a non-intrusive and tailored
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twinned interaction between skilled workers and legacy systems. It considers a knowl-

edge modelling process based on three interconnected digital twin tiers as a way to enable

adaptive learning in traditional manufacturing by characterising legacy systems and pro-

cesses with the support of workers’ expertise. As a result, this approach helps manage

non-intrusive cyber-physical convergence in the SME sector.

1.3 Methodology

The approach of this PhD thesis is focused on understanding the interaction between humans

(Social Science) and technologies (Computer Science) to implement a Digital Twin Learning

Ecosystem. This mixed content is a suitable scenario for using the engineering method instead

of the scientific method (Dodig-Crnkovic 2002). Therefore, the evolutionary paradigm of the

engineering method proposed in (Adrion 1993) was considered adequate to successfully accom-

plish the objectives of our research: “observe existing solutions, propose better solutions, build or

develop, measure and analyse, and repeat until no further improvements are possible”. For effec-

tive implementation, this method was applied following four different phases studied in (Glass

1995) based on the contemporary computing research. The four phases are described as follows:

1. Informational. During this phase, all information necessary to address the research

process (literature review, technical articles, maturity level assessment of the technology,

the workforce skill levels, etc.), is gathered and aggregated.

2. Propositional. During this phase, the scenario and different definitions, methods, models,

or solutions are proposed to implement the concepts presented in the informational phase.

3. Analytical: During this phase, the analysis and exploration of the proposed approach are

implemented in a proof of concept/case study to prove its operational capability in this

respect.

4. Evaluative. During this phase, the proposed approach is evaluated through experimenta-

tion and observation to assess the effective implementation, replicability, and improvement

of the methodology.

This research is motivated by the digital twin concept presented by Grieves (Grieves 2003)

with a focus on a connected physical–virtual model in manufacturing. The methodological pro-

cess addressed a systematic literature review to contribute with different learning approaches
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applying the digital twin concept in theoretical and existing manufacturing ecosystems, in line

with Industry 4.0 physical–digital convergence. Diverse human–machine interaction methods

based on applications, frameworks and collaboration models, which are used for decision-making

and training in manufacturing, have been studied. Furthermore, the current enablers and chal-

lenges found in the literature concerning virtual replication factory have been explored from a

point of view between academia and industry. On the other hand, the scenario to carry out the

digital twin cyber-physical convergence, the digital twin research priorities and future trends in

collaborative learning ecosystems are also proposed.

Under this approach, the analysis and exploration of the cyber-physical interaction in tra-

ditional manufacturing was studied in a CNC milling machine using a non-intrusive retrofitting

development based on interoperable Industry 4.0 tools. This case study was built on a three-tier

methodology supported on common architectures, protocols, and standards without interfering

with working conditions and replicated in the manufacturing cycles of an injection moulding ma-

chine during the COVID-19 emergency. Workers and industrial systems were updated towards

increasingly evaluative phases with human–machine digital strategies and proactive manage-

ment environments, laying the foundation of the three conceptual layers proposed for a Digital

Twin Learning Ecosystem model in manufacturing. This three-tier solution provided: (i) cyber-

physical connections; (ii) smart human–machine interfaces; and (iii) cognitive skills, enabling the

human–machine technological integration in a traditional manufacturing scenario and support-

ing the cyber-physical convergence of old industrial systems for non-intrusive human-machine

learning.

Finally, the proposed Digital Twin Learning Ecosystem was evaluated in two industrial

scenarios in the SME sector. The same CNC milling machine was used to achieve an inter-

active and adaptive Digital Twin Learning Ecosystem in a machining workshop by building

an interconnected knowledge-generation infrastructure for maintenance strategies. To obtain a

fully evaluative iteration, an induction furnace was used to replicate the Digital Twin Learning

Ecosystem in a foundry plant with the aim of improving the efficiency of the cast iron process.

In this way, the three-tier methodology for adaptive digital learning was implemented and repli-

cated on a non-intrusive twinned interaction basis between skilled workers and legacy systems

to overcome the knowledge barriers associated with old manufacturing systems.
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1.4 Contributions

This PhD thesis encompasses several contributions. The methodology defined in the previous

section was followed to accomplish the foreseen objectives.

First, a comprehensive literature review of existing technical articles and scientific research

on digital twin ecosystems in Industry 4.0 manufacturing is provided. Based on this informa-

tion, the current enablers, challenges and research priorities found in digital twin cyber-physical

convergence concerning human–machine collaborative ecosystems are exposed (Garćıa, Bregon,

and Mart́ınez-Prieto 2022b). Therefore, all of them contribute to the understanding of learn-

ing opportunities enhanced by digital twin ecosystems in manufacturing. In that regard, this

PhD thesis presents the original definition of the Digital Twin Learning Ecosystem and depicts

the three conceptual layers that form the Digital Twin Learning Ecosystem architecture (see

Figure 1.6), providing a cyber-physical scenario for assessing the learning ecosystems offered by

both emerging Industry 4.0 connected digital twins and the empowerment of workforce skills.

Interaction

Understanding Learning

DT
Learning 

Ecosystem

Intelligent
agents

Real-time
HMI

Smart
APPs

Figure 1.6: Three-layer Digital Twin Learning Ecosystem
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With the objective of achieving a non-intrusive human–machine technological integration

for learning in traditional manufacturing, this research also contributes with two case studies

to deploy both digital retrofitting and human-machine interaction without interfering in work-

ing conditions (Garćıa, Bregon, and Mart́ınez-Prieto 2022a). These studies demonstrate how

it is possible to update workers and industrial systems collaboratively with augmented digital

strategies and predictive models to confront the challenge of non-intrusive interaction in SMEs.

Therefore, this work evaluates a methodology that pursues the reduction of SMEs’ industrial

maintenance investment, achieving two objectives: (i) to provide traditional manufacturing pro-

cesses with decision support tools by linking workers’ expertise with the health status of the

machines, and (ii) to test and validate human–machine learning interfaces for collaborative

maintenance. The human-machine integration is built on the three-tier concept depicted in Fig-

ure 1.7, deploying a common system architecture to enable the modular communication of data

between the three tiers (data streams, data models, and knowledge models), where workers,

systems and processes are connected at the same time.

Figure 1.7: Three-tiers concept to support non-intrusive collaborative maintenance in tradi-
tional manufacturing
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Finally, this PhD thesis contributes with both the assessment of the three-tier digital twin-

based methodology, and the knowledge modelling process for building an adaptive DTLE in

manufacturing. This approach has been implemented and replicated in two different manu-

facturing SMEs under actual work conditions (Garćıa, Bregon, and Mart́ınez-Prieto 2024). It

considers a non-intrusive cyber-physical twinned interaction between skilled workers and legacy

manufacturing systems, thereby improving both maintenance strategies and traditional manu-

facturing processes. In particular, this methodology depicted in Figure 1.8 makes two significant

contributions: (i) to provide the basis for the implementation of a DTLE in manufacturing

SMEs, and (ii) to help SMEs build their own interconnected learning infrastructure towards the

improvement of both manufacturing processes and maintenance operations.

Figure 1.8: Three-tier Digital Twin-based methodology
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1.5 Thesis Structure

This PhD thesis is a compilation of three publications. Before its presentation, Chapter 2

provides the background on which the proposed research is based, that will help to better under-

stand the contextual framework including the understanding of Industry 4.0 digital twin learning

ecosystems in manufacturing, and the human–machine interaction challenges in traditional sce-

narios to enable a non-intrusive learning approach. Chapter 3 then gather the three publications

and their addressed contributions that constitute this PhD thesis. Finally, Chapter 4 presents

the conclusions of the PhD thesis and the open lines of research left for future work.
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Chapter 2

Background

2.1 Introduction

Advancements in the proposed field of research related to digital twin can not be regarded without

a common understanding between academia and industry. Industry 4.0, presents opportunities

for enabling Digital Twin Learning Ecosystems in academic and industrial scenarios. On the

one hand, industry faces the challenges of building and supporting new technical and digital

infrastructures, while workers’ skills development eventually manages to handle digital change.

On the other hand, academia faces the challenges of providing technological research programs

and experts in line with complex manufacturing processes. In both cases, a change in the

fundamentals of the manufacturing systems and operations is required. All these challenges,

focusing on the physical–digital convergence and digital skills development, are explored below.

2.2 Digital Twin and Industry 4.0

At the beginning of 2015, the vision of the German manufacturing industry, named "Industrie

4.0", and its main design principles (interoperability, virtualization, decentralization, real-time

capability, service orientation, and modularity) were presented in (Hermann, Pentek, and Otto

2015) as a “how to do” Industry 4.0. This vision as "a new level of value chain organization and

management across the lifecycle of products” is based on four key components: CPS, IoT, IoS

and Smart Factory. The integration of these components was standardised in the “Reference
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Architecture Model Industrie 4.0” (RAMI 4.0) as a service-oriented architecture for the devel-

opment of Industry 4.0 applications and the development of models for smart manufacturing

ecosystems (Adolphs et al. 2015). Also, in 2015, the term “Smart Manufacturing” (SM) was in-

troduced in the United States to deploy the new technologies in manufacturing, such as IIoT and

AI. The National Institute of Standards and Technology (NIST) defined SM as “fully-integrated,

collaborative manufacturing systems that respond in real time to meet changing demands and

conditions in the factory, in the supply network, and in customer needs” (Tantawi, Fidan, and

Tantawy 2019).

Currently, the most representative terms for these definitions and technologies have been

adopted globally by industry and academia. Overall, their key characteristics and technologies

(Mittal et al. 2019) serve as a guide to the implementation of Industry 4.0-enabled manufacturing

systems. In a scenario led by the cyber-physical convergence of Industry 4.0 ecosystems (Qi et al.

2018b), the concept of digital twin emerges as one of the most disruptive innovations to exploit

industrial data enabling technologies (Raptis, Passarella, and Conti 2019). Owing to its growing

relevance, the Gartner Hype Cycle (Dedehayir and Steinert 2016) named digital twin as one of

the “Top 10 Strategic Technology Trends" from 2017 to 2019 (Qi et al. 2019). In this process,

there has been a paradigm shift from traditional product-oriented manufacturing to service-

oriented manufacturing (Moghaddam, Silva, and Nof 2015). Therefore, this landscape allows

value to be added through connected services, specialized skills and learning tools to support

new collaborative business models, besides hybrid digital twin data-driven approaches such as

monitoring, diagnostics, and prediction (Lu et al. 2020).

Regarding current studies on realising digital twins in Industry 4.0, (Tao et al. 2019) sum-

marises state-of-the-art of digital twin research and its application in different industries as a

reference guide. In addition, the paper poses many pressing issues, such as a unified digital

twin modeling method, which should be addressed to enhance rapid digital twin evolution in

practice. In a different work, (Lu et al. 2020) reviews the connotations, application scenarios,

and research issues of digital twin-driven smart manufacturing in the context of Industry 4.0.

It presents some digital twin aspects focused on manufacturing assets, people, factories, and

production networks, as they play a crucial role in the vision of smart manufacturing. However,

even though the digital twin concept has been refined in system theoretical terms for learning,

optimization, and control (Cronrath, Ekstrom, and Lennartson 2020), it is certainly true that the

research outcomes for digital twins in the manufacturing domain are mainly at the conceptual

level.
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In general, academia and industry have different visions on how to understand and apply

digital twins as a tool of knowledge responding to dynamic changes in manufacturing processes

(Parrott and Warshaw 2017). Thus, the advent of connected digital twin models in manufactur-

ing has enhanced the development of collaborative skills 4.0 and training capabilities (Fantini,

Pinzone, and Taisch 2020), providing workers with direct access to existing plant-process knowl-

edge to perform technical tasks or use their inputs as part of the learning process (Graessler

and Poehler 2018b). Furthermore, enabling technologies such as augmented reality in digital

twin ecosystems derives added value for human-machine interface integration, visualization, and

learning of digital twin data (Zhu, Liu, and Xu 2019) for all the observable manufacturing

elements.

2.3 Digital Twin learning applications in manufacturing

New digital twin learning applications are emerging in the virtual space to provide the reality

of manufacturing ecosystems with an additional knowledge layer. From this perspective, a

connected digital twin enables different applications and ways to collaborate between humans

and automated production systems. Moreover, distributed learning provides opportunities for

modelling multiple interactions between processes (Kunath and Winkler 2018), systems (Reid

and Rhodes 2016), and workers’ skills (Graessler and Poehler 2018a). Therefore, the following

three categories are considered to discuss diverse learning opportunities in academia and industry.

2.3.1 Human-machine interaction applications

Towards the concept of a learning ecosystem (Burke et al. 2017), digital twin offers bidirec-

tional interaction in real-time dealing with different data sources to transform information into

valuable knowledge (Uhlemann, Lehmann, and Steinhilper 2017). The use of human-machine

interfaces is therefore promoting the implementation of digital twin applications oriented to col-

laborative environments. Applications based on context-aware and adaptive digital twin models

(Hribernik et al. 2021) offer complex human-machine interactions in an intelligent data space

related to manufacturing processes. In this collaborative context, a social-based framework of

interconnected manufacturing systems of workers, assets, and services also takes place. Vir-

tual, physical, and social worlds are integrated around a Cyber-Physical-Social System (CPSS)

approach based on the concept of social manufacturing (Leng et al. 2020).
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When applied in manufacturing, collaborative learning models present strategies for eval-

uating workers‘ skills in CPS environments and provide intuitive augmented applications for

monitoring and controlling industrial processes, as well as enabling local or remote interaction

services. For example, in studies such as (Graessler and Poehler 2018b) a conceptual approach

of a digital twin application is shown involving workers and CPS devices in an experimental

assembly station of a production laboratory in fully automated decision-making processes. In

addition, there are other studies focused on the usefulness of augmented interfaces. (Padovano

et al. 2018) presented a digital twin-based application designed to enable a knowledge as a service

approach in a real factory floor that produces carton packaging boxes. The digital twin proto-

type provides workers with a real time CPPS-based 4.0 knowledge navigation service linked to

an Android application with a QR code. Workers can use this application, a screen interaction

or a vocal message to request specific knowledge, keeping their attention directly on the phys-

ical system. Another collaborative scenario, based on an AR human-machine interface for the

visualization of digital twin data, is presented in (Zhu, Liu, and Xu 2019). In this case, an AR

application was used to provide workers with comprehensive information to monitor and control

a CNC milling machine in a real manufacturing environment. The connected framework also

allows the worker to interact and manage digital twin data to improve process efficiency through

an augmented approach.

2.3.2 Training applications

Workers’ knowledge is improved by different backgrounds and outcomes in training processes

(Berisha-Gawlowski, Caruso, and Harteis 2021). Likewise, experienced workers need to guide

others with little experience. Nevertheless, training applications of digital twin in manufacturing

require a collaborative learning framework as the basis for generating knowledge for decision

support systems. In this way, learning factories offer a path towards Industry 4.0 in an academic

context while promoting the integration of learning systems in the workplace. In this approach,

lessons learned are transferred to knowledge-based manufacturing through convergence with the

real world. In addition, training in virtual environments encourages cognitive processes when

working in immersive and multi perception environments with augmented learning.

Some studies in the literature show that the Learning Factory concept is evolving in manufac-

turing to support Industry 4.0 enabling technologies (Baena et al. 2017) and practical learning

activities (Prinz et al. 2016) as a promising training and research environment where digital
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twin combines both industrial scenarios and academic applications (Abele et al. 2017). The

communication and interaction between teams of engineers and researchers establishes two-way

knowledge bringing real industrial environments to teaching programs and research laboratories

to factories. In a Learning Factory context, the digital twin concept offers learning opportunities

for representation and visualisation through the mapping of real processes in digital and virtual

models (Tvenge et al. 2020). Moreover, augmented reality/virtual reality technologies provide

workers with enhanced interaction frameworks and augmented interfaces (Ke et al. 2019).

2.3.3 Data-driven applications

(Kunath and Winkler 2018) defines digital twin "as the sum of all available data, i.e. engineering

data and operational data, of all elements of the manufacturing system that reflect the historical

and actual state of the system in realtime". In the context of industrial applications, therefore,

digital twins provide a connected data infrastructure able to help with the generation of data-

driven models in proactive decision making and transfer results learned from simulations in the

virtual space to the physical space, without training the model from scratch.

Different data-driven learning applications in real-time can be found in the literature based

on the digital twin approach. For example, in (Leng et al. 2019) a systems engineering-based

approach of a digital twin to co-create personalised products is presented. A demonstrative im-

plementation scenario is characterised by a digital twin-driven manufacturing CPS for parallel

control of a smart manufacturing workshop. Through the analysis of a dynamic process execu-

tion, a digital twin provides workers with the status of manufacturing operations and enables

continuous improvement with an intelligent optimisation engine. Another solution was proposed

by (Liu et al. 2019) using a digital twin-based process planning evaluation method with real-

time data status. The implementation is addressed in a manufacturing workshop of key parts

of the marine diesel engines, where planning evaluation is required to ensure consistency in the

processing quality of the manufactured parts. Internet of things and digital twin technologies

allow the improvement of the machining efficiency by using dynamic cyber-physical information

about the process status. On the other hand, data analysis enables behaviour-based applica-

tions focused on CPS. For example, a digital twin-assisted fault diagnosis method for real-time

monitoring and predictive maintenance was presented in (Xu et al. 2019). The case study is

implemented in a car body-side production line, where a PLC allows for data interconnection

and interaction. Through a two-phase process using deep transfer learning, the application of
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digital twins in virtual and physical spaces transforms fault diagnosis patterns in knowledge for

both the development and maintenance phases, thus reducing the risk of accidental breakdowns.

2.4 Digital Twin-based adaptive human-machine interaction

An important consideration when discussing lifelong learning and training in the industry is that

they are increasingly dependent on highly skilled workers and digital changes to improve working

methods (Toivonen et al. 2018). In this context, the potential of digital twin and their real-time

interaction and cooperation between machines and human resources offer continuous learning

opportunities to clear away obstacles in technological environments (Berisha-Gawlowski, Caruso,

and Harteis 2021). Through the combination of factors presented previously such as human-

machine learning (Ansari, Erol, and Sihn 2018) and the concept of Learning Factory (Tvenge

et al. 2020), physical and virtual environments that include all processes, products, resources,

and categories of people in different manufacturing activities are set to improve the skill set of

the future workforce, regardless of age, gender, and social status.

In addition, the emergence of connected platforms supporting digital twin frameworks pro-

vides manufacturing with a learning ecosystem oriented towards exploiting knowledge from the

integration of physical and digital worlds. In the literature, we can find some Digital Twin

Learning Ecosystems based on frameworks. These frameworks are well known for providing

learning features that enable effective competence (David, Lobov, and Lanz 2018), enhanced

skills (Caldarola, Modoni, and Sacco 2018), more efficient engineering solutions (Yildiz, Møller,

and Bilberg 2020), improved human-asset interaction (Kong et al. 2020), synchronous modeling

(Zhuang, Gong, and Liu 2021), human-robot collaborative systems (Malik and Bilberg 2018),

improved quality and resources (Qamsane et al. 2019) and support fault diagnosis (Mi et al.

2021). Consequently, Digital Twin Learning Ecosystems enable a distributed approach focused

on achieving a connected learning model of a product (Tao et al. 2018), process or industrial

service (Tao et al. 2019). It is thus necessary for a real-time replicated representation of the

physical world to be built for understanding purposes, while technological frameworks offer their

own digitised data and fully bidirectional interaction capabilities (Qi et al. 2019). As noted

above, these digital twin learning approaches can also be studied in Learning Factories that

combine academic applications and demonstration scenarios. In this way, virtual factory repli-

cation and the Learning Factory concept also allow the implementation of complex scenarios

and frameworks for testing and training in a diversity of human-machine interactive levels as
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Digital Twin Learning Ecosystem enablers. Researchers and experts in the use of next genera-

tion information technologies and industries, are already working together to develop learning

platforms for research and demonstration (Ansari, Erol, and Sihn 2018), experiential CPPS envi-

ronments for training and learning (Uhlemann et al. 2017), immersive environments for different

applications and sectors (Eyre and Freeman 2018), collaborative software (Brenner and Hummel

2017), collaborative factory environments (Grube, Malik, and Bilberg 2019) and new Industry

4.0 learning approaches in manufacturing (Raza et al. 2020).

Nevertheless, Industry 4.0 requires workers to be better prepared to meet the increased

complexity of industrial tasks in dynamic working environments. The integration of digital twin

information within the real environment of the worker is therefore crucial to connect and define

all real-time relationships and behaviour between systems, users and processes. In this way,

a context-aware digital twin can use learning capability and the ability to adapt to changing

environments (Hribernik et al. 2021) to improve the knowledge of the processes and workforce.

Another example of integration is VR applications that allow workers to interact with production

processes through non-intrusive technologies that improve their skills. This guided approach

makes training tasks more flexible and attractive by using virtual digital twin contents (Tvenge

et al. 2020). Visualisation interfaces of digital twin data, driven by human-system interaction in

manufacturing, have become one of the ways of enabling better support for workers in learning

and training processes. A digital twin powered by AR/VR technologies can be used to build

autonomous and highly-efficient training environments for workers (Egger and Masood 2020).

Moreover, augmented interfaces enable collaborative environments that allow a physical object

to be modelled and dynamically adjusted based on instructions learned from a virtual model

(Tao et al. 2019). Thus, the role of the workforce is changing because of the use of user-facing

technologies (Ras et al. 2017), leading to agile production and improved products and processes

qualities.

Figure 2.1 describes an example of a connected digital twin learning framework at Cidaut

Research and Development Centre labs, which was designed and tested for the proactive col-

laborative maintenance (local and remote) of manufacturing assets. The framework is focused

on the generation of a non-intrusive and fully two-way adaptive human-machine collaborative

ecosystem, supporting workers’ training and enhanced learning. In addition, the proposed real-

time AR and VR augmented frameworks for visualising digital twins enable the development

of skills 4.0, while providing direct access to existing manufacturing-process knowledge bridged

through smart sensors.
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Figure 2.1: Example of a Digital Twin framework to enable learning ecosystems at Fundación
Cidaut

2.5 Cyber-physical convergence challenges in SMEs

How to bring about the future and effective interoperability, managing different types of human-

machine ecosystems, and enabling the intelligent operation of cyber-physical convergence, is still

an open challenge towards Smart Manufacturing (Qi et al. 2018a).

Traditional environments, which are still common in manufacturing SMEs, are facing a

substantial increase in the use of advanced technologies to improve the learning capability of the

workforce. In that sense, a human-machine integration is necessary to lead the learning process

and knowledge management in organisations (J. Kaivo-oja et al. 2020). At the European level,

the adoption of Industry 4.0 key enabling technologies faces important barriers, such as the

lack of skilled personnel (Kroll et al. 2016) compounded by its continuously increasing demand

(Glass et al. 2018). Additionally, SMEs are also less ready because of a lack of experience in new

technologies (Stentoft et al. 2019), which leads to a slow initial stage of digitisation (Doyle and
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Cosgrove 2019) and maturity (Mittal et al. 2018). Some operations required to handle cyber-

physical changes are conducted manually, and operational data are incomplete or missing owing

to a lack of acquisition systems. Therefore, the use of fully automated techniques to support

planning processes is not considered a common practice, while the information and timing with

regard to manufacturing business planning (long run) comes up against manufacturing operations

management (real-time) (Cimino, Negri, and Fumagalli 2019). In addition, (Hu et al. 2021)

considers that the integration of sensors and data acquisition technologies to achieve two-way

connections must be achieved to ensure real-time data. It is also considered that data accuracy

and building models in virtual space with high fidelity of physical objects are fundamental issues.

Particularly concerning digital twins, (Uhlemann, Lehmann, and Steinhilper 2017) shows that a

widely used manual data acquisition of motion data, and hence the lack of data availability in

real-time, compromises it for the evaluation and analysis of production systems. In this manner,

(Semeraro et al. 2021) considers that the process of modelling reality in a digital twin is a

complex task, especially when using traditional approaches involving sensors and different kinds

of sources, models, and services. With regard to digital twins construction, a minimum level

of data quality and a consistent data stream for efficient use are required (Fuller et al. 2020),

while another challenge resides in determining the optimal level of detail to create a digital twin

model (Parrott and Warshaw 2017). Nevertheless, a major challenge arises when digital twin

comes up against organizations and workers and must verify that the generated models work as

expected, in addition to ensuring that they know its benefits (Fuller et al. 2020).

2.6 Enabling a new generation of human-machine systems in

SMEs

The development of a new generation of human-machine systems in the manufacturing industry

has been enhanced with the increasingly widespread use of distributed services, adding sensors,

and monitoring resources based on Industry 4.0 KETs (Cimini et al. 2020). Under these re-

quirements, the challenge of upgrading older machines in manufacturing SMEs is facing very

high economic costs and the lack of expert staff to address Industry 4.0 enablers (Horváth and

Szabó 2019). However, adaptive retrofitting methodologies based on personalized data models

and non-intrusive digitisation are for SMEs a more feasible alternative way to include updated

features in older machines (Contreras, Cano, and Garćia 2018; Ayani, Ganebäck, and Ng 2018).

Digital technologies and sensors allow for the integration of data from different manufacturing
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sources. Non-intrusive retrofitting methods are used to address the monitoring conditions in

manufacturing (Lins et al. 2017). Some examples are: (i) a surface-mounting-system using a

single current sensor to gather data from a power supply line (Suzuki, Kohmoto, and Ogatsu

2017); (ii) in-situ energy measurement for online identification of machine operation states in

injection moulding machines (Chee et al. 2011); and (iii) CNC tool-wear detection using an

accelerometer at a remote location (Herwan et al. 2019).

Experiments conducted in two EU-funded projects presented the advantages of digital tech-

nologies in integrating the machines’ real-time status and work orders by implementing mainte-

nance models: (i) the BEinCPPS project (Business Experiments in Cyber Physical Production

Systems) (Doyle and Cosgrove 2019) implements a 3-layer architecture (machine, factory, and

cloud) capable of supporting open standards to integrate existing legacy hardware and soft-

ware systems installed on manufacturing SMEs in Europe, and (ii) the MANTIS project (Cyber

Physical System based Proactive Collaborative Maintenance) (Albano et al. 2018) involves three

groups of SME users in Europe to provide a proactive maintenance service platform architecture

based on CPSs capable of predicting and preventing imminent faults and scheduling proactive

maintenance.

To address the current manufacturing challenges in a new changing industry, workers should

also become “Operators 4.0” to respond to problems more efficiently (Romero, Stahre, and Taisch

2020). The aim is to achieve a collaborative maintenance approach in a traditional environment,

where workers are allowed to perform their tasks while being part of the learning process. There-

fore, the deployment of advanced human-machine software tools extends the opportunity to sim-

ulate and understand human-system interactions. Learned knowledge and skills are exploited to

incorporate past experiences in root-cause analysis (Bokrantz et al. 2017; Gaham, Bouzouia, and

Achour 2015). Thus, human-machine collaborative models applied to maintenance enhance the

development of skills 4.0, providing direct access to existing manufacturing-process knowledge.

In this sense, some examples in the literature, such as the Senseye company and the R2MPHM

platform (Cachada et al. 2018), introduce data analysis to alert workers when an abnormality

is detected or to perform CBM and prognostics, helping the maintenance managers to predict

critical impacts in the factories. In (Baglee et al. 2017), a CBM method for SMEs focused

on determining the current health level of an asset is presented, where the use of connected

technologies provides more advanced decision-making in a collaborative way. Moreover, exist-

ing research on human-machine interaction has already developed sophisticated HMI-solutions
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for digital twins that seek to adapt to the personal and situational context (Josifovska, Yigit-

bas, and Engels 2019). A few years ago, digital coaching systems (Carlsson 2018) started as

an answer to the demand of human operators to manage advanced automated systems that

can monitor and control complex and large industrial processes and systems. Nowadays, as an

industry, manufacturing has been pervasively impacted by the rapid adoption of information

technologies. With the advent of smartphones, tablets and smart glasses, mobile HMI (Qasim

et al. 2020) has emerged as an example of the technological advances used at the shop floor. The

increasing deployment in manufacturing of AR and VR technologies (Liu et al. 2017; Damiani

et al. 2018) is changing the way operators visualize (de Souza Cardoso, Mariano, and Zorzal

2020) and manage maintenance process monitoring (Longo, Nicoletti, and Padovano 2017). The

information can be virtually displayed by overlapping the physical asset in real-time, such as

temperature changes, consumption trends, etc. (Horváth and Szabó 2019). This augmented

interaction enables an understanding of real-time processes to improve workers’ skills through

non-intrusive technologies. However, the introduction of collaborative maintenance models in

traditional manufacturing requires the development of a legacy human-machine-based data mod-

elling approach. This perspective is crucial for integrating complex heterogeneous scenarios in

manufacturing, where systems, processes and workers are simultaneously involved in operations

at the same time.

2.7 Digital Twins for knowledge-based improvement

The advent of Industry 4.0, has also provided factories with new enhanced HMI and Artificial

Intelligence (AI)-driven technologies. In particular, the potential for cyber-physical convergence

has closed the loop between systems and workers’ interactions (Fantini, Pinzone, and Taisch

2020). When coupled with expert knowledge in maintenance operations, the interaction be-

tween workers and the production environment can provide a digital twin with a context-aware

approach for supporting decision-making and learning. Owing to the cyber-physical connection

process, digital twins have attracted the interest of industries regarding maintenance strategies.

Specifically, the manufacturing industry is the sector on which most research on the implemen-

tation of digital twins is focused (Errandonea, Beltrán, and Arrizabalaga 2020). Moreover, (Tao

et al. 2019) states that the ability to offer seamless integration between the cyber and physi-

cal spaces enables their implementation to improve the performance of products and processes
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in the physical space. In this context, the work also defines a digital twin as “a digital rep-

resentation that can depict the production process and product performance” and summarises

the state-of-the-art of digital twin research and its application as a reference guide in different

industries such as aerospace engineering, electric grid, car manufacturing, petroleum industry,

healthcare, etc. Concerning digital twin use in manufacturing, (Fuller et al. 2020) identified a

range of publications with particular growth in the health of machines and predictive mainte-

nance. In particular, (Madni, Madni, and Lucero 2019) considered maintenance to be a major

contribution area for digital twins, both helping organisations transition from schedule-based to

condition-based maintenance and reducing system maintenance costs while also enhancing its

availability. In a different paper, (Kritzinger et al. 2018) provides a categorical literature review

of digital twins in manufacturing. The review, which is broader in scope, describes maintenance

as a main discipline of production systems with a common target to increase competitiveness,

productivity and efficiency, supported by four applications of the digital twin:

• State changes on production systems.

• Anticipatory maintenance measures.

• Condition based maintenance.

• Machine’s health condition.

To this end, several authors have presented papers in the literature concerning the appli-

cability of maintenance strategies based on digital twins and focused on manufacturing: (i)

integration of manufacturing data into developing “digital-twins” virtual machine tools for the

health status of a milling machine (Cai et al. 2017); (ii) a methodology for advanced physics-based

modelling to enable the digital twin concept in predictive maintenance applications (Aivaliotis

et al. 2019); (iii) a digital twin-driven cooperative awareness and interconnection framework to

improve the accuracy of fault diagnosis, prediction, and support, creating a maintenance plan

with higher accuracy and reliability (Mi et al. 2021); (iv) a digital twin-driven online anomaly

detection framework for an automation system based on edge intelligence for the early detec-

tion of potential failures in industrial systems and proactive maintenance schedule management

(Huang et al. 2021); (v) an overall vision and rationale for incorporating digital twin technology

into model-based system engineering (MBSE), including updated performance, maintenance,

and health status data throughout the physical system’s life cycle (Madni, Madni, and Lucero

2019); (vi) a two-phase digital-twin-assisted fault diagnosis method and framework to achieve
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smart manufacturing using deep transfer learning, which realises fault diagnosis in both the

development and maintenance phases (Xu et al. 2019); and (vii) a Deep Digital Twin (DDT)

for prognostics and health monitoring (PHM), which is used for the automation of predictive

maintenance scheduling directly from operational data (Booyse, Wilke, and Heyns 2020).

The use of connected platforms in manufacturing enables digital twin frameworks for learn-

ing. (Mi et al. 2021) presented a specific working framework to support the sharing of digital

twin data, knowledge, and resources, for predictive maintenance and decision-making. A similar

solution, focused on predictive maintenance techniques and performance monitoring frameworks,

was presented in (Tantawi, Fidan, and Tantawy 2019) as valuable human-machine interfaces for

continuous improvement. Thus, the promotion of digital twin tools for continuous improvement

can help in process planning (Liu et al. 2019), which would further improve the work cycles

of existing systems and ensure that each associated maintenance task can be carried out in an

adaptive manner. Nevertheless, the integration of advanced strategies into manufacturing SMEs

(Baglee et al. 2017) such as predictive maintenance techniques and condition monitoring are

facing a digital transformation challenge in legacy production systems.

2.8 Digital Twin Learning Ecosystems and current challenges in

manufacturing SMEs

As a future trend in the industry, production factories will be presented with multiple digital

twins representing their complete production system (Suuronen et al. 2022). By promoting

the digital twin areas of research already under way, new approaches for transforming existing

production and control methods may emerge towards intelligent cyber–digital interfaces and

smart decision support models. This is the case of the interaction between skilled workers

and the production environment, allowing digital twins to offer a context-aware approach for

supporting decision making and learning (Hribernik et al. 2021). A standardized framework to

develop a digital twin in manufacturing, such as ISO 23247, which partitions a digital twin system

into layers, can facilitate the acceptance of the digital twin concept (Shao 2021). However, Shao

and Helu (Shao and Helu 2020) remarked that there remains much confusion about digital twins

and how different solutions can be implemented in real manufacturing systems, especially among

SMEs. Furthermore, digital twins depend on the context and viewpoint required for a specific
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use case and require a good understanding of the scope and constraints of the use case to avoid

enormous costs.

Digital Twin Learning Ecosystems based on frameworks provide learning features for man-

ufacturing. Nevertheless, most processes still depend on human intervention and expert knowl-

edge, and data are highly dependent on the specific goals of the system in place. Some challenges

are: (i) enhancing the workforce skills and competencies in manufacturing, (ii) managing adapt-

ability under different tasks in manufacturing systems, (iii) understanding process and data

science, and (iv) the need for expert knowledge in the extraction of the corresponding simula-

tion models. In particular, in the case of SMEs, despite the development of Industry 4.0-enabling

technologies, digital twins face a lack of digital resources concerning data acquisition Uhlemann,

Lehmann, and Steinhilper (2017), while workers’ skills development eventually manages to in-

clude the increased complexity of industrial processes Mittal et al. (2018). It should be noted

that SMEs are generally less prepared to adopt digital technologies Horváth and Szabó (2019)

and maturity models Semeraro et al. (2023). Although collaborative human-machine models

Zonta et al. (2020) and maintenance trends have evolved collaboratively Bokrantz et al. (2020),

only a few SMEs have the capacity to implement the latest advances in maintenance strategies

Dolatabadi and Budinska (2021).

Focusing on digital twins convergence, some studies have presented solutions to augment

legacy-based production equipment without incurring expensive resources. For instance, Orel-

lana and Torres (2019) proposed a retrofitted method using monitored sensors within cyber-

physical systems to upgrade legacy production systems while reducing costs. Similarly, Lins and

Oliveira (2020) focused on reusing existing equipment with the addition of new technologies in-

stalled independently of the system, upgrading to cyber-physical production systems as a rapid

and low-cost solution. Pantelidakis et al. (2022) considered a cost-efficient digital twin ecosystem

used to provide legacy equipment with digital twin capabilities, collect historical data, generate

analytics, and establish an ecosystem with bidirectional information flow in a simulated virtual

environment.

However, digital twins convergence can be improved by following adaptive development

according to productive and specific manufacturing requirements, thereby generating an adaptive

learning framework that seamlessly integrates workers, systems, and processes into knowledge

modeling.
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2.9 Summary

With the empowerment of workers’ digital-based skills in manufacturing environments, hu-

man–machine collaborative ecosystems supported by digital twins will ultimately be a trend.

Thus, the interaction of workers and the integration of digital information with the real environ-

ment provide the plant ecosystem with cyber–physical connections and digital twin data flows.

During this time, the manufacturing industry took advantage of the digital twin learning oppor-

tunities presented by the development of a new generation of information technologies applied

to physical–digital convergence. However, in the case of traditional manufacturing SMEs, the

transformation challenge of Industry 4.0 is facing a low adoption rate of digital technologies and

maturity models. In this digital context, very few SMEs with traditional means inherited from

older manufacturing systems have anticipated the latest advances in maintenance strategies im-

peded by technical and economic barriers, while the workforce requires upgrading to the skills

needed to cope with upcoming digital technologies.

To this end, this research presents literature findings that provide details on new adaptive

models of collaboration between the workforce and industrial processes. The aim is to meet the

human-machine challenges posed for knowledge acquisition in manufacturing SMEs, where there

are plenty of outdated systems.
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Abstract

The evolution of digital twin, leveraged by the progressive physical–digital convergence,

has provided smart manufacturing systems with knowledge-generation ecosystems based on new

models of collaboration between the workforce and industrial processes. Digital twin is expected

to be a decision-making solution underpinned by real-time communication and data-driven en-

ablers, entailing close cooperation between workers, systems and processes. But industry will

need to face the challenges of building and supporting new technical and digital infrastructures,

while workers’ skills development eventually manages to include the increased complexity of

industrial processes. This paper is intended to reach a better understanding of learning op-

portunities offered by emerging Industry 4.0 digital twin ecosystems in manufacturing. Diverse

learning approaches focused on the potential application of the digital twin concept in theo-

retical and real manufacturing ecosystems are reviewed. In addition, we propose an original

definition of Digital Twin Learning Ecosystem and the conceptual layered architecture. Existing

key enablers of the digital twin physical–digital convergence, such as collaborative frameworks,

data-driven approaches and augmented interfaces, are also described. The role of the Learning

Factory concept is highlighted, providing a common understanding between academia and in-

dustry. Academic applications and complex demonstration scenarios are combined in line with

the enablement of connected adaptive systems and the empowerment of workforce skills and

competences. The adoption of digital twin in production is still at an initial stage in the man-

ufacturing industry, where specific human and technological challenges must be addressed. The

research priorities presented in this work are considered as a recognised basis in industry, which

should help digital twin with the objective of its progressive integration as a future learning

ecosystem.
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Abstract

The recent COVID-19 outbreak impact on the world economy has boosted the increasing

business needs to force manufacturing plants adapting to unpredictable changes and ensuring the

continuity of industrial production. The demand for asset monitoring solutions and specialised

support at the shop floor has become an increasingly important digital priority in industry that

pushes human–machine technological upgrades leading to digital workforce skills assessment.

In the case of traditional manufacturing, Small and Medium-sized Enterprises (SMEs) face the

challenge of managing digital technologies and Industry 4.0 (I4.0) maturity models with a low

adoption rate. In this digital context very few SMEs with traditional means have anticipated

the latest advances in maintenance strategies impeded by technical and economical barriers.

This work presents a human–machine technological integration solution in traditional manu-

facturing based on a non-intrusive retrofitting development with interoperable I4.0 tools. The

method provides a common and rapidly deployable hardware and software architecture support-

ing an HMI-based legacy maintenance approach and addresses its evaluation focused on the

physical-digital convergence of older industrial systems. A case study applying a digital process

approach integrated with condition-based maintenance (CBM) techniques, has been carried out

on a CNC milling machine and reproduced in an injection moulding machine during COVID-19

alert state. These already existing scenarios served to deploy digital retrofitting and communica-

tion strategies without interfering in working conditions. Patterns extracted from the machines

were monitored in real-time interacting with the operational knowledge of the experienced staff.

In this way, we provided an original contribution to confront human–machine challenges with

improvements applied in traditional manufacturing, where workers and industrial systems were

collaboratively updated with augmented digital strategies and proactive CBM environments.
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Authors: Alvaro Garćıa Garćıa, Anibal Bregon Bregon, Miguel Angel Mart́ınez Prieto

Journal: Internet of Things

Impact factor: 5.9 (2022). Q1: COMPUTER SCIENCE, INFORMATION SYSTEMS

(35/158) and Q1: ENGINEERING, ELECTRICAL & ELECTRONIC (53/275)

Volume: 25

Pages: 101094

Year: 2024

Month: Abril

DOI: https://doi.org/10.1016/j.iot.2024.101094

State: Published. Available online 29 January 2024

36

https://doi.org/10.1016/j.iot.2024.101094


Articles Published

Abstract

As Industry 4.0 enablers, digital twins of manufacturing systems have led to multiple inter-

action levels among processes, systems, and workers across the factory. However, open issues

still exist when addressing cyber-physical convergence in traditional manufacturing small and

medium-sized enterprises. The problem for both traditional operators and the existing infras-

tructure is how to adapt knowledge to the increasing business needs of manufacturing plants that

demand high efficiency, while reducing production costs. In this paper, a framework that im-

plements the novel concept of Digital Twin Learning Ecosystem in traditional manufacturing is

presented. The objective is to facilitate the integration of human-machine knowledge in different

industrial cyber-physical contexts and eliminate existing technological and workforce barriers.

This adaptive approach is particularly important in meeting the requirements to help small and

medium-sized enterprises build their own interconnected Digital Twin Learning Ecosystem. The

contribution of this work lies in a single digital twin learning framework for different traditional

manufacturing scenarios that can work from scratch using a light infrastructure, reusing the

knowledge and common condition-based methods well-known by skilled workers to rapidly and

flexibly integrate existing legacy resources in a non-intrusive manner. The solution was tested

using real data from a milling machine and a currently operating induction furnace with a max-

imum power of 12 MW in a foundry plant. In both cases, the proposed solution proved its

benefits: first, by providing augmented methods for maintenance operations on the milling ma-

chine and second, by improving the power efficiency of the induction furnace by approximately

9 percent.
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Conclusions and Future Work

4.1 Conclusions

The evolution of the digital twin concept, leveraged by the onward cyber-physical convergence,

has provided manufacturing ecosystems with knowledge-generation opportunities based on new

Industry 4.0 models of collaboration between the workforce and industrial processes. Conversely,

digital barriers and expensive hardware compatibility issues are obstacles known in the way to

accomplish the cyber-physical convergence in traditional SMEs. This will continue even more,

as the interaction of Industry 4.0 with traditional manufacturing environments requires the

development of workers’ skills and different digital strategies from those currently prevailing. To

this end, the rationale behind this PhD thesis has been to better understand the enablers and

challenges involving the digital twin implementation in a non-intrusive way regardless of the level

of digitisation. In particular, in manufacturing environments that include multiple interaction

levels between processes, systems, and workers within the virtual space.

Considering the benefits of working in an R&D centre where I am leading Industry 4.0,

this work has successfully addressed the research and development of Digital Twin Learning

Ecosystems for manufacturing SMEs based on both cyber–physical convergence and adaptive

human–machine collaboration models. In the course of this research, we have contributed with a

trilogy of publications and incremental results obtained in industrial environments, which have

made it possible to achieve the proposed objectives. These results include:
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• An original proposal of the system architecture and knowledge-modelling pro-

cess to meet the requirements of a tailored DTLE for SMEs. This approach

has achieved a common understanding of human–machine interactions and their associ-

ated learning processes in manufacturing. In addition, a novel methodology based on the

adaptive application of three interconnected bidirectional digital twin tiers has been de-

veloped, providing an augmented and interactive learning ecosystem between processes,

legacy production systems and skilled workers.

• The implementation of non-intrusive cyber-physical strategies in traditional

manufacturing SME scenarios to reduce industrial maintenance investment.

An adaptive approach supported by the retrofitting of old systems and the support of

experienced operators has been followed, simplifying the commissioning of condition mon-

itoring techniques and empowering workers through learning models. Thus, the physical

values monitored from diverse retrofitted manufacturing systems, regardless of the level of

digitization, have been modelled by applying a rapid and flexible semi-supervised learning

method while receiving feedback from workers using different manufacturing approaches.

• The assessment of DTLE implementation in SMEs. The validation of the proposed

methodology, by building an interconnected human-machine knowledge generation infras-

tructure, has been conducted in a machining workshop, and then it has been successfully

replicated in a foundry plant.

Moreover, the research has considered the implications of some unpredictable world economy

challenges during the last five years, such as the coronavirus pandemic and a global energy

crisis, which have impacted the manufacturing industry forcing production plants to reduce

costs and improve productivity and sustainability. The demand for disruptive solutions and

specialised workers has become an increasingly important digital priority for the industry, which

pushes technological upgrades towards building new cyber-physical ecosystems and supporting

the skills improvement of the workforce. Therefore, academia has used the opportunity to

transfer knowledge from laboratories to real factories by implementing training ecosystems that

comprises researchers, Industry 4.0 specialists and teaching programs.

As a final reflection, the research priorities presented in this PhD thesis are considered a

recognised basis in industry, which should help digital twins with the objective of progressive

integration as a future learning ecosystem.
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4.2 Future work

Despite the progress made in the past five years, much remains to be done to ensure the adoption

of digital twin for learning in production environments. It is not clear in the industry what

features a digital twin should have or how it should work in different ecosystems.

In the near future, we plan to develop a hybrid framework infrastructure focused on the

characterisation of virtual reality models of industrial processes while physical values are gathered

from manufacturing systems. This approach provides a digital twin model of the target system

connected through a mixed-reality immersive framework, where a worker can be trained and

both monitor the physical parameters and interact with augmented devices such as AR/VR

glasses and haptic gloves, setting a real configuration. It can also be applied to the field of

industrial cybersecurity by building hybrid testbeds of industrial control systems. Therefore, a

characterisation of a critical system replicating the real infrastructure as much as possible will

allow researchers to develop a Digital Twin Learning Ecosystem in a non-intrusive way under

safe execution, including cyber-physical systems and virtual processes of the industry.

An additional line of future work is oriented towards lifelong learning and training in the

manufacturing sector. Digital twins have proved effective in enhancing the empowerment of

workers’ skills 4.0 to avoid technological exclusion risks. This approach is especially important

for learning plant-process knowledge related to complex tasks, which are usually owned by highly

skilled operators and difficult to replace at retirement. On the other hand, the removal of older

workers from their jobs due to a lack of knowledge of new technologies poses a risk to their

employment. As reflected in our research findings, the available knowledge from workers and

their work methods could be implemented in a Digital Twin Learning Ecosystem and introduced

into teaching programs to improve digital skills.
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