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“Las cosas podían haber sucedido de cualquier otra manera y, sin
embargo, sucedieron así.”

Miguel Delibes, El Camino





Summary

Malignant gliomas are the most common primary brain tumors in adults. This fam-
ily of brain tumors includes different types that differ in their genetic characteristics
and prognostic outcomes, the latter being generally unfavorable. Survival is espe-
cially poor in high-grade gliomas such as glioblastomas, so in those cases predicting
the expected survival is crucial for efficient surgery and treatment planning.

As for diagnosis, in clinical practice this is commonly performed by magnetic
resonance imaging (MRI) and, in particular, by visual inspection of the weighted
images. The standard MRI protocol for brain tumor assessment includes (at least)
four different weighted images: T1-weighted, T2-weighted, FLAIR and T1-weighted
after injection of a gadolinium-based contrast agent (GBCA). The latter is used
to evaluate blood brain barrier breakdown, a condition displayed on the image as
signal enhancement caused by the contrast agent extravasation into the perivascular
space. This diagnostic procedure has two main limitations; on the one hand, the
qualitative nature of the weighted images hinders the usage of quantitative methods.
On the other hand, the usage of GBCAs can trigger adverse effects that under
certain circumstances can be severe, in addition to increasing the scan time and
cost.

In contrast, quantitative MRI is based on the computation of the tissue magnetic
properties themselves, collectively known as parametric maps. These properties
are the longitudinal relaxation time (T1), transverse relaxation time (T2) and
proton density (PD). Parametric maps present an absolute scale and are generally
considered more robust than weighted images. Recently, a new paradigm, Synthetic
MRI, has gained popularity; it is based on the T1, T2, and PD parametric maps
computation, followed by the synthesis of several weighted images from these maps.
As a result, this procedure can enhance efficiency and diagnosis.

Parametric maps computation can be performed by means of traditional relaxometry
sequences. These sequences consist in the acquisition of a set of weighted images
varying a particular acquisition parameter, followed by the voxelwise fitting of these
images to a known relaxation model with estimation-based procedures. However,
the long scan time of these sequences hampers their usage in clinical practice.
Alternatively, fast multiparametric mapping techniques have been recently proposed.
Although these techniques are faster than relaxometry sequences, they still imply a
not negligible acquisition time. In addition, they usually require specific sequences
or commercial products that are scarcely available on clinical scanners.
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Deep learning approaches could also be an alternative for the computation of
parametric maps from conventional and, therefore, widely available weighted
images. Thus, parametric maps could be easily computed both on pre-existing
databases as well as on new acquisitions without increasing scan time. However,
the lack of public datasets containing weighted images and their corresponding
parametric maps could be one of the main limitations that hinders the usage of
deep learning.

In this Thesis we propose to enhance the diagnosis of brain tumors following
a Synthetic MRI paradigm. The computation of T1, T2, and PD parametric
maps have been performed with deep learning from conventional weighted images
acquired with routine protocols. After that, different types of weighted images
have been successfully synthesized out of the parametric maps. Several solutions
have been proposed to overcome the lack of public datasets with parametric
maps. In particular, training based on synthetic data and self-supervised learning
strategies, which enable the training from only weighted images. In addition, both
the synthesized weighted images and the computed parametric maps have been
employed in different applications to improve brain tumor diagnosis. Specifically,
predicting both the expected survival of glioblastoma patients and the post-contrast
T1-weighted-enhanced tissues without the injection of a GBCA.
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Resumen

El glioma maligno es el tumor cerebral primario más común en adultos. Esta
familia de tumores cerebrales incluye distintos tipos que se diferencian por sus
características genéticas y el pronóstico esperado, siendo este último en general
desfavorable. La supervivencia esperada es especialmente baja en los gliomas de
alto grado como los glioblastomas, por lo que en esos casos predecir la supervivencia
es una tarea crucial para la planificación eficiente de cirugía y tratamiento.

En lo que se refiere al diagnóstico, en la práctica clínica este es comúnmente real-
izado mediante imagen de resonancia magnética (IRM) y, en particular, mediante
inspección visual de imágenes ponderadas. El protocolo estándar de resonancia
magnética (RM) para evaluar tumores cerebrales incluye, al menos, cuatro imágenes
ponderadas distintas: ponderada en T1, ponderada en T2, FLAIR y ponderada
en T1 después de la inyección de un agente de contraste a base de gadolinio. Esta
última se utiliza para evaluar la ruptura de la barrera hematoencefálica, condición
manifestada en la imagen como realce de señal causado por la fuga de contraste
al espacio perivascular. Este procedimiento diagnóstico presenta dos limitaciones
principales. Por un lado, la naturaleza cualitativa de las imágenes ponderadas difi-
culta el uso de métodos cuantitativos. Por otro lado, el uso de agentes de contraste
puede desencadenar efectos adversos que bajo ciertas circunstancias pueden ser
severos, además de incrementar la duración y el coste de las pruebas.

Por el contrario la IRM cuantitativa se basa en calcular directamente las propiedades
magnéticas de los tejidos conocidas como mapas paramétricos. Estas son el tiempo
de relajación longitudinal (T1), tiempo de relajación transversal (T2) y densidad
protónica (PD). Estos parámetros presentan una escala absoluta y en general
son considerados más robustos que las imágenes ponderadas. Recientemente, un
nuevo paradigma, la IRM sintética, ha cobrado relevancia; este se basa en la
computación de mapas paramétricos de T1, T2 y PD, seguido de la síntesis de
imágenes ponderadas a partir de los mapas. Este procedimiento tiene la ventaja de
mejorar la eficiencia de las pruebas y facilitar el diagnóstico.

El cálculo de los mapas paramétricos puede realizarse mediante secuencias clásicas
de relaxometría, sin embargo, su utilidad en la práctica clínica está limitada por
su larga duración. Como alternativa, recientemente se han propuesto técnicas
multiparamétricas rápidas que alivian este problema aunque aún requieren un
tiempo de adquisición no despreciable. Además, estás técnicas están normalmente
asociadas a secuencias específicas o productos comerciales que en muchas ocasiones
no están disponibles en los escáneres clínicos.
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Las técnicas de aprendizaje profundo podrían ser una alternativa para el cálculo de
mapas paramétricos a partir de imágenes ponderadas convencionales y, por tanto,
ampliamente disponibles. De este modo, los mapas paramétricos podrían calcularse
fácilmente tanto en bases de datos ya existentes, así como en nuevas adquisiciones
sin incrementar el tiempo de las pruebas. Sin embargo, la falta de conjuntos de
datos públicos que contengan imágenes ponderadas y los correspondientes mapas
paramétricos asociados podría ser una de las principales limitaciones que dificultan
el uso de estas técnicas, ya que estas requieren, en principio, grandes conjuntos de
datos para su entrenamiento.

En esta Tesis Doctoral proponemos mejorar el diagnóstico de tumores cerebrales
siguiendo el paradigma de IRM sintética. El cálculo de los mapas paramétricos se ha
realizado a partir de imágenes ponderadas convencionales adquiridas con protocolos
rutinarios haciendo uso de técnicas de aprendizaje profundo. Posteriormente, se
han sintetizado con éxito diferentes tipos de imágenes ponderadas a partir de
los mapas paramétricos. Distintas soluciones se han propuesto para solventar el
problema de la falta de conjuntos de datos públicos con mapas paramétricos. En
concreto, entrenamientos basados en datos sintéticos y estrategias de aprendizaje
auto-supervisado para realizar el entrenamiento a partir únicamente de imágenes
ponderadas. Además, tanto las imágenes ponderadas sintetizadas como los mapas
paramétricos computados se han empleado en diferentes aplicaciones para mejorar el
diagnóstico de tumores cerebrales. En concreto, se han utilizado tanto para predecir
la supervivencia esperada de los pacientes con glioblastoma, como para predecir
los tejidos tumorales con realce sin la utilización de agentes de contraste.
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This section lists (in alphabetic order) all the acronyms that have been used in this
Thesis dissertation.

ABN abnormal tissue. 87, 89, 110, 143
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ASL arterial spin labeling. 27
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BTB blood tumor barrier. 25

CNN convolutional neural network. 9, 15, 34, 37, 38, 43–46, 49, 50, 52, 53, 57–59,
63, 64, 70–72, 74–76, 79, 87, 98, 99, 103, 107–109, 111, 114, 120

CNR contrast-to-noise ratio. 48, 52, 54–56, 61, 62

CNS central nervous system. 3, 25

CORR correlation coefficient. 48, 56, 57

CSF cerebrospinal fluid. 44, 47, 52–55, 61, 63

CT computerized tomography. 4, 37, 38

DFT discrete Fourier transform. 21

DL deep learning. 7–9, 15, 35, 43, 58, 69, 70, 78, 85–95, 104, 107, 108, 110,
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FCNN fully convolutional neural network. 35, 37

FID free induction decay. 19

FLAIR fluid attenuated inversion recovery. 23

FT Fourier transform. 21

GAN generative adversarial network. 37, 38, 63, 120
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GBCA Gadolinium-based contrast agent. 4, 5, 15, 25, 27, 28, 85, 87, 94, 95, 98,
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ICC intra-class correlation coefficient. 50, 52, 54, 58, 61, 74, 76, 79

IDH Isocitrate dehydrogenase. 3
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IR inversion recovery. 29, 31
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IR-SE inversion recovery-spin echo. 23, 49, 59

IRB institutional review board. 10, 132

LR logistic regression. 73

MAE mean absolute error. 45, 71

MAGiC magnetic resonance image compilation. 7, 11, 15, 85, 87–92, 94, 95, 107,
108, 110–112, 118, 122, 143

MDME multidynamic multiecho. 31

ME-SE multi echo-spin echo. 29

MPME multipathway multiecho. 31

MPRAGE magnetization prepared rapid gradient echo. 31

MR magnetic resonance. 4, 6–10, 19, 20, 23, 27, 29–31, 35, 38, 43–46, 61, 64, 69,
71, 85, 107, 111, 117, 132

MRI magnetic resonance imaging. 4–10, 15, 18, 25, 30, 31, 37, 38, 43, 61, 62, 117,
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MSE mean squared error. 48, 50, 57, 61, 73, 74, 100

NMR nuclear magnetic resonance. 18

NN neural network. 32–34, 37, 38, 120

NSE nomalized squared error. 46, 49–51
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nWM normal white matter. 87, 143
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PDw PD-weighted. 10, 31, 49, 52–59, 62
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93, 98–101, 104, 107–111, 113, 114, 132, 144
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1.1 Motivation
Malignant glioma is the most common primary brain tumor in adults with an
annual incidence of approximately 5 cases per 100.000 population (Wen and Kesari,
2008). Practically all adult-type gliomas progress with time and present an overall
poor prognosis (Thust et al., 2018). This brain tumor is defined by its origin in
the glial cells (Ostrom et al., 2020). According to the fifth edition of the World
Health Organization (WHO) classification of tumors of the central nervous system
(CNS), adult-type diffuse gliomas are an heterogeneous family, which is composed
of three different types distinguished by their genetic characteristics (such as
Isocitrate dehydrogenase (IDH) genes mutated versus non-mutated or wildtype)
and prognostic outcomes (McNamara et al., 2022):

• Astrocytoma, IDH-mutant: grade 2, 3, or 4

• Oligodendroglioma, IDH-mutant and 1p/19q-codeleted: grade 2 or 3

• Glioblastoma, IDH-wildtype: grade 4
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The specific tumor grade determines the treatment plan for each particular case
(Horbinski et al., 2022). In general, the standard therapy includes maximal surgical
resection whenever feasible, radiotherapy and chemotherapy (Thust et al., 2018;
Wen and Kesari, 2008). Although maximal surgical resection tends to increase
life expectancy of the patients, the infiltrative pattern of gliomas hinders the
whole elimination (Wen and Kesari, 2008). Recently, several advances have been
achieved in precision oncology and immunotherapy (Tan et al., 2020), but gliomas
still maintain an unfavorable prognosis (Holland, 2001). The expected survival
remains especially poor in glioblastoma, with approximately 40% survival in the
first year after diagnosis and 17% in the second year (Thakkar et al., 2021). Thus,
in those cases survival prediction is a key task for efficient treatment and surgery
planning.

As for the diagnosis, the medical imaging modalities usually employed in clinical
practice are magnetic resonance imaging (MRI) or computerized tomography
(CT) (Wen and Kesari, 2008). Unlike CT, MRI physical principles makes it a
non-invasive, innocuous and harmless imaging modality; consequently it is generally
the modality of choice. In addition, magnetic resonance (MR) images present an
excellent contrast between soft tissues that facilitates the distinction of brain tumors.
The images that are typically acquired during an MR scan are of a qualitative
nature since they are based on relative differences between tissues. Thus, they are
known as qualitative or weighted MRI (Gulani and Seiberlich, 2020).

MR weighted images are acquired by applying specific pulse sequences with a
combination of acquisition parameters, which are selected by the operator. The
choice of both sequence and parameters gives rise to a specific weighting of the
tissue magnetic properties. All the tissue magnetic properties always affect the
weighted images, although a predominant weighting of a specific magnetic property
generally exists. Each image weighting provides complementary information for
diagnosis (Lu et al., 2005), since different structures and/or conditions are more
clearly visible in each of them. Thus, an MRI scan protocol typically consists of a
number of sequences for obtaining various weighted images. These weighted images
are routinely used by radiologists for diagnosis through visual inspection.

Specifically, the standard protocol for glioma assessment, portrayed in Figure 1.1,
generally includes (at least) a T1-weighted (T1w), T2-weighted (T2w), T2-weighted
fluid attenuated inversion recovery (T2w-FLAIR), and post-contrast T1-weighted
(post-T1w) (Ellingson et al., 2015a; Thust et al., 2018). The latter deserves an
special mention; it is obtained after the injection of a Gadolinium-based contrast
agent (GBCA) and it is key due to its ability to reveal the impairment in the blood
brain barrier (BBB). Following the visual inspection criteria for diagnosis, the T1w
and post-T1w are visually compared seeking the potential contrast enhancement in
the latter caused by the extravasation of GBCA into the perivascular space (Hat-
tingen et al., 2017). Evaluating the enhancement is crucial for tumor resection
planing; literature suggests that in patients without comorbidities a resection above
90% of the tumor contrast enhancement improves patient outcome and minimize
recurrence (Brown et al., 2016; Gilard et al., 2021; Lacroix et al., 2001). Also, the
presence of enhancement is associated with aggressive tumor behavior in high-grade
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T1w T2w T2w-FLAIR post-T1w

Figure 1.1: Weighted images included in a standard MRI protocol for glioma assessment.
These image modalities are usually acquired, but other modalities could be also included
depending on the institution. See how each image modality is able to highlight different
properties of the tumor.

gliomas and determines the treatment plan (Warntjes et al., 2018).

However, this diagnostic procedure presents two major issues:

a) The arbitrary scale of weighted images hinders the usage of quantitative diag-
nostic methods. Nevertheless, these quantitative methods could successfully
complement the standard diagnosis procedure for distinguishing different post-
treatment conditions and understanding biological changes within the tumor,
among others (Lescher et al., 2015; Pirkl et al., 2021). Hence, some pro-
cedures are difficult to be performed only through visual inspection of the
weighted images, such as the detection of tumor infiltration into the peritumoral
edema (Blystad et al., 2017).

b) GBCAs are also problematic by their own nature; although GBCAs are generally
deemed safe, between 0.07 to 2.4% of injected patients suffer from mild adverse
reactions and a lower rate (around 0.03%) from severe complications (Forghani,
2016; Granata et al., 2016; Ramalho et al., 2016). Severe life-threatening ana-
phylactic type reactions are exceedingly rare (0.001% to 0.01%) (Forghani,
2016; Granata et al., 2016). In addition, nephrogenic sistemic fibrosis (NSF)
is a rare but serious side effect, which can arise in people with severe kidney
problems (Grobner, 2006). Other concern among the community is the possible
deposition of GBCAs in several tissues in the brain (Gulani et al., 2017; Kanda
et al., 2014; Runge, 2016), especially in patients who have to undergo several
follow-up acquisitions with GBCAs such as the oncological patient. Also, the
environmental issues associated with the presence of GBCAs in wastewater (In-
oue et al., 2020; Rogowska et al., 2018). Finally, the usage of GBCAs results
in patient discomfort during intravenous injection and increases scan time, the
need of skilled manpower, and costs (Shankar et al., 2018).
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Figure 1.2: Differences between qualitative MRI (i.e., weighted images) and quantitative
MRI (i.e., parametric maps). The intensity of weighted images does not present units,
whereas parametric maps present an absolute scale, measured in milliseconds in the T1
map shown in the image.

An alternative option to perform the diagnosis is to find the tissue magnetic
properties themselves, methodology known as quantitative MRI. These properties
include the longitudinal relaxation time (T1), transversal relaxation time (T2), and
proton density (PD) — jointly referred to as parametric maps —. Parametric maps
present an intrinsic quantitative nature and absolute scale (see Figure 1.2). They
are also more robust than weighted images due to their lower sensitivity to MRI
hardware (Weiskopf et al., 2013). In addition, these parameters play an important
role in tissue characterization in healthy and diseased stages of pathologies such as
epilepsy (Conlon et al., 1988) or multiple sclerosis (Larsson et al., 1989) and, also,
for tumor detection (Yankeelov et al., 2011). Regardless of the aforementioned
advantages of parametric maps compared to weighted images, radiologists are not
used to perform diagnosis solely on the basis of these maps (Gulani and Seiberlich,
2020; Hagiwara et al., 2017).

Synthetic MRI serves as a bridge between qualitative and quantitative MRI (Ji
et al., 2020). Although this concept has recently gain popularity, it was first defined
by Bobman et al. (1985) as a three-step procedure:

1. Acquisition of a set of MR weighted images with different operator-selectable
acquisitions parameters.

2. Computation of the quantitative parametric maps (i.e., T1, T2, PD) from
the acquired weighted images by voxel-wise fitting a known relaxation model.

3. Synthesis of weighted images using the theoretical equations that describe the
per-pixel MR image intensity as a function of operator-selectable acquisition
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parameters, such as echo time (TE), repetition time (TR), inversion time
(TI), etc., and the aforementioned parametric maps.

Thus, this low-cost procedure could retrospectively enhance patient throughput
and facilitate radiologists routine. On the one side, parametric maps could enable
the quantification of subtle changes within the tissues. On the other side, artifacted
weighted images could be replaced by their synthesized counterversion without the
need of re-acquistion and/or some image modalities could be directly not acquired,
which imply a reduction of the protocol time. Recently, other approaches have
been proposed that learn the mapping between different pairs of MR weighted
images (Chartsias et al., 2017; Dar et al., 2019; Sohail et al., 2019). Although
these methods have been sometimes referred to as Synthetic MRI in the literature,
we believe that medical image translation is a more descriptive name for them.
Thus, throughout this Thesis dissertation we only consider Synthetic MRI methods
those that fit within the three-step definition given above. This consideration is
done since these methods are flexible in regards to the MR images that can be
synthesized.

Step 2 (i.e., the estimation of parametric maps from a set of acquired weighted
images) has been traditionally carried out with techniques known as relaxometry.
However, their extremely long acquisitions, which are unfeasible in clinical practice,
hamper their inclusion in routine protocols. Nowadays, fast multiparametric
mapping techniques, such as MR Fingerprinting (Ma et al., 2013) or magnetic
resonance image compilation (MAGiC) (Warntjes et al., 2008), have taken the
stage. However, these techniques, albeit faster than traditional relaxometry, still
require a not negligible acquisition time difficult to accommodate in an already
tight protocol. Moreover, neither their sophisticated sequences nor their associated
commercial software are commonly available worldwide, thereby their practical use
is not widespread (Ji et al., 2020).

Parametric mapping could also be boosted by deep learning (DL) techniques
if the computation could be performed from only conventional weighted images,
which are part of any routine protocol. The avoidance of ad-hoc pulse sequences
may facilitate the availability and consolidation of these approaches in clinical care.
However, training DL methods is usually a data-demanding task (Isola et al., 2017)
and, to the best of our knowledge, there are no public databases that include several
types of weighted images together with their corresponding parametric maps. In
addition, obtaining these parametric maps with in-house acquisitions is also difficult
due to sensible time restrictions that ethic committees (and common-sense) impose.
In this context, finding solutions that facilitate the training of DL models with
few representative cases is mandatory. Furthermore, in order for the proposed
approaches to be useful, the diagnostic value of the DL-synthesized parametric
maps and weighted images should be validated with clinical endpoints (Gulani and
Seiberlich, 2020).

In this Thesis we propose Synthetic MRI approaches for the computation of para-
metric maps and the synthesis of several types of weighted images, which operate
using as inputs conventional weighted images. The Synthetic MRI approaches are
based on DL, and some solutions for training the models with small databases
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are also presented. Finally, the utility of the proposed approaches is validated in
different clinical applications for brain tumor diagnosis. Thus, we show that the DL
synthesized parametric maps and weighted images can be used as a surrogate of
those acquired with traditional techniques or through commercial software.

1.2 Objectives
The main objective of this Thesis is to enhance the diagnosis of brain tumors
using a Synthetic MRI paradigm, i.e., by means of the computation of T1,
T2, and PD parametric maps, as well as the synthesis of several weighted
images, out of routine sequences typically used in clinical protocols. Hence,
the methods should be effortless, i.e., should not add up any extra time to the
acquisition protocols and should not require any non-conventional MR acquisition
sequence. To achieve this objective, DL techniques will be employed.

The main objective can be itemized into the following sub-objectives:

− O1: To propose and develop a Synthetic MRI approach for T1, T2, and PD
multiparametric mapping from routine MRI acquisitions commonly used in
clinical practice and widely available in all the scanners.

− O2: To synthesize different modalities of MR weighted images from the
computed parametric maps. These images not only have to be visually
similar to those acquired, but they also have to show similar quantitative
characteristics so that they can be used by quantitative and automatic
diagnostic methods.

− O3: To determine the utility of the synthesized weighted images to feed a
radiomics system for predicting the expected survival of glioblastoma patients.

− O4: To determine the feasibility of the parametric maps computed with DL as
surrogate of those obtained with relaxometry or other commercial techniques
in a clinical application for predicting brain tumor T1w-enhancement without
contrast agents.

− O5: To extend the proposed Synthetic MRI approaches for the computation
of post-contrast parametric maps and the synthesis of post-contrast weighted
images for automatic quantification of tumor enhancement.

1.3 Methodology
The methodology employed in this Thesis follows the engineering research approach
outlined by Adrion (1993) and refined by Glass (1995). This research method
involves observing existing solutions, proposing improved approaches, developing
these approaches, and then iteratively measuring, analyzing, and repeating the
process until further improvements are unattainable. The specific methodological
phases followed in this Thesis are detailed below:
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1. The informational phase: this phase entails reviewing the state-of-the-
art solutions related to a specific problem, accomplished through an exhaustive
literature survey. In the scope of this Thesis, we detected that the qualitative
nature of weighted images could hinder the usage of quantitative diagnostic methods,
particularly in neuro-oncology for brain tumor diagnosis. These methods could
indeed be relevant to better characterize subtle changes within the tumors and, in
turn, to improve patient outcome. However, radiologists are not used to relying
only on quantitative image modalities. In this context, Synthetic MRI stands out
as a solution since it serves as a bridge between qualitative and quantitative MRI.
However, it is usually performed with specific sequences and commercial softwares,
which limits its widespread usage.

2. The propositional phase: this phase comprises the formulation of a hy-
pothesis, method, algorithm, or theory. In the context of the current Thesis, we
proposed to develop a Synthetic MRI approach from only conventional acquisitions.
To this end, DL might be a potential solution. Our final practical goal is to broaden
the availability of Synthetic MRI to improve brain tumor diagnosis.

3. The analytical phase: this phase involves analyzing and validating the
proposition. Regarding the computation of T1, T2, and PD parametric maps from
a small number of routine sequences, we examined the suitability of convolutional
neural network (CNN) architectures for addressing this type of problem. Limited
large and public datasets of parametric maps was a drawback, which hinders the
usage of DL to this end. Thus, we considered the possibility of performing part of
the training with synthetic data.

4. The evaluative phase: this stage entails the evaluation of the proposition
by means of experimentation. We validated the proposed approaches with both
synthetic data and real MR acquisitions of healthy volunteers and patients diagnosed
with brain tumors. In addition, public datasets, in-house acquisitions, and data
obtained from collaborations with other institutions and hospitals are employed.
Thus, the generalization capability of the proposed methods were also tested with
different multi-center, multi-vendor acquisitions. The proposed approaches were
validated by means of visual assessment, quantitative quality metrics, as well as
quantifying the performance of the computed parametric maps and synthesized
weighted images in different clinical applications for tumor diagnosis.

Additionally, in the course of this Thesis, we executed an additional phase, which
is referred to as the Dissemination Phase. In this phase, we shared our motiva-
tion, final propositions, methodologies, and outcomes with the community. The
dissemination was performed not only through specialized international journals
and conferences, but also through newspapers and radio broadcast in order to reach
both international research and local communities.
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1.4 Materials: Datasets
The MR acquisitions used in this Thesis were collected with the approval of the
corresponding institutional review board (IRB) and after the volunteers or patients
had signed an informed written consent. The different datasets used throughout
this Thesis are described below:

• Multicontrast Brain-MRI : eight subjects, suspected of early Alzheimer
disease, (mean age, 71.38 years ± 6.91 [SD]; 5 female, 3 male) were scanned
at the University of Valladolid, Valladolid, Spain on a 3T Achieva (Philips,
Best, The Netherlands). Each study was composed of four acquisitions for
obtaining a total of five structural weighted images. These weighted images
are T1w, PD-weighted (PDw), T2w, T2w-FLAIR, and T2∗-weighted (T2∗w).
Details about the acquisition parameters can be found in Table A.1.

• Relaxometry Brain-MRI : five healthy volunteers (mean age, 34.40 years ±
12.18 [SD]; 2 female, 3 male) were included in this dataset. The dataset was
collected at the University of Valladolid, Valladolid, Spain in 2021 with a 3T
Achieva (Philips, Best, The Netherlands). The protocol included relaxometry
sequences for the estimation of T1, T2, and PD maps, and also T1w and T2w
images. A T2w-FLAIR image with the same acquisition parameters than in
previous dataset Multicontrast Brain-MRI was also acquired but only used
for registration purposes. The T1 maps were estimated from a variable flip
angle (VFA) sequence with 11 different flip angles using NOVIFAST (Ramos-
Llordén et al., 2018), and the T2 maps were obtained from a multi-echo
sequence with six different TEs using a least squares fit. Details about the
acquisition parameters can be found in Table A.2.

• Multicontrast Glioblastoma: 24 patients diagnosed with glioblastoma
(mean age, 57.0 years ± 13.0 [SD]; 10 female, 14 male) were acquired at
the Hospital Universitario 12 de Octubre, Madrid, Spain on a 1.5T scanner
(General Electric, Waukesha, WI, USA). For each patient, four MR structural
weighted images were collected, namely T1w, T2w, T2w-FLAIR, and post-
T1w. Details about the acquisition parameters can be found in Table A.3.

• UPenn-GBM : 611 patients diagnosed with de novo glioblastoma are in-
cluded in this public dataset of the University of Pennsylvania, Philadelphia,
Pennsylvania. The acquisitions were performed from 2006 to 2018. For 41 of
these patients a follow-up MRI acquisition prior to a second resection is also
available. Details about the dataset can be found in Bakas et al. (2022). This
dataset includes four structural weighted images (T1w, T2w, T2w-FLAIR,
and post-T1w). The images were preprocessed by resampling them to an
isotropic resolution of 1mm3, and skull-stripping. The segmentation into
three different regions — necrosis, enhancement, and edema — were also
available. Different subgroups of patients from this dataset were employed
in this Thesis. Specifically, in Upenn-GBM-A (used in Chapter 5) we
selected 493 patients (mean age, 61.94 years ± 11.98 [SD]; 91 female, 129
male) and in Upenn-GBM-B (used in Chapter 6) we selected 220 patients
(mean age, 63.15 years ± 12.23 [SD]; 197 female, 296 male). In both cases the
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acquisitions were performed with a 3T Magnetom Trio (Siemens Healthcare,
Erlangen, Germany) and with homogeneous acquisition parameters. Details
about the acquisition parameters can be found in Table A.4.

• GLIOMA: 15 patients (mean age, 39.33 years ± 10.40 [SD]; 6 female, 9
male) with different grades of gliomas, who were scanned at the Erasmus
MC, Rotterdam, The Netherlands. The patients had undergone tumor
resection before the acquisition and were scanned between 2018 and 2020
with a 3T Sigma Premier (General Electric, Waukesha, WI, USA). The
image modalities included are T1w, T2w, T2w-FLAIR, post-T1w, and, also,
pre-contrast MAGiC for T1, T2, and PD parametric mapping. In one patient
the T2w-FLAIR was not acquired due to a protocol deviation. Details about
the acquisition parameters can be found in Table A.5.

Regarding the hardware resources, they vary depending on the experiment. The
main workstation includes a CPU Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz and
16 GM RAM memory. In addition, throughout the development of this Thesis,
different GPUs were employed, which are listed below:

− NVIDIA GeForce RTX 2080 Ti

− NVIDIA Quadro RTX 6000

− NVIDIA GeForce GTX 1070

1.5 Publications
Below, the list of publications related to this Thesis is included. These publications
are also schematically shown in Figure 1.3. Each contribution is related with, at
least, one of the aforementioned objectives although more than one publication can
be related with the same objective.

• Core publications of this Thesis:

◦ Publications in indexed international journals:

− Moya-Sáez, E., Peña-Nogales, Ó., de Luis-Garcia, R., and Alberola-
López, C. A deep learning approach for Synthetic MRI based on
two routine sequences and training with synthetic data. Computer
Methods and Programs in Biomedicine. 2021; 210, 106371.

− Moya-Sáez, E., Navarro-González, R., Cepeda, S., Pérez-Núñez,
A., de Luis-Garcia, R., Aja-Fernández, S., and Alberola-López,
C. Synthetic MRI improves radiomics-based glioblastoma survival
prediction. NMR in Biomedicine. 2022; 35(9), e4754.

− Moya-Sáez, E., de Luis-Garcia, R., Nunez-Gónzalez, L., Alberola-
López, C., and Hernández-Tamames, J.A. Brain tumor T1w-enhancement
prediction from pre-contrast conventional weighted images using
synthetic multiparametric mapping and deep learning. Submitted.
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◦ Publications in non-indexed international journals:

− Moya-Sáez, E., de Luis-Garcia, R., and Alberola-López, C. Toward
deep learning replacement of gadolinium in neuro-oncology: A review
of contrast-enhanced Synthetic MRI. Frontiers in Neuroimaging.
2023; 2, 1055463.

◦ Publications in international conferences:

− Moya-Sáez, E., Peña-Nogales, Ó., Sanz-Estébanez, S., de Luis-
Garcia, R., and Alberola-López, C. CNN-based synthesis of T1, T2
and PD parametric maps of the brain with a minimal input feeding.
ISMRM & SMRT Virtual Conference & Exhibition, Virtual, August
2020; 3806.

− Moya-Sáez, E., de Luis-Garcia, R., and Alberola-López, C. A
self-supervised deep learning approach to synthesize weighted im-
ages and T1, T2, and PD parametric maps based on MR physics
priors. ISMRM & SMRT Annual Meeting & Exhibition, An Online
Experience, Virtual, May 2021; 2169.

− Navarro-González, R., Moya-Sáez, E., de Luis-Garcia, R., Aja-
Fernández, S., and Alberola-López, C. Synthetic MRI aids in glioblas-
toma survival prediction. Joint ISMRM-ESMRMB & SMRT 31st
Annual Meeting, London, England, UK, May 2022; 3928.

− Moya-Sáez, E., de Luis-Garcia, R., Hernández-Tamames, J.A., and
Alberola-López, C. Pre and Post contrast Simultaneous Parametric
Mapping of Glioblastomas from routine T1 weighted images for
Quantitative Enhancement Assessment. 2023 ISMRM & SMRT
Annual Meeting & Exhibition, Toronto, Canada, June 2023; 2352.

− Moya-Sáez, E., de Luis-Garcia, R., Alberola-López, C., and
Hernández-Tamames, J.A. Deep learning-based post-contrast imag-
ing free of exogenous contrast agents. 3rd Annual Meeting of the
ISMRM Iberian Chapter, Valladolid, Spain, July 2023; P1.13. Best
poster paper award.

− Moya-Sáez, E., Nunez-Gónzalez, L., de Luis-Garcia, R., Alberola-
López, C., and Hernández-Tamames, J.A. Post-contrast multi-
parametric mapping from only pre-contrast conventional weighted
images. 2024 ISMRM & ISMRT Annual Meeting & Exhibition,
Singapore, May 2024; 2809.

◦ Invited talks:

− Moya-Sáez, E., de Luis-Garcia, R., and Alberola-López, C. Syn-
thetic image in MRI 36 Conference Sociedad Española de Radiología
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Médica (SERAM) / XXXI Conference Colegio Interamericano de
Radiología (CIR), Málaga, Spain, May 2022.

In the subsequent list we also include other contributions accomplished during the
progress of this Thesis but not directly related with the main scope of it.

• Other publications accomplished during the progress of this Thesis:

◦ Publications in indexed international journals:

− Martín-González, E., Moya-Sáez, E., Menchón-Lara, R.M., Royuela-
del-Val, J., Palencia-de-Lara, C., Rodríguez-Cayetano, M., Simmross-
Wattenberg, F., and Alberola-López, C. A clinically viable vendor-
independent and device-agnostic solution for accelerated cardiac
MRI reconstruction. Computer Methods and Programs in Biomedicine.
2021; 207, 106143.

◦ Publications in international conferences:

− Rodríguez-Galván, J.R., Martín-Martín, C., Moya-Sáez, E., Tristán-
Vega, A., Aja-Fernández, S., and Alberola-López, C. DL Diffusion
MRI enhancing may lead to incorrect diagnosis. 2nd Annual Meeting
of the ISMRM Iberian Chapter, Lisbon, Portugal, June 2022; P2.15.

1.6 Document overview
This document is divided in five parts; Part I includes the introduction and
the context of this Thesis dissertation. In Part II the baseline Synthetic MRI
approach from routine sequences is presented. This baseline method is extended
in Parts III and IV to be used in specific clinical applications for brain tumor
diagnosis. Specifically, the Synthetic MRI approach is extended in Part III for
survival prediction of glioblastoma patients and in Part IV for brain tumor T1w-
enhancement prediction. Finally, Part V includes some final remarks and future
work.

A more detailed description is outlined next:

• Part I: Introduction part, which includes the introduction, motivation and
context of this Thesis dissertation.

◦ Chapter 1 introduces and motivates this Thesis dissertation. The main
goal pursued in the Thesis as well as the specific sub-objectives are
enumerated. Also, the methodology and materials utilized are explained.
Finally, we include a list of journal and conference publications achieved
during the realization of this Thesis.

◦ Chapter 2 includes background material required for a complete un-
derstanding of the topics addressed in this Thesis. An overview of the
state-of-the-art related with this Thesis is also incorporated.
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Figure 1.3: Outline of the motivation and contributions of this Thesis. Red text refers to
the drawbacks found in the state-of-the-art and limitations that are overcome through
this work. Publications related with this Thesis are also included; those displayed inside
a square correspond to the ones published in international journals.

14



1.6. Document overview

• Part II: This part proposes the Synthetic MRI approach for obtaining
parametric maps from conventional weighted images acquired with routine
sequences. This part consists of Chapter 3, in which we present the Synthetic
MRI approach for the DL computation of T1, T2, and PD parametric maps
from only a pair of weighted images (a T1w and a T2w) acquired with routine
sequences. The training of the DL method is performed mainly with synthetic
data in order to overcome the lack of large, public datasets with parametric
maps. The synthesis of several types of weighted images from the computed
parametric maps is also performed.

• Part III: This part proposes an extension of the Synthetic MRI approach to
improve a radiomics system for survival prediction in glioblastoma. This part
consists of Chapter 4, in which we introduce a self-supervised extension of
the Synthetic MRI approach described in Chapter 3. This extension allows
us to perform the training of the DL network with acquired weighted images
of glioblastoma patients. Thus, reference parametric maps are not needed
for training. The synthesized weighted images are next employed to feed
a radiomics system for predicting the expected survival of such patients.
Both the radiomics system and image synthesis method are described in this
chapter. The results show how the synthesized images can replace one of the
acquired sequences in this clinical application.

• Part IV: This part contributes to improve the current procedures for the
detection and quantification of brain tumor T1w-enhancement.

◦ Chapter 5 describes a refinement of the Synthetic MRI approach de-
scribed in Chapter 3 by training it with a small dataset of parametric
maps of glioma patients obtained with MAGiC. The DL-computed para-
metric maps are employed for predicting T1w-enhancement without
contrast agents, and those maps are proved to be useful in that ap-
plication. Thus, this chapter shows how DL-synthesized parametric
maps could be a surrogate of those maps obtained with relaxometry or
commercial software.

◦ Chapter 6 includes an extension of the self-supervised method pre-
viously described in Chapter 4 for the computation of pre- and post-
contrast parametric maps. In addition, this chapter shows how those
maps make it possible to automatically quantify tumor T1w-enhancement
as a complementary tool to standard visual assessment.

◦ Chapter 7 proposes a cascade of two CNNs for pre- and post-contrast
parametric mapping and the synthesis of post-T1w images from only two
pre-contrast routine weighted images. Thus, preliminary steps towards
the avoidance of GBCAs are presented in this chapter.

• Part V: Conclusions part, which includes the conclusions and final remarks.
This part consists of Chapter 8, in which the main contributions, advantages,
and limitations are included. Furthermore, we figure out some future lines
that could arise from this research.
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• Part VI: Appendices part, which includes supplementary material of this
Thesis dissertation.

◦ Appendix A includes details about the acquisition parameters for each
dataset employed in this Thesis.

◦ Appendix B derives the inversion recovery gradient-recalled echo (IR-
GRE) theoretical pulse sequence equation used in this Thesis.

◦ Appendix C includes additional explanations about the radiomics
system for glioblastoma survival prediction employed in Chapter 4.

◦ Appendix D includes additional explanations about the voxel-wise
statistical classifications of T1w-enhancement employed in Chapter 5.
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2.5.5 Advanced NN architectures for image synthesis . . . . 37

2.1 Principles of Magnetic Resonance Imaging
2.1.1 From spins to signal
The basic principle of MRI is rooted in the nuclear magnetic resonance (NMR)
phenomenon described by Bloch (1946) and Purcell et al. (1946). Nuclei with
unpaired protons or neutrons possess a property called spin, which makes them “MR
active”. Several nuclei, such as 19F, 13C, 23Na, etc., present this characteristic, but
the one most commonly used in MRI is 1H due to its presence in water molecules.
1H is a single, positively charged proton. The NMR phenomenon consists of the
interaction of a nuclear spin in the presence of an external magnetic field B0. Thus,
this phenomenon can be explained with both quantum mechanics and Newtonian
theories. From a quantum mechanics explanation, protons can occupy multiple
energy levels, so they align either parallel or antiparallel to the B0 field. At room
temperature, a small excess of parallel protons exists and thus the net magnetization
vector (M) is aligned with the B0 direction, which conventionally has been fixed
to the longitudinal ‘z’-axis. The net magnetization vector at this steady state
situation is reffered to as M0. Hereinafter, magnetic moments will be explained in
purely Newtonian terms in order to simplify the explanation.

The B0 field produces a secondary spin called precession that causes M0 to produce
a circular path around B0. The rate at which M0 precesses around the external
magnetic field is known as the the precessional frequency (ω0) and is determined
by the Larmor equation:

ω0 = γ||B0||2[rad/s], (2.1)

where γ is the gyromagnetic ratio, which is the precessional frequency for an specific
nucleus at 1T. Specifically, for 1H nuclei it is 42.57 MHz/T.

The magnetic moments of the spinning nuclei are perturbed by means of time-
varying radio-frequency (RF) pulses. The RF fields (B1(t)) are applied in the
transverse plane (i.e., ‘x’-‘y’ plane) and rotate at the Larmor frequency. These
fields cause the 1H nuclei to resonate, that is to absorb energy from the RF pulse,
which produces another rotation to the net magnetization vector (M) modelled
by:

∂M
∂t

= M × γ(B0 + B1(t)) (2.2)

The new precession around the B1(t) magnetic field tips the magnetization vector
away from the longitudinal direction in a spiral way towards the transverse plane.
The amount of rotation from the longitudinal axis ‘z’ is fixed by the intensity
and duration of the B1(t), and is accounted for as the flip angle (α). Thus, the
application of any RF pulse is considered to be an excitation of the system.
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2.1. Principles of Magnetic Resonance Imaging

For signal measurement, a receiver coil is situated in the transverse plane. As the net
magnetization vector rotates at the Larmor frequency around the transverse plane,
it induces a voltage in the receiver coil according to Faraday’s law of electromagnetic
induction (i.e., a voltage will be induced in any conductor exposed to a changing
magnetic field). It is important to note that only the transverse component of M
induces a voltage. This voltage corresponds to the MR signal, whose magnitude is
proportional to the PD.

After a certain time, the RF pulse is switched off. This causes that an increasingly
higher amount of nuclei become out of phase with each other and the signal induced
in the receiver coils begins to decrease. This process is call free induction decay
(FID). As a consequence, the net magnetization returns to its resting state by
restoring it back into the longitudinal axis in a phenomenon called relaxation. The
relaxation rate is different in each tissue, and this is why relaxation forms the basis
of tissue contrast. Two process are involved:

• Longitudinal relaxation: this is the process by which the net magnetization
tends to recover its original value on the longitudinal axis (see Figure 2.1). It
is caused by the interaction between the spins and the surrounding medium,
i.e., spin-tissue interactions. This process is driven by parameter T1 and it is
also known as T1 recovery.

• Transversal relaxation: this is the process by which the net magnetization
tends to fade away (see Figure 2.1). It is caused by the interactions between
the micro magnetic fields generated by neighboring spins, i.e., spin-spin
interactions, and the interaction between spins and the field inhomogeneities
of the external magnetic field. This process is driven by parameter T2 and it
is also known as T2 decay. In the presence of field inhomogeneities the T2
parameter decreases to the so-called T2∗.

If we include the relaxation process in the previously stated Eq. 2.2, we obtain the
well-known Bloch equation that models the whole MR dynamics:

∂M
∂t

= M × γB − Mxi + Myj
T2

− (Mz + M0)k
T1

, (2.3)

where Mz is the longitudinal magnetization, M0 is the equilibrium magnetization,
and Mx and My are both components of the transverse magnetization. At this
stage, a common approach involves eliminating the effect of the Larmor precession
by defining a rotating frame of reference [x′, y′, z′] synchronized with the precession
frequency of the spins. Thus, the equations describing both relaxation phenomena
can be independently described in the rotating frame of reference by:{

∂Mz′
∂t = − Mz′ +M0

T1
∂Mx′y′

∂t = − Mx′y′

T2
,

(2.4)

where the longitudinal relaxation is described by:

Mz′(t) = M0 + (Mz′(0) − M0)e− t
T1 , (2.5)
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' ' '

Figure 2.1: Longitudinal relaxation (or T1 recovery) and transversal relaxation (or T2
decay) after a 90◦ RF pulse. (Figure taken from McRobbie et al. (2017)).

and the transverse relaxation is described by:

Mx′y′(t) = Mx′y′(0)e− t
T2 (2.6)

2.1.2 From signals to images
The formation of MR images requires a spatial information encoding of the induced
MR signals (Lauterbur, 1973). Spatial magnetic gradient fields are used to this
end. First, it is necessary to selectively excite an specific imaging plane (called
slice) whose thickness is in the order of millimeters. To achieve this, a spatial
magnetic field gradient is employed, which generates a magnetic field varying with
the position. Consequently, the precessional frequency of the nuclear spins becomes
position-dependent. Thus, a spatial field gradient perpendicular to the slice of
interest has to be applied and, at the same time, the frequency of the B1 pulse
has to be adjusted to match the precessional frequency of that specific slice. The
most common plane orientations are axial (plane ‘x’-‘y’), coronal (plane ‘x’-‘z’),
and sagittal (plane ‘y’-‘z’), although other oblique orientations are also possible.
Hence, a stack of 2D slices are sequentially acquired in order to scan the whole
object, obtaining a so-called multi-slice acquisition.

Second, it is necessary to code signals induced for each spatial location of the
excited slice by means of imaging encoding gradients. Were this not done, the MR
signal induced in the receiver coil would correspond to the aggregation of the signal
generated by all the spins. Thus, it would not be possible to distinguish between
the signals induced for each spatial location. Hence, to create an image of, for
example, an axial slice, encoding gradients have to be applied in both the ‘x’ and ‘y’
directions. These gradients are known as frequency and phase encoding gradients.
By ingeniously combining these encoding gradients, we can take advantage of the
precessional frequency changes they induce along the direction of the encoding
gradient and the phase accrual they generate. Ultimately, this process codes the
signal within the entire slice in both frequency and phase increments, facilitating
subsequent image reconstruction.
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2.1. Principles of Magnetic Resonance Imaging

The signal measured by the receiver coil (s(t)) is the ensemble of all signals from
all the spins excited within the slice.

s(t) =
∫

x

∫
y

m(x, y)e−i2π[kx(t)x+ky(t)y]∂x∂y, (2.7)

where m(x, y) is the image to be reconstructed, and

kx(t) = γ

2π

∫ t

0
Gx(τ)∂τ, (2.8)

ky(t) = γ

2π

∫ t

0
Gy(τ)∂τ, (2.9)

are the k-space trajectories along each axis. Eq. 2.7 corresponds to the 2D Fourier
transform (FT), which connects the image space with the signal measured in
the k-space. Therefore, the connection between the image and the sampled data
(k-data) is determined by the trajectory defined by the imaging encoding gradients.
Alternatively, the spatial location or encoding concept could be extended from a
2D slice to a 3D volume. Consequently, the object would be encoded across three
dimensions using the appropriate k-space trajectory k(t) = [kx(t), ky(t), kz(t)],
resulting in a 3D FT. It is worth mentioning that both the k-space and the image
space signals are complex, albeit the final form of the image space usually is
the magnitude image after discarding its phase information. Subsequently, if the
k-space is fully acquired with a Cartesian trajectory, the reconstruction of the final
image can be performed with a discrete Fourier transform (DFT).

2.1.3 Fundamental MR pulse sequences
MR image acquisitions are performed by means of pulse sequences. A pulse sequence
consists in a specific combination of RF pulses, gradients applications, and, also,
the periods of time in between. Thus, the purposes of pulse sequences are: (a)
to modify the phase of spins and therefore produce a signal or echo, which can
be measured in the receiver coil, and (b) to enable the manipulation of some
acquisition parameters to produce different types of image contrasts.

An image has a contrast when it includes regions with both high and low signal
intensities, along with some areas displaying intermediate signal levels. Tissues with
large transverse magnetization at measurement time present high signal (appearing
white or hyperintense), while those with small transverse magnetization have low
signal (appearing black or hypointense). The contrast in an image is influenced
by intrinsic contrast mechanisms (T1, T2, and PD, among others) and extrinsic
contrast acquisition parameters, such as TR, TE, TI, and flip angle. The former
are inherent to the tissue being imaged, whereas the latter are under the control
of the system’s operator during the configuration of the pulse sequence. Thus,
these acquisition parameters are selected in order to weight the image towards one
intrinsic contrast mechanism and away from the others, thereby, they determine
the weighting of the acquired image.
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Figure 2.2: Simplified diagram of a standard gradient echo (GRE) pulse sequence.

The main pulses sequences used in this Thesis are briefly described below:

Gradient-recalled echo (GRE) employs an RF pulse, typically with a flip angle
lower than 90◦, and a series of gradients with varying polarities. This combination
is designed to enforce coherence among the spins within the excited slice. As can
be seen in Figure 2.2, after the RF pulse, there is a prephasing gradient lobe,
which dephases the excited spins. Subsequently, these spins are rephased by the
readout gradient lobe, resulting in the generation of an echo peak signal which
presents a maximum at the TE. In this type of sequences the intensity of the
echo peak will be primarily weighted by the T2∗ relaxation time, which depends
on the tissue properties and also on the field inhomogeneities and susceptibility
effects. On certain occasions, for example when reducing TR for obtaining T1w
images, residual transverse magnetization can persist from cycle to cycle. To resolve
this problem, in spoiled GRE sequences as spoiled gradient-recalled echo (SPGR),
gradients and/or RF pulses (spoilers) are used to eliminate residual transverse
magnetization.

Spin echo (SE) is composed of two RF pulses. The first one (typically of
90◦) acts as an excitation pulse, and the second one (typically of 180◦) acts as
a refocusing pulse. The refocusing RF pulse introduces a phase inversion that
corrects for accumulated phase variations resulting from chemical shifts, field
inhomogeneities, and susceptibility effects. The echo peak materializes at the TE,
which corresponds with twice the temporal interval between the two RF pulses.
Thus, the refocusing RF pulse occurs at TE/2. A diagram of this sequence is
shown in Figure 2.3. In this type of sequences the intensity of the echo peak can
be weighted by the T1, T2 or PD, depending on the TE and TR selected for the
acquisition (see Table 2.1).

Inversion recovery (IR) is the most common form of magnetization preparation.
In this type of sequences, an 180◦ inversion pulse is used to flip the magnetization
into the ‘-z’-axis. From this position the magnetization relaxes back to the steady
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2.1. Principles of Magnetic Resonance Imaging

Table 2.1: Combinations of TE and TR values used in SE sequences to generate main
contrast weightings. (Bernstein et al., 2004; Westbrook, 2015).

TE [ms] TR [ms]
T1-weighted (10-30 ms) (400-700 ms)
PD-weighted (10-30 ms) (≥ 2000 ms)
T2-weighted (≥ 70 ms) (≥ 2000 ms)

R
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S
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a
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FID Echo

TE/2 TE/2

180º
90º

Figure 2.3: Simplified diagram of a standard spin echo (SE) pulse sequence.

state according to the specific T1 value of the tissue. Each tissue passes through
zero at a different time, since each particular tissue presents an specific T1. Some
time after the inversion pulse, the RF excitation is applied; time known as TI.
During the RF excitation only tissues with non-zero longitudinal magnetization
will produce an MR signal. Thus, the TI can be chosen in order to null the signal
for a given tissue. This magnetization preparation mechanism is used, for example,
in fluid attenuated inversion recovery (FLAIR) sequences.

2.1.4 Theoretical MR pulse sequences equations
Upon ideal conditions, the Bloch equation previously stated in Eq. 2.3 presents
an analytical solution specific of the corresponding pulse sequence selected. Thus,
for simple cases, the synthesis of MR weighted images can be performed with
these well-known theoretical equations that describe MR intensity as a function of
operator-selectable acquisition parameters and T1, T2, and PD parametric maps.
In more complicated cases, more sophisticated methods are needed (Bittoun et al.,
1984). In this Thesis, we synthesize weighted images corresponding to the following
sequences: IR-GRE∗ (see Appendix B), spin echo (SE), gradient-recalled echo
(GRE), and inversion recovery-spin echo (IR-SE), with respective equations Eq.
(2.10)—(2.13):

∗IR-GRE is equivalent to magnetization prepared rapid gradient echo (MPRAGE; Siemens), IR
spoiled GRE (IR-SPGR or FSPGR with inversion activated or BRAVO; GE) and 3D turbo field echo
(TFE; Philips) (Ellingson et al., 2015a)
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Figure 2.4: Simplified diagram of a inversion recovery (IR) spin echo (IR-SE) pulse
sequence.

mIR-GRE(x) = PD(x)1 − 2e−TI/T1(x) + e−TR/T1(x)

1 + cos(α)e−TR/T1(x) sin(α)e−TE/T2(x) (2.10)

mSE(x) = PD(x)
[
1 − 2e−(TR−TE/2)/T1(x) + e−TR/T1(x)

]
e−TE/T2(x) (2.11)

mGRE(x) = PD(x) 1 − e−TR/T1(x)

1 − cos(α)e−TR/T1(x) sin(α)e−TE/T2(x) (2.12)

mIR-SE(x) = PD(x)[1 − 2e−TI/T1(x) + 2e−(TR−TE/2)/T1(x)

− e−TR/T1(x)]e−TE/T2(x) (2.13)

with x the voxel location defined on some domain X .

2.2 Post-contrast imaging
2.2.1 Contrast agents
Some transition metal elements with paramagnetic properties, such as gadolinium
(Gd3+) or manganese (Mn2+), possess unpaired electron spins in their outer electron
orbitals. The magnetic field generated by an electron is considerably stronger than
that produced by a 1H proton, making these paramagnetic elements excellent
candidates for creating MRI contrast agents. These agents affect the T1 and T2
values of the tissues, thereby affecting tissue signal intensity and contrast.

Contrast enhancement in MRI can be achieved by either increasing or decreasing
tissue signal intensity. The dominant contrast effect, whether it is T1 shortening
(i.e., positive contrast agent) or T2 shortening (i.e., negative contrast agent),
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depends on several factors, including the dose of the contrast agent and the selected
MRI pulse sequence.

A prime example of positive contrast agents are those based on Gd3+. These
agents reduce both T1 and T2 values of tissues, but due to the considerably
longer T1 values compared to T2, their primary impact at low doses consists of T1
shortening. Consequently, tissues that accumulate such contrast agent appear bright
or hyperintense in T1w images. This is why Gd3+ is known as a T1w-enhancement
agent.

2.2.2 Tumor assessment with post-contrast imaging
The introduction of first GBCA in the market (Magnevist, Bayer Healthcare, Berlin,
Germany) dates back to 1988 (Reeder, 2014). Since then, there has been a quantum
leap in the usage of GBCAs in radiology with more than 30 million worldwide
patient administrations per year at the time being (Lohrke et al., 2016). Specifically,
GBCAs have demonstrated their exceptional utility in visualizing the CNS because
of their ability to pass through disruptions in the BBB. The BBB is the physical
interface between the CNS and systemic circulation; it tightly regulates what enters
and is removed from the brain parenchyma, being fundamental in maintaining
brain homeostasis. It is known that the BBB is disrupted during tumor progression
and, after that, it is referred to as the blood tumor barrier (BTB) (Arvanitis et al.,
2020). One important feature of the BTB is that is more permeable than the BBB,
as can be seen in Figure 2.1.

The standard procedure used in clinical practice begins with the acquisition of
a baseline pre-contrast T1w image to establish the initial state. Subsequently,
a GBCA is administered through a bolus intravenous injection. The standard
recommended dose depends on the specific GBCA, but for the majority of them
it is 0.1mmol/kg (Reeder, 2014). After a waiting period of approximately 5-10
minutes, another T1-weighted acquisition is performed to detect any potential
leakage of the GBCA into the brain parenchyma, which manifests as contrast
enhancement (Warntjes et al., 2018). The second image is referred to as post-T1w.
During diagnosis, both images (T1w and post-T1w) are usually shown side by side,
and the evaluation of T1w-enhancement is typically based on a subjective visual
comparison between them.

While contrast enhancement assessment plays a pivotal role in the evaluation of
high-grade gliomas, it is worth noting that these tumors are also recognized for their
infiltration into the surrounding peritumoral edema. However, detecting tumor
infiltration is challenging when relying solely on visual inspection of conventional
weighted images (Blystad et al., 2020, 2017; Müller et al., 2017). The assessment
of treatment effects and tumor evolution might be also difficult using only pre- and
post-contrast weighted images. Some treatments can induce changes within a tumor,
which does not necessarily indicate real reduction of tumor burden (Ellingson et al.,
2015b; Lescher et al., 2015). Therefore, quantitative measurements could provide
valuable additional information in such cases.
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Brain parenchyma

Blood

a) Blood brain barrier (BBB)

b) Blood tumor barrier (BTB)

Tight junction

Figure 2.5: Schematic representation of the differences between (a) the blood brain barrier
(BBB) and (b) the blood tumor barrier (BTB). The BTB is characterized for being more
permeable than the BBB, allowing the Gd to pass through.

Figure 2.6: Well-defined T1w signal enhancement visible within a tumor in the left frontal
lobe in the image acquired after a contrast agent administration.
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2.2.3 Limitations and Pitfalls
The MR acquisitions performed after an injection of a GBCA present some disad-
vantages compared with those that do not use such agents. These disadvantages
were introduced in Section 1.1, and are thoroughly described next:

• Safety concerns: although GBCAs are generally deemed safe, between 0.7
to 2.4% of injected patients suffer from mild adverse reactions and a lower
rate from severe complications (Forghani, 2016). Some studies found that the
exposure to GBCAs can potentially initiate the onset of nephrogenic systemic
fibrosis (NSF), a rare but life-threatening complication that may occur under
specific conditions (Fraum et al., 2017; Grobner, 2006). Additionally, safety
concerns have recently arisen due to the possible deposition of the GBCAs
in the body and the brain (Gulani et al., 2017), especially, in patients who
need to undergo several follow-up acquisitions, as it is the case of oncological
patients. Hence, some studies have found signal hyperintensity on non-
contrast-enhanced T1w images (involving the dentate nucleus and globus
pallidus) in patients that have previously been administered multiple doses
of GBCAs (Errante et al., 2014; Kanda et al., 2014; Runge, 2016).

• Environmental issues: GBCAs have come out as water pollutants. Hence,
recent studies have found presence of GBCAs in wastewater (Inoue et al.,
2020; Rogowska et al., 2018).

• Scan time: post-contrast acquisitions require longer scan time, which reduce
the accessibility to MR scans and might also lead to motion artifacts and,
consequently, to extra efforts in re-acquiring or post-processing (Xie et al.,
2022).

• Discomfort: the intravenous injection of the GBCA, as well as the prolonged
scan time, lead to patient discomfort.

• Cost: the usage of GBCAs increases the need of skilled manpower, hardware
and thus, costs (Shankar et al., 2018).

Safety and environmental concerns of GBCAs could be tackled by the usage of new
contrast materials (Wesolowski and Kaiser, 2016) or novel sequences in which the
injection is not required, such as amide proton transfer (APT) imaging (Zhou et al.,
2003) or arterial spin labeling (ASL) (Petersen et al., 2006). Nevertheless, these
techniques, albeit promising, still require complex and expensive acquisition schemes.
In addition, the resulting images are usually more difficult to analyze.

2.3 Quantitative MRI
2.3.1 Clinical applications of parametric maps for tumor

diagnosis
As previously described in Subsection 2.1.1, T1 and T2 values depend on both the
strength of the B0 magnetic field and the tissue itself. In addition, the T1 and T2
values might also be different in healthy and pathological tissues. Thus, parametric
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maps could act as biomarkers of several diseases, such as epilepsy (Conlon et al.,
1988), stroke (DeWitt et al., 1987), multiple sclerosis (Larsson et al., 1989), and
brain tumors (Badve et al., 2017; Yankeelov et al., 2011), among others.

Particularly, for tumor diagnosis, potential applications of T1 and T2 maps are
tumor grading and characterization. Several studies have demonstrated longer T1
and T2 values within tumors compared to normal white matter (Kurki and Komu,
1995; Nunez-Gonzalez et al., 2022; Pirkl et al., 2021). Badve et al. (2017) reported
differences in T1 values between peritumoral regions of low-grade gliomas and
glioblastomas. As for T2 values, early research indicated that meningiomas exhibit
shorter T2 values compared to astrocytomas (Kjær et al., 1991) and gliomas (Naruse
et al., 1986; Oh et al., 2005). Additionally, it was observed that glioblastomas
exhibit a single T2 component when predominantly composed of solid tissue, but
they display two T2 components when consisting of a solid/necrotic mixture (Naruse
et al., 1986).

Another potential application is monitoring tumor progression, which is a key task
in glioblastoma patient management. Longitudinal T1 mapping (i.e., acquisition
of T1 maps at several time points) has shown promising results offering more
precise quantitative insights into tumor dynamics, especially with regard to tumor
enhancement. Hattingen et al. (2017) have shown in a comparison of quantitative
T1 mapping before and after the GBCA injection that areas with T1 values >
2051 milliseconds at 3T could predict the presence of enhancing brain tissue. T1
mapping also offers the advantage of detecting tumor enhancement at an earlier
stage, and more extensively, compared to conventional post-T1w images (Lescher
et al., 2015; Müller et al., 2017).

Quantitative T1 mapping could also be a valuable tool to distinguish between tumor
recurrence and radiation necrosis, a common challenge encountered in gamma knife
radiosurgery. In a study involving patients with brain metastases who subsequently
underwent biopsy, T1 mapping was conducted at two time points: 5 minutes
and 60 minutes after the administration of a contrast agent (Wang et al., 2018).
This research revealed that the most effective parameter for diagnosis was the
difference in T1 values between time points. This finding suggests the eventual
clinical usefulness of this approach for distinguishing between tumor growth and
radiation-induced brain changes.

2.3.2 MRI Relaxometry: T1 and T2 mapping
In the classical methods to estimate parametric maps, a set of N weighted images
(i.e., signal measurements) is customarily acquired with the same pulse sequence
but with a varying acquisition parameter. Then, the parametric map estimation
problem consists on finding the parameter values which best fit the measurements
of the relaxation signal model. Thus, the map is computed by voxel-wise fitting a
known relaxation model (which is dependent on the pulse sequence) to the intensity
of the images. Although there are different ways to perform T1 and T2 mappings,
next we describe the most popular techniques.
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Figure 2.7: Signal models employed in different relaxometry techniques for T1 and T2
mapping. a) Signal model of a IR sequence as a function of TI for two different T1 values,
b) Signal model of a VFA sequence as a function on α for two different T1 values. c)
Signal model of a ME-SE sequence as a function of TE for two different T2 values.

T1 mapping. Two sequences are usually employed for T1 mapping, namely,
inversion recovery (IR) and VFA. The former, which is considered the gold-standard,
requires the acquisition of a set of IR MR images with different TIs. The signal
model of an IR sequence for varying TI is shown in Figure 2.7a). The latter consists
of the acquisition of a range of steady-state SPGR MR images over a set of flip
angles (see Figure 2.7b) for a representation of a VFA signal modal for varying α).
The TR can be much shorter in the latter than in the former, therefore with VFA
higher resolution T1 maps can be obtained with a reduced acquisition time.

T2 mapping. One of the most employed sequences for T2 mapping is the multi
echo-spin echo (ME-SE). In this sequence, within one acquisition, multiple echoes
are generated by applying a train of refocusing RF pulses (typically 180°) after a
90° RF excitation. The TE vary from one echo to another, and different images
are acquired at each TE, which allows the estimation of the T2 map. The signal
model of an ME-SE sequence for varying TE is shown in Figure 2.8a).

2.3.3 Challenges in MRI Relaxometry
Several factors might affect the accuracy of the estimated parametric maps and
the performance of the relaxometry methods. Also, others limit their utility in
the clinical practice. Next, we summarize some of these sources of errors and
limitations.

• Scan time. The total scan time of an MR relaxometry sequence is propor-
tional to the number of weighted images acquired. To be able to perform
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accurate estimations of the parametric maps, a sufficiently large set of weighted
images needs to be acquired, which imply a time-consuming acquisition.

• Motion. Long relaxometry acquisitions make them prone to motion artifacts.
These type of artifacts can appear in an image due to patient movement during
the k-space readout. In addition, if the patient moves from the acquisition
of one weighted image to another, the acquired weighted images could be
misaligned, leading to inaccuracies in the estimation of the parametric maps.

• Fitting procedures. The usage of closed-form formulas to approximate
the signal models has consequences in the accuracy of the estimation. In
addition, some commonly used fitting procedures implicitly assume some
reality simplifications, which might also affect the estimated values of the
parametric maps.

• Flip angle inhomogeneities. Precise knowledge of the flip angle is impor-
tant for the accurate estimation of the T1 and T2 maps. Nevertheless, the
flip angle chosen within the scanner may not necessarily match the ones that
are actually transmitted for each position of the scanned object.

• Independent parametric mapping procedures. Most of the proposed
relaxometry methods only provide information of a single parameter at a
time (Barbieri et al., 2020; Clare and Jezzard, 2001; Ramos-Llordén et al.,
2018), so additional sequences are needed to obtain the different parametric
maps.

2.4 Synthetic MRI versus MR image translation
Synthetic MRI is a technique that computes quantitative parametric maps from
some acquired weighted images and then synthesizes new MR weighted images
from those estimated parametric maps. The full pipeline is based on a three-step
procedure that was previously introduced in Section 1.1 and it is outlined in
Figure 2.8. This approach is different from conventional weighted MRI, which is
based on the direct acquisition of several types of weighted images, but with no
quantification.

A typical Synthetic MRI approach involves the computation of T1, T2, and PD
maps, which can then be utilized to synthesize customized weighted images with
specific acquisition parameters (such as TE, TR, TI, etc.) through the use of
a signal model. This ability to synthesize images with specific parameters sets
Synthetic MRI apart from quantitative MRI. While quantitative MRI serves as a
fundamental component of synthetic MRI, its primary emphasis is on estimating
parametric maps, rather than on synthesizing weighted images. Nevertheless, the
process of synthesizing a weighted image from quantitative maps using a signal
model is relatively straightforward. It is worth noting that weighted images hold
particular significance in clinical practice, as they constitute the primary resources
for routine radiological assessments.
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Figure 2.8: Pipeline of a three-step typical Synthetic MRI approach. First, a multi-
parametric mapping acquisition is performed in the scanner. This acquisition allows the
estimation of the T1, T2, and PD parametric maps in the second step. Finally, in the
third step, an arbitrary number of weighted images with different sequence parameters
are synthesized from the parametric maps.

2.4.1 Related work
Different methods that fit the conventional three-step definition of Synthetic
MRI (Bobman et al., 1985) have been proposed. Gulani et al. (2004) proposed
an steady-state precession (IR-TrueFISP) sequence in which a series of different
IR time-delayed TrueFISP images are acquired to quantify the parametric maps.
Then T1w, T2w, PDw, and T2w-FLAIR images were synthesized from these
maps. Warntjes et al. (2008) proposed a multiecho acquisition of a saturation-
recovery turbo spin-echo readout (QRAPMASTER)† for the quantification of T1,
T2, PD, and B1 inhomogeneity parametric maps. After quantification, T1w, T2w,
and T2w-FLAIR images were synthesized (Blystad et al., 2012). Finally, Cheng
et al. (2020) suggested a multipathway multiecho (MPME) sequence using an
unbalanced steady-state sequence with two different flip angles and resolution
scans to quantify T1, T2, T2∗, and B0 and B1 inhomogeneities parametric maps.
Then, the authors showed the synthesis of T1w, T2w, PDw, and T2w-FLAIR, and
magnetization prepared rapid gradient echo (MPRAGE) images using a neural
network. Nevertheless, this latter method suffers from noise amplification due to
the multiple processing steps which lead to somewhat noisy maps and synthesized
images.

It is important to note, however, that all of these methods require very specific
sequences or private protocols scarcely available in clinical scanners. Also, these
quantitative sequences are focused on obtaining the parametric maps, but they
are not commonly used for diagnosis purposes in the clinical routine at the time
being.

In contrast, MR image translation approaches (Chartsias et al., 2017; Dar et al.,
2019; Sohail et al., 2019) share the same objective as step 3) of Synthetic MRI

†QRAPMASTER is nowadays referred to as a multidynamic multiecho (MDME) se-
quence (Tanenbaum et al., 2017).
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definition, although their input is one or more weighted images as opposed to
parametric maps. Hence, they are not flexible as to which modalities can be
generated, since most of them are tailored for a specific application where, given
some input image modalities, new predefined image modalities are synthesized. For
example, in Dar et al. (2019) the authors synthesize T1w from T2w images. These
methodologies limit themselves to the image modalities used in the learning stage
since the potential of parametric maps to synthesize any weighted image is not
employed.

2.5 Deep learning: From mathematical models to
MR image synthesis

2.5.1 Basics of neural networks
A neural network (NN) is comprised of interconnected layers of basic units called
nodes or artificial neurons that perform simple mathematical operations to detect
patterns in the input data. Thus, a NN is typically composed of an input layer which
receives data represented by a numeric value, multiple hidden layers which perform
the computations and, finally, an output layer which predicts the output.

The basic building block of a NN is the aforementioned artificial neuron. McCulloch
and Pitts (1943) were pioneers on describing the idea behind the artificial neuron.
This notion was designed to mimic the way a brain neuron was thought to work.
To this end, they modeled a simple NN using electrical circuits. As can be seen
in Figure 2.9, an artificial neuron takes one or more input values (x1, x2, ... xn),
multiplies each of them by their corresponding weights (w1, w2, ... wn) and then
adds them up together with a bias (b). Afterwards, the addition z is passed through
an activation function (g(.)) to get the predicted output (ŷ).

The activation function is a mathematical function (g(.)) used to induce nonlinearity
into the output of a neuron. This way, according to Cybenko (1989), a NN
with only one hidden layer is capable of always approximating a multi-variant
continuous function. Different activation functions, such as sigmoid, hyperbolic
tangent, rectified liner unit (ReLU) (Nair and Hinton, 2010), etc., can be employed
depending on the characteristics of each problem. Specifically, ReLU activation is
defined as g(z) = max(0, z) and, therefore, the output is always non-negative. This
activation is characterized for being computationally efficient and not suffering
from the vanishing gradient problem. In contrast, its main issue is known as
“dying ReLU” and is caused by a neuron with a negative value which may never
activate. To avoid this issue, the Leaky ReLU activation function is defined as
g(z) = max(az, z), where a is a small constant. The Leaky ReLU activation
is equivalent to ReLU activation when z is positive. However, the Leaky ReLU
activation returns a small negative value proportional to z when z is negative.

Thus, the outcome of the activation function in turn decides if a neuron is activated
or not. The output of an activated neuron is passed to other neurons until the last
layer of the network is reached. This process is known as forward propagation. The
neuron in the output layer then projects the result.
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Figure 2.9: Schematic representation of an artificial neuron or node with a total of n
input values.

2.5.2 Types of learning
Training of a NN consists in an iterative optimization process which involves
adjusting the model (i.e., the NN weights) to generate accurate predictions from
the input data. One of the most common methods by means of which the network is
trained is known as Backpropagation, which is a type of gradient descent algorithm.
This method refers to the calculation of a gradient (i.e., the derivative of the loss
function) on each weight in the NN for each training element. The gradient of
each weight indicates how to re-adjust that corresponding weight to minimize the
loss function, thereby resulting in a more accurate output. Different types of NN
learning techniques can be distinguished according to the characteristics of the
training process.

• Supervised learning: this learning algorithm is employed when there
exist labeled data (i.e., the association between the input data and the
corresponding correct outputs). This type of learning enables the optimization
algorithm to establish a mapping between input and output. The objective
of supervised learning is to obtain a model capable to generalize and perform
accurate predictions for new, unseen input data.

• Unsupervised learning: this learning algorithm is employed to identify
patterns in unlabeled data. This approach is typically employed when there
is a scarcity of training data or when the data is too intricate for labeling.
Examples of unsupervised learning algorithms are clustering, which is useful
for organizing or finding patterns in data, or association rule mining, which
allows to find relationships between data items.

• Self-Supervised learning: this learning algorithm, which is a variation of
unsupervised learning, enables the derivation of knowledge directly from the
input data, eliminating the need of explicit labeling. This learning algorithm
is employed, for example, in physics-informed NNs. These type of NNs, which
have recently gain popularity, are able to create more powerful models by
means of the incorporation of physical principles and prior scientific knowledge
into the training process.

33



Chapter 2: Background

• Reinforcement learning: this learning algorithm is neither based on
supervised nor unsupervised learning. In contrast, in a reinforcement learning
algorithm, the learning agent goes from one state to another and receives
rewards only on success but not on failure. This way, the agent learns from
the environment.

In this Thesis we employ both supervised and self-supervised learning techniques.

2.5.3 Convolutional neural networks
A CNN is a class of NN that is specialized in processing data with a grid-like
topology, such as an image. In this Thesis we focus on this type of NN. The main
layers in CNNs are convolutional, pooling, and dense layers. The characteristics of
these types of layers are described next.

Convolutional layers are the core building block of the CNN. The main goal
for a convolutional layer is to detect features in the input image. Thus, convolution
leverages sparse interaction, parameter sharing, and equivariant representation.
This layer performs a dot product between the filter or kernel and the specific
area of the image which is being scanned by the kernel. The kernel is a matrix
with a square shape whose values correspond with the set of learnable parameters
(i.e., weights). Hyper-parameters of this type of layers include the size of the
squared-shape filter (w) and also the depth or number of filters, which correspond
with the number of features extracted in the convolution operation. During the
forward pass, the kernel slides across the height and width of the image. This
produces a two-dimensional representation of the image known as an activation
map that gives the response of the kernel at each spatial position of the image.
Other hyper-parameter are the sliding size of the kernel so-called stride (s) and
the padding (p), which involves adding extra pixels around the border of the input
before the convolution in order to preserve spatial dimensions.

Pooling layers decrease the spatial size of the representation by performing a
downsampling operation. These layers help in reducing the number of required
weights and, thus, the computational load. The pooling operation is processed on
every slice of the representation individually. There are several pooling operations,
but the most popular is max-pooling, in which the output corresponds with the
maximum value of the neighborhood (see Figure 2.10 for a simple example of this
layer). Two hyper-parameters characterize this type of layer: spatial extent (d)
and stride (s); the first one specifies the size of the boxes that will be scaled down,
and the second one refers to the sliding step. Note that max-pooling layers have
no weights, so training does not affect them.

Dense layers are also known as fully-connected layers, since the neurons in these
layers have full connectivity with all neurons of the preceding and following layers.
The output of these layers can be computed as we described above as the addition
of weighted inputs and a bias effect. The main hyper-parameters of dense layers
are the number of neurons and the activation function to be used.
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Figure 2.10: Example of the concatenation of a convolutional layer with a kernel size (w
= 2), stride (s = 1), and no padding, followed by a max-pooling layer with spatial extent
(d = 2) and stride (s = 2).

2.5.4 Encoder-decoder CNN architecture for medical image
translation

Chartsias et al. (2017) proposed a DL method for translation between different MR
image modalities based on a fully convolutional neural network (FCNN). Thus, this
network takes as input 2D slices of any subset of its inputs, and synthesizes the
corresponding 2D slices in all output modalities. As can be seen in Figure 2.11.a),
the network is composed of three stages, namely, encoding, fusion, an decoding. The
model is trained end-to-end with gradient descent minimizing a multi-component
loss function, which balances between modality-invariance and the retention of
modality specific information.

1. Encoding stage. The purpose of the encoders is to embed input images
modalities into multi-channel latent representations. Thus, one encoder is
included for each input modality. The architecture of each encoder is inspired
by the well-established U-Net architecture (Ronneberger et al., 2015) as
shown in Figure 2.11.b). Specifically, the network includes two downsam-
ple (and upsample) steps. The concept behind the architecture of U-Nets,
which involves down-sampling followed by up-sampling and incorporates skip
connections, is to enable the network to leverage information from broader
spatial scales than the filters themselves, all while retaining valuable local in-
formation. Furthermore, the inclusion of skip connections aids in maintaining
a smooth gradient flow during the training process. The authors employed
Leaky ReLU (Maas et al., 2013) to facilitate the training of the network and
to improve the quality of the latent representation. They also used a stride
of 1, and padding of the images by repeating the border pixels so that the
final output has the same width and height as the original input.

2. Fusion stage. The goal of this stage is to combine the individual latent
representations produced by the encoders into a single fused representation.
The authors pursue not only to preserve commonly represented features, but
also to retain unique features expressed in one modality but not the others.
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(a) CNN overview

(b) Encoder architecture

(c) Decoder architecture

Figure 2.11: Encoder-Decoder architecture for image translation. (a) Overview of the
FCNN. (b) Encoder architecture inspired by the U-Net (Ronneberger et al., 2015). (c)
Decoder architecture. (Figures take from Chartsias et al. (2017))
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To this end, they use the pixel-wise max function to combine individual
latent representations of each encoder into a fused latent representation.
The use of the max means that, in each channel, each pixel of the latent
representation has exactly the value of the corresponding pixel in one of
the original latent representations. In particular, if the signal is large and
positive in one constituent latent representation, then it will be chosen for
the fused representations. Thus, the size of the fused latent representation is
exactly the same as the individuals counterparts. Note that the use of the
max operation does not bias the method towards bright final outputs, as the
intensities of the synthesized images depend on the decoding step.

3. Decoding stage. The decoders are in charge of mapping the multi-channel
fused latent representation into the desired output modalities. Thus, one
decoder is included for each output modality. The architecture of each decoder
is a FCNN as shown in Figure 2.11.c). The authors kept the decoder shallower
than the encoder to encourage the latent representation to contain the useful
information in a simple way.

Throughout the methods proposed in this Thesis, we use different variations of this
encoder-decoder CNN architecture to perform the T1, T2 and PD multiparametric
mapping from conventional weighted images. The number of inputs and outputs
were modified accordingly. Also, the learning approach was adapted depending on
the labeled datasets available for training. When no labeled dataset was available,
self-supervised learning approaches where employed by means of including physical
priors in the computation of the loss function.

2.5.5 Advanced NN architectures for image synthesis
Recently, sophisticated NN architectures have been developed. These architectures
have shown impressive results in an ample variety of image processing tasks, and
particularly, in medical images synthesis. Although, these network architectures
have not been used in this Thesis, we consider them relevant for future work and,
consequently, their main characteristics are briefly introduced next:

Generative Adversarial Networks A generative adversarial network (GAN) is
a type of NN initially proposed by Goodfellow et al. (2014). It is composed of two
networks, namely, a generator and a discriminator. These two networks undergo
a joint training in a two-player minimax game framework, where the generator
aims to deceive the discriminator by producing outputs with real appearance, while
the discriminator tries to distinguish whether its inputs are real or generated.
Equilibrium is attained when the discriminator can no longer differentiate between
real and generated inputs.

Thus, for the particular case of image translation, GANs have been proposed
to learn the distribution of target image modalities conditioned on source image
modalities, thereby, capturing higher frequency details compared to traditional
CNNs. Specifically, GANs methods have been employed in several medical image
translation applications including MRI to CT (Liu et al., 2021), low to high
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resolution (Wang et al., 2020; You et al., 2022), 3T to 7T (Li et al., 2023), and
multi-contrast weighted MRI synthesis (Dar et al., 2019; Sohail et al., 2019), among
others.

This network architecture, however, also presents some limitations. On the one
hand, some major problems related to its training are non-convergence, collapse
mode and vanishing gradients. On the other hand, the generators of the GANs
are normally based on CNNs, which present, in general, difficulties to generalize to
abnormal anatomies for different subjects.

Vision Transformers A vision transformer (ViT) is a type of NN based on the
transformer architecture (Vaswani et al., 2017) but with some modifications that
make them more suitable for image processing tasks. Thus, ViTs represent images
as a sequence of small rectangular regions called patches. After splitting the image
into patches, each patch is encoded as a vector, capturing its distinctive features.
These features are commonly extracted using a CNN. Subsequently, the vectors are
input into a Transformer encoder, which consists in a stack of self-attention layers.
Self-attention is a mechanism that enable the model to weigh the importance of
different elements in a sequence and, thus, to learn global dependencies among
the patches. Thus, the potential of the ViTs resides in their ability to learn
global features of images due to the possible attention to any part of the image,
regardless of its location. In contrast, their main problems are that they are not as
interpretable as CNNs and their computationally expensive training.

Recently, Dalmaz et al. (2022) have proposed the first adversarial model for medical
image synthesis with a generator based on a ViT. The method is employed to
translate between multi-contrast MR weighted images and, also, for MRI to CT
translation. After that, other methods based on Transformers have been proposed
for MR weighted image translation (Liu et al., 2023).
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3.1 Purpose
Synthetic MRI has received significant attention during the past decade due to its
ability to generate realistic MR images and, consequently, to reduce acquisition
time and/or to retrospectively enhance patient throughput. This technique implies
the computation of T1, T2, and PD parametric maps, which, in turn enable the
synthesis of other weighted images with realistic resemblance. As we previously
introduced in Chapter 2, the computation of parametric maps can be performed
by means of classical relaxometry sequences or fast multiparametric techniques.
The former require, in general, long acquisition time, whereas the latter require
scarcely available software.

Alternatively, DL could be a potential solution for the computation of parametric
maps from conventional, and therefore, widely available weighted images. Hence,
parametric maps, could be easily computed in both preexisting databases and in
newly acquired datasets without additional acquisition time. However, the lack of
large, public datasets with both weighted images and the corresponding parametric
maps could be one of the main limitations that hinders the usage of these DL
techniques.

In this chapter we propose a joint Synthetic MRI approach based on DL for the
computation of the T1, T2, and PD parametric maps from only a pair of inputs,
namely, a T1w and a T2w. The input images are acquired with conventional se-
quences widely used in clinical routine instead of specific multiparametric sequences.
After that, a number of weighted images unseen by the network can be satisfactorily
synthesized out of the parametric maps computed with DL. In addition, a new
training strategy based on a synthetic dataset is proposed. This way, we overcome
the lack of large datasets with quantitative parametric maps.

3.2 Methods
The DL approach proposed in this work for the computation of the parametric
maps uses an adaptation of the CNN proposed by Chartsias et al. (2017), which
has been previously described in Section 2.5. We propose to train this network in a
supervised way with a synthetic dataset generated by the synthesis of the T1w and
the T2w input images from their corresponding parametric maps. An overview of
the proposed dataset generation, CNN training approach, and validation procedures
are shown in Figure 3.1.

3.2.1 Synthetic dataset generation
We create a synthetic dataset with 120 brain volumes starting from the anatomical
model of a normal brain obtained with BrainWeb (Cocosco et al., 1997). The
pipeline to create the synthetic dataset is described in the next four steps (see
Figure 3.1.a).

First, we created 120 different sets of T1, T2, and PD maps from the BrainWeb
anatomical model by giving uniformly distributed random values to the white
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Figure 3.1: Pipeline of the proposed training and validation approaches. a) Synthetic
dataset generation used for training and testing of the supervised CNN. b) Validation of
the CNN with actual MR brain acquisitions.

matter (WM), grey matter (GM), and cerebrospinal fluid (CSF) of each map,
one value for each label. The exact ranges of T1, T2, and PD values defined for
each parameter in each tissue are shown in Table 3.1. Note that these ranges
are within those reported in the literature for 3T MR scanners (Bojorquez et al.,
2017). Also, additive Gaussian noise was added to each volume with distribution
N (µ = 0, σ = 0.01).

Table 3.1: Ranges of the T1, T2, and PD values for each of the three considered tissues in
the anatomical brain model (WM: white matter, GM: grey matter, and CSF: cerebrospinal
fluid) for the generation of 120 synthetic brain volumes. The specific value for each
parameter in each tissue and volume is selected from a uniform distribution within these
ranges. T1 and T2 values are given in seconds.

T1 [s] T2 [s] PD
WM 0.80 - 1.10 0.055 - 0.075 0.65 - 0.72
GM 1.40 - 1.60 0.075 - 0.120 0.77 - 0.82
CSF 4.50 - 4.80 1.20 - 1.60 1.20 - 1.30

Second, in order to introduce spatial variability across brain volumes (i.e., brains
with different anatomical features), the maps were affine-registered to the PD25
atlas (Xiao et al., 2017) using the FLIRT tool of FSL (Jenkinson et al., 2012).
Then, each set of maps was non-linearly registered to one out of the 120 different
T1w volumes selected from the PPMI database (www.ppmi-info.org), with the
FNIRT tool of FSL as described in Peña-Nogales et al. (2019). The size of each
of these maps is of 240 x 176 with 256 slices. Subsequently, all sets of parametric
maps were skull-stripped.
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Third, for each set of skull-stripped T1, T2, and PD maps, a pair of weighted
images was analytically synthesized. A T1w image was synthesized as a IR-GRE
acquisition (see Eq. (2.10)) with TE = 3 ms, TR = 6.44 ms, TI = 900 ms, and
α = 10◦. A T2w image was synthesized as a SE acquisition (see Eq. (2.11)) with
TE = 85 ms and TR = 4000 ms. These particular sequences and parameter sets
were chosen to match the actual MR brain acquisitions described in Table A.2
of Appendix A. Note that the weighted images have the same dimensions as the
parametric maps (i.e., 240 x 176 with 256 slices).

Finally, we normalized the T1w and T2w images by dividing each of them by its
average intensity without considering the background. This facilitates convergence
of the CNN during training without altering image properties due to their qualitative
nature.

3.2.2 Network training with the synthetic dataset
The aforementioned synthetic dataset was used to train an adapted version of
the CNN described in Chartsias et al. (2017); our adaptation pursued to perform
an end-to-end mapping function to transform the input T1w and T2w images to
their corresponding set of T1, T2, and PD parametric maps (see Figure 3.1.a).
Specifically, the weighted images were input to two encoders which embed these
inputs into multi-channel latent spaces with the same image size as the inputs.
Note that the CNN processes the inputs as 2D slices. The number of channels
used is 16. Then, the latent representations of the input are fused into a single
16-channel representation using a maximum pixel-wise function between each pair
of corresponding channels. This fused latent representation is next input to three
decoders to obtain the three desired parametric maps.

Supervised training was carried out using the cost function proposed in Chartsias
et al. (2017). This cost function minimizes 1) the mean absolute error (MAE)
between the ground-truth parametric maps and the output’s decoders (i.e. the
synthesized parametric maps), and 2) the mean pixel-wise variance between latent
representations. The model was trained through a mini-batch approach with a
batch size of 8 images using Adam optimizer (Kingma and Ba, 2014) with a learning
rate of 1 × 10−5. We performed the training with early-stopping to avoid overfitting.
From the 120 brain volumes of the synthetic dataset with a set of three parametric
maps and two weighted images each, we used 70 for training (17920 slices), 36 for
the early-stopping validation (9216 slices), and 14 for test (3584 slices).

The adapted CNN is coded in Python with Keras. We ran the code using the
TensorFlow backend on a single NVIDIA GeForce GTX 1070. The total learning
took about 10 hours of computation time. Note that once the CNN has been
trained, the network computation time reduces to a few seconds.

3.2.3 Network testing with the synthetic dataset
We evaluated the proper multiparametric mapping of the network through the
14 brain volumes of the synthetic dataset remaining for testing. In addition to
visual evaluation, we carried out a quantitative analysis in the parametric maps

45



Chapter 3: A deep learning approach for Synthetic MRI

domain due to the existence of the corresponding ground-truth. The comparison
between the computed and the ground-truth T1, T2, and PD parametric maps was
performed with the nomalized squared error (NSE) map computed as

NSE(x) = (MAPc(x) − MAPGT(x))2

MAP2
GT(x)

× 100%, (3.1)

where MAP is one of the T1, T2, and PD maps, and the subscripts c and GT
stand for computed and ground-truth, respectively. Similarly, the computed and
ground-truth parametric maps are also compared with the scalar metrics described
later in section 3.3.1.

3.2.4 Validation with actual MR acquisitions

Two different datasets of actual MR acquisitions are employed in this work, namely
Multicontrast Brain-MRI and Relaxometry Brain-MRI, which have been previously
described in Chapter 1. In the current chapter, the T1, T2, and PD maps of
Relaxometry Brain-MRI will be referred to as silver standard, since they are
affected by common artifacts as well as by physiological motion due to the length
of their associated relaxometry sequences.

We preprocessed the actual MR brain volumes of these datasets in order to register
all the image modalities to the same image space and to adapt them to the network
input layer. All image modalities were affine-registered to the T2w-FLAIR image
using FLIRT of FSL (Jenkinson et al., 2012). After registration, the size of each
image modality is of 256 x 256 with 27 slices with voxel size of 0.94 x 1.25 x 5
mm as shown in Table A.2 of Appendix A. Note that this registration step is only
necessary for training and validation purposes, because in production mode —once
the network is fully trained— the only requirement is to have the input images with
spatial alignment. All images were then skull-stripped. Subsequently, all images
were cropped to 240 x 176 pixels which is the dimension of the network’s input
layer. We normalized the weighted images by dividing each of them by its average
intensity without considering the background. This normalization was done in
accordance with the preprocessing steps of the CNN training data. In addition,
the relaxometry PD maps were normalized so that their 99th percentiles matched
the maximum of the PD map from the synthetic training dataset. Finally, the 14
central slices of each actual MR brain volume were then selected to avoid slices
with predominant background areas and/or very prone to artifacts.

We validated the performance of the proposed approach to compute parametric
maps and to synthesize different weighted image modalities when actual T1w
and T2w images are input to the network following the pipeline in Figure 3.1.b).
Synthesis quality has been assessed both on the maps directly provided by the
network output as well as on the synthesized weighted images. Quality parameters
have been defined both at region of interest (ROI) level and at whole image level.
Precise definitions for these parameters are provided in the next section.
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3.3 Experimental work
3.3.1 Quantitative parameters for quality assessment
We drew nine circular ROIs in each subject of the Multicontrast Brain-MRI dataset
co-localized across the different parametric maps and weighted images enumerated
in Figure 3.1.b). From the nine ROIs, three were located in the CSF (approximately
3 mm of radius), three in the WM (approximately 3 mm of radius), and three
in the GM (approximately 2 mm of radius). Let X k

i (n) denote the set of voxels∗

belonging to ROI i, 1 ≤ i ≤ 3 from tissue k, 1 ≤ k ≤ 3 (say, 1 for CSF, 2 for
GM, and 3 for WM) and subject n, 1 ≤ n ≤ 8. As for the parametric maps
provided by the network from Multicontrast Brain-MRI, we define the following
two parameters

µk = 1
8∑

n=1

3∑
i=1

|X k
i (n)|

8∑
n=1

3∑
i=1

∑
x∈X k

i
(n)

MAPn
c (x) (3.2)

sk =

√√√√√√ 1
8∑

n=1

3∑
i=1

|X k
i (n)|

8∑
n=1

3∑
i=1

∑
x∈X k

i
(n)

(MAPn
c (x) − µk)2 (3.3)

with MAPn
c (x) a computed parametric map evaluated at point x and | · | denotes

the cardinality of a set.

For the particular case of the subjects of Relaxometry Brain-MRI dataset, we drew
12 circular ROIs in each tissue co-localized across the different parametric maps
and weighted images. For its parametric maps we define:

µk
i (n)L = 1

|X k
i (n)|

∑
x∈X k

i
(n)

MAPn
L(x) (3.4)

with MAPn
L(x) a parametric map of the n-th healthy subject evaluated at point x

and L is a label that takes the values c for the MAP computed by the network and
Silver for the silver standard relaxometry maps; k follows the same convention as
in Eqs. (3.2) and (3.3), 1 ≤ i ≤ 12, and 1 ≤ n ≤ 5.

As for the weighted images of Multicontrast Brain-MRI, we define:

µk
i (n) = 1

|X k
i (n)|

∑
x∈X k

i
(n)

mn(x) (3.5)

sk
i (n) =

√√√√ 1
|X k

i (n)|
∑

x∈X k
i

(n)

(
mn(x) − µk

i (n)
)2 (3.6)

s(n) = 1
9

3∑
i=1

3∑
k=1

sk
i (n) (3.7)

∗ROIs have been delineated in 2D, so the third component ∀x ∈ X k
i (n) coincides.
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with mn(x) an image (either synthesized or acquired) of the n-th subject evaluated
at point x. Then, the following samples (per tissue k, 1 ≤ k ≤ 3) are created:

1. Intensity values µk
i (n), 1 ≤ i ≤ 3, 1 ≤ n ≤ 8.

2. Contrast:

ck
ij(n) =

µk
i (n) − µk

j (n)
µk

i (n) + µk
j (n)

, (3.8)

1 ≤ i, j ≤ 3, i ̸= j, 1 ≤ n ≤ 8.

3. contrast-to-noise ratio (CNR):

CNRk
ij(n) =

µk
i (n) − µk

j (n)
s(n) , (3.9)

1 ≤ i, j ≤ 3, i ̸= j, 1 ≤ n ≤ 8.

4. signal-to-noise ratio (SNR):

SNRk
i (n) = µk

i (n)
s(n) , (3.10)

1 ≤ i ≤ 3, 1 ≤ n ≤ 8.

In addition, in each subject of Multicontrast Brain-MRI we also drew a rectangular
ROI measuring approximately 70.50 mm × 33.75 mm, which was chosen to encom-
pass the occipital region of the brain. The number of pixels of this rectangular
ROI was of 2025.

At a whole image level, we used four well-known metrics commonly used in medical
image translation methods. These metrics are the mean squared error (MSE), the
structural similarity index (SSIM), the peak signal-to-noise ratio (PSNR), and the
correlation coefficient (CORR) defined as follows:

mn = 1
|X |

∑
x∈X

mn(x)

cmn
1 mn

2
= 1

|X |
∑
x∈X

(
mn

1 (x) − mn
1
) (

mn
2 (x) − mn

2
)

MSE(n) = 1
|X |

∑
x∈X

(
mn

syn(x) − mn
acq(x)

)2 (3.11)

PSNR(n) = 10 log10

max
x∈X

(
mn

syn(x)
)2

MSE(n)

 (3.12)

CORR(n) =
cmn

synmn
acq√cmn

synmn
syn

cmn
acqmn

acq

(3.13)

SSIM(n) =
(2mn

syn mn
acq + C1)(2cmn

synmn
acq

+ C2)((
mn

syn
)2 +

(
mn

acq
)2 + C1

) (
cmn

synmn
syn

+ cmn
acqmn

acq
+ C2

) (3.14)
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with mn
syn(x) and mn

acq(x) the synthesized and acquired images, respectively, for
the n-th subject of Multicontrast Brain-MRI, 1 ≤ n ≤ 8, evaluated at point x;
voxels take on values within domain X . Unless otherwise stated, this domain will
consist in the brain area. These four metrics have also been used with parametric
maps for performance assessment on synthetic data.

3.3.2 Experiments
Network verification with synthetic images as inputs has been accomplished by
visual assessment as well as with the NSE map defined in Eq. (3.1). In addition,
the parameters defined in Eqs. (3.11)—(3.14) have also been employed.

As for the network validation with real images, all the parameters defined in the
previous section have been employed, and assessment has been carried out both
directly on the network outputs (i.e., on the parametric maps) as well as on the
synthesized weighted images. For the former, we have employed the silver standard
maps from the five subjects included in the Relaxometry Brain-MRI dataset. For
the latter, and as indicated in Figure 3.1.b), we analytically synthesized the same
weighted images acquired in the Multicontrast Brain-MRI dataset with the same
sequence parameters as those described in Table A.1. The equations used for each
sequence are Eqs. (2.10) - (2.13) described in Subsection 2.1.4 for the synthesis of
T1w, PDw/T2w, T2∗w, and T2w-FLAIR, respectively.

In addition, we synthesized additional weighted images with the same sequences as
in the Multicontrast Brain-MRI dataset, but varying the sequence parameters (i.e.
TE, TR, TI). These sequences are SE (Eq. (2.11)) with TE in the range of 20 to
100 ms and TR of 120 and 4000 ms, and IR-SE (Eq. (2.13)) with three different
combinations of TE, TR, and TI. We do not have the corresponding acquired
weighted images as ground-truth due to scan time restrictions, but we pursue to
investigate the versatility of our approach to synthesize any weighted image with
coherent contrast.

We have also tested how the network deals with non skull-stripped images, a fact
that is indicated to be an issue in Chartsias et al. (2017). To this end, non skull-
stripped T1w and T2w images were input to the CNN. In this case, normalization
was done by dividing each of them by the skull-stripped images average intensity in
accordance with the synthetic dataset generation and network training. From the
parametric maps with skull computed by the CNN, we then analytically synthesized
the same weighted images included in the Multicontrast Brain-MRI dataset.

Finally, we propose a network refinement by performing additional training with
a small number of real weighted images and their corresponding silver standard
parametric maps of Relaxometry Brain-MRI. We have carried out a cross validation
procedure; specifically, we tested with 5 − t subjects, where 2 ≤ t ≤ 4, and the
remaining t subjects have been divided into training and early-stopping monitoring
datasets; cross validation stems from the fact that we have

(5
t

)
combinations of

testing datasets for each t; each combination will be hereinafter referred to as a
split. Note that the case t = 4 corresponds to a leave-one-out scheme. Within this
scheme, we have carried out two experiments: (i) the CNN previously trained with
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the synthetic dataset is fined tuned with the parametric maps and (ii) the CNN is
trained from scratch making use exclusively of the parametric maps of Relaxometry
Brain-MRI (i.e., no synthetic data are shown to the CNN). Maps from experiment
(i) will be referred to as MAPc-(i) while maps from experiment (ii) will be denoted
by MAPc-(ii).

3.3.3 Statistical Analysis
The parameters defined in Eqs. (3.11)—(3.14) when applicable, are shown as
averages (and sample standard deviation) along the 14 synthetic volumes used
for testing or the 8 subjects used for system validation; these parameters are
calculated within a 3D domain of the 14 central slices (where largest brain areas
are found).

As for parameters defined in Eqs. (3.4), (3.5), (3.8)—(3.10) we have measured the
Pearson correlation coefficient and the intra-class correlation coefficient (ICC),
particularly ICC(2,1) (Koo and Li, 2016). As for the former, we ran a correlation
test based on the Fisher transformation to test the hypothesis that the correlation
coefficient is less than or equal to a predefined value; a p-value (p) < 0.05 was
considered significant so as to reject the hypothesis. We have also analyzed
Eqs. (3.8)—(3.10) using linear regression. Additionally, for the rectangular ROI
drawn in the synthesized and acquired weighted images we have computed the
Pearson correlation coefficient and performed an F-test for linear regression. Finally,
we carry out a Bland-Altman plot analysis of a representative slice per subject
where pixel values were normalized so that a value of “1.0” represented the signal
strength of WM for each particular weighted image as in Cheng et al. (2020).

3.4 Results
3.4.1 Network testing with the synthetic dataset
Figure 3.2 shows a representative axial slice of the T1, T2, and PD maps computed
from one of the test brain volumes of the synthetic dataset together with their
corresponding NSE maps. Main differences between the computed and ground-
truth maps appear in the boundary of the brain and in the tissue interfaces to
a lower extent. Nevertheless, the NSE is predominantly below 1% on the three
computed T1, T2, and PD maps. Further, the mean evaluation metrics obtained
in the synthetic data testing of all 14 test brain volumes show good agreement
between the computed and the ground-truth maps as can be seen in Table 3.2. The
SSIM is always above 0.99 and the MSE below 1%.

3.4.2 Validation with actual MR acquisitions
Table 3.3 shows the parameters defined in Eqs. (3.2) and (3.3) for the T1, T2,
and PD parametric maps obtained from all the ROIs within a tissue along all the
subjects of the Multicontrast Brain-MRI dataset. The values obtained in this work
are mostly within the range of the values previously reported in the literature for a
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Figure 3.2: A representative axial slice of the T1, T2, and PD maps computed from a
test brain volume of the synthetic dataset. a) T1w and T2w images input to the network.
b-d) Computed, ground-truth, and NSE maps from the same slice for the T1, T2, and PD
parameter maps, respectively. The T1 and T2 values are given in miliseconds (ms). Main
differences between the computed and the ground-truth maps appear in the boundary of
the brain, although the NSE is predominantly below 1% on the three computed T1, T2,
and PD maps.

Table 3.2: Metrics (mean ± SD) used to evaluate the performance of the CNN to compute
each set of T1, T2, and PD maps from each pair of T1w and T2w images of the test
brain volumes of the synthetic dataset. These metrics are the mean squared error (MSE),
structural similarity error index (SSIM), peak signal-to-noise ratio (PSNR), and correlation
coefficient (CORR). The metrics were calculated between the computed parametric maps
and the ground-truth T1, T2, and PD maps. Note that for the calculation of the metrics
the background voxels were not considered.

T1 T2 PD

MSE 0.0072 0.0013 0.0004
(0.0044) (0.0010) (0.0002)

SSIM 0.9932 0.9933 0.9912
(0.0016) (0.0044) (0.0033)

PSNR 36.1274 33.8001 37.2614
(2.2800) (2.5282) (1.5868)

CORR 0.9983 0.9975 0.9990
(0.0007) (0.0007) (0.0004)
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3T scanner. As for the particular case of the PD maps, the GM/WM ratio is close
to the ratio reported in the literature (1.22 vs. 1.10, respectively). In addition,
Figure 3.3 shows a representative axial slice of the T1, T2, and PD maps computed
from a subject of the Relaxometry Brain-MRI dataset and their corresponding silver
standard relaxometry maps. The computed parametric maps are visually realistic
and capture most of the structural information without computational errors. Note
that no outliers appear in the CSF of the T1 map. Computed parametric maps
present less blurring than the silver standard relaxometry maps, this could be
explained by the fact that neither inhomogeneity nor motion corrections were
applied to the estimation of the latter. The correlation diagrams include the values
of parameter µk

i (n)L (Eq. 3.4) for the five subjects of the Relaxometry Brain-MRI
dataset. There is high correlation between the computed and the silver standard
relaxometry maps, namely 0.9616, 0.9703, and 0.7707 for the T1, T2, and PD,
respectively; the first two values are statistically higher than 0.90 (p < 0.01).
Similarly, respective ICC values are 0.9454, 0.9445, and 0.6489.

Table 3.3: Values defined in Eqs. 3.2 and 3.3 (the latter, within braces) for each tissue in
each of the computed parametric maps (i.e. T1, T2, and PD maps). Comparison with
the values previously reported in the literature for a 3T scanner.

T1 (s) T2 (s) PD
This work Literature This work Literature This work Literature

WM
0.9741 0.7370 - 1.1000 0.0890 0.0560 - 0.0840 0.7222 0.6330

(0.0585) [Zhu and Penn (2005), (0.0061) [Gelman et al. (1999), (0.0142) [Hagiwara et al. (2019a)]
Deoni (2007)] Wansapura et al. (1999)]

GM
1.4474 1.3310 - 1.8200 0.1257 0.0710 - 0.1320 0.7988 0.7720

(0.1361) [Wansapura et al. (1999), (0.0160) [Gelman et al. (1999), (0.0135) [Hagiwara et al. (2019a)]
Stanisz et al. (2005)] Wansapura et al. (1999)]

CSF
4.6785 3.7000 - 6.8730 1.3705 0.5000 - 1.8700 1.2601 -(0.1060) [Liberman et al. (2014), (0.0335) [Deoni et al. (2004), (0.0380)

Clare and Jezzard (2001)] Piechnik et al. (2009)]

Figure 3.4 shows a representative axial slice of weighted images synthesized from
one set of the T1, T2, and PD maps computed by the CNN and their corresponding
acquired images for a subject of the Multicontrast Brain-MRI dataset. Overall,
the synthesized and acquired weighted images are visually similar regarding both
structural information and contrasts between tissues. The image modalities used
to train the network present higher similarity than the others, being the T1w the
most similar and the T2w-FLAIR the least similar but yet with visual resemblance.
The boundary of the CSF on the cortical area is hyperintense on the synthesized
T2w-FLAIR, which is presumably caused by partial volume effects.

Figure 3.5 shows a scatter plot between the synthesized and the acquired weighted
images (we show the pairs of values µk

i (n) defined in Eq. (3.5) for the acquired
and the synthesized images) for the eight subjects of Multicontrast Brain-MRI.
There is high correlation between the pairs of weighted images, namely 0.9979,
0.9952, 0.9912, 0.9820, and 0.9602 for the T1w, T2w, PDw, T2∗w, and T2w-
FLAIR, respectively; all of these values are statistically higher than 0.90 (p <
0.001). Similarly, respective ICC values are 0.9918, 0.9438, 0.8919, 0.7424, and
0.9367.

Figure 3.6 shows similar scatter plots of the contrast, CNR, and SNR samples
between the synthesized and acquired weighted images (as defined in Eqs. (3.8)—
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Figure 3.3: A representative axial slice of T1, T2, and PD maps computed from a subject
of the Relaxometry Brain-MRI dataset. a) Computed T1, T2, and PD parametric maps.
b) Their corresponding silver standard relaxometry maps. c) Correlation of parameter
µk

i (n)L (Eq. 3.4) between the computed and the silver standard relaxometry maps for
the five healthy subjects. T1 and T2 values are given in miliseconds (ms). The markers
indicate the mean values of WM (yellow diamonds), GM (red stars), and CSF (blue
circles). Diagonal lines represent the identity.
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Figure 3.4: A representative axial slice of the weighted images synthesized from one set
of the T1, T2, and PD maps computed by the CNN and their corresponding acquired
images. a-e) The synthesized T1w, T2w, PDw, T2∗w, and T2w-FLAIR images. f-j) Their
corresponding weighted acquired images.
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Figure 3.5: Correlation of parameter µk
i (n) (Eq. 3.5) between the synthesized and the

acquired weighted images. a) T1w, b) T2w, c) PDw, d) T2∗w, and e) T2w-FLAIR. The
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(3.10)). There is high correlation with values between 0.9907 and 0.9241 for the
contrast, 0.9807 and 0.8739 for the CNR, and 0.9845 and 0.9082 for the SNR for all
the weighted images, as shown in Table 3.4; most of these values are statistically
larger than 0.90 (p < 0.05), except in the case of the T2∗w and T2w-FLAIR for
the CNR and SNR, and the PDw only for the SNR, which are statistically greater
than 0.84. The ICC values for the three same samples are between 0.9730 and
0.9421 for the T1w, between 0.9579 and 0.8954 for the T2w, and between 0.9120
and 0.8607 for the T2w-FLAIR. In contrast, the ICC values are lower for the PDw
and T2∗w, as shown in Table 3.4.

Table 3.4: Correlation coefficient (R) and intraclass correlation coefficient (ICC) of the
contrast, the contrast-to-noise ratio (CNR), and the signal-to-noise ratio (SNR) between
the synthesized and the acquired weighted images (see Figure 3.6). The bold correlation
values indicate that they are statistically significant superior to a correlation value of 0.9.
The ∗ indicates p < 0.05 and ∗∗ p < 0.001.

T1w T2w PDw T2∗w T2w-FLAIR

Contrast R 0.9907∗∗ 0.9855∗∗ 0.9591∗∗ 0.9241∗ 0.9689∗∗

ICC 0.9421 0.9155 0.6521 0.6530 0.8961

CNR R 0.9807∗∗ 0.9658∗∗ 0.9453∗∗ 0.9193 0.8739
ICC 0.9730 0.8954 0.7425 0.9187 0.8607

SNR R 0.9845∗∗ 0.9734∗∗ 0.9280 0.9082 0.9145
ICC 0.9712 0.9579 0.8300 0.4634 0.9120

Linear regression showed that the SNR of the synthesized weighted images is
generally better with an improvement that reaches 47.74% (CI: [41.93%; 53.54%]).
CNR is fairly similar for the T1w (-5.31%, CI: [-6.33%; -4.29%]), the T2∗w (-0.12%,
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Figure 3.6: Correlation of the contrast, the CNR, and SNR between the synthesized
and the acquired weighted images. a) Contrast, b) CNR, and c) SNR of the T1w, T2w,
PDw, T2∗w, and T2w-FLAIR images. For the Contrast (a) and the CNR (b) the markers
indicate the contrast/CNR values between each combination of the GM ROIs with the
WM ROIs (yellow diamonds), each combination of CSF ROIs with the GM ROIs (red
stars), and each combination of CSF ROIs with the WM ROIs (blue circles). For the
SNR (c) the markers indicate the mean SNR values of WM (yellow diamonds), GM (red
stars), and CSF (blue circles). The diagonal lines represent the identity.
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Figure 3.7: Correlation between pixel values from the rectangular ROI of the synthesized
and the acquired weighted images for a representative subject of the Multicontrast Brain-
MRI dataset. a) Rectangular region of interest chosen for linear regression, b) T1w, c)
T2w, d) PDw, e) T2∗w, and f) T2w-FLAIR. The markers indicate the value of each
pixel in the rectangular ROI (approximate 2025 values). The diagonal lines represent the
identity. p << 0.0001 for all image modalities for the correlation test carried out (see
correlation values tested in main text).

CI: [-2.75%; 2.52%]), and the T2w-FLAIR (5.36%, CI: [1.67%; 9.05%]), although
it is slightly worse for the T2w (-17.46%, CI: [-18.94%; -15.99%]) and the PDw (-
26.45%, CI: [-27.79%; -25.10%]). Finally, contrast only improves in the T2w-FLAIR
(22.77%, CI: [20.57%; 24.98%]). See details in Table 3.5.

Table 3.5: Percentage of variation of the linear regression coefficient [95% confidence
interval (CI)] in comparison to the identity (i.e., linear regression coefficient of one) for the
contrast, the CNR, and SNR samples. For the linear regression computation, the x-axis is
considered as the samples values of the acquired image and the y-axis the samples values
of the synthesized image as shown in Figure 3.6. Positive values indicate an improvement
of the corresponding samples.

T1w T2w PDw T2∗w T2w-FLAIR

Contrast -12.69% -14.11% -31.22% -32.89% 22.77%
[-13.36; -12.01]% [-14.88; -13.33]% [-32.23; -30.21]% [-34.37; -31.34]% [20.57; 24.98]%

CNR -5.31% -17.46% -26.45% -0.12% 5.36%
[-6.33; -4.29]% [-18.94; -15.99]% [-27.79; -25.10]% [-2.75; 2.52]% [1.67; 9.05]%

SNR 4.76% -3.10% 6.86% 47.74% -5.76%
[2.89; 6.62]% [-5.92; -0.28]% [4.22; 9.51]% [41.93; 53.54]% [-11.08; -0.44]%

Figure 3.7 shows a scatter plot between the pixel values of the rectangular ROIs
drawn on the synthesized and the acquired weighted images of a representative
subject of Multicontrast Brain-MRI. There is high correlation between the pairs of
weighted images, namely 0.9911, 0.9684, 0.8898, 0.8477, and 0.6403 for the T1w,
T2w, PDw, T2∗w, and T2w-FLAIR, respectively; all of these values are statistically
significant (p << 0.0001) in the F-test for linear regression.
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Additionally, the high values of the mean SSIM, PSNR, and CORR and low
values of the MSE obtained in the subjects of Multicontrast Brain-MRI show good
agreement between synthesized and acquired weighted images as shown in Table 3.6.
Specifically, the SSIM achieves values above 0.96 for the T1w and the T2w, and of
0.91, 0.78, and 0.56 for the PDw, T2∗w, and T2w-FLAIR, respectively. The MSE
is below 1% for the T1w, T2w, and PDw, and below 9% for the T2∗w and the
T2w-FLAIR. Similarly to Figure 3.4, the image modalities used to train the network
show higher SSIM, PSNR, and CORR and lower MSE than the others.

Table 3.6: Metrics (mean ± SD) used to evaluate the capability to synthesize weighted
images from a set of T1, T2, and PD maps computed by the CNN. The metrics were
calculated between both the synthesized and the acquired weighted images. Note that for
the calculation of the metrics the background voxels were not considered.

T1w T2w PDw T2∗w T2w-FLAIR

MSE 0.0058 0.0095 0.0061 0.0392 0.0815
(0.0009) (0.0020) (0.0010) (0.0058) (0.0081)

SSIM 0.9651 0.9620 0.9194 0.7823 0.5693
(0.0051) (0.0039) (0.0078) (0.0222) (0.0190)

PSNR 30.6338 26.2621 25.3160 18.9098 19.6598
(1.5330) (0.7607) (0.7972) (0.5905) (1.9280)

CORR 0.9910 0.9858 0.9886 0.9438 0.8726
(0.0015) (0.0023) (0.0017) (0.0076) (0.0093)

Figure 3.8 represents Bland-Altman plots including data from a representative slice
of all subjects of Multicontrast Brain-MRI. It compares synthesized and acquired
pixel values for T1w, T2w, PDw, T2∗w, and T2w-FLAIR. The absolute mean
difference for the each image modality is 0.0041, 0.0021, 0.0089, 0.0794 and 0.0249,
respectively.

Figure 3.9 displays a representative axial slice of additional weighted images
synthesized with the same sequences as in Multicontrast Brain-MRI, but varying
the sequence parameters. This proves the versatility of the proposed approach
to synthesize any weighted images. The images obtained are realistic and with
coherent contrasts.

Finally, Figure 3.10 shows a representative axial slice of the non skull-stripped
weighted images synthesized from one set of the T1, T2, and PD maps computed by
the CNN and their corresponding non skull-stripped acquired images for a subject of
Multicontrast Brain-MRI. Similarly to Figure 3.4, both images are visually apparent
regarding both structural information and contrast between tissues. Nevertheless,
the inhomogeneities in the skull interfaces might cause a mismatch between the
synthesized and the acquired images.

3.4.3 Fine tuning: refining the network with actual paramet-
ric maps

Figure 3.11 shows a representative slice of both MAPc-(ii) and MAPc-(i) (columns
a) and b), respectively) with MAP as T1, T2, and PD (first, second, and third
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Figure 3.8: Bland-Altman plots used to compare synthesized and acquired weighted
images as in Cheng et al. (2020). Each plot combines results from a representative axial
slice of all subjects of the Multicontrast Brain-MRI dataset. The corresponding image
modalities are: a-e) T1w, T2w, PDw, T2∗w, and T2w-FLAIR, respectively. Red dashed
lines represents the bias and blue dashed lines the 95% confidence interval.

rows, respectively). For MAPc-(i) the figure also shows the correlation diagrams
that include the values of the ROIs for all subjects of the Relaxometry Brain-MRI
dataset tested with a leave-one-out scheme (i.e., t = 4). It can be seen that the
fine tuning procedure improves the accuracy of the computed parametric maps in
terms of ICC (compare the values shown in Fig. 3.3), whereas without the previous
synthetic training the results worsen noticeably and the maps blur. Furthermore,
Table 3.7 shows the mean correlation coefficient and ICC of parameter µk

i (n)L

(Eq. 3.4) for the different configurations of t. Both correlation and ICC have been
computed for each test subject of each split, and then, mean values were computed
along all splits and subjects. Results show that, as expected, both parameters
increase with the number of training subjects.

3.5 Discussion

In this chapter, we have presented a novel joint Synthetic MRI approach for the
computation of the T1, T2, and PD parametric maps and the synthesis of different
weighted images from only a pair of input weighted images. The pair of input images
are a T1w and a T2w acquired with clinical routine sequences. The parametric
maps are obtained with a DL method based on a CNN. This CNN is trained by
means of a new training strategy with a synthetic dataset; hence, we overcome the
lack of a public and sufficiently large database of conventional images that should
be accompanied by their corresponding parametric maps.
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Figure 3.9: A representative axial slice of other weighted images synthesized varying the
sequence parameters from a set of the T1, T2, and PD maps computed by the CNN. a)
Weighted images synthesized for a spin echo (SE) sequence with different TE and TR
corresponding to T1w, T2w and PDw image modalities. b) Weighted images synthesized
for an IR-SE sequence with different TE, TR, and TI corresponding to short-TI inversion
recovery (STIR), T1-weighted fluid attenuated inversion recovery (T1w-FLAIR), and
T2w-FLAIR image modalities. Note that the unlabeled images correspond to sequence
parameter combinations which lead to weighted images with undefined contrast.
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Figure 3.10: A representative axial slice of the non skull-stripped weighted images
synthesized from one set of the T1, T2, and PD maps computed by the CNN and their
corresponding non skull-stripped acquired images. a-e) The synthesized T1w, T2w, PDw,
T2∗w, and T2w-FLAIR images. f-j) Their corresponding weighted acquired images.
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Figure 3.11: A representative axial slice of T1, T2, and PD maps computed from a
subject of the Relaxometry Brain-MRI dataset in a leave-one-out scheme. a) T1, T2,
and PD parametric maps computed by the network trained from scratch with actual
parametric maps. b) Corresponding maps computed by the fine tuned network with
previous synthetic training. c) Their corresponding silver standard relaxometry maps. d)
Correlation of parameter µk

i (n)L (Eq. 3.4) between MAPc-(i) and MAPSilver for the five
healthy subjects. Diagonal lines represent the identity.

Table 3.7: Mean correlation coefficient (R) and intraclass correlation coefficient (ICC) of
parameter µk

i (n)L (Eq. 3.4) between the computed and the silver standard relaxometry
maps for three values of the number of training subjects t in the cross validation of the
fine tuning. Values reported have been computed for each test subjects of each split, and
then, mean values were computed along all splits and subjects.

T1 T2 PD

R
t=4∗ 0.9784 0.9682 0.8912
t=3† 0.9733 0.9648 0.8857
t=2† 0.9722 0.9645 0.8752

ICC
t=4∗ 0.9517 0.9607 0.7935
t=3† 0.9324 0.9496 0.7930
t=2† 0.9275 0.9475 0.7536

∗ five splits, † 10 splits.
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Our synthetic training dataset departs from 120 instances of BrainWeb maps, in
which we add intensity variability, by means of random noise, as well as spatial vari-
ability, by registering these maps to different anatomies from the PPMI database.
We show the feasibility of this solution by computing accurate and realistic paramet-
ric maps from both synthetic and actual MR brain acquisitions; the computed maps
are then used to synthesize different weighted images, so our end-to-end Synthetic
MRI solution is not limited to a number of predefined weighted images that have
entered the learning process, but is capable of generalizing to any image modality
that can be synthesized out of the parametric maps. Hence, our solution fulfills the
three conditions needed to become a Synthetic MRI method. To the best of our
knowledge this is the first Synthetic MRI method that is based on conventional
routine sequences and can be trained on the basis of synthetic data.

We have shown that synthesized weighted images from five clinical routine sequences
achieve high similarity metrics, with SSIM usually above 0.90 and low error with
MSE always below 9%. The correlation analysis shown in the scatter plots of
Figure 3.5 provide values above 0.95 for all modalities. Similarly, for the scatter
plots of contrast, CNR, and SNR (Figure 3.6), both correlation and ICC also obtain
high values, as shown in Table 3.4. Note that the agreement when the ICC values
are above 0.75 is considered good while when the values are above 0.90 is considered
excellent (Koo and Li, 2016); our results indicate that we lie in these ranges for at
least one parameter for each synthesized modality. In addition, spatial resolutions
of training and test images do not need to exactly match. Our testing images have
resolution of 0.94 x 1.25 x 5 mm while the PPMI datase resolution is of 1 x 1 x
1.2 mm; despite the in-plane resolution does not differ much, slice thicknesses are
clearly different and no partial volumes effects in the through-plane direction are
obvious in our solution.

The Synthetic MRI approach proposed may have important implications in neu-
roimaging due to the utility of the parametric maps for tissue characterization
and the possibility of synthesizing any weighted image. Specifically, the obtained
T1, T2, and PD values of the three tissues (WM, GM, and CSF) present a good
correspondence with the values reported in the literature, as shown in Table 3.3 and
with the silver standard relaxometry parametric maps with correlation values above
0.95 for the T1 and T2 maps. The output quality increases noticeably when the
network is fine tuned with a small number of silver standard maps. This provides
a way to obtain parametric maps with increased accuracy, at the cost of employing
a (small) number of silver standard maps for additional training. Note, however,
that training with synthetic data is a key step, since training from scratch with
this small amount of silver standard maps by no means suffices.

Moreover, the proposed approach avoids the need of lengthy relaxometry sequences;
the total scan time of the full-brain acquisition described in this chapter (T1w and
T2w acquisitions) is less than 8 min versus the 18 min scan time of an inversion
recovery golden standard acquisition only for T1 mapping (Ramos-Llorden et al.,
2016), and the 17 min scan time of the DESPOT algorithm for T1 and T2 map-
ping (Deoni et al., 2005). The computed parametric maps are therefore less prone to
motion artifacts. Interestingly, the proposed approach is not based on specific and
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complex sequences as MR Fingerprinting (Ma et al., 2013), IR-TrueFISP (Gulani
et al., 2004), QRAPMASTER (Warntjes et al., 2008), and MPME (Cheng et al.,
2020) or private protocols as the SyMRI IMAGE software (SyntheticMR). Also,
the feasibility of synthesizing weighted images and/or retrospectively optimizing
sequence parameters can further reduce scan time. Thus, a radiologist could have
the parametric maps together with various conventional weighted images based on
the same widespread short scan protocol.

In addition, we provide the possibility of creating databases of perfectly registered
weighted images accompanied with their corresponding parametric maps; these
databases can be used to train machine learning algorithms for different purposes,
perform data augmentation or improve the performance of registration or seg-
mentation algorithms. The field of radiomics also seems a natural target for our
methodology.

We should stress that our method gives rise to different modalities, some of them
unseen by the network throughout the training process, with comparable quality
with recent medical image translation works; however, to the best of our knowledge,
these works are limited to the specific modalities that enter the training and
validation stages. Specifically, SSIM in our synthesized T1w, T2w, and PDw
images is slightly higher than the values reported by Chartsias et al. (2017) and
Sohail et al. (2019) for some of these image modalities, albeit the T2w-FLAIR and
sometimes the T2∗w achieve lower quality. A more thorough comparison is not
feasible since our actual acquired validation dataset is not large enough to train the
state-of-the-art medical image translation methods. Also, note that in our approach
no data from real acquisitions are used in the training stage thanks to the synthetic
training, and only when fine tuning the network a very small database of actual
maps is used; this is our main advantage with respect to the state-of-the-art.

The non skull-stripped synthesized images, although visually realistic, achieve lower
quality than their corresponding skull-stripped counterparts; however, this seems
to be the case as well in Chartsias et al. (2017). The loss of quality is clearer in the
neighbouring parts of the skull, and other tissues such as the eyes. We obtain a
SSIM of 0.80 in both the T2w and the PDw images while in Chartsias et al. (2017)
the SSIM in the synthesis of the T2w from the PDw is of 0.86. Nevertheless, it is
important to note that, as opposed to Chartsias et al. (2017), in our work the skull
has not entered the training process.

As for the comparison with Synthetic MRI methods, in our work the synthesized
weighted images show higher visual resemblance to the acquired images than in the
other methods (Cheng et al., 2020; Gulani et al., 2004). In addition, correlation
coefficients calculated within the rectangular ROIs described in section 3.3.1 are
higher with our approach (Gulani et al., 2004). However, except for the T2w-FLAIR
modality, our synthesized weighted images present lower contrast values than the
acquired weighted images as compared with Blystad et al. (2012), although we
achieve similar or higher CNR and SNR figures. The Bland-Altman plots show
better agreement than Cheng et al. (2020) in T1w and T2w, similar agreement
in PDw, and only a slightly lower agreement in T2w-FLAIR images. The T2∗w
modality is not synthetized by them. The loss of quality in T2w-FLAIR images is
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a common issue in Synthetic MRI (Hagiwara et al., 2017) where the boundary of
the CSF on the cortical area tends to be hyperintense presumably due to partial
volume effects.

This work has several limitations. The method was evaluated in synthetic data,
eight subjects —suspected of early Alzheimer disease—, and five healthy volunteers,
so further validation in a larger cohort of both healthy volunteers and patients with
other pathologies is still needed. Additionally, silver standard relaxometry maps
were estimated without applying neither inhomogeneity nor motion corrections.
Moreover, B0 and B1 inhomogeneties have not been taken into account in the
synthetic dataset generation either. Thus, including these inhomogeneties in the
synthesis could be of interest. In addition, the equations used to synthesize the
weighted images did not consider all the effects that occur in practice. For example,
the T2∗w image is synthesized from the T2 map instead of the T2∗ map which
could be the cause of the worse metrics compared to the metrics of the T2w
image. Also, the T2w-FLAIR presents worse metrics than the other modalities,
but the images obtained are comparable with those of the literature (Blystad et al.,
2012). To address this, methods focused on improving T2w-FLAIR images have
been reported (Hagiwara et al., 2019b). Additionally, the parametric maps of the
synthetic dataset were generated with values corresponding to 3T scanners; hence
our results do not directly carry over to other field strengths. The extension to
high field scanners will presumably require to modify the synthetic training dataset
and further postprocessing corrections because B1 and B0 field inhomogeneities
are specially problematic at high fields.

Future work includes improvement and further tuning in the implemented CNN. In
addition, the use of GAN architectures may be studied due to the recent works that
achieve impressive results in medical image translation capturing high-frequency
texture information (Armanious et al., 2020; Dar et al., 2019). On the other hand,
the selection of the optimal input training sequences and/or sequence parameters
could improve the computation of the parametric maps and, subsequently, the
synthesis of the weighted images. A more realistic synthesis of weighted images
with a detailed Bloch simulation (Cao et al., 2014; Stöcker et al., 2010) and other
maps (e.g. T2∗, B0, and B1 maps) could also enhance the synthesis quality of any
MRI modality. Further, the simulation of motion artifacts in the weighted images of
the synthetic dataset could enhance the network robustness against such artifacts.
In addition, we could extend the proposed approach to other slice orientations, such
as sagittal or coronal, and/or other tissues, such as the heart or the liver, as long
as synthetic anatomical volumes can be computed. To this end, for example, the
extended Cardiac-Torso (XCAT) phantoms (Segars et al., 2010) could be employed.
We also plan to address the oncology field, where parametric mapping may be a
challenging task.

3.6 Conclusions
In conclusion, in this chapter we proposed a novel joint Synthetic MRI approach
for the computation of the T1, T2, and PD parametric maps and the synthesis of
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different weighted images which only needs two conventional weighted images as
inputs (full-brain acquisition in less than 8 min of scan time). Based on a CNN, we
are able to provide realistic parametric maps and weighted images when training
the CNN with a synthetic dataset. The results in both synthetic data and actual
MR acquisitions experiments demonstrate its feasibility for quantitative MRI in
clinically viable times as well as its applicability to the synthesis of additional MR
weighted image modalities.
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4.1. Purpose

4.1 Purpose
In this chapter we propose the application of Synthetic MRI to improve a radiomics
approach for survival prediction in glioblastoma. Our purpose is to show that a
radiomic system that incorporates an input channel fed by a synthesized image
(a) behaves similarly to this system when it is fed with an acquired image and
(b) undoubtedly outperforms a radiomics system that does not have this channel.
Two weighted images are considered for the synthesis, namely, T2w and T2w-
FLAIR.

We synthesize these images by means of a self-supervised extension of our DL
Synthetic MRI approach presented in Chapter 3. The self-supervised training
allows us to train the DL method with actually acquired weighted images instead
of parametric maps, which are more difficult to obtain in practice. Hence, we
validate an MR protocol shortening procedure by means of a glioblastoma survival
prediction Radiomics-based application.

4.2 Methods
A total of 199 glioblastoma patients included in four different datasets were used
in this work. Three of them (BraTS2020, TCIA, Dataset22 ), described in Ap-
pendix C.1, were only used for training the radiomics system. The other dataset
(Multicontrast Glioblastoma), which has been previously described in Chapter 1,
was used for testing the radiomics system in concordance with the synthesis method.
Figure 4.1 shows the pipeline of the proposed approach for training and testing as
well as and the three experiments we have carried out.
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Figure 4.1: Workflow of the proposed approach. Initially, patients are divided into a
training (175 patients) and testing (24 patients) sets. The preprocessing pipeline segments
tumors and normalizes the contrast intensity. Features are retrieved from the segmented
ROIs. After feature selection, relevant features are retained. Five machine learning
models for survival prediction were examined. Three different experiment configurations
(referred to throughout this chapter as Experiments/Results I, II and III) were defined
for comparative performance assessment.

4.2.1 Data preprocessing
All the datasets include four MR weighted images (T1w, T2w, T2w-FLAIR, and
post-T1w), which were first co-registered to 1mm3 isotropic resolution and skull-
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Figure 4.2: Preprocessing pipeline. Initial images are first co-registered and skull-stripped
following CaPTk pipeline. Afterwards, the different contrast images are denoised and
bias-corrected before obtaining the white matter and tumor segmentations. Finally,
skull-stripped images are bias-corrected and intensity normalized using the segmentations.

stripped (Thakur et al., 2020) following BraTS preprocessing in CaPTk (Rathore
et al., 2017). Then, denoising (Maggioni and Foi, 2012) followed by N4 bias
correction (Tustison et al., 2010) was performed in order to obtain WM (Zhang
et al., 2000) and tumor segmentations. The DL method nNUnet (Isensee et al.,
2021) was utilized to segment the tumor into three distinct regions (i.e., enhancing
tumor, non-enhancing tumor, and edema). These regions were employed for feature
extraction in the radiomic system. On the other hand, N4 bias correction (Tustison
et al., 2010) was applied on the skull-stripped images and these were next normalized
dividing each by the mean intensity of the WM region contralateral to the tumor.
This latter pipeline produces the images used as input to the radiomic system and
the synthesis DL method. Figure 4.2 depicts the preprocessing pipeline.

4.2.2 Synthesis method by a self-supervised CNN
In Chapter 3 we have presented a joint Synthetic MRI approach for the computation
of T1, T2, and PD parametric maps and the synthesis of different weighted images
from only a pair of weighted inputs. A CNN trained mainly with synthetic data was
employed. However, some synthesized weightings, such as T2w-FLAIR, presented
relatively low quality presumably due to the exclusively synthetic training. Thus,
if only a few weighted images are of interest, the issue referred to above can be
overcome by extending the CNN into a self-supervised CNN to be trained with
acquired weighted images with the desired contrast. Such an extension has been
performed in this chapter and is graphically represented in Figure 4.3.

The original CNN was configured with two encoders for the two input weighted
images, namely, T1w and T2w or T1w and T2w-FLAIR (in the case of synthesizing
T2w-FLAIR or T2w, respectively). Then, the latent representations of each encoder
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Figure 4.3: Overview of the self-supervised CNN. The input of the network are T1w and
T2w for the synthesis of T2w-FLAIR, and T1w and T2w-FLAIR for the synthesis of
T2w. Note that all the switches change depending of the weighting we want to synthesize.
The lambda layers implement the theoretical pulse sequences equations that describe MR
image intensity as a function of parametric maps and acquisition parameters.

were fused using a pixel-wise max function. Finally, we configured three decoders for
the generation of the T1, T2, and PD parametric maps. In order to extend the CNN
into a self-supervised CNN (see Figure 4.3) we have included a non-trainable lambda
layer after the decoder’s output. This lambda layer implements the theoretical pulse
sequence equations that describe MR intensity of the output weighted images in
relation with the aforementioned parametric maps and the acquisition parameters.
These equations were previously explained in Subsection 2.1.4. Specifically, we
employ Eq. 2.11 and Eq. 2.13 for the T2w and T2w-FLAIR, respectively.

The loss function used to train the self-supervised CNN, named Lsyn, is computed
in the weighted image domain as the average of the MAE between each acquired
image and its synthesized counterpart. Specifically, let mk

acq(x) denote the intensity
value of the k − th acquired image at pixel x, defined in some domain χk ⊂ R2,
and let mk

syn(x) be the synthesized image at that pixel location. Then:

MAE
(
mk

acq, mk
syn

)
= 1

|χk|
∑

x∈χk

∣∣mk
acq(x) − mk

syn(x)
∣∣ (4.1)

with mk
acq and mk

syn vectors that represent the image intensity values of the acquired
and synthesized images respectively in all the pixels belonging to domain χk with
cardinality

∣∣χk
∣∣. Then, the loss function is defined as:

L = 1
M

M∑
k=1

MAE
(
mk

acq, mk
syn

)
, (4.2)

with M the overall number of images entering the average (i.e. the batch size).
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Multicontrast Gliblastoma, composed of a total of 24 patients acquisitions (see
Section 1.4), was used to train the self-supervised CNN following a leave-one-out
scheme (i.e., a total of 24 models were trained). For training each model, one
patient was used for testing and the remaining 23 patients were randomly split
between training (18 patients, representing approximately 80%) and early-stopping
validation (5 patients, representing approximately 20%). The test patients of each
model were then used for testing the radiomic system described next in Section 4.2.3.
Hence, notice that neither the self-supervised CNN nor the radiomic system has
never seen any tested patient along the entire pipeline.

During training, the loss function was optimized using the Adam optimization
algorithm (Jais et al., 2019) with a learning rate of 1 × 10−4 and, as previously
stated, early-stopping was used to avoid overfitting. Further, we empirically fixed
the batch size to 32 images. We ran the code using the TensorFlow backend (Abadi
et al., 2016) on a single NVIDIA GeForce GTX 1070. The total learning took
approximately one hour of computation time for each model. Note that once the
network has been trained, the computation time reduces to a few seconds.

4.2.3 Radiomic system
A radiomic system for survival prediction was trained to classify patients with
long term survival rates (survival > 480 days). The threshold of 480 days (i.e.,
16 months) was chosen in order to achieve a balance between groups sizes in the
test dataset. The datasets BraTS2020, TCIA, and Dataset22 (175 patients in
total, see Appendix C.1) were used to train the radiomic system. Multicontrast
Glioblastoma (24 patients) was used for testing in coordination with the synthesis
method previously described in Section 4.2.2.

Starting from a total of 117,088 handcrafted features extracted from the structural
MR weighted images, detailed in Appendix C.2, we trained the radiomic system
following a nested cross-validation scheme (outer = 5-fold; inner = 10-fold). Feature
selection methods Ding and Peng (2005); Moore and White (2007) were repeated
in each outer split to reduce the possible bias produced if training were done on
a single cross-validation split. For each outer split, the model with the lowest
Brier loss in the inner split was chosen. Note that five models were selected for
the following screening due to the 5-fold decision of the outer split. Each of these
models were then validated with the validation data corresponding to its outer
split. Finally, the model with the best performance, measured with the AUC, was
selected. The whole radiomics pipeline is outlined in Appendix C.2.

Using this methodology, the best model for each of the three scenarios described
below was chosen:

1. When the four weighted images (i.e., T1w, T2w, T2w-FLAIR, and post-T1w)
were used as input of the radiomic system, the selected model turned out to
be a extreme gradient boosting (XGB) with 17 features, two of which belong
to the T2w-FLAIR and another two to the T2w.
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2. When only T1w, T2w and post-T1w images were used as input and the
channel fed with T2w-FLAIR was discarded, the resulting model was a
logistic regression (LR) classifier with 16 features.

3. When only T1w, T2w-FLAIR and post-T1w images were used as input and
the channel fed with T2w was discarded, a support vector machine (SVM)
classifier with 16 features was selected.

Hereinafter, these three models are termed XGB17, LR16, and SVM16, respectively.
Features selected for each of the previous models are listed in Appendix C.3
Tables C.6, C.7, and C.8, respectively.

4.3 Experimental work
We carried out three test experiments in order to assess the possibility of using
synthesized images as input of a radiomic system for survival prediction. In all of
them the radiomic system was tested with Multicontrast Glioblastoma, with the
provisions made in the previous section to avoid test data entering the process
twice. These experiments are detailed next:

I) XGB17 was tested with the acquired T1w, T2w, T2w-FLAIR, and post-T1w
images as inputs.

II) XGB17 was tested replacing one of the acquired inputs by its synthesized
counterversion. T2w-FLAIR and T2w were considered for the replacement,
one at a time. Therefore, in this experiment three of the inputs of the
radiomic system were acquired and one was synthesized. As previously stated,
these synthesized images were the test images from the leave-one-out of the
synthesis method, so no overlap between the training and testing splits occurs
in either the synthesis or in the radiomic system.

III) Models LR16 and SVM16 were tested without considering as input T2w-
FLAIR and T2w, respectively. Note that the radiomic systems used in this
third experiment, had been built with only three input channels.

Performance assessment is two-fold. On the one hand, we evaluated the quality
of the synthesized images. In addition to visual assessment, we also carried out
a quantitative analysis using the well-known measures MSE, SSIM, and PSNR
as synthesis quality metrics (Moya-Sáez et al., 2021). These metrics have been
defined within a 3D domain between both the synthesized and the acquired images,
specifically, within the smallest cube that comprises the foreground of each volume);
hence χk in Eq. (4.1) is the intersection between this domain and the k-th acquired
image. Thereafter, the mean and standard deviation values across patients were
calculated.

On the other hand, in order to compare the performance of the radiomic system
with the different experiment configurations, we computed area under the curve
(AUC), accuracy, precision, recall and F1-score as classifier performance metrics.
These metrics were reported as the average value over the two classification classes.
Additionally, for the sake of completeness, we analyzed the predicted probabilities
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of survival obtained at the output of the radiomic system for the pair of experiments
I–II and I–III. To this end, we calculated the R2 value, customarily used in linear
regression, to measure how predicted probabilities of experiments II and III deviated
from the identity function at abscissae equal to the probabilities of experiment I.
The ICC (Koo and Li, 2016) between these pairs was also measured and boxplots of
the probability differences for these pairs of experiments were constructed.

4.4 Results
Figure 4.4 shows a representative slice of the synthesized and the corresponding
acquired weighted images for several test glioblastoma patients. Overall, the
synthesized images are close to the acquired versions regarding the structural
information and contrast between tissues in both healthy and pathological regions.
Particularly, the contour and intensity of the different lesion areas are similar in
both. However, it can be noticed that synthesized images tend to appear slightly
blurrier than the acquired ones. In contrast, note that in Patient 3 the synthesized
T2w-FLAIR image does not suffer from motion artifacts, which are indeed present
in the acquired image.

Additionally, Table 4.1 shows the mean and standard deviation (SD) values com-
puted across patients of the synthesis quality metrics (i.e., SSIM, MSE, and PSNR)
between synthesized and acquired images for T2w-FLAIR and T2w. SSIM is a value
ranging between 0 and 1, and the value 1 is only reachable for two identical images.
The high values of PSNR and the low values of MSE show low error between the
synthesized and the acquired weighted images for both the T2w-FLAIR and T2w.
All the metrics improve considerably with respect to those obtained in Chapter 3 for
the T2w-FLAIR weighted image. Note that the comparison of the values obtained
for T2w are not representative since this weighted image was input to the CNN in
that work.

Table 4.1: Synthesis quality metrics used to evaluate the capability to synthesize T2w-
FLAIR and T2w weighted images. These metrics are the MSE, SSIM, and PSNR. Mean
and standard deviation (between brackets) computed across patients are reported. The
metrics were calculated between both the synthesized and the acquired images.

MSE SSIM PSNR

T2w-FLAIR 0.0163 0.7595 23.7975
(0.0104) (0.0474) (2.0011)

T2w 0.0742 0.7845 25.8934
(0.0319) (0.0616) (1.9032)

Figure 4.5 shows the AUC, accuracy, precision, recall, and F1-score achieved for the
radiomic system for the three different experiment configurations (experiments I, II,
and III defined in section 4.3). All the metrics are substantially better in the case
of using a synthesized image rather than using a system without such a weighted
image for both T2w-FLAIR and T2w images. The comparison between using
an acquired and a synthesized image shows that the performance of the system
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Figure 4.5: AUC, accuracy, precision, recall, and F1-score of the radiomic system tested
with Multicontrast Glioblastoma when a) the T2w-FLAIR and b) the T2w input is I)
acquired, II) synthesized, and III) when a radiomic system trained from scratch without
considering any of these weighted images as input is used instead.

does not diminish in terms of AUC, and only suffers from a slight degradation in
terms of the other performance metrics when synthesizing the T2w-FLAIR. Such
degradation is not observed with the synthesized T2w.

Figure 4.6 shows scatter plots of the output predicted probabilities of experiments
I–II and I–III. The ground-truth labels and labeled predictions (i.e., survival >
480 days or not) are also displayed. Additionally, R2 values from the identity
linear regressions are provided. A better agreement of points in plots in the upper
row (experiments I–II) compared to the plots in the lower row (experiments I–III)
can be observed. This better agreement is also confirmed with the higher values
of R2 obtained. Additionally, the ICC values measured are 0.983 and 0.292 for
T2w-FLAIR and 0.964 and 0.027 for T2w, for the pair of experiments I–II and I–III,
respectively. These ICC values correspond with an excellent agreement according
to Koo and Li (2016).

Finally, Figure 4.7 shows boxplots of the probability differences for the pair of
experiments I–II and I–III, for both T2w-FLAIR and T2w images. As can be seen,
the median of the boxplots in the pair I–II is closer to zero than in the pair I–III for
both the T2w-FLAIR and the T2w. A lower interquartile range (IQR) in boxplots
of experiments I–II compared to experiments I–III can be also observed, together
with a median shift from zero in the I–III experiment, an effect which is more
prominent for T2w.

4.5 Discussion
In this chapter, we have thoroughly analyzed the replacement of an actual ac-
quired weighted image with its synthesized counterversion for predicting survival
of glioblastoma patients with a completely independent radiomic system. Starting
from two acquired weighted images, we synthesized a new weighted image using
a self-supervised CNN-based method. The radiomic system was trained using as

76



4.5. Discussion

R2=0.962

R2=-0.835

R2=0.931

R2=-2.385

0.0

0.2

0.4

0.6

0.8

1.0

P
re

d
ic

te
d
 p

ro
b
a
b
il
it
y
 -

 s
y
n
th

e
s
iz

e
d

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

P
re

d
ic

te
d
 p

ro
b
a
b
il
it
y
 -

 s
y
n
th

e
s
iz

e
d

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

P
re

d
ic

te
d
 p

ro
b
a
b
il
it
y
 -

 w
it
h
o
u
t

P
re

d
ic

te
d
 p

ro
b
a
b
il
it
y
 -

 w
it
h
o
u
t

Figure 4.6: Scatter plots of the predicted probabilities obtained at the output of the
radiomic system for the experiment with the acquired versus the synthesized images
(top row) and versus a radiomic system trained from scratch without considering this
weighted image as input (bottom row). The plots are shown for a) T2w-FLAIR and b)
T2w. Dashed lines represent the threshold fixed in the radiomic system to classify survival
(>480 days). Each point represents each glioblastoma patient and its color corresponds
to the ground-truth labels. R2 values from the identity linear regressions are provided.
Note the good agreement of points in upper plots compared to lower plots.
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Figure 4.7: Boxplots of the differences between the probabilities obtained at the output of
the radiomic system for the experiments with the acquired versus the synthesized images
and versus a radiomic system trained from scratch without considering this weighted
image as input (i.e., pair of experiments I–II and I–III, respectively). The boxplots are
shown for a) T2w-FLAIR and b) T2w. Each point represents the probability difference
for each glioblastoma patient and dashed line correspond to zero difference. Note that
the median of the boxplots is closer to zero in the pair I–II compared to I–III.

input acquired images only. Then, the system was tested using as input acquired
images, on one side, and replacing one acquired image with a synthetic image, on
the other. We also compared performance with a system trained from scratch
ignoring this additional channel. T2w-FLAIR and T2w contrasts were used for
replacement.

The self-supervised approach proposed in this work allows us training the DL
method without the need of reference parametric maps; thus, only weighted images
are necessary. In addition, the incorporation of physical knowledge in the training
by means of the theoretical pulse sequence equations could leverage the quality of
the synthesized images and speed up the training process.

Results show that multicontrast-demanding quantitative applications, such as
Radiomics, can be leveraged by synthesized images. Synthesized images may allow
widespread usage of these radiomic systems in clinical practice, by retrospectively
completing databases with missing modalities and/or replacing artifacted images.
An example of the latter can be found in Figure 4.4, where the synthesized T2w-
FLAIR image of Patient 3 does not suffer from motion artifacts, which are indeed
present in the acquired image. Further, these synthesized images have the potential
to speed up acquisition protocols by replacing some acquired images with their
synthesized counterversions. Particularly, removing T2w-FLAIR or T2w from
an average brain protocol may reduce the overall scan duration on the order of
20% and both of them are artifact-prone sequences due to their sensitivity to
motion. Thus, our results allow us to state that Synthetic MRI does add up to
glioblastoma survival prediction within a Radiomics-based approach. Indeed, the
network described in Chapter 3 is prepared to synthesize more than one contrast, so
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for protocols with more sequences than those used in this paper, higher reductions
could be potentially achieved.

It has been shown in this work that synthesized weighted images are visually similar
to the acquired images in both healthy and pathological tissues. However, it can
be observed that synthesized images tend to exhibit a slight blurriness compared
to the acquired ones. This occurrence is likely due to an implicit filtering effect
introduced by the CNN during the self-supervised learning process. Additionally,
the values of image quality metrics prove the agreement between the synthesized
and the actually acquired images. The performance achieved with the synthesized
images in the radiomic system is not only close to the performance achieved using
the acquired images, but also substantially better than using a model trained
without that weighting. This is confirmed by the classifier performance metrics (i.e.,
AUC, accuracy, precision, recall and F1-score) for both T2w-FLAIR and T2w. The
R2 of the identity linear regression and the ICC values also support this finding.
Note that an ICC value above 0.9 is considered excellent (Koo and Li, 2016). It
is worth noting that the synthesized images input to the XGB17 model improve
the AUC compared to acquired images. This might be caused by the implicit
filtering undergone during the synthesis procedure. Moreover, accuracy values
obtained from the radiomic system are in par with other radiomic systems which
rely exclusively on acquired images (Tewarie et al., 2021), and set the survival
threshold for classification, similarly as we do, to achieve balance between groups
sizes.

This work has several limitations. The test experiments were carried out on
Multicontrast Glioblastoma, composed of a cohort of 24 glioblastoma patients. We
made this design decision because Multicontrast Glioblastoma is the only dataset
in which the pulse sequence and the acquisition parameters remained steady across
patients, and the self-supervised proposed synthesis method depends on these
parameters. This dependence has the advantage of making the process specific to
this parameter setting, so higher synthesis quality can be expected. The downside
is the inherent limitation to this particular setting. Nevertheless, the self-supervised
method can be easily extended to accommodate more parameter values for which
acquisitions are available. In addition, experiments on a larger cohort would be
advisable to further support our conclusions. Further, a multi-institutional study
could be necessary to analyze the capability of the system to generalize.

One might argue about the need to synthesize weighted images to feed a radiomic
system since parametric maps were already available. Note that these maps were
generated as a previous step to synthesize precisely the weighted images. Certainly,
the radiomic system could have been designed to deal directly with these maps, and
this is a topic in which some other predictions have been properly proposed (Pirkl
et al., 2021). However, we have two reasons that support our design choice. First,
the glioblastoma datasets we have used for training the radiomic system do not
include parametric maps. Second, the approach proposed in Chapter 3 has been
trained with glioblastoma-free images, both from synthetic data as well as a small
dataset of actual acquisitions. Hence, we have extended our original method with a
self-supervised procedure to include glioblastoma information in our pipeline.
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As future work, performing the experiments synthesizing the post-contrast weighted
images might be of interest from a clinical point of view, in order to avoid the
administration of contrast agents to patients. Recently, some promising works (Dai
et al., 2020; Kleesiek et al., 2019) that attempt to carry out the translation between
pre-contrast and post-contrast weighted images have been proposed, but they still
have some limitations. On the one hand, the lack of versatility since neither the pulse
sequence nor the acquisition parameters can be controlled in these methodologies.
On the other hand, the qualitative nature of weighted images makes the replacement
of contrast agents in these methods less explicable since they are not based on
parametric maps.

4.6 Conclusions
In conclusion, in this chapter we assessed the performance of a radiomic system
when an input actually acquired was replaced with a synthesized counterversion.
To this end, we synthesized realistic T2w-FLAIR and T2w images in a glioblastoma
dataset with a deep learning approach. Furthermore, a radiomic system for survival
prediction, which can classify patients in two groups (survival > 480 days and
≤ 480 days) was built. We evaluated the effects of the synthesized weighted
images in the radiomic system performance. Results support the utility of using
synthesized images to feed a radiomic system for survival prediction of glioblastoma
patients.
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5.1. Purpose

5.1 Purpose
The assessment of BBB breakdown in brain tumors is usually performed by the
acquisition of a T1w image after the injection of a GBCA. Thus, after the injection,
the T1w and post-T1w are visually compared in order to discover extravasation of
GBCA into the perivascular space (Hattingen et al., 2017). As we introduced in
Chapter 1, both the usage of GBCAs and the assessment based on visual inspection
present associated problems.

Parametric maps (i.e., T1, T2, and PD) could be a potencial solution due to their
ability to facilitate quantification of subtle changes within the tissues (Badve et al.,
2017; Hattingen et al., 2017; Lescher et al., 2015; Nunez-Gonzalez et al., 2022).
Hence, parametric maps could be key for predicting BBB damage without GBCAs,
as shown by Nunez-Gonzalez et al. (2022). This study differentiates between healthy
and abnormal tissue and, particularly, tissue with and without T1w-enhancement
using only pre-contrast maps (Nunez-Gonzalez et al., 2022).

The main issue that limits the applicability of this method is that maps are not com-
monly acquired in clinical practice due to their lengthy relaxometry acquisitions.
Nowadays, fast multiparametric mapping techniques, such as MR Fingerprint-
ing (Ma et al., 2013) or MAGiC (Warntjes et al., 2008), have taken the stage.
These techniques, albeit faster, still have time limitations; moreover, these sequences
are scarcely available worldwide. However, an alternative solution could be the
computation of parametric maps from conventional weighted images using DL as
we have proposed in Chapter 3. In that chapter the computed maps for healthy
volunteers were compared with those obtained with traditional sequences, but
their diagnostic value was not clinically validated. Specifically, no validation was
performed focused on T1w-enhancement prediction in oncological patients.

In this chapter, we propose to predict post-contrast T1w-enhancement in glioma
patients from pre-contrast conventional weighted images using DL-computed para-
metric maps.

5.2 Methods
Three different datasets were employed in this work; one of them (GLIOMA) for
training and testing the DL approach, and the other two (UPenn-GBM and Relax-
ometry Brain-MRI ) for testing the generalization capabilities of the DL method.
These datasets have been previously described in Chapter 1. All the datasets
include T1w, T2w, T2w-FLAIR, and post-T1w images. In addition, GLIOMA
and Relaxometry Brain-MRI include T1, T2, and PD parametric maps acquired
with MAGiC∗ (Warntjes et al., 2008) and relaxometry sequences, respectively. An
overview of the proposed DL method together with the experiments can be found in
Figure 5.1. Details about the the number of participants selected for each dataset
are also shown.

∗Commercial implementation of the QRAPMASTER technique for quantitative imaging.
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Figure 5.1: Flow diagram. a) Participants selection of each dataset, namely GLIOMA,
UPenn-GBM, and Relaxometry Brain-MRI, and training/early-stopping validation/test
sets splitting. b) Pipeline of the proposed approach for training the DL method with the
GLIOMA dataset. c) Testing and experimentation employed for each dataset depends on
the data available in each of them.
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5.2.1 Data processing
First, all weighted images were reoriented to match the orientation of the standard
MNI152 (Evans et al., 2012) with FSL (Jenkinson et al., 2012). After that,
images were skull-stripped using HD-BET (Schell et al., 2019) followed by a
linear registration to the T1w using FLIRT tool of FSL (Jenkinson et al., 2012).
Next, the non-skull-stripped images were registered using the previous linear
transformation and brain masks were applied to all registered images in order
to null non-brain voxels. The last preprocessing step is the normalization of the
weighted images by dividing each of them by its average intensity excluding the
background. The segmentation of WM, and GM tissues were obtained with FAST
tool of FSL (Jenkinson et al., 2012). In addition, different regions were defined: T1-
weighted contrast-enhancement (T1e), non-enhancing T2-weighted hyperintensity
(T2h) — jointly referred to as abnormal tissue (ABN) —, and normal white matter
(nWM), which corresponds to the WM segmentation.

5.2.2 T1w-enhancement assessment
Different methods have been recently proposed for the automatic classification
of voxels with and without T1w-enhancement. We will use two of them which
follow different approaches; the first one needs GBCA but the second one does not.
Next, we detail the characteristics of both and how we have employed them in this
work.

HD-GLIO It is a DL segmentation tool (Kickingereder et al., 2019), which uses
pre-contrast (T1w, T2w, T2w-FLAIR) and post-contrast (post-T1w) images as
inputs. It segments voxels with T1e, and voxels with T2h. It is important to
highlight that this tool was trained with annotations performed by experts. In
this work, GLIOMA and UPenn-GBM datasets were input to the HD-GLIO for
obtaining ground-truth segmentations.

Voxel-wise statistical prediction Nunez-Gonzalez et al. (2022) recently pro-
posed a method for voxel-wise classification of normal/abnormal tissue and T1w-
enhancement/non-enhancement based only on pre-contrast (i.e., without GBCAs)
T1 and T2 maps obtained with MAGiC. Further details on this method can be
found in Appendix D. Following this methodology, in this work we considered two
classification problems: classification-I (C-I) ABN versus nWM, and classification-II
(C-II) T1e versus the union of nWM and T2h. For each classification problem,
we selected the metric that showed the best performance in Nunez-Gonzalez et al.
(2022) and its optimal operating point, i.e., normlog with threshold 8.44 for C-I,
and normT1T2 with threshold 1344 ms for C-II.

5.2.3 Synthesis of parametric maps
The computation of parametric maps is performed with a CNN that extracts the
quantitative T1, T2, and PD information embedded in the weighted images (see
Figure 5.1.b). The CNN was configured with two encoders —one per input (i.e.,
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the T1w and the T2w)—, and three decoders —one per desired parametric map—
The pipeline has three steps: 1) Each weighted image is input to its encoder. 2)
The output of the encoders are fused with a pixel-wise max function into a shared
representation. 3) The shared representation is input to each decoder. The network
processes the volumes slice-wise.

All encoders share the same architecture, which is inspired by the UNet to exploit
information at larger spatial scales (Ronneberger et al., 2015). Skip connections
were used to avoid the loss of details induced in the downsampling path. Also the
decoders share the same architecture; in this case a fully-convolutional network is
employed. More details about the architecture can be found in Section 2.5.4.

Both encoders and decoders were trained together. Training was supervised with
the loss function:

L = ||(T1c − T1GT)||ℓ1 + ||(T2c − T2GT)||ℓ1 + ||(PDc − PDGT)||ℓ1, (5.1)

where the subscripts c and GT refer to the DL-computed and the ground-truth
(i.e., MAGiC) maps, respectively. The l1-norm was chosen to be robust against
misregistration of input images. The loss function was minimized using Adam (Jais
et al., 2019) with a learning rate of 1e−4. The batch size was empirically set to 4
slices. The number of epochs was determined in execution time by early-stopping
(10 epochs with a loss reduction less than 0.001 in early-stopping validation set) to
avoid underfitting and overfitting. Pre-training with synthetic data is performed
following the steps detailed in Chapter 3, in order to both speed up the training
process and obtain good performance with a relatively small training set. We
implemented our model with Tensorflow v.2.4.0.

5.2.4 Training, early-stopping validation and test sets
First, the DL method was trained following a leave-one-out scheme with GLIOMA;
hence, one patient was left aside for testing and the remaining patients were ran-
domly split into training (12 patients) and early-stopping validation (two patients).
Note that the patient without T2w-FLAIR was not included in any test set be-
cause HD-GLIO can not be executed on it, but it was additionally included in the
training/early-stopping validation set as shown in Figure 5.1.a). Thus, a total of
14 data splits were performed. Patients may exhibit T1w-enhancement or not. To
ensure a balanced representation of this condition in the early stopping validation
set, we took care to include one patient with this condition and one without.

Second, to assess generalization capability, we performed a new training, but, in
this case, with the whole GLIOMA dataset, i.e., no patient was left aside for
testing. Specifically, we used one random split of GLIOMA in training (13 patients)
and early-stopping validation (two patients) sets. Testing was carried out on two
separate datasets (UPenn-GBM and Relaxometry Brain-MRI ).
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5.3 Experimental work
Two kind of experiments have been conducted on the test sets for the validation of
the proposed approach. These experiments are labeled in Figure 5.1.c) as Tissue
quantification and Prediction performance. The former is intended to evaluate
similarity between the DL-computed and the acquired maps. The latter evaluates
the capability of DL-computed maps for predicting ABN and T1e tissues. We
stress that the validation of the proposed approach does not correspond with the
early-stopping validation, which is performed during the network training.

Specifically, and following Figure 5.1.c), for GLIOMA the validation of the proposed
approach was performed using the test patient for each trained model in the leave-
one-out. As for the tissue quantification of T1, T2, and PD parameters, MAGiC and
DL-computed parametric maps were visually compared and the percentage error
was voxel-wise computed as the difference between the two maps (DL-computed
and acquired) normalized by the acquired MAGiC map. The WM and GM
segmentations for each test patient were applied to both types of parametric maps.
Then, boxplots of the voxel-wise percentage error between the DL-computed and
acquired MAGiC maps for the WM and GM tissues were constructed. For the
second experiment, classifications were carried out with both acquired MAGiC and
our DL-computed parametric maps for GLIOMA, and their results were compared
in terms of sensitivity and specificity. These two parameters were computed for
each classification problem performed with the metrics and thresholds previously
stated in section 5.2.2. The reference segmentation for computing sensitivity and
specificity was obtained with HD-GLIO from the weighted images (see Figure 5.1.c).
Statistical differences were calculated by means of a significance test.

The dashed horizontal lines in Figure 5.1.c) depict the tests carried out on the two
remaining datasets (Relaxometry Brain-MRI and Upenn-GBM ). These tests allow
us to assess the generalization capability of our method since they are conducted on
datasets that were not used for training. The tissue quantification of T1, T2, and
PD parameters was also conducted on Relaxometry Brain-MRI ; in this case, WM
and GM tissue values were compared between our synthesized maps and the maps
included in Relaxometry Brain-MRI by means of the voxel-wise difference between
the two maps normalized by their voxel-wise mean. As for the second experiment
(labeled as Prediction performance), it was conducted on both datasets. As for
Relaxometry Brain-MRI only the specificity on the classification was calculated
since the dataset consists of healthy volunteers. Differences are also tested by
a significance statistical test. For UPenn-GBM, voxel-wise classifications were
performed for the DL-computed maps and, afterwards, sensitivity and specificity
were computed using HD-GLIO as the reference segmentation.

For the three datasets, the normality of the samples of sensitivity and specificity
are tested with a Shapiro test. For normal data, values are reported as mean and
SD. Otherwise, values are reported as median and IQR. As for statistical tests,
either the paired t-test or Wilcoxon signed rank test have been used according to
the normality of the samples. P-values are reported for an unilateral test (i.e. the
alternative hypothesis is “the value obtained for our maps are greater than for the
other method maps”).
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Table 5.1: Comparison of the classification performance with MAGiC and DL-computed
maps for test patients of GLIOMA. Median across patients and IQR are reported. Bold
text represents significant differences (p-value < 0.05) between DL-computed and MAGiC
maps.

(C-I) ABN vs. nWM (C-II) T1e vs. non T1e
Voxel-wise MAGIC DL-computed Voxel-wise MAGIC DL-computed

Sensitivity 89.35% 88.37% 87.29% 93.26%
(IQR: 8.93%) (IQR: 17.30%) (IQR:16.62%) (IQR: 14.05%)

p-value = 0.4029 p-value = 0.0015

Specificity 93.61% 95.21% 94.95% 95.59%
(IQR: 2.14%) (IQR: 1.13%) (IQR: 2.88%) (IQR: 1.81%)

p-value = 0.0011 p-value = 0.0054

5.4 Results
5.4.1 DL-computed parametric maps in GLIOMA dataset
Figure 5.2 shows, for a representative test patient, both the acquired MAGiC maps
and the DL-computed maps. The voxel-wise percentage error between each pair of
maps is also shown. It can be noticed that the DL-computed maps exhibit more
blurring, with most of the differences located at the interfaces between tissues.
This effect might be caused by partial volume effects and misregistration of the
input weighted images. A comparison of tissue values of the WM and GM between
the DL-computed and MAGiC maps is shown in Figure 5.3.

5.4.2 T1w-enhancement prediction in GLIOMA
Table 5.1 shows shows the sensitivity and specificity values obtained for each
classification (i.e., C-I and C-II defined in Section) for both acquired MAGiC and DL-
computed maps. Also for both cases, the segmented T1e and T2h regions obtained
through the respective classifications are shown in Figure 5.4 for a representative
test patient. The segmentations obtained with HD-GLIO from weighted images
are also shown as reference.

5.4.3 Results on Relaxometry Brain-MRI and UPenn-GBM
Boxplots of the WM and GM percentage error between the DL-computed maps
and those in Relaxometry Brain-MRI are shown in Figure 5.5. On the other hand,
the voxel-wise classifications applied to the DL-computed maps reported mean
specificities of 95.83% (SD: 0.94%) and 98.83% (SD: 0.16%) for C-I and C-II,
respectively, while for the relaxometry maps from Relaxometry Brain-MRI the
specificity lowered to 82.08% (SD: 5.93%) for C-I and 83.36% (SD: 6.03%) for C-II.
Significant differences were found in both cases (p<0.01).

Figure 5.6 shows a comparison between the segmentation obtained with the voxel-
wise classification from DL-computed maps and the reference HD-GLIO segmen-
tation for the UPenn-GBM dataset. The sensitivities and specificities for the
voxel-wise classifications with the DL-computed maps are shown in Table 5.2.
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Figure 5.2: A representative axial slice of MAGiC and corresponding DL-computed
parametric maps for a test patient of GLIOMA, who presents T1w-enhanced tissues. The
voxel-wise percentage error is also represented for each pair. a) T1 map, b) T2 map, and
c) PD map.
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Figure 5.3: Boxplots of the WM and GM voxel-wise percentage error between the DL-
computed and the MAGiC parametric maps for test patients of the GLIOMA dataset.

91



Chapter 5: Multiparametric mapping for T1w-enhancement prediction

HD-GLIO

 Segmentation

Voxel-wise 

MAGiC

Voxel-wise 

DL-computed

T2h
T1e

FN: C-I
FP: C-I
FN: C-II
FP: C-II

) ) )

))

Figure 5.4: A representative axial slice of the T1e and T2h segmentations overlaid on
the T1w images for a representative test patient of the GLIOMA dataset. a) Reference
segmentation obtained with HD-GLIO from the four weighted images (T1w, T2w, T2w-
FLAIR, and post-T1w). b). Segmentations obtained through the voxel-wise classifications
from MAGiC parametric maps. c) Segmentations obtained through the voxel-wise classifi-
cations performed from DL-computed parametric maps. d) Errors of b) compared to a).
e) Errors of c) compared to a). FN: false negative, FP: false positive.
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Figure 5.5: Boxplots of the WM and GM voxel-wise percentage error between the DL-
computed and the relaxometry parametric maps for the Relaxometry Brain-MRI dataset.
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Table 5.2: Classification performance of DL-computed maps for UPenn-GBM patients in
terms of sensitivity and specificity. Median across patients and IQR for each classification
problem are reported.

(C-I) ABN vs. nWM (C-II) T1e vs. non T1e
Sensitivity 91.23% (IQR: 10.14%) 81.04% (IQR: 24.21%)
Specificity 90.24% (IQR: 3.55%) 91.49% (IQR: 6.14%)
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Figure 5.6: A representative axial slice of the T1e and T2h segmentations overlaid on
the T1w images for different patients of UPenn-GBM. a) Post-T1w image. b) Reference
segmentation obtained with HD-GLIO from the four weighted images (T1w,T2w, T2w-
FLAIR, and post-T1w). c) Segmentations obtained through the voxel-wise classifications
performed from DL-computed parametric maps. d) Post-T1w image from the follow-up
acquisition. Red label represents T2h, whereas the yellow label represents T1e.
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5.5 Discussion
In this chapter, we have proposed a method that enables the prediction of brain
tumor T1w-enhancement from pre-contrast conventional weighted images through
the DL computation of parametric maps. Supervised training was utilized to
approximate the MAGiC parametric maps. We have validated the ability of DL-
computed maps to predict abnormal and T1w-enhanced tissues without GBCAs and,
also, their tissue quantification accuracy. Generalization capabilities of the proposed
method have been also tested with multi-site, multi-vendor acquisitions.

Results have shown that the DL-based parametric mapping from only two conven-
tional weighted images show tissue values similar to those obtained with relaxometry
sequences or a fast multiparametric technique such as MAGiC. In addition, the
performance of these DL-computed maps to discriminate normal/abnormal and
T1w-enhanced/non-enhanced tissue is comparable to the performance obtained
with MAGiC maps on the GLIOMA dataset. Both results could be replicated by
testing the DL-based method with two additional datasets (Relaxometry Brain-MRI
and UPenn-GBM ) which were unseen during the training process. All datasets
were collected in different centers and with 3T scanners of multiple vendors. It is
worth noticing that neither inhomogeneity nor motion corrections were applied to
the estimation of the Relaxometry Brain-MRI dataset. This could have an impact
on the better performance of the DL-computed maps in terms of specificity in the
voxel-wise classifications.

Interestingly, voxel-wise classifications show a slight overestimation of the T1e
region compared to the HD-GLIO segmentation, but with some coincidence with
the follow-up images shown in Figure 5.6. This region presents T1 and T2 values
higher than those of the normal white matter, resulting in the region being classified
as T1e. Nevertheless, we hypothesize that these higher values could be explained by
an altered interstitial fluid mobility and increased water content in the perivascular
space (Wardlaw et al., 2015), even when the BBB is not completely disrupted for
gadolinium to pass through. Thus, this overestimated region could represent a
BBB vulnerability and, therefore, it might be an appropriate follow-up biomarker,
which is in agreement with recent reported findings (Lescher et al., 2015), and,
apparently, with our results on the UPenn-GBM follow-up images (see Figure 5.6).
However, further research is necessary to confirm this hypothesis.

The prediction of the T1w-enhancement region from pre-contrast parametric maps
could bypass the injection of GBCAs, avoiding their related issues, as shown
in Nunez-Gonzalez et al. (2022). However, the acquisition of parametric maps
makes protocols considerably longer. Fast multiparametric mapping techniques as
MAGiC do not fully address this issue since its acquisition is still not less than 4 min
for a resolution of 1 x 1 x 3 mm. Thus, the computation of parametric maps from
conventional weighted images, as proposed in this work, would favor the spread of
this clinical application and, in a broader sense, the usage of parametric maps in
clinical practice. Moreover, this approach proves valuable for retrospective analysis,
enabling the computation of parametric maps for pre-existing and/or multicenter
datasets, thereby empowering longitudinal or population studies.
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If it is feasible to derive parametric maps from the weighted images and subsequently
obtain T1w-enhancement measures from these maps, it follows that estimating
tumor enhancement directly from the weighted images should also be viable.
However, we choose to use the parametric maps as an intermediate step for several
reasons: a) gaining resilience to variations in scanners and acquisition parameters
by extracting the absolute scale parametric maps, b) offering information closer to
the pathophysiology, and c) grounding our method on previous studies (Hattingen
et al., 2013; Lescher et al., 2015; Müller et al., 2017; Nunez-Gonzalez et al., 2022),
which have shown that quantitative T1 and T2 values support the rationale of
T1w-enhancement prediction when replacing GBCAs, so that the results obtained
with DL can be explained from a clinical viewpoint.

This work has several limitations. Acquisition time limitations lead to a mismatch in
spatial resolution between the weighted images and MAGiC maps of the GLIOMA
dataset. Consequently, the co-registration of all modalities is needed, which
might induce misregistration artifacts and partial volume effects. Specifically,
misregistration of the T1w and T2w images might be one of the main sources of
errors of the proposed DL method despite the l1-norm used in the loss function.
This can explain why most of the differences between the DL-computed and MAGiC
maps are located at the edges (see Figure 5.2). Alternatively, the network might be
inducing some blurring in the DL-computed maps, which could also explain these
edge differences. Moreover, the T1w and T2w input images have varying acquisition
parameters across datasets due to different institutional protocols. Although this
study has indeed the value of showing comparable results when using other datasets
for testing, these input parameter variations can potentially introduce errors in the
computation of the parametric maps.

To mitigate the impact of variation in acquisition parameters, future work aims to
incorporate them as additional inputs to the network. This approach would enable
training with a more extensive and diverse dataset, potentially enhancing the model
generalization capabilities. Furthermore, the extension of the approach to other
clinical applications for diagnosing different pathologies is also planned (Deoni,
2010).

5.6 Conclusions
In conclusion, in this chapter we showed a proof-of-concept of predicting T1w-
enhancement from pre-contrast conventional weighted images through the DL
computation of parametric maps. The results suggest that these DL-computed
maps might eventually have the potential to replace GBCAs for tumor T1w-
enhancement prediction, without compromising performance and at no additional
acquisition time.

95



Chapter 5: Multiparametric mapping for T1w-enhancement prediction

96



6
Pre- and post-contrast simultaneous

parametric mapping of glioblastomas from
routine images for quantitative

enhancement assessment

Contents
6.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2.1 Dataset and preprocessing . . . . . . . . . . . . . . . . 98
6.2.2 Proposed approach . . . . . . . . . . . . . . . . . . . . 98

6.3 Experimental work . . . . . . . . . . . . . . . . . . . . 100
6.4 Results and discussion . . . . . . . . . . . . . . . . . . 100
6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 104

The work in this chapter has been published in:

• Moya-Sáez, E., de Luis-Garcia, R., Hernández-Tamames, J.A., and Alberola-
López, C. Pre and Post contrast Simultaneous Parametric Mapping of
Glioblastomas from routine T1 weighted images for Quantitative Enhance-
ment Assessment. 2023 ISMRM & SMRT Annual Meeting & Exhibition,
Toronto, Canada, June 2023; 2352.

97



Chapter 6: Pre- and post-contrast multiparametric mapping

6.1 Purpose
Throughout this thesis we have described the importance of evaluating BBB
disruption in brain tumor assessment. In clinical practice this evaluation is typically
performed based on the visual comparison between the T1w and post-T1w images.
However, the qualitative nature and arbitrary scale of weighted image intensities
hinder the usage of quantitative diagnostic methods, which could be relevant for
distinguishing different post-treatment conditions, understanding biological changes
within the tumor and minimizing interpretation errors of treatment effects.

Parametric maps are known to have a quantitative absolute scale, to be more
robust against scanner imperfections and to be able to highlight subtle changes
quantitatively, which are relevant ingredients to be qualified as biomarkers of
impaired BBB (Blystad et al., 2017; Nunez-Gonzalez et al., 2022; Pirkl et al., 2021).
In previous Chapter 5 we have shown the application of pre-contrast parametric
maps to predict tumor enhancement without the usage of GBCAs. Alternatively, as
we propose in current chapter, parametric maps could also complement the usage
of GBCAs by enabling an automatic quantification of tumor enhancement. This
might overcome the limitations associated with the standard visual assessment of
tumor enhancement.

In Chapter 4 we have proposed a self-supervised Synthetic MRI approach for the
computation of T1, T2, and PD parametric maps from only conventional weighted
images. Self-supervised learning allowed us to compute reliable maps without the
need of the corresponding reference maps for network training; in contrast, the
training could be performed only with weighted images. Thus, in this chapter we
propose the extension of that method for the computation of both pre- and post-
contrast parametric maps. As we show, the computation of pre- and post-contrast
maps can enable an automatic quantification of brain tumor enhancement.

6.2 Methods
6.2.1 Dataset and preprocessing
UPenn-GBM dataset previously described in Chapter 1 was employed in this work.
From all the image modalities, only the T1w and post-T1w were used. We selected
a total of 220 patients (UPenn-GBM-B) with stable acquisition parameters. These
220 patients were randomly divided between training, early-stopping validation, and
testing with an approximate proportion of 60%, 20%, and 20%, respectively.

6.2.2 Proposed approach
An overview of the training and testing approaches is shown in Figure 6.1. The
CNN described in Chapter 4 was modified in order to compute the T1, T2, and PD
parametric maps from only the T1w. Thus, the resulting CNN is composed of one
encoder and three decoders, one per parametric map. Transfer learning was applied
by initializing the network’s weights with a pre-trained network with synthetic data
following an approach similar to the one proposed in Chapter 3.
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Figure 6.1: Overview of the proposed approach. a) Pipeline for training the CNN composed
of an encoder and three decoders, one per parametric map. Transfer learning was applied
by initializing the network’s weights with a pre-trained network. Red parts were not
re-trained. b) Pipeline for testing the trained CNN with the T1w and post-T1w inputs for
the computation of pre- and post-contrast parametric maps, respectively. The difference
between the T1 and post-contrast T1 (post-T1) maps corresponds to the enhancement
quantification.

A self-supervised learning approach as proposed in Chapter 4 was employed to
train the network only from the T1w images (i.e., in the weighted image domain)
without the need of reference parametric maps. To this end, the T1w images
were synthesized from the computed parametric maps using the theoretical pulse
sequence expression of Eq. 2.10. The training was performed with a batch size of 32
and Adam optimizer (Jais et al., 2019) with learning rate of 1e-4. Early-stopping
validation was employed to avoid overfitting.

For testing, the T1w and post-T1w were separately input to the trained net-
work. Under the assumption that the only difference between both images is the
GBCA intake (i.e., both images are acquired in the same scanner and with same
acquisition parameters), the resulting maps should correspond to the pre- and
post-contrast parametric maps, respectively. Thus, we can quantify the enhance-
ment by means of the normalized difference between the pre-contrast T1 map
and the post-T1 map. Specifically, the enhancement map could be computed as:
100 ∗ |T1−postT1|

postT1 [%].
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Table 6.1: Quality metrics used to evaluate the performance of the T1w and post-T1w
synthesis from the computed pre- and post-contrast parametric maps, respectively. Mean
and SD values were computed across patients. Thus, the values are reported as mean ±
SD. The metrics were calculated between both synthesized and acquired weighted images.
The background pixels were not considered for the computation.

MSE SSIM PSNR
T1w 0.0102 ± 0.0028 0.9730 ± 0.0035 27.9637 ± 1.8872

post-T1w 0.0261 ± 0.0093 0.9407 ± 0.0108 32.6785 ± 1.1742

6.3 Experimental work
First, the performance evaluation of the proposed approach was carried out by
comparing the synthesized and acquired weighted images. The quality synthesis
metrics employed were the MSE, SSIM, and PSNR computed between the syn-
thesized and acquired T1w and post-T1w images. In addition, the pre-contrast
and post-contrast T1 and T2 maps were visualized, and the enhancement maps
were compared with the enhancement segmentation included in the UPenn-GBM
dataset.

6.4 Results and discussion
Figure 6.2 shows representative slices of the synthesized and their corresponding
acquired weighted images (both T1w and post-T1w) for different test patients.
Table 6.1 shows the mean values along test patients of the quality metrics (i.e.,
MSE, SSIM, and PSNR) computed between the synthesized and the acquired
weighted images for both image modalities. Figures 6.3 and 6.4 show for different
test patients both the pre-contrast and post-contrast T1 and T2 maps, respectively.
The corresponding enhancement maps are also shown in Figure 6.3. For the sake
of visibility the intensity of the enhancement maps is cropped between 10% and
150%.

These results show the utility of parametric maps computed only from a routine
sequence for the quantification of clinical relevant data. The synthesized weighted
images can be visually compared with their actually acquired counterparts and
visual resemblance is noticeable. The quality metrics also prove the agreement
between both. Note that SSIM and PSNR present high values, whereas the values
of the MSE are low.

Interestingly, within the enhanced region we can perceive the reduction of the T1
values in the post-contrast parametric maps compared to the corresponding pre-
contrast maps. The enhanced region in the enhancement map considerably matches
such a region in the segmentations computed from the weighted images. The
shortening in post-T2 values can also be noticed in the enhancement region but to a
much lower extent compared to the post-T1 values. Last, it is also worth mentioning
the robustness of the approach for patients with and without tumor enhancement.
See in Figure 6.3.c) that Patient 3 does not present enhancement.
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Figure 6.2: A representative axial slice of the T1w and post-T1w images synthesized from
the computed parametric maps for three different test patients. a) Acquired T1w. b)
Synthesized T1w. c) Acquired post-T1w. d) Synthesized post-T1w. Note that the T1w
images are synthesized from the computed pre-contrast parametric maps, whereas the
post-T1w images are synthesized from the computed post-contrast parametric maps.
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Figure 6.3: A representative axial slice of the T1, post-T1, and enhancement maps
computed by the self-supervised CNN for three different test patients. a) T1 maps. b)
post-T1 maps. c) Enhancement maps. d) Enhancement segmentation provided in the
UPenn-GBM database. The T1 and post-T1 values are measured in seconds [s], whereas
the enhancement maps values are measured in [%]. Note that Patient 1 and 2 present
enhancement in the tumor but Patient 3 does not present such condition.
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Figure 6.4: A representative axial slice of the T2 and post-contrast T2 (post-T2) maps
computed by the self-supervised CNN for three different test patients. a) T2 maps. b)
post-T2 maps. The T2 and post-T2 values are measured in seconds [s]. Similarly to the
post-T1 map, the shortening in post-T2 values can be noticed in the enhancement region
but to a lower extent.
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The approach has some limitations; further validation of the computed parametric
maps should be performed by comparing these maps with those obtained with
other well-accepted yet lengthy relaxometry sequences. In addition, the value of
the enhancement maps in clinical-decisions automatic pipelines should be stud-
ied.

6.5 Conclusions
In conclusion, in this chapter we proposed an approach for the enhancement
quantification in glioblastoma by means of pre- and post-contrast parametric maps
computed with DL from only a T1w and post-T1w obtained with routine fast
sequences. Results suggest the potential of this approach for automatic quantitative
assessment replacing the standard visual inspection of weighted images.
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7.1 Purpose
The acquisition of a weighted image after the injection a GBCA is common for
brain tumor diagnosis and monitoring, and, in general, considered safe. However,
up to 2.4% of injected patients suffer from mild adverse reactions and a lower rate
for severe complication (Forghani, 2016). Also, the possible deposition of GBCAs
in tissues has recently raised safety concerns (Gulani et al., 2017). In addition, the
usage of GBCAs results in patient discomfort, additional cost and prolonged scan
time. Thus, making GBCAs unnecessary would be highly advantageous. With
this goal in mind, parametric maps could play a crucial role due to their known
ability to detect subtle tumor changes (Hattingen et al., 2017; Nunez-Gonzalez
et al., 2022).

In this chapter, we propose a DL approach for pre- and post-contrast parametric
mapping and the synthesis of post-T1w images. The DL method is based on a
cascade of two CNNs and it is trained via both supervised and self-supervised
learning approaches. Only two pre-contrast conventional weighted images – a T1w
and a T2w – acquired with routine sequences are used as input of the cascade
of CNNs. Thus, this work paves the way towards the replacement of GBCAs for
T1w-enhancement assessment.

7.2 Methods

7.2.1 Dataset and preprocesing
GLIOMA dataset (previusly described in Chapter 1) was employed in this work.
This dataset includes four MR structural weighted images (T1w, T2w, T2w-FLAIR,
and post-T1w) and, also, MAGiC∗ (Warntjes et al., 2008), which is a fast multi-
parametric mapping technique for the computation of T1, T2 and PD maps. The
preprocessing steps are the same as in Chapter 5.

7.2.2 Proposed approach: Cascade CNNs
The pipeline we propose (see Figure 7.1) consists of a cascade of two CNNs,
namely, an extraction CNN and a prediction CNN. The first CNN extracts the
quantitative T1, T2, and PD maps whose information is embedded in the T1w and
T2w input images. The second CNN takes these T1 and T2 maps and predicts the
corresponding post-contrast (i.e., after GBCA administration) T1 and T2 maps.
This prediction of the GBCA-related information is performed using both the tissue
information derived from the pre-contrast maps and the extra knowledge extracted
from the post-T1w and T2w during the self-supervised training. Training with T2w
images, which are virtually invariant to contrast administration (Hattingen et al.,
2017; Lescher et al., 2015), ensures that the post-contrast maps are numerically
and physically coherent. Both CNNs share the same architecture as described in
Chapter 3.

∗Commercial implementation of the QRAPMASTER technique for quantitative imaging.
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Training is two-fold; In step 1), the extraction CNN is trained via supervised
learning with MAGiC parametric maps as reference. The loss function is the
l1-norm defined as:

L = ||(T1c − T1GT)||ℓ1 + ||(T2c − T2GT)||ℓ1 + ||(PDc − PDGT)||ℓ1, (7.1)

where the subscripts c and GT refer to the DL-computed and the ground-truth
(i.e., MAGiC) maps, respectively. Note that this equation corresponds with the
loss function used to train the DL method of Chapter 5 (see Eq. 5.2.3).

In step 2), the prediction CNN is trained by means of a self-supervised approach
as in Chapter 4, while keeping the weights of the extraction network fixed. For the
self-supervised loss function we employ the theoretical pulse sequences expressions
described in Eq. 2.10 and 2.11.

The loss function employed in step 2 is intended not only to achieve visual re-
semblance between the synthesized and the acquired post-T1w images but also to
capture local characteristics within the tumor. Both the post-T1w and T2w are used
as references. Consequently, the loss function is composed of three terms:

Lstep2 = ||(post-T1wsyn − post-T1wacq)||ℓ1 + ||(T2wsyn − T2wacq)||ℓ1

+ λ||M ⊙ (∆T1wsyn − ∆T1wacq)||ℓ1 (7.2)

where post-T1wsyn and post-T1wacq are the synthesized and acquired post-T1w,
respectively. Similar distinction is applied to T2wsyn and T2wacq. M is a binary
mask with positive values in the T1e regions, ⊙ refers to Hadamard product,
∆T1wsyn and ∆T1wacq are the GBCA intakes (i.e., the difference between the
post-T1w — synthesized and acquired, respectively — and the acquired T1w).
Finally, λ is a trade-off parameter to balance the contribution of the local loss. We
stress that the post-T1w and the mask are only needed for training but not for
testing.

Cross-validation was carried out via leave-one-out. For each data splitting, one
patient is used for testing and the remaining patients are randomly split between
training (11 patients) and early-stopping validation (2 patients). Both networks
share the same patient splitting with the exception of the patient without the
T2w-FLAIR, which was additionally included in the training set for the extraction
network but not for the prediction one. Thus, no overly optimistic splitting was
performed.

Transfer learning techniques were employed in both networks. In the extraction
CNN layers weights were initialized by training with a purely synthetic dataset as in
Chapter 3. In the prediction network weights were initialized by pretraining with a
larger public dataset (Bakas et al., 2022) of glioblastoma patients with no resection.
Only the decoders were re-trained in the prediction CNN. Additionally, data
augmentation with horizontal flips was included for the training of the prediction
CNN. Both networks were trained with Adam optimizer (Jais et al., 2019) with
learning rate of 1e−4 and early-stopping. Parameters empirically set were the
batchsize = 4 (in both networks) and λ=100.
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Figure 7.1: Overview of the proposed approach. The cascade of CNNs is composed of
an extraction CNN and a prediction CNN. In each step the colored network is trained.
In step 2 the color of the arrows represents the computations related to each loss term.
Loss term 1 (red) focuses on achieving resemblance between the acquired and synthesized
post-T1w, loss term 2 (green) ensures physical coherent values on post-contrast parametric
maps, and loss 3 (blue) tries to capture local characteristics within the tumor.
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7.3 Experimental work
The impact that the synthesized post-T1w images could have in clinical practice
should be evaluated with quantitative algorithms for improving clinical decision-
making by predicting tumor enhancement. HD-GLIO (Kickingereder et al., 2019)
is a DL segmentation tool that automatically segments voxels with T1e and voxels
with T2h — jointly referred to as ABN —. This tool is fed with four weighted
images (i.e., T1w, T2w and T2w-FLAIR, as well as post-T1w). For our evaluation,
we used the three pre-contrast acquired weighted images, as well as the synthesized
post-T1w to segment T1e and T2h regions with HD-GLIO. These segmentations
are compared with the ground-truth segmentations obtained with HD-GLIO when
fed with the four acquired weighted images. In addition, the results obtained
were compared with another recently proposed approach for T1w-enhancement
prediction (Nunez-Gonzalez et al., 2022). This approach carries out a voxel-wise
classification using pre-contrast parametric maps obtained with MAGiC (hereinafter
referred to asVoxel-wise MAGiC ). In this work, Voxel-wise MAGiC was computed
with the best metric and threshold reported in Nunez-Gonzalez et al. (2022) for
classification problems C-I and C-II defined in Chapter 5 and Appendix D. Note
that the output of these two classifications are equivalent to the T1e and T2h
segmentations.

Thus, our evaluation consists in comparing closeness of both our method (Cascade
CNNs) and Voxel-wise MAGiC to the ground-truth. The accuracy of both seg-
mentations with respect to the ground-truth is separately measured voxel-wise and
lesion-wise as we now describe:

Voxel-wise evaluation. We voxel-wise measured the sensitivity and specificity
of classification problems C-I and C-II for both Voxel-wise MAGiC and our method
Cascade CNNs.

Lesion-wise evaluation. Images that show the presence of enhancement in the
surroundings of the tumor area, even though the enhancement they show does
not cover the whole tumor, could be valuable for decision-making. To reflect this
idea, we have designed a lesion-wise performance measurement consisting in: 1)
the computation of clusters of voxels whose size are larger than 10% of the total
volume of T1e in the ground-truth mask; and 2) the computation of the sensitivity
considering a true positive when any of these clusters are, totally or partially,
included within the ground-truth T1e segmentation. This metric is computed for
both Voxel-wise MAGiC and our method Cascade CNNs.

7.4 Results and discussion
Figure 7.2 shows the pre- and post-contrast parametric maps for different test
patients. Interestingly, as in previous Chapter 6, a shortening in the T1 values
can be noticed within the enhancement region, which is in agreement with the
literature (Hattingen et al., 2017; Lescher et al., 2015; Warntjes et al., 2018). This
behaviour also occurs in the T2 values but to a much lower extent. The PD map is
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Figure 7.2: A representative axial slice of the pre-contrast and post-contrast computed
parametric maps on different test patients of GLIOMA. a) Pre-contrast T1 maps. b)
Post-contrast T1 maps. c) Pre-contrast T2 maps. d) Post-contrast T2 maps. e) PD maps.
The pre- and post-contrast T1 and T2 values are measured in seconds [s].

not affected by the GBCA injection. Note that the computed T1, T2 and PD maps
correspond to the output of the extraction CNN (step 1 in Figure 7.1).

Figure 7.3 shows both the synthesized and actually acquired post-T1w images for
different test patients of GLIOMA dataset. The corresponding ground-truth and
synthetic HD-GLIO segmentations are also shown overlaid on the acquired post-
T1w and synthesized post-T1w, respectively. Note that the post-T1w images are
synthesized from the computed post-contrast parametric maps shown in Figure 7.2
using the theoretical equation that describes MR image intensity. The synthesized
post-T1w images can be visually compared with their actually acquired counterparts
and visual resemblance is noticeable.

Results of voxel-wise and lesion-wise evaluations are shown in Tables 7.1 and 7.2,
respectively. Table 7.1 shows a superiority of Voxel-wise MAGiC in terms of
sensitivity, although lower specificity values are reported with this method. As for
our method, we have observed that the enhanced areas in the synthesized images
do not show a by-point coincidence with ground-truth despite these images indeed
show the presence of enhancement. This fact can be appraised in the figures of
Table 7.2 where Cascade CNNs achieves comparable performance with Voxel-wise

111



Chapter 7: Post-contrast Synthetic MRI without contrast agents

Table 7.1: Sensitivity and Specificity of the voxel-wise predictions for both classification
problems (i.e., C-I and C-II) and both methods — Voxel-wise MAGiC and Cascade CNNs

—. Median across patients and IQR are reported.

(C-I) ABN vs. nWM (C-II) T1e vs. non T1e
Voxel-wise MAGIC Cascade CNNs Voxel-wise MAGIC Cascade CNNs

Sensitivity 89.35% 77.92% 87.29% 60.20%
(IQR: 8.93%) (IQR: 21.59%) (IQR: 16.62%) (IQR: 26.20%)

Specificity 93.61% 99.95% 94.95% 99.40%
(IQR: 2.14%) (IQR: 0.13%) (IQR: 2.88%) (IQR: 0.66%)

Table 7.2: Sensitivity of the lesion-wise enhancement prediction for each patient and both
methods. Note that only the patients with enhancing lesions are considered. Bold text
represents the superiority of the Cascade CNNs method, whereas inferiority is represented
with red text.

Patient ID Voxel-wise MAGiC Cascade CNNs
00 33% 100%
01 40% 50%
02 100% 100%
03 100% 50%
04 75% 50%
05 33% 100%
07 100% 100%
08 100% 100%
09 100% 100%
12 100% 100%
13 50% 0%

MAGiC. In addition, Cascade CNNs provides the post-contrast parametric maps
as a byproduct.

These preliminary results show how using only pre-contrast weighted images (i.e.,
acquired without GBCAs) is feasible not only to extract pre-contrast parametric
maps but also to predict post-contrast maps. These maps may add value towards
automatic enhancement quantification (Hattingen et al., 2017; Lescher et al., 2015).
Additionally, the predicted post-contrast maps have the capability of synthesizing
post-contrast weighted images with visual resemblance to the acquired counterparts
as shown in Figure 7.3. Despite the differences visible in Figure 7.3 between
the ground-truth and the synthetic T1w-enhancement segmentations, the clinical
value of both could potentially be comparable in terms of their capacity to detect
lesions.

Future lines of research include the comparison of the computed post-contrast
parametric maps with those obtained with other well-accepted techniques as well
as the validation of the approach with a larger cohort.
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Figure 7.3: A representative axial slice of the synthesized post-T1w images for different
test patients. a) Acquired post-T1w. b) Synthesized post-T1w. c) Ground-truth segmen-
tation mask of HD-GLIO. d) Corresponding segmentation mask of HD-GLIO using the
synthesized post-T1w instead of the acquired one. Yellow label: T1e, red label: T2h.
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7.5 Conclusions
In conclusion, in this chapter a novel approach for pre- and post-contrast parametric
mapping and the synthesis of post-T1w images is proposed. The computation is
based on a cascade of CNNs and only needs a pair of pre-contrast conventional
weighted images as input. Our results suggest the potential of this approach for
replacing GBCAs for T1w-enhancement assessment.
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8.1 Conclusions
In this Thesis we have described several works which aim at improving the diagnosis
of brain tumors following a Synthetic MRI paradigm. As previously described,
this paradigm is based on the computation of T1, T2, and PD parametric maps
and, also, the synthesis of several weighted images out of the computed parametric
maps. Parametric maps, as described in the literature and as our own results
suggest, add value to the diagnosis due to their quantitative nature. Hence,
they are key ingredients for distinguishing different post-treatment conditions,
understanding biological changes within the tumor and minimizing interpretation
errors of treatment effects (Deoni, 2010; Hattingen et al., 2017; Pirkl et al., 2021).
However, since radiologists are used to perform the diagnosis based on weighted
images (Ellingson et al., 2015a), the synthesis of this kind of images is also of
utmost importance and might lead to MR protocol shortening and an increase of
the patient well-being.
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As we have shown, the computation of the parametric maps can be leveraged
by the usage of DL methods. Hence, parametric maps can be computed from
conventional weighted images instead of lengthy relaxometry or scarcely available
specific sequences. In order to overcome the lack of large, public datasets with
paired weighted images and parametric maps to train the DL methods, a novel
strategy based on training with synthetic images was proposed. To improve the
computation accuracy, the network could be fine-tuned with real data, but, in any
case, the synthetic training has proven to be crucial for obtaining realistic map
computations with small training datasets.

In addition, a self-supervised learning approach has been proposed by introducing
the theoretical pulse sequences equations in the loss function. Thus, DL methods
can be trained with weighted images instead of parametric maps. Note here that
weighted images are much easier to obtain than parametric maps.

Our results demonstrate the utility of including synthesized weighted images for
feeding a radiomics system for predicting the survival of glioblastoma patients.
Specifically, the radiomics system was tested replacing one acquired input image
with its synthesized counterpart. We also compared performance with a radiomics
system trained from scratch ignoring this additional channel. The performance
achieved with the synthesized images in the radiomic system is not only close to
the performance achieved using all the acquired images, but also substantially
outperformed a model trained without that weighting. These findings indicate
that the usage of synthesized images could facilitate the widespread usage of
multicontrast-demanding quantitative applications, such as radiomics, by retrospec-
tively completing databases with missing modalities and/or replacing artifacted
images. Further, synthesized images have the potential to speed up acquisition
protocols by replacing some acquired weighted images with their synthesized coun-
terparts.

Promising results were also observed in the detection of tumor T1w-enhancement.
In this line of research, parametric maps could be a potential solution for both
enabling automatic quantification of T1w-enhancement as opposed to standard
visual inspection of weighted images, and replacing the usage of GBCAs. Regarding
the latter, parametric maps computed with DL from conventional weighted images
show similar performance to discriminate normal/abnormal and T1w-enhanced/non-
enhanced tissue than parametric maps obtained with MAGiC or relaxometry
sequences. These results could be replicated by testing the DL-based method
with additional multi-center, multi-vendor datasets unseen during the training
process. The computation of parametric maps from conventional weighted images,
as proposed in this Thesis, would promote the adoption of this clinical application
to predict T1w-enhancement without GBCAs and, in a broader sense, the usage of
parametric maps in the clinical practice. Moreover, this approach proves valuable for
retrospective analysis, enabling the computation of parametric maps for pre-existing
and/or multicenter datasets, thereby providing means for boosting longitudinal or
population studies.

Finally, we have shown preliminary results on how using only pre-contrast weighted
images it is feasible not only to extract pre-contrast parametric maps but also
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to predict post-contrast maps. Once again, these maps may add value towards
automatic enhancement quantification. Additionally, the predicted post-contrast
maps have the capability of synthesizing post-contrast weighted images with visual
resemblance to the acquired counterparts. Despite the differences between the
ground-truth and the synthetic T1w-enhancement segmentations, the clinical value
of both could potentially be comparable in terms of their capacity to detect
lesions.

8.2 Future work

8.2.1 Technical considerations

Throughout the development of this Thesis, we have encountered certain limitations
that open up future lines of research for extending and improving the proposed
approaches.

The theoretical pulse sequences equations used to synthesize the weighted images
did not consider all the effects that occur in practice. For example, the T2∗w image
in Chapter 3 is synthesized from the T2 map instead of the T2∗ map. This aspect
could have an impact on the proposed approach and explain the worse metrics
for this weighted image compared to the metrics of the T2w image. Also, in that
chapter the T2w-FLAIR presents worse metrics than the other modalities, although
the work in Chapter 4 focuses on improving the synthesis quality of this weighted
image. Overall, a more realistic synthesis of weighted images with a detailed Bloch
simulation (Cao et al., 2014; Castillo-Passi et al., 2023; Stöcker et al., 2010) and
other maps (e.g. T2∗, B0, and B1 maps) could also enhance the synthesis quality of
any weighted image modality. Further, as we previously suggested in Chapter 3, the
simulation of motion in the synthetic dataset could enhance the network robustness
against such artifacts. A complementary approach to improve the computation
and synthesis performance could be the selection of the optimal pulse sequences
and/or sequence parameters to feed the DL method.

The self-supervised approaches are dependent on the acquisition parameters of the
weighted images. This has the advantage of making the process specific to this
parameter setting, so higher synthesis quality could be expected. The downside is
the inherent limitation to this particular setting. Nevertheless, the self-supervised
method can be easily extended to accommodate more parameter values for which
acquisitions are available. In some cases as in Chapter 5, the T1w and T2w
input images have varying acquisition parameters across datasets due to different
institutional protocols. Although this study has indeed the value of showing
comparable results when using other datasets for testing, these input parameter
variations can potentially introduce errors in the computation of the parametric
maps. To mitigate the impact of variation in acquisition parameters, future work
aims to incorporate them as additional inputs to the network. This approach would
enable training with a more extensive and diverse dataset, potentially enhancing
the model generalization capabilities.
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In general, scan time limitations lead to a mismatch in spatial resolution between
the weighted images and the parametric maps. Consequently, the co-registration of
all modalities is needed, which might induce misregistration artifacts and partial
volume effects. Specifically, misregistration of the input weighted images might
be one of the main sources of errors of the proposed DL methods. However, in
production mode the input images should be ideally acquired with the same spatial
resolution minimizing these issues.

The T1w-enhancement prediction in Chapter 5 could be performed directly from the
pre-contrast weighted images instead of the computed parametric maps. However,
we choose to use the maps as an intermediate step to ground our method on previous
studies, which have shown that quantitative parametric maps support the rationale
of T1w-enhancement prediction when replacing GBCAs, so that this DL finding
can be clinically explained. Following the same criteria, the survival prediction of
glioblastoma patients proposed in Chapter 4 could be performed directly on the
parametric maps. The usage of a radiomics system fed with weighted images was a
design choice, but, indeed, trying to perform this prediction from the parametric
maps is highly interesting and could be a possible future line of research. Further
research to analyze the potential of parametric maps as follow-up biomarker of
the impaired BBB, as presumable show our results of Chapter 5, is also strongly
recommended.

Experiments on larger and multi-institutional cohorts including parametric maps
would be advisable to further support our conclusions. Specifically, in Chapters 6
and 7 that focused on the computation of post-contrast parametric maps, the
comparison of the DL-computed post-contrast maps with those obtained with
other well-accepted techniques, such as relaxometry or multiparametric mapping,
is highly desirable to confirm the potential of our preliminary findings.

Additional future work includes improvement and further tuning in the imple-
mented CNN and/or implementing other advanced NN architectures, such as those
introduced in Subsection 2.5.5 (i.e., GANs and ViTs architectures). Particularly,
the usage of GAN architectures may be studied due to the recent works that
achieve impressive results in medical image translation capturing high-frequency
texture information (Armanious et al., 2020; Dar et al., 2019). Also ViTs are novel
architectures that, by incorporating attention mechanisms, could play an important
role in Synthetic MRI (Dalmaz et al., 2022).

A direction for future research could also be the extension of the proposed Synthetic
MRI approaches to other slice orientations, such as sagittal or coronal, and/or other
tissues, such as the heart or the liver. To this end, for example, the extended Cardiac-
Torso (XCAT) phantoms (Segars et al., 2010) could be employed. Furthermore,
the extension of the approach to predict T1w-enhancement without GBCAs for
diagnosis is also planned.

8.2.2 Novel potential application
Low-field MRI: Low-field MRI systems, operating at field strengths typically
lower than 1.5T (Arnold et al., 2023), offer several advantages such as lower cost
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and power consumption, increased patient accessibility, and fewer safety concerns.
Still, these systems have to face several limitations derived from their lower signal
availability (reduced SNR, lower resolution, increased acquisition time, etc.) (Arnold
et al., 2023). Thus, the lower magnetic field strength leads to decreased sensitivity,
resulting in poorer image quality and reduced conspicuity of lesions or abnormalities.
Undersampling techniques followed by DL reconstruction methods have reduced
acquisition time and improved image quality making low-field MRI sufficient for
some clinical applications (Hori et al., 2021; Iturri-Clavero et al., 2016). Synthetic
MRI methods could also play a key role by the synthesis of different high-quality
image modalities from a short protocol. However, it is important to note that the
relaxivity differences compared to high-field MRI affect the values of T1 and T2
and, thus, these methods have to be applied carefully.

Additional limitations of low-field MRI are related to the usage of GBCAs. The
relaxivity of GBCAs, which determines their efficacy in T1 shortening and enhancing
contrast, diminishes at lower field strengths. This decrease in relaxivity reduces
the enhancement achieved, making it challenging to visualize subtle pathologies
or small lesions (Brekenfeld et al., 2001) and it could affect procedures where
resection of enhancing tissue predicts patient outcome (Arnold et al., 2023; Hori
et al., 2021). Significantly, it has been observed that enhancing contrast at low field
strength with a double dose (0.2 mmol/kg) of intravenous GBCA administration
yields comparable results to those achieved at 1.5T with the standard dose (0.1
mmol/kg) (Desai and Runge, 2003). However, as it was previously explained
in this Thesis, increasing GBCAs dosages could raise safety risks. As a result,
in low-field MRI there is a need for alternative imaging strategies for effective
diagnostic evaluation of T1w-enhancement which could be overcome by Synthetic
MRI methods without GBCAs similar to the methods proposed in Part IV of this
Thesis.

Tumor micro-structure: Diffusion-weighted magnetic resonance imaging (dMRI)
has emerged as a prevalent non-invasive method for assessing tissue micro-structure
within tumors (Zhu et al., 2023). This analysis opens avenues in cancer diagnosis,
tumor grading, and evaluating treatment efficacy (Fokkinga et al., 2023). The
current Synthetic MRI approach for computation of T1, T2, and PD parametric
maps can be strengthened by utilizing diffusion sequences within a joint modeling
framework (Coelho et al., 2024; Wang et al., 2023). Additionally, this approach
could also be modified to generate micro-structure maps instead of relaxometry
parametric maps (Chiou et al., 2021; Yılmaz et al., 2024). Although the incorpora-
tion of these type of prior physical knowledge could be challenging, several works
have proposed self-supervised approaches to estimate diffusion parameters (Ehrlich
and Rivera, 2021; Våge, 2023; Vasylechko et al., 2022). After computing these
diffusion parameters, the third step of the Synthetic MRI (see Section 2.4) could
be modified so that diffusion sequences can be synthesized from existing maps
to facilitate diagnosis, enabling adjustment of b-values and synthesis of specific
sequences as needed (Hu et al., 2021).
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8.3 Contributions
In this Thesis we have focused on the usage of a Synthetic MRI paradigm to
enhance the diagnosis of different types of brain tumors. The computation of
T1, T2, and PD parametric maps has been performed with DL from conventional
weighted images acquired with routine protocols. After that, different types of
weighted images have been successfully synthesized out of the parametric maps.
Both the synthesized weighted images and the computed parametric maps have
been employed in different application for improving tumor diagnosis; specifically,
predicting both the expected survival of glioblastoma patients and the post-contrast
T1w-enhanced tissues without the injection of GBCAs.

The main scientific contributions are listed next:

• Development of a novel DL approach for the computation of T1, T2, and
PD parametric maps from only a pair of conventional weighted images (a
T1w and a T2w). In addition, a new training strategy based on a synthetic
dataset generated from the BrainWeb anatomical brain model is proposed.
This way, the need of large datasets with quantitative parametric maps is
bypassed.

• Synthesis of multiple realistic weighted images from these computed para-
metric maps both for modalities previously seen by the network and for
other modalities not used in the learning stage. Quantitative and qualitative
comparisons between the synthesized and the acquired weighted images are
provided.

• A self-supervised approach for training DL methods for multiparametric
mapping and synthesis of weighted images in the weighted images domain
(i.e., without the need of reference parametric maps for training).

• Provision of empirical evidence that synthesized weighted images can be used
for feeding a radiomics system for survival prediction of glioblastoma patients
achieving similar performance as with using the acquired ones. Moreover, our
method shows the advantages derived from the synthesis itself, such as the
possibility of retrospectively completing databases with missing modalities
and/or replacing artifacted images.

• Extension of the proposed self-supervised Synthetic MRI approach for the
computation of both pre- and post-contrast parametric maps for automatic
quantification of tumor enhancement.

• Confirmation that parametric maps computed with DL can be used as a surro-
gate of traditional relaxometry sequences or other commercial techniques, such
as MAGiC, for predicting brain tumor T1w-enhancement without GBCAs

• First steps towards the avoidance of GBCAs in post-contrast T1w imaging
acquisitions with, in our opinion, promising results.
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A
MR acquisition details

This appendix includes details about the acquisition parameters for the image
modalities included in the different datasets employed in this Thesis. Specifically,
these parameters can be found in Table A.1 for Multicontrast Brain-MRI, Table A.2
for Relaxometry Brain-MRI, Table A.3 for Multicontrast Glioblastoma, Table A.4
for Upenn-GBM, and Table A.5 for GLIOMA.

Table A.1: Acquisition parameters for Multicontrast Brain-MRI dataset.

Multicontrast Brain-MRI
T1w PDw/T2w T2w-FLAIR T2∗w

(IR-GRE) (ME-TSE) (IR-TSE) (GRE)
TE (ms) 3 30/85 100 20
TR (ms) 6.44 4000 11000 746.99
TI (ms) 900 - 2800 -

α (◦) 10 - - 20
# Slices 170 50 27 27

(Orientation) (sagittal) (axial) (axial) (axial)
Slice thickness (mm) 1.2 3 5 5

Voxel size (mm2) 1.25 × 1.25 1.02 × 1.36 0.94 × 1.25 0.94 × 1.25
FOV (mm) 240 × 240 260 × 195 240 × 240 240 × 240

Scan time (min) ∼ 4:00 2:30 - 4:30 2:30 - 4:30 2:30 - 4:00
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Table A.2: Acquisition parameters for Relaxometry Brain-MRI dataset.

Relaxometry Brain-MRI
T1 map T2 map PD map T1w T2w

(VFA GRE) (ME-SE) (GRE) (MPRAGE) (TSE)
TE (ms) 2 17,46,75,104,133,162 2 3 85
TR (ms) 18 1000 50 6.44 4000
TI (ms) - - - 900 -

α (◦) 2, 3, 4, 5, 7, 9, 11, 14, 17, 19, 22 - 5 10 90
# Slices 150 150 150 170 50

(Orientation) (axial) (axial) (axial) (sagittal) (axial)
Slice thickness (mm) 1.5 1.5 1.5 1.2 3

Voxel size (mm2) 1.50 × 1.50 1.50 × 1.50 1.50 × 1.50 1.25 × 1.25 1.02 × 1.36
FOV (mm) 240 × 240 240 × 240 240 × 240 240 × 240 260 × 195

Scan time (min) ∼ 17:00 ∼ 18:00 4:00 - 4:30 ∼ 4:00 2:30 - 4:30

Table A.3: Acquisition parameters for Multicontrast Glioblastoma dataset. UN stands for
unknown.

Multicontrast Glioblastoma
T1w T2w T2w-FLAIR post-T1w

(FSPGR) (TSE) (IR-TSE) (FSPGR)
TE (ms) 1.83 122 142 2.18
TR (ms) 5.98 4162 9350 6.85
TI (ms) - - 2200 -

α (◦) 12 90 - 12
# Slices 216 32 32 216

Slice thickness(mm) 1.6 4 4 1.6
Voxel size (mm2) 0.94 × 0.94 0.78 × 0.87 0.7 × 1.0 0.94 × 0.94

FOV (mm) 240 × 240 240 × 240 240 × 240 240 × 240
Scan time (min) UN UN UN UN

Table A.4: Acquisition parameters for UPenn-GBM dataset. UN stands for unknown.

UPenn-GBM
T1w T2w T2w-FLAIR post-T1w

(MPRAGE) (SE) (IR-TSE) (MPRAGE)
TE (ms) 3.1 458 140 3.1
TR (ms) 1760 3200 9420 1760
TI (ms) 950 - 2500 950

α (◦) 15 120 170 15
# Slices 155 155 155 155

Slice thickness (mm) 1.0 0.9 3.0 1.0
Voxel size (mm2) 0.98 × 0.98 0.90 × 0.90 0.94 × 0.94 0.98 × 0.98

FOV (mm) 240 × 240 240 × 240 240 × 240 240 × 240
Scan time (min) UN UN UN UN
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Table A.5: Acquisition parameters for GLIOMA dataset.

GLIOMA
T1w T2w T2w-FLAIR post-T1w MAGiC

(IR-GRE) (TSE) (IR-TSE) (IR-GRE) (MDME)
TE (ms) 3.3 97 89 .3 6114
TR (ms) 7.9 9837 5000 7.9 15.7
TI (ms) 450 - 1588 450 11

α (◦) 12 90 90 12 90
# Slices 352 49 224 352 49

(Orientation) (axial) (axial) (sagittal) (axial) (axial)
Slice thickness (mm) 1.2 3.0 1.6 1.0 3.0

Voxel size (mm2) 1.0 × 1.0 0.6 × 0.6 1.11 × 1.11 1.0 × 1.0 1.0 × 1.0
FOV (mm) 240 × 240 233 × 233 246 × 246 240 × 240 240 × 240

Scan time (min) ∼ 5:00 ∼ 4:00 ∼ 4:00 ∼ 5:00 ∼ 5:00
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B
Inversion recovery-Gradient echo (IR-GRE)

theoretical pulse sequence equation

In order to obtain the theoretical expression for this pulse sequence some assump-
tions need to be taken under consideration. We consider that the stady-state has
been reached. Mss is the transversal component of the magnetization before the
inversion pulse at the time n − 1. Additionally:

• In
ss(0−): is the longitudinal magnetization component just before the inversion

pulse of θinv radians in the n-th cycle with (n ≤ 0). In
ss(0+) is the equivalent

but just after the inversion pulse.

• En
ss(0−): is the longitudinal magnetization component just before the ex-

citation pulse of θ radians in the n-th cycle with (n ≤ 0). En
ss(0+) is the

equivalent but just after the excitation pulse.

• λ = e−T I/T1 ; β = e−(TR−T I)/T1 and, consequently, λβ = e−(TR)/T1 .

Under these assumptions:
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• Longitudinal component:

In−1
ss (0+) = Mss cos(θinv)

En−1
ss (0−) = Mss cos(θinv)λ + M0

z (1 − λ)
En−1

ss (0+) = En−1
ss (0−) cos(θ)

In
ss(0−) = En−1

ss (0+)β + M0
z (1 − β) = En−1

ss (0−) cos(θ)β + M0
z (1 − β)

In
ss(0+) = In

ss(0−)cos(θinv) =
(
En−1

ss (0−) cos(θ)β + M0
z (1 − β)

)
cos(θinv)

En
ss(0−) = In

ss(0+)λ + M0
z (1 − λ)

=
(
En−1

ss (0−) cos(θ)β + M0
z (1 − β)

)
cos(θinv)λ + M0

z (1 − λ)

Considering that En
ss(0−) = En−1

ss (0−), we obtain:

En
ss(0−) =

(
En

ss(0−) cos(θ)β + M0
z (1 − β)

)
cos(θinv)λ + M0

z (1 − λ)

En
ss(0−) = M0

z

1 − λ + (1 − β)λ cos(θinv)
1 − cos(θ) cos(θinv)βλ

= M0
z

1 − e−T I/T1 + (1 − e−(TR−T I)/T1)e−T I/T1 cos(θinv)
1 − cos(θ) cos(θinv)e−TR/T1

= M0
z

1 − (1 − cos(θinv)e−T I/T1 − e−TR/T1 cos(θinv)
1 − cos(θ) cos(θinv)e−TR/T1

• Transversal component:under the assumption that the residual transversal
components are spoiled as a consequence of spoilers gradients. In that case,
the transversal magnetization at the TE should correspond with:

Mn
xy(TE) = M0

z

1 − (1 − cos(θinv)e−T I/T1 − e−TR/T1 cos(θinv)
1 − cos(θ) cos(θinv)e−TR/T1

sin(θ)e−T E/T ∗
2

(B.1)
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C
Radiomics for glioblastoma survival

prediction
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C.1 Datasets
Three different datasets of glioblastoma patients were used for training the radiomics
system. Two of them are publicly available, namely, the BraTS2020 (Multimodal
Brain Tumor Segmentation) (Menze et al., 2014) 2020 Challenge dataset, and the
datasets reachable through TCIA (The Cancer Image Archive) (Clark et al., 2013)

— which, in turn, consist of three sources, namely, Ivy Glioblastoma Altas Project
(Ivy-GAP), the Clinical Proteomic Tumor Analysis Consortium Glioblastoma
Multiforme (CPTAC) and The Cancer Genome Atlas Glioblastoma Multiforme
(TCGA)—. The other dataset (Dataset22 ), is a private dataset acquired in Hospital
Universitario Río Hortega, Valladolid, Spain. These datasets where only used with
the purpose of training the radiomic system, hence, they are not included in
Section 1.4 of this Thesis dissertation.

For testing the radiomics system in combination with the synthesis method, we
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employed a private dataset (Multicontrast Glioblastoma), which was introduced in
Section 1.4 of Chapter 1.

Details of the datasets can be found in Table C.1. From all the datasets, we only
included those patients (199 patients in total) in which gross total resection (100%
of the enhancing tumor volume) or near-total resection (>95% of the enhancing
tumor volume) could be performed. The cases selected from the public datasets
are referenced in Table C.3. For each patient, four MR structural weighted images

— T1w, T2w, T2w-FLAIR, and post-T1w — were available. All the acquisitions
of the private datasets were performed with IRB approval and informed written
consent. See Table C.2 for details of the acquisition parameters.

Table C.1: Datasets used in this work. BraTS2020 and TCIA are public datasets, whereas
Dataset22 and Multicontrast Glioblastoma are private datasets. The number of patients
in each dataset is denoted by n. Age is shown as mean ± standard deviation. Survival is
defined as the time in days from diagnosis to death (censored=0) or to the last date the
patient was known to be alive (censored=1). The percentages of patients with survival
less than 16 months (Survival < 16M) for the different datasets are also displayed (16
months or, equivalently, 480 days).

Dataset n Age Survival (IQR) % Censored=1 Survival < 16M
BraTS2020 119 62±12 374 (364) 0% 65.6 %

TCIA 34 60±10 521 (482) 5.9 % 58.8 %
Dataset22 22 65±10 451 (307) 22.7 % 59.1 %

Multicontrast Glioblastoma 24 57±13 552 (218) 29.2 % 54.2 %
Total 199 60±11 447 (346) 7.0 % 62.3 %

Table C.2: All MRI sessions are composed of four structural weighted images, namely,
a T1w, a T2w, a T2w-FLAIR, and a post-T1w. Details about the scanner and the
acquisition parameters are provided if available. The acquisition parameters are TE, TR,
and TI.

Dataset Scanner T1w T2w T2w-FLAIR post-T1w
BraTS2020 19 institutions NA NA NA NA

TCIA 8 institutions TE = 2.75 - 19 ms TE = 15 - 120 ms TE = 34.6 - 155 ms TE = 2.1 - 20 ms
TR = 352 - 3379 ms TR = 700 - 6370 ms TR = 6000 - 11000 ms TR = 4.9 - 3285 ms

Dataset22
1.5T GE TE = 6.33 - 12 ms TE = 99 - 110ms TE = 120 - 127 ms TE = 2.56 ms

and TR = 360 - 800 ms TR = 2680 - 8480 ms TR = 6000 - 8000 ms TR = 7.96 ms
1.5T Philips TI = 2000 ms

Multicontrast
1.5T GE

TE = 1.83 ms TE = 122 ms TE = 142 ms TE = 2.18 ms
Glioblastoma TR = 5.98 ms TR = 4162 ms TR = 9350 ms TR = 6.85 ms

TI = 2200 ms

C.2 Radiomics system
C.2.1 Feature extraction
A total of five regions of interest (ROIs) were derived from the tumor segmentation.
Three of them are directly defined in the segmentation, — enhancing tumor (ET),
non-enhancing tumor (NET), edema (ED) —, and two more are constructed from
them: tumor-core (TC), which is the union of ET and NET, and whole-tumor
(WT), the union of the three initial regions. Moreover, 10 different filters are
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applied to the images. Wavelet filtering is applied using one decomposition level of
the db2 Daubechies orthogonal wavelet, yielding eight decompositions; these are all
possible combinations of applying either a high or a low pass filter in each of the
three dimensions. Also, two Laplacian of Gaussian filters, are applied to emphasize
areas of gray level change; this type of filter is controlled by the parameter sigma,
which defines how coarse the emphasized texture should be. Two sigma values
have been used (2 and 5). These features have shown improvements in the final
prediction result (Chaddad et al., 2018).

From the previously mentioned five ROIs, four weightings and 11 images (both the
original and the ten filtered images), a total of 117.088 features were extracted.
MatLab was used to define and extract these features. Particularly, for texture
features, the package presented by Dancheva et al. (2016) was employed. These
features are defined as follows:

• Volume features (6 features): volume of the WT, the TC, each region (ET,
NET, and ED) and the volume of the brain.

• Volume ratios (7 features): ratio of WT and the brain, ratio of ET and WT,
ratio of NET and WT, ratio of ED and WT, ratio of ET and NET, ratio of
ET and ED, and ratio of NET and ED.

• Morphological features (34 features): the percentage of the TC inside the
cerebellum, brain stem, basal ganglia, and the parietal, occipital, frontal and
temporal lobes. These measurements are obtained by segmenting the SRI-24
atlas with Freesurfer (Reuter et al., 2012), fusing the Freesurfer regions to
create the preceding anatomical areas and taking advantage of the rigid
registration of the different cases to the SRI-24 atlas to measure the presence
of the tumor in those regions (see Figure C.1). These measurements are also
calculated for the left and right hemispheres. Furthermore, the centroid of the
tumor is determined and measurements of compactness, sphericity, the ratio
volume to surface of the tumor, the TC surface area, and another sphericity
measurement defined by Pérez-Beteta et al. (2018) are computed.

• First order, histogram-based, and texture features (68x4x5x11 features): 68
features are calculated over the whole ROIs. Calculated features are named
in Table C.4.

• Extracted features from feature maps (58 x 8 x 4 x 5 x 11 features): Each
feature from Table C.4 is computed on a 3 x 3 x 3 pixels block within each
ROI to create different feature maps (see Figure C.2). In the Table C.4, the
20 histogram-based features are replaced by ten features derived from the
frequency and probability values of the five-bin frequency and probability
histograms constructed in the 3x3x3 blocks. As a consequence, the total
number of features from which feature maps are derived is reduced from 68 to
58. Following that, the eight first-order features are calculated on these maps,
yielding feature distribution measures along the feature maps. This method,
which involves creating feature maps, may be able to improve the tumor het-
erogeneity characterization, which is a critical aspect of glioblastoma (Tirosh
and Suvà, 2020).
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Patient age is added to the group of the first three categories defined above, so this
group consists of 6 + 7 + 34 + 1 = 48 features. The total number of features can be
calculated as the following summation:

(58 × 8 + 68) × 4 × 5 × 11 + 48 = 117.088,

being 4 the number of weighted images, 5 the number of ROIs and 11 the sum of
the 10 filtered images —8 wavelet filters and 2 Laplacian of Gaussian filters— plus
the original image.

C.2.2 Feature selection and model training
The radiomic system was trained following a 10-fold-within-5-fold nested cross-
validation procedure. The method employed is the following:

• The total data was first divided in a training (175 patients) and testing set
(24 patients). Outliers, defined as feature values above the 99th percentile
or below the 1th percentile, were clipped and features were normalized by
removing the mean and scaling to unit variance using the training set as
reference.

• Five splits are performed over the training data (140 patients outer training
and 35 patients outer validation). On each of these splits feature selection is
executed.

• The outer training split is divided 10 times (125 patients for inner training,
15 patients for inner validation), and on these splits the training of 5 different
machine learning models is carried out with the features selected in the outer
split. Brier loss is calculated for each classifier and the best performer is
chosen for each outer split.

• Each of the five models selected in the previous step is trained on its outer
training data (140 patients) and validated on its outer validation data (35
patients). The model with the highest AUC on its validation data is the
selected model.

• The selected model is finally trained on the training data (175 patients) and
tested on the testing dataset (24 patients).

Feature selection in each outer loop is done following a three-step process:

1. First, the Spearman correlation between each feature and survival in days
is calculated, and features that show a statistically significant correlation (p
< 0.05) are retained. In addition, the Spearman correlation matrix between
the statistically significant features is calculated, and the correlation values
are used to eliminate those that are correlated with each other (correlation
factor > 0.66), keeping the feature with the lowest p-value.

2. Second, the TuRF method was applied (Moore and White, 2007). TuRF
adresses feature interaction iteratively utilizing the Relief method deriving
feature statistics based on nearest neighbours. Features with the lowest scores
are recursively eliminated. The number of features is narrowed to the top
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100 with the best TuRF weights. In addition, age and 19 morphological and
position information features, detailed in Table C.5, are reincorporated at this
point. This type of features have been demonstrated as highly reproducible
and able to improve model performance (Suter et al., 2020).

3. Finally, an information measure, maximum relevance-minimum redundancy
(mRMR) (Ding and Peng, 2005), was utilized to obtain the final subset. This
metric generates a ranking of feature groups by iterating in the cardinality
of the groups. Specifically, mRMR is set to create fifty sets with cardinality
one, 50 with cardinality two and so forth until cardinality 30. Each feature
set that mRMR generates is tested on different classifiers in each outer split
and, for the sets of the same cardinality, the one with the lowest Brier loss
(in the inner splits) is selected. Calculating AUC with the validation data in
the outer split, we select the best pair of classifier-cardinality of the feature
set. The effective cardinality of feature sets, however, has been set smaller
by applying the “one in ten rule” (Harrell Jr et al., 1984) so we have feature
sets with cardinality less or equal to 17. Figure C.3, shows that only slight
improvements in AUC are obtained when increasing the number of features
beyond this threshold.

Four different models available in the Scikit-learn library (Pedregosa et al., 2011),
namely, Naive Gaussian Bayes, LR, random forest, and SVM, as well as the
XGB (Chen and Guestrin, 2016) model, were employed. The model and features
selected for the experiment configurations I and II are defined in Table C.6. Model
selected in this case was XGB. Feature importance, shown in Figure C.4, is
calculated as the average gain of the splits on which the feature appears for all
trees of the model (Chen and Guestrin, 2016). Furthermore, the features selected
for the experiments with configuration III, both without T2w-FLAIR and without
T2w, are listed in Tables C.7 and C.8. For these cases the models used were LR
and SVM, respectively. Models’ hyperparameters during training are declared in
Table C.9.
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C.3 Supplementary material

Figure C.1: Tumor-core (TC) presence in the different lobes of the brain for a representative
training patient of BraTS2020. As seen in the image, the tumor is mainly located in the
posterior part of the parietal and temporal left lobe. Features extracted are the percentage
of the tumor in each region.
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Figure C.2: Feature map standard deviation calculated over a block of 3x3x3 voxels in a
representative training patient of the BraTS2020 dataset.

Figure C.3: AUC change when modifying the number of features for each outer split in
the nested cross-validation scheme. The models evaluated are the best performers by
AUC.
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Figure C.4: Feature importance for the model selected. Importance is computed as the
mean and standard deviation of accumulation of the impurity decrease (MDI) within each
tree. Feature numeration follows Table C.6. T2w-FLAIR features are 9 and 11. T2w
features are 10 and 14.

Table C.3: Cases selected from the public datasets BraTS2020 and Ivy-GAP, CPTAC,
and TCGA available through TCIA.

Dataset Cases

BraTS2020

001, 002, 003, 004, 005, 006, 007, 009, 010, 012, 013, 014, 015,
016, 017, 018, 019, 021, 022, 023, 024, 028, 033, 034, 036, 037,
039, 042, 048, 049, 053, 054, 056, 057, 058, 059, 060, 061, 062,
064, 065, 066, 067, 068, 069, 070, 071, 072, 074, 076, 077, 078,
079, 080, 082, 083, 084, 086, 089, 090, 091, 093, 095, 096, 097,
098, 099, 100, 101, 102, 103, 104, 106, 107, 108, 110, 111, 112,
113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125,
126, 127, 128, 129, 145, 147, 151, 152, 153, 154, 157, 337, 339,
341, 342, 345, 346, 347, 351, 356, 357, 358, 359, 360, 363, 366,

368, 369

Ivy-GAP W1, W2, W5, W6, W8, W10, W11, W13, W19, W20, W22,
W29, W32, W34, W35, W40, W43, W48, W54,

CPTAC
C3L_00278, C3L_00424, C3L_00528, C3L_00591, C3L_00677,
C3L_02041, C3L_02504, C3L_03266, C3L_01505, C3L_00349,

C3L_01327, C3L_02465, C3L_03727
TCGA TCGA-14-1794, TCGA-14-1829
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Table C.4: First order, histogram-based, and texture features. Texture features are
extracted using 4 different texture metrics, neighbouring gray tone difference matrix
(NGTDM), gray level run length matrix (GLRLM), gray level co-occurrence matrix
(GLCM), and gray level size zone matrix (GLSZM).

Feature type Feature Nº

First order Kurtosis, skewness, variance, standard deviation, median,
mean minimum, and maximum 8

Histogram-based Each bin of a 20 bins histogram 20
NGTDM Coarseness, Contrast, Bussyness, Complexity, Strength 5

GLRLM GLN, GLV, HGRE, LGRE, LRE, LRHGE, LRLGE,
RLN, RLV, RP, SRE, SRHGE, SRLGE 13

GLCM Energy, Contrast, Entropy, Homogeneity, Correlation,
Variance, SumAverage, Auto Correlation, Dissimilarity 9

GLSZM SZE, LZE, GLN, ZSN, ZP, LGZE, HGZE, SZLGE, SZHGE,
LZLGE, LZHGE, GLV, ZLB 13

Table C.5: Features reintroduced in feature selection step 2.

Nº Feature Feature definition
1 Age Age
2 rNET_ED Volume ratio non-enhancing and tumor edema
3 rET_NET Volume ratio enhancing tumor and non-enhancing tumor
4 rET_ED Volume ratio enhancing tumor and edema
5 rNET_ED Volume ratio non-enhancing tumor and edema
6 rED_WT Volume ratio edema and whole tumor
7 rNET_WT Volume ratio non-enhancing tumor and whole tumor
8 rET_WT Volume ratio enhancing tumor and whole tumor
9 rNET_WT Volume ratio non-enhancing tumor and whole tumor

10 rWT_B Volume ratio whole tumor and brain

11 Morph_VolTumBasGang
Percentage of the tumor core volume in the basal ganglia

measured by the rigid registration of the patients image data
on the Freesurfer Segmentation of the SRI-24 atlas

12 Morph_mayAxisLegth Mayor axis length of the tumor core
13 Morph_leastAxisLegth Least axis length of the tumor core
14 Morph_coreArea Area of the tumor core segmentation

15 Morph_sphericity Sphericity calculated as (36×π×coreV ol2)
1
3

Morph_coreArea

16 Morph_comp1 Compactness calculated as coreV ol√
(π)×

√
(Morph_coreArea3)

17 Morph_PB_Sr Sphericity as specified in Pérez-Beteta et al. (2018) 6 ×
√

π × coreV ol√
(MorphcoreArea3)

18 WT_cores Number of WT focal points in the brain
19 TC_cores Number of TC focal points in the brain
20 NET_cores Number of non-enhancigng tumor focal points in the brain
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Table C.6: Features selected for the model with four weighted images as input. The model
selected in that case was extreme gradient boosting.

Nº Weighted image ROI Filter Feature Map Feature

1 — — — — TC volume
in basal ganglia

2 T1w WT Wavelet HLH min Variance

3 post-T1w ET Wavelet HHH — 2nd bin 20
bins histogram

4 T1w NET LoG F2 GLSZM LZLGE Variance
5 post-T1w NET Wavelet HHL GLCM Homogeneity Kurtosis

6 T1w NET Wavelet LLH — 5th bin 20
bins histogram

7 post-T1w TC LoG F2 GLSZM LZHGE Skewness
8 T1w ED Wavelet LHL min Stanadard Deviation
9 T2w-FLAIR ET Wavelet HLL GLSZM SZHGE Min

10 T2w ET Wavelet HLH GLSZM ZSV Mean
11 T2w-FLAIR TC Wavelet HLH GLCM Dissimilarity Skewness

12 T1w ED — — 4th bin 20
bins histogram

13 T1w WT Wavelet LLH GLRLM LGRE Mean
14 T2w ED — GLCM Contrast Max
15 T1w ET LoG F2 GLRLM RLN Skewness
16 T1w ED LoG F2 — Skewness
17 T1w ET Wavelet HLH NGTDM Busyness Median

Table C.7: Features selected for the model with only three weighted images as inputs
(without T2w-FLAIR). The model selected in that case was logistic regression.

Nº Weighted image ROI Filter Feature Map Feature
1 post-T1w ED Wavelet LLL Median Mean
2 T1w ET Wavelet HLH GLSZM SZE Kurtosis
3 T1w NET Wavelet LLH Min Skewness

4 post-T1w ED Wavelet HLL — 17th bin 20
bins histogram

5 T2w ED Wavelet HLH GLSZM LZHGE Variance

6 — — — — Volume ratio between
ET and WT

7 T1w ED Wavelet HLL GLSZM SZLGE Mean
8 post-T1w ED Wavelet LLL NGTDM Complexity Standard Deviation
9 post-T1w TC — GLSZM SZLGE Skewness

10 T1w WT Wavelet LLH GLRLM LRLGE Skewness
11 post-T1w ED Wavelet HLL GLRLM SRLGE Min
12 T1w TC Wavelet HHL Skewness Median
13 T2w TC — GLCM Dissimilarity Max
14 T1w ET Wavelet LLL Variance Mean
15 T1w TC Wavelet LLH GLSZM Min
16 post-T1w NET Wavelet HHL GLCM Homogeneity Kurtosis
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Table C.8: Features selected for the model with only three weighted images as input
(without T2w). The model selected in that case was support vector machine.

Nº Weighted image ROI Filter Feature Map Feature
1 T2w-FLAIR TC Wavelet HHL GLSZM GLV min
2 T2w-FLAIR WT Wavelet HLL — GLSZM SZHGE
3 T2w-FLAIR ED — GLCM Contrast Skewness
4 — — — — Age

5 T1w ED LoG F2 — 15th bin 20
bins histogram

6 T2w-FLAIR NET Wavelet HLL GLRLM LGRE Skewness
7 T1w TC Wavelet LLH — GLSZM SZLGE
8 T2w-FLAIR WT Wavelet LHL Min Kurtosis
9 T1w TC — GLRLM LRHGE Standard deviation

10 T1w ED Wavelet LLL — 3rd bin 20
bins histogram

11 — — — — NET focal points
12 T1w ED Wavelet LHL Mean Median
13 T2w-FLAIR WT Wavelet HHH — GLSZM LGZE
14 T2w-FLAIR ET Wavelet HHL GLCM SumAverage Min
15 T1w WT Wavelet LHH GLRLM LRHGE Median
16 T1w ET LoG F2 — GLRLM HGRE

Table C.9: Models’ hyperparameters.

Model Hyperparameters

Logistic Regression

penalty=’l2’, *, dual=False, tol=0.0001, C=1.0,
fit_intercept=True, intercept_scaling=1,

solver=’lbfgs’, max_iter=100, multi_class=’auto’,
verbose=0, warm_start=False,

Naive Gaussian Bayes *, priors=None, var_smoothing=1e-09

Random Forrest

n_estimators=500, *, criterion=’entropy’, max_depth=4
min_samples_split=2, min_samples_leaf=1,

min_weight_fraction_leaf=0.0, max_features=’auto’,
min_impurity_decrease=0.0, bootstrap=True, oob_score=False,

n_jobs=None, verbose=0, warm_start=False,
ccp_alpha=0.0,

Support Vector Machine

*, C=1.0, kernel=’linear’, degree=3, gamma=’scale’,
coef0=0.0, shrinking=True, probability=False,
tol=0.0001, cache_size=200, verbose=False,

max_iter=- 1, decision_function_shape=’ovr’,
break_ties=False

Extreme Gradient Boosting objective: ’binary:logistic’, use_label_encoder: False,
importance_type: ’gain’, n_estimators: 100, verbosity: 0,
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D
Voxelwise statistical classifications for

tumor T1w-enhancement prediction

Nunez-Gonzalez et al. (2022) proposed a method for voxel-wise classification of
normal/abnormal tissue and tissue with and without T1w-enhancement from only
pre-contrast MAGiC parametric maps. In this study, the authors performed the
voxel-wise classifications using a receiver operating characteristic (ROC) curve
analysis. The authors considered three classification problems:

C-I) ABN versus nWM.

C-II) T1e versus the union of nWM and T2h.

C-III) T1e versus T2h (only inside ABN).

For each classification problem, they defined four voxel-wise metrics:

a) T1 values measured in miliseconds.

b) T2 values measured in miliseconds.

c) normT1T2 (i.e., the Euclidean norm of the T1 and T2 values).

d) normlog (i.e., the Euclidean norm of the logarithm of T1 and T2 values).

For each classification problem the metric with the highest AUC was selected. The
thresholds for optimal classifications were calculated as the highest Youden’s index
of the ROC curve. In a second step, the classification thresholds were applied
to the aforementioned metrics inside the white-matter-mask in order to obtain
the different regions. The selected regions were compared with the ground-truth
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segmentations obtained with the deep learning tool HD-GLIO fed by the T1w, T2w,
T2w-FLAIR, and post-T1w (Isensee et al., 2019; Kickingereder et al., 2019).

Thus, the resulting selected metrics and their thresholds were: normlog with
threshold 8.44 for C-I, normT1T2 with threshold 1344 ms for C-II, and normT1T2
with threshold 1512 ms for C-III. The authors showed that The ROC analysis
including PD did not improve the AUC in any of the cases. Consequently, they
excluded the PD values in the rest of the analysis.
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