

Retinal and Visual Pathway Alterations After Severe Acute Occupational Elemental Mercury Poisoning. Report of 29 cases.

Journal:	Clinical Toxicology	
Manuscript ID	LCLT-2019-0079	
Manuscript Type:	Clinical Research	
Keywords:	Mercury poisoning, Occupational exposure, Mercury vapor	
Abstract:	Objective: To report visual findings in a group of workers exposed to very high concentrations of mercury in a factory in northern Spain at the end of 2012. Methods: Twenty-nine patients exposed to mercury vapor and 11 healthy controls were evaluated. Blood and urine samples were collected to assess mercury levels. Fifteen workers underwent late chelation for heavy metal intoxication. Complete visual examination, including optical coherence tomography (OCT), visual field test (VFt), contrast sensitivity (CS) and color discrimination were assessed. Retinal function was evaluated using the ISCEV protocol for full-field electroretinography (ffERG), pattern electroretinography (PERG), and multifocal electroretinography (mfERG). In addition, systemic symptoms, possible erethism, and electromyography (EMG) were recorded. Values were compared between non-chelated and late chelated patients. Results: Visual acuity (VA) was slightly affected. Loss of CS in all frequencies and color vision alterations were found. VF alterations were registered in 62.1% of patients. OCT scans showed no morphological changes. All patients presented latencies > 100ms and reduced amplitudes of P100. The ffERG and PERG showed changes, suggesting that both the outer and inner retina layers were involved. mfERG indicated that central retinal function was also significantly depressed. Twenty-six workers had symptoms of erethism. The EMG showed signs of mixed sensorimotor polyneuropathy and multiple mononeuropathy alterations. No differences were found between groups. A significant negative correlation between blood mercury levels, VA and ffERG was observed. Conclusion: Advanced visual functions were significantly impaired independently of mercury levels. Delayed chelation had no added benefit. Although neurological and visual pathway involvement was clearly demonstrated, there were also evidences of a direct functional	

URL: http://mc.manuscriptcentral.com/lclt E-mail: ICTX-peerreview@journals.tandf.co.uk

1 2	
3 4	retinal damage.
5 6 7	
9 10 11	SCHOLARONE [™] Manuscripts
12 13 14	
16 17 18	
19 20 21	
22 23 24 25	
26 27 28	
29 30 31 32	
33 34 35	
36 37 38 39	
40 41 42	
43 44 45 46	
40 47 48 49	
50 51 52	
53 54 55 56	
57 58 59	
60	URL: http://mc.manuscriptcentral.com/lclt E-mail: ICTX-peerreview@journals.tandf.co.uk

Retinal and Visual Pathway Alterations After Severe Acute Occupational Elemental Mercury Poisoning. Report of 29 cases. 3

Abstract:

Objective: To report visual findings in a group of workers exposed to very high concentrations of mercury in a factory in northern Spain at the end of 2012. **Methods:** Twenty-nine patients exposed to mercury vapor and 11 healthy controls were evaluated. Blood and urine samples were collected to assess mercury levels. Fifteen workers underwent late chelation for heavy metal intoxication. Complete visual examination, including optical coherence tomography (OCT), visual field test (VFt), contrast sensitivity (CS) and color discrimination were assessed. Retinal function was evaluated using the ISCEV protocol for full-field electroretinography (ffERG), pattern electroretinography (PERG), and multifocal electroretinography (mfERG). In addition, systemic symptoms, possible erethism, and electromyography (EMG) were recorded. Values were compared between non-chelated and late chelated patients. **Results:** Visual acuity (VA) was slightly affected. Loss of CS in all frequencies and color vision alterations were found. VF alterations were registered in 62.1% of patients. OCT scans showed no morphological changes. All patients presented latencies > 100ms and reduced amplitudes of P100. The ffERG and PERG showed changes, suggesting that both the outer and inner retina layers were involved. mfERG indicated that central retinal function was also significantly depressed. Twenty-six workers had symptoms of erethism. The EMG showed signs of mixed sensorimotor polyneuropathy and multiple mononeuropathy alterations. No differences were found between groups. A significant negative correlation between blood mercury levels, VA and ffERG was observed. **Conclusion:** Advanced visual functions were significantly impaired independently of mercury levels. Delayed chelation had no added benefit. Although neurological and visual pathway involvement was clearly demonstrated, there were also evidences of a direct functional retinal damage.

Keywords: Mercury poisoning; Mercury vapor; Occupational exposure; Retinal

37 toxic effects; Optical coherence tomography, Full-field electroretinography,

38 pattern electroretinography, multifocal electroretinography.

40 Introduction

Acute or subacute occupational elemental mercury poisoning is uncommon, but
may have important consequences on the visual pathway, due to the
neurotoxicity of mercury [1,2]. However, the magnitude of the possible damage
on the retinal structures is still unclear. Experimental studies have shown the
presence of mercury in the retina and choroid [3], but others have limited its
presence to the retinal pigment epithelium and external layers of the neuroretina
[4,5].

Electrophysiology tests and current clinical examination techniques such as
autofluorescence or optical coherence tomography (OCT) suggest that, besides
central nervous system (CNS) poisoning, there is also retinal involvement and
that not all visual functional alterations are caused by high visual pathway
damage [6,7,8].

Physiological and morphological retinal changes due to mercury toxicity have been demonstrated in animal models; but there are few reports on human retinal involvement due to occupational poisoning: the last large series of patients intoxicated by mercury was reported before the latest retinal diagnostic techniques, such as spectral domain OCT (SD-OCT) and mfERG became clinically available. There is only one report of OCT examination in patients affected to chronic mercury exposure [7,8], and only one that includes mfERG in these patients [6]. To our knowledge, this is the first study to use SD-OCT, mfERG and pattern electroretinography (PERG) evaluations in a series of patients inadvertently acutely exposed to high levels of elemental mercury vapor. We report visual pathway alterations in 29 workers exposed to very high levels

68 of mercury for fourteen consecutive days during maintenance work in a factory

69 in Northern Spain at the end of 2012. This was one the most severe acute

70 elemental mercury intoxications in the European Union ever reported.

72 Material and Methods

74 Patients

Forty-nine workers, according to official sources, were inadvertently exposed to elemental mercury vapor during maintenance work in a heat exchanger. The incident occurred between November 19th and December 2nd, 2012, in a metal manufacturing plant in Northern Spain. According to the workers' story, when they entered the workspace, they found many balls of mercury spread over the floor, which were not removed. Some days after finishing their work, many of them reported physical complaints, including asthenia, headache, lumbago, cough, bitter taste, dental pain, gum inflammation and bleeding, epigastric and abdominal pain, among other symptoms, which were initially attributed to a viral infection.

After the initial symptomatology, most patients presented with erethism, with fatigue, irritability, aggressiveness, anxiety, depression and insomnia. In addition, they presented neurological manifestations including tremor, peripheral polyneuropathy, weakness, headache, cognitive disorders, and dizziness, and digestive manifestations such as diarrhea and abdominal cramps. Also, many presented visual complaints such as blurred vision, ocular irritation, dry eye, burning or scratchy sensation, eye redness, and sensitivity to light.

Blood and urine mercury levels were measured from the second week of the exposure, and were above the recommended biological limits for occupational exposure [9,10], reaching 500-900 μ g/L in blood and 600-1830 μ g/g Cr in urine. Before the occupational exposure, urine mercury levels were measured some of the workers, showing levels of < 3μ g/g Cr. However, there was no quantitative reference data on the level of mercury exposure at the time of the event.

Clinical Toxicology

Z		
3 1	102	Despite the range of early symptoms, only three workers received early
5	103	chelation with dimercaprol (BAL), which was prematurely interrupted due to
6 7	104	severe adverse reactions to this compound.
8	105	
10	106	Between September 2013 and the end of 2014, 44 of the 49 officially affected
11 12	107	patients approached the Clinical Toxicology Unit, Medical Science Institute
13 14	108	(ICIME), University of Valladolid (Spain) for an independent assessment.
15	109	
17	110	After evaluating each case, ancillary tests and actions were proposed based on
18 19	111	clinical data. Late chelation (8-12 months after the exposure with oral 2,3-
20 21	112	dimercapto-1-propanesulfonic acid (DMPS) for a minimum of one week, was
22	113	proposed, according to severity criteria in local hospitals, and was administered
23 24	114	in 15 patients. Twenty-nine patients who presented visual symptoms at the
25 26	115	second appraisal were referred for complete visual evaluation at the IOBA-Eye
27 28	116	Institute, University of Valladolid.
20 29	117	
30 31	118	Ophthalmic examination
32 33	119	In the initial examination, previous ocular, neural or systemic disease that might
34	120	affect or interfere with visual examinations was ruled out.
35 36	121	Informed consent was obtained from all patients before the ophthalmic
37 38	122	assessment. The procedures complied with the tenets of the Declaration of
39 40	123	Helsinki and were approved by the Ethics Committees of the Clinic University
41	124	Hospital and IOBA-University of Valladolid, Spain.
42 43	125	
44 45	126	Twenty-nine patients underwent a full ophthalmic examination including best
46 47	127	corrected visual acuity (BCVA) on the ETDRS scale; slit-lamp examination;
48	128	intraocular pressure and funduscopy and OCT with specific evaluation of central
49 50	129	retinal thickness (CRT) (3D-OCT 2000, Topcon Inc., Tokyo, Japan) and
51 52	130	examination of the retinal nerve fiber layer thickness (RNFLT) (OCT Stratus
53 54	131	3000 Zeiss Meditec, Oberkochen, Germany). Color vision was examined by the
55	132	Farnsworth-Munsell (FM) 28 Hue (Luneau Ophtalmologie, Paris, France) and
56 57	133	contrast sensitivity (CS) by the CSV-1000 chart (Vectorvision, Greenville, USA).
58 59	134	The FM 28 Hue results were scored in two ways. First, a color confusion index
60	135	(CCI) was calculated for each participant for the statistical analysis [11,12].
00	135	(CCI) was calculated for each participant for the statistical analysis [11, 12].

2	10.6	
3 4	136	Secondly, a clinical diagnosis of the type of loss was made by plotting the
5 6	137	response on a standard score sheet, allowing determination of the axis of color
7	138	confusion.
8 9	139	Visual field (VF) was assessed using a Humphrey 750i visual field analyzer
10 11	140	(Carl Zeiss, Oberkochen, Germany) and the central 30-2 SITA fast strategy
12	141	protocol. Only tests that met the criteria (low (<20%), false positive, false
13 14	142	negative and fixation loss parameters) were evaluated.
15 16	143	
17	144	Retinal function was evaluated by full-field electroretinography (ffERG), pattern
18 19	145	electroretinography (PERG) and multifocal electroretinography (mfERG), using
20 21	146	the International Society for Clinical Electrophysiology in Vision (ISCEV)
22	147	protocol [13]. ERGs were recorded using a ganzfeld stimulator (Metrovision,
23	148	Lille, France) with a corneal electrode according to the international ISCEV
25 26	149	protocol [14]. mfERGs of both eyes were made with scaled hexagons
27 28	150	stimulating 61 zones. Four patterns of abnormal mfERG amplitude responses
29	151	were assessed: paracentral loss, foveal loss, peripheral loss and generalized
30 31	152	loss, as described by Maturi <i>et al</i> [15].
32 33	153	
34	1 🗆 4	
25	154	Additional tests
35 36	154 155	Additional tests Electromyography (EMG): nerve conductance was assessed to evaluate
35 36 37 38	154 155 156	Additional tests Electromyography (EMG): nerve conductance was assessed to evaluate peripheral neuropathy using a standard protocol (Nihon Kodhen, Model MEB-
35 36 37 38 39 40	154 155 156 157	Additional tests Electromyography (EMG): nerve conductance was assessed to evaluate peripheral neuropathy using a standard protocol (Nihon Kodhen, Model MEB- 9400, Irvine USA). Sensory and motor nerve conduction velocities were
35 36 37 38 39 40 41	154 155 156 157 158	Additional tests Electromyography (EMG): nerve conductance was assessed to evaluate peripheral neuropathy using a standard protocol (Nihon Kodhen, Model MEB- 9400, Irvine USA). Sensory and motor nerve conduction velocities were determined in the median and peroneal nerves. Amplitude (μ V), latency (m/s)
35 36 37 38 39 40 41 42 43	154 155 156 157 158 159	Additional tests Electromyography (EMG): nerve conductance was assessed to evaluate peripheral neuropathy using a standard protocol (Nihon Kodhen, Model MEB- 9400, Irvine USA). Sensory and motor nerve conduction velocities were determined in the median and peroneal nerves. Amplitude (μ V), latency (m/s) and conductance (m/s) were evaluated.
35 36 37 38 39 40 41 42 43 44 45	154 155 156 157 158 159 160	Additional tests Electromyography (EMG): nerve conductance was assessed to evaluate peripheral neuropathy using a standard protocol (Nihon Kodhen, Model MEB- 9400, Irvine USA). Sensory and motor nerve conduction velocities were determined in the median and peroneal nerves. Amplitude (μ V), latency (m/s) and conductance (m/s) were evaluated.
 35 36 37 38 39 40 41 42 43 44 45 46 47 	154 155 156 157 158 159 160 161	Additional testsElectromyography (EMG): nerve conductance was assessed to evaluate peripheral neuropathy using a standard protocol (Nihon Kodhen, Model MEB- 9400, Irvine USA). Sensory and motor nerve conduction velocities were determined in the median and peroneal nerves. Amplitude (μ V), latency (m/s) and conductance (m/s) were evaluated.Statistical analysis
 35 36 37 38 39 40 41 42 43 44 45 46 47 48 40 	154 155 156 157 158 159 160 161 162	Additional testsElectromyography (EMG): nerve conductance was assessed to evaluateperipheral neuropathy using a standard protocol (Nihon Kodhen, Model MEB-9400, Irvine USA). Sensory and motor nerve conduction velocities weredetermined in the median and peroneal nerves. Amplitude (μ V), latency (m/s)and conductance (m/s) were evaluated.Statistical analysisThe BCVA was recorded on an ETDRS scale and converted to the logarithm of
 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 	154 155 156 157 158 159 160 161 162 163	Additional testsElectromyography (EMG): nerve conductance was assessed to evaluateperipheral neuropathy using a standard protocol (Nihon Kodhen, Model MEB-9400, Irvine USA). Sensory and motor nerve conduction velocities weredetermined in the median and peroneal nerves. Amplitude (μ V), latency (m/s)and conductance (m/s) were evaluated.Statistical analysisThe BCVA was recorded on an ETDRS scale and converted to the logarithm ofthe minimal angle of resolution (LogMAR) for statistical analysis. All visual
 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 	154 155 156 157 158 159 160 161 162 163 164	Additional testsElectromyography (EMG): nerve conductance was assessed to evaluateperipheral neuropathy using a standard protocol (Nihon Kodhen, Model MEB-9400, Irvine USA). Sensory and motor nerve conduction velocities weredetermined in the median and peroneal nerves. Amplitude (μ V), latency (m/s)and conductance (m/s) were evaluated.Statistical analysisThe BCVA was recorded on an ETDRS scale and converted to the logarithm ofthe minimal angle of resolution (LogMAR) for statistical analysis. All visualacuity results are expressed in LogMAR units with the Snellen equivalent in
 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 	154 155 156 157 158 159 160 161 162 163 164 165	Additional testsElectromyography (EMG): nerve conductance was assessed to evaluate peripheral neuropathy using a standard protocol (Nihon Kodhen, Model MEB- 9400, Irvine USA). Sensory and motor nerve conduction velocities were determined in the median and peroneal nerves. Amplitude (μ V), latency (m/s) and conductance (m/s) were evaluated.Statistical analysis The BCVA was recorded on an ETDRS scale and converted to the logarithm of the minimal angle of resolution (LogMAR) for statistical analysis. All visual acuity results are expressed in LogMAR units with the Snellen equivalent in parentheses. Categorical variables were analyzed using Fisher's exact test or
 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 	154 155 156 157 158 159 160 161 162 163 164 165 166	Additional testsElectromyography (EMG): nerve conductance was assessed to evaluate peripheral neuropathy using a standard protocol (Nihon Kodhen, Model MEB- 9400, Irvine USA). Sensory and motor nerve conduction velocities were determined in the median and peroneal nerves. Amplitude (μ V), latency (m/s) and conductance (m/s) were evaluated.Statistical analysisThe BCVA was recorded on an ETDRS scale and converted to the logarithm of the minimal angle of resolution (LogMAR) for statistical analysis. All visual acuity results are expressed in LogMAR units with the Snellen equivalent in parentheses. Categorical variables were analyzed using Fisher's exact test or the chi-square test. The t-test was used to compare mean values between
 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 	154 155 156 157 158 159 160 161 162 163 164 165 166 167	Additional testsElectromyography (EMG): nerve conductance was assessed to evaluateperipheral neuropathy using a standard protocol (Nihon Kodhen, Model MEB-9400, Irvine USA). Sensory and motor nerve conduction velocities weredetermined in the median and peroneal nerves. Amplitude (μ V), latency (m/s)and conductance (m/s) were evaluated.Statistical analysisThe BCVA was recorded on an ETDRS scale and converted to the logarithm ofthe minimal angle of resolution (LogMAR) for statistical analysis. All visualacuity results are expressed in LogMAR units with the Snellen equivalent inparentheses. Categorical variables were analyzed using Fisher's exact test orthe chi-square test. The t-test was used to compare mean values betweenparametric values. Pearson's correlation test was used to evaluate the
 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 	154 155 156 157 158 159 160 161 162 163 164 165 166 167 168	Additional testsElectromyography (EMG): nerve conductance was assessed to evaluateperipheral neuropathy using a standard protocol (Nihon Kodhen, Model MEB-9400, Irvine USA). Sensory and motor nerve conduction velocities weredetermined in the median and peroneal nerves. Amplitude (μ V), latency (m/s)and conductance (m/s) were evaluated.Statistical analysisThe BCVA was recorded on an ETDRS scale and converted to the logarithm ofthe minimal angle of resolution (LogMAR) for statistical analysis. All visualacuity results are expressed in LogMAR units with the Snellen equivalent inparentheses. Categorical variables were analyzed using Fisher's exact test orthe chi-square test. The t-test was used to compare mean values betweenparametric values. Pearson's correlation test was used to evaluate thecorrelation between ophthalmic findings and blood and urine mercury levels.

1 2						
3	170	Wilcoxon rank-sum test. For repeated measures, the Wilcoxon signed-rank test				
4 5	171	was used. Spearman's test was used to correlate non-normally distributed da				
6 7	172	For all tests a <i>p</i> -value < 0.05 was considered to be significant.				
8 9	173					
10	174	For the statistical analysis, participants were divided into two groups: group				
12	175	1(G1) (n=14) consisted of patients who did not receive late chelation and group				
13 14	176	2 (G2) (n=15) of those who received late chelation. For the ffERG tests, an age-				
15 16	177	matched control group (n=11) was included in the between-group comparisons.				
17	178	The statistical analysis was made using the SPSS 17.0 statistical program				
18 19	179	(SPSS Inc. Chicago, IL).				
20 21	180					
22 23	181	Results				
24	182					
25 26	183	All 29 patients were male with a mean age of 40.62 \pm 8.04 years (range 25-56).				
27 28	184	The mean urinary mercury level at early stage was 302.86 \pm 405.35 $\mu\text{g/g}$ C				
29 30	185	(range 10-1830) and the mean blood mercury level was 392.93 \pm 273.84 $\mu\text{g/L}$				
31 32	186	(range 26-961). There were significantly increased blood and urine mercury				
33	187	levels in samples obtained from G2 compared with G1. The main clinical				
35	188	baseline characteristics and EMG results are summarized in table 1.				
36 37	189					
38 39	190	Ophthalmological findings				
40	191	The main ophthalmic findings are summarized in table 2.				
41 42	192	Decreased visual acuity (< 20/20) was detected in nine (64.3%) patients in G1				
43 44	193	and five (33.3%) patients in G2, without significant differences. Fifteen patients				
45 46	194	(51.7%) reported additional ocular complaints.				
47	195					
48 49	196	The VA, color vision, CS, VF and OCT results are shown in table 2. Acquired				
50 51	197	dyschromatopsia, especially in the blue-yellow range on FM 28 Hue, was found				
52 53	198	in thirteen (44.8%) patients. The mean ICC was 1.642 \pm 1.183. No significant				
54 55	199	between-group difference in the ICC was found (Table 2).				
56	200	Twenty-eight (96.5%) patients presented alterations in achromatic CS in \geq 1 of				
57 58	201	the four spatial frequencies, especially in the high frequencies, without				
59 60	202	significant between-group differences (Table 2 and S1).				

1						
2	203					
4 5	204	Twenty-one (72.4%) patients had visual field test alterations. The most				
6 7	205	prevalent patterns were concentric constriction (17 eyes, 29.3%), scattered				
8 9	206	defects (6 eyes, 10.3%), hemi-field defects respecting horizontal and vertical				
10	207	meridians (5 eyes, 8.62%), nasal defects (4 eyes, 6.89%) and arcuate defects				
11 12	208	(2 eyes, 3.44%). There were no significant between-group differences in				
13 14	209	patterns, MD or VFI (Table 2). No significant between-group differences were				
15 16	210	found in the mean value of CRT [16] or RNFLT [17] (Table 2).				
17	211					
18 19	212	A significant negative correlation between blood mercury levels and BCVA was				
20 21	213	observed in the correlation analysis between blood mercury levels and all these				
22	214	variables (Table 3).				
24	215					
25 26	216	Electrophysiology function assessment				
27 28	217	ffERGs				
29 30	218	ffERG was recorded in 28 patients in both eyes and in 11 age-matched				
30 31	219	controls. The amplitude of the <i>a</i> - and <i>b</i> -wave for the scotopic rod response				
32 33	220	(SRR) of ERG was significantly higher in patients than in controls (Table 4 and				
34 35	221	S2).				
36	222	A significant negative correlation between blood mercury levels and ERG				
38	223	amplitudes of the <i>b-wave</i> in SRR, maximal scotopic response (MSR), sum of				
39 40	224	oscillatory potential (OP) and 30Hz Flicker responses, was found in G1. The				
41 42	225	same correlation with the <i>b-wave</i> amplitudes in SRR and the sum of oscillatory				
43	226	potentials was found in G1; and with the 30Hz Flicker amplitudes and latency in				
44 45	227	the whole group of patients (Table 5).				
46 47	228	PERG				
48 49	229	PERG was performed in 27 patients for the RE and 26 patients for the LE.				
50	230	(Table 6 and S3). The amplitude of P50 and N95 was significantly diminished in				
51	231	patients compared with reference values [18] in both eyes. There were no				
53 54	232	significant between-group differences in implicit times of the P50 and N95				
55 56	233	components (Table 6 and S3). There was no correlation between PERG values				
57	234	and blood mercury levels.				
58 59 60	235	PVEP				

1		
3	236	PVEP was recorded in 29 patients. The mean implicit P100 times were
4 5	237	significantly higher and the amplitudes lower than the reference values for both
6 7	238	60 and 30-minute checks stimuli [18,19]. There were no significant between-
8 9	239	group differences (Table 6 and S3). There was no correlation between VEP
10	240	values and blood mercury levels.
11	241	mfERG
13 14	242	mfERG was recorded in 26 patients. The most prevalent patterns were
15 16	243	peripheral loss (16 eyes, 30.7%), central loss (7 eyes, 13.4%), and paracentral
17	244	defects (5 eyes, 9.6 %). Conversely, no depression of the amplitude responses
18 19	245	to full field ERG was observed in 22 eyes (42.3%). As the peripheral pattern
20 21	246	was the most frequent, P1 amplitude in the peripheral rings of the mfERG was
22	247	analyzed, finding a significantly lower value in patients in rings 5-10° and >15°
24	248	compared with reference values [15,20]. There were no between-group
25 26	249	differences in mfERG patterns (Table7 and S4) and no correlation between
27 28	250	mfERG values at rings 5-10°, 5-10°, 10-15° and >15° and blood mercury levels.
29	251	
31	252	In addition, when mfERG was compared with the visual field, fourteen (48.3%)
32 33	253	patients showed lower local agreement in the location between the mfERG
34 35	254	defects and the total deviation of visual sensitivities of < 5% recorded in the
36	255	visual field tests. There were no between-group differences.
38	256	
39 40	257	Additional tests
41 42	258	Electromyography
43	259	EMG was performed in 27 patients and the results showed different types of
44 45	260	patterns of abnormalities and decreased nerve conduction velocity in most
46 47	261	(Table1). There were no significant between-group differences. There was no
48 49	262	correlation between blood mercury levels, nerve conduction velocity and the
50	263	P100 component in PVEP.
51	264	
53 54	265	Discussion
55 56	266	
57 58	267	Mercury vapor is a significant source of mercury load in occupational exposures
59 60	268	as it is odorless, colorless and tends to accumulate in poorly-ventilated areas.

Once the lungs have absorbed inhaled vapor, it may reach different tissues via the bloodstream, with the primary targets being the CNS and eyes [2,21]. When oxidized, it cannot penetrate the blood-barrier again, remaining in the tissues for prolonged periods [2,7,8,21].

Neurological and visual pathway involvement due to mercury toxicity has been widely described [2,21,22]. The effects of long-term exposure include symptoms that range from tremor, neuropathy, changes in personality known as erethism, speech disturbances, delirium or rigidity to symptoms of visual field defects, reduced visual acuity, color vision and night vision, or decreased contrast sensitivity, [2,21,23,24]. However, the introduction of electrophysiology tests has established that there is also retinal involvement and that not all alterations of the visual alterations are due to CNS and visual pathway involvement [6].

The initial complaints of these patients were initially attributed to a viral infection, delaying the diagnosis of mercury poisoning. At diagnosis, mean urine (mean: 302,86 μ g/g Cr) and blood (mean: 392.93 μ g/L) mercury levels significantly exceeded the maximum accepted level for occupational exposure (<30 μ g/g Cr and 10 μ g/L respectively) [9,10]. In such cases, the mainstay of treatment is chelation; however early chelation was only performed in three patients and was prematurely interrupted due to severe adverse reactions. Fifteen workers received delayed chelation, which did not result in satisfactory relief of any symptom.

Twenty-six workers presented symptoms of erethism. Some also presented typical cognitive symptoms of mercury poisoning, such as disturbances in memory and attention [21,22]. Tremor in the hands, head and eyelids, a late symptom of mercury poisoning, was also seen. The EMG showed signs of mixed sensorimotor polyneuropathy and multiple mononeuropathy alterations 12-18 months after the exposure.

Visual acuity was minimally affected, as only nine patients from G1 and five from G2 showed a reduction; however advanced visual functions were

1 2					
3	302	significantly impaired, apparently independently of mercury levels since there			
4 5	303	was only a significant negative correlation between BML, BCVA and ffERG.			
6 7	$_{7}^{6}$ 304 Color vision and CS impairment at high spatial frequencies we				
8 9	most frequently observed being color vision alteration in the blue-yellow range.				
10	306	These findings agree with previous studies [23,25-27].			
12	307				
13 14	308	The most prevalent pattern in the visual field tests was concentric constriction of			
15 16	309	the visual field (17 eyes, 29.3%), also in agreement with previous studies			
17	310	[28,29]. This visual impairment may have a central origin, as it has been			
18 19	311	explained by lesions in the calcarine cortex [31]. The increase in the implicit			
20 21	312	time of P100 means a delay in conduction and involvement of the visual			
22	313	pathway. This finding was also reported by da Costa et al in 2008 [18].			
23 24	314	However, in the current series there was also significant functional retinal			
25 26	315	involvement, since the same patients showed retinal dysfunction in the ffERG,			
27 28	316	PERG and mfERG tests, revealing loss of generalized retinal responses and in			
29	317	the central retinal areas.			
30 31	318				
32 33	319	The ffERG showed changes in the scotopic rod response and the oscillatory			
34 35	320	potentials of the ISCEV protocol, suggesting that the rod cells were impaired by			
36	321	acute mercury-vapor intoxication. Although we found no differences in the MSR,			
37 38	322	30Hz Flicker and SFCR tests compared with controls, the amplitude of P50,			
39 40	323	which is critical in assessing macular cone function, showed a significant			
41	324	decrease, suggesting that the cone and ganglion macular cells were also			
42	325	impaired. This reinforces the idea that both the outer and inner retina layers			
44 45	326	were involved in these patients. Finally, the mfERG results were further			
46 47	327	evidence of damage to the photoreceptor pathway in mercury poisoning, since			
48	328	the response amplitudes showed a loss of the retinal response within the 50			
49 50	329	central degrees explored, as found in other studies [6].			
51 52	330				
53 54	331	The latency and amplitude of TPEV showed no correlation with BML; however			
55	332	all patients presented latencies > 100ms and reduced amplitudes of P100.			
56 57	333	Although these results typically occur in optic neuropathies and visual cortex			
58 59	334	abnormalities, they may also be associated with macular disease, especially			
60	335	when interpreted in conjunction with retinal function tests (PERG and ffERG).			

Our results were in agreement with those found by da Costa et al in patients with mercury poisoning [18]. Despite the functional retinal involvement and in contrast to the results obtained by Ekinci et al [7,8], OCT examination did not reveal structural changes on RNFL, macular (CRT) and choroid thickness when the results were compared with normalized reference values [16,17]. These differences might be related to the intensity and the form of the intoxication, as our patients were exposed to higher levels of mercury in a short time compared with the long exposure times of the workers examined by Ekinci et al [7,8]. Limitations The study had some limitations. First, despite the initial assessments performed prior to the accident, there were no environmental measurements of mercury during the occupational incident. Secondly, it is probable that only the most-severely affected patients were evaluated by the IOBA. The time between the exposure and the IOBA assessment and the fact that patients lived far away from the IOBA was not conducive to a correct follow up. Thirdly, with respect to the electrophysiological tests, only ffERG values were compared with controls. Therefore, the results of the remaining comparisons should be considered with caution, since reference values were gathered from the literature. Finally, OCT technology has evolved so rapidly in recent years that, with current OCT based on swept-source or ultra-high resolution, it might have been possible to detect changes in the retinal or choroid structures. Conclusions VA was slightly affected, and VF defects were more frequent after severe acute occupational elemental mercury poisoning. The most prevalent VF alteration was peripheral reduction of the visual fields, but central involvement was also found. These defects could be either of retinal and/or neurological origin (visual pathway), considering the mfERG results.

1 2						
3	370	Visual alterations seemed to be independent of mercury levels. No structural				
4 5	371	anatomical retinal changes were found by SD-OCT, but the new OCT systems				
6 7	372	might allow the structural bases of these alterations to be established. Delayed				
8	373	chelation added no further benefits.				
10	374					
11 12	375	Acknowledgements				
13 14	376	The authors thank to Angela Morejon for her critical comments and helpful				
15 16	377	suggestions.				
17	378					
18 19	379					
20 21	380					
22	381	References				
24	382					
25 26	383	1. Satoh H. Occupational and environmental toxicology of mercury and its				
27 28	384	compounds. Ind Health. 2000; 38:153-164.				
29 30	385	2. Clarkson TW, Magos L, Myers GJ. The toxicology of mercury-current				
31	386	exposures and clinical manifestations. N Engl J Med. 2003; 349: 1731-1737.				
32 33	387	3. Khayat A, Dencker L. Organ and cellular distribution of inhaled metallic				
34 35	388	mercury in the rat and the Marmoset monkey (Callithrix jacchus): influence of				
36	389	ethylalcohol pretreatment. Acta Phannacol Toxicol. 1984; 55:145–52.				
37 38	390	4. Warfvinge K, Bruun A. Mercury accumulation in the squirrel monkey eye after				
39 40	391	mercury vapour exposure. Toxicology.1996;107:189–200.				
41 42	392	5. Warfvinge K, Bruun A. Mercury distribution in the squirrel monkey retina after				
43	393	utero exposure to mercury vapor. Environ Res. 2000; 83:102–9.				
44 45	394	6. Ventura DF, Costa MT, Costa MF, et al. Multifocal and full-field				
46 47	395	electroretinogram changes associated with color-vision loss in mercury vapor				
48 49	396	exposure. Vis Neurosci. 2004; 2: 421-429.				
50	397	7. Ekinci M, Ceylan E, Keleş S, et al. Toxic effects of chronic mercury exposure				
51 52	398	on the retinal nerve fiber layer and macular and choroidal thickness in industrial				
53 54	399	mercury battery workers. Med Sci Monit. 2014; 20:1284-1290.				
55 56	400	8. Ekinci M, Ceylan E, Cağatay HH, et al. Occupational exposure to lead				
57	401	decreases macular, choroidal, and retinal nerve fiber layer thickness in				
58 59 60	402	industrial battery workers. Curr Eye Res. 2014; 39: 853-858.				

1 2		
3	403	9. Sue YJ. Mercury. In: Nelson LS, Lewin NA, Howlan MA, Hoffman RS,
4 5	404	Goldfrank LR, Flomenbaum NE eds. Goldfrank's Toxicological Emergencies 9 th
6 7	405	ed. New York: McGraw-Hill; 2011: 1299-1307
8 9	406	10. Queipo Abad S, Rodríguez-González P, García Alonso JI. Evidence of the
10	407	direct adsorption of mercury in human hair during occupational exposure to
12	408	mercury vapour. J Trace Elem Med Biol. 2016; 36:16-21.
13 14	409	11. Bowman KJ. A method for quantitative scoring of the Farnsworth Panel D-
15 16	410	15. Acta Ophthalmol (Copenh). 1982; 60:907-916.
17	411	12. Vingrys AJ, King-Smith PE. A quantitative scoring technique for panel tests
18 19	412	of color vision. Invest Ophthalmol Vis Sci. 1988; 29:50-63.
20 21	413	13. McCulloch DL, Marmor MF, Brigell MG,et al. ISCEV Standard for full-field
22 23	414	clinical electroretinography (2015 update). Doc Ophthalmol Adv Ophthalmol.
23	415	2015; 130:1-12.
25 26	416	14. https://iscev.wildapricot.org/standards. Accessed 13 December 2018.
27 28	417	15. Maturi KR, Yu M, Weleber RG. Multifocal electroretinographic evaluation of
29	418	longterm hydroxychloroquine users. Arch Ophthalmol 2004; 122: 973–981.
31	419	16.http://www.topconmedical.com/_assets/cf/downloadFile.cfm?section=produc
32 33	420	tLit&file=3D-OCT-Series-Normative-Summary.pdf&parentUUID=55E1DBB5-
34 35	421	CB99-9BF1-88CBBBE970ECAB77. Accessed 13 December, 2018.
36	422	17. Kiernan DF, Hariprasad SM. Normative Databases in SD-OCT: A Status
37 38	423	Report. http://www.retinalphysician.com/articleviewer.aspx?articleID=104438.
39 40	424	Accessed 8 August, 2018.
41 42	425	18. da Costa GM, Anjos LM dos, Souza GS, et al. Mercury toxicity in Amazon
43	426	gold miners: visual dysfunction assessed by retinal and cortical
44 45	427	electrophysiology. Environ Res. 2008; 107: 98-107.
46 47	428	19. Kim MK, Kim US. The Parameters of Pattern Visual Evoked Potential in the
48 40	429	Severe Visual Loss Patients in Korean. Korean J Ophthalmol. 2015; 29:185-
50	430	189.
51 52	431	20. Nebbioso M, Livani ML, Steigerwalt RD, et al. Retina in rheumatic diseases:
53 54	432	standard full field and multifocal electroretinography in hydroxychloroquine
55	433	retinal dysfunction. Clin Exp Optom. 2011;94: 276-283.
57	434	21. Takahata N, Hayashi H, Watanabe S, et al. Accumulation of mercury in the
58 59	435	brains of two autopsy cases with chronic inorganic mercury poisoning. Folia
60	436	Psychiatr Neurol Jpn. 1970; 24: 59–69.

1 ว		
2 3	437	22. Asano S, Eto K, Kurisaki E, et al. Review article: acute inorganic mercury
4 5	438	vapor inhalation poisoning. Pathol Int. 2000; 50: 169-174.
6 7	439	23. Feitosa-Santana C, Costa MF, Lago M, et al. Long-term loss of color vision
8 0	440	after exposure to mercury vapor. Braz J Med Biol Res. 2007; 40: 409-414.
10	441	24. Aslan L, Aslankurt M, Bozkurt S,et al. Ophthalmic findings in acute mercury
11 12	442	poisoning in adults: A case series study. Toxicol Ind Health. 2015; 31:691-695.
13 14	443	25. Urban P, Gobba F, Nerudová J, et al. Color discrimination impairment in
15 16	444	workers exposed to mercury vapor. Neurotoxicology. 2003; 24:711-716.
17	445	26. Cavalleri A, Belotti L, Gobba F, et al. Colour vision loss in workers exposed
18 19	446	to elemental mercury vapour. Toxicol Lett, 1995; 77: 351–356.
20 21	447	27. Costa MF, Tomaz S, de Souza JM, Silveira LC, Ventura DF.
22 23	448	Electrophysiological evidence for impairment of contrast sensitivity in mercury
24	449	vapor occupational intoxication. Environ Res. 2008; 107: 132-138.
25 26	450	28. Harada, M. Minamata disease-methylmercury poisoning in Japan
27 28 29 30 31 32 33 34 35 36 27	451	caused by environmental-pollution. Crit. Rev. Toxicol.1995; 25: 1–24.
	452	30. Barboni MT, da Costa MF, Moura AL, et al. Visual field losses in workers
	453	exposed to mercury vapor. Environ Res. 2008;107:124-131.
	454	31. Korogi Y, Takahashi M, Hirai T, et al. Representation of the visual field in
	455	the striate cortex: comparison of MR findings with visual field deficits in organic
	456	mercury poisoning (Minamata disease). AJNR Am J Neuroradiol. 1997;18:
37 38	457	1127-1130.
39 40	458	32. Stetson DS, Albers JW, Silverstein BA, et al. Effects of age, sex, and
41 42	459	anthropometric factors on nerve conduction measures. Muscle Nerve.
43	460	1992;15:1095-104.
44 45	461	33. Sedano MJ, Canga A, de Pablos C, et al. Muscle MRI in severe Guillain-
46 47	462	Barré syndrome with motor nerve inexcitability. J Neurol. 2013;260:1624-30.
48 49		
50		
51 52		
53 54		
55 56		
57		
58 59		
60		

		Group 1	Group 2	p-value	Total patients
Ν		14 (40,3%)	15 (51 7%)	-	29
Age		40.93 ± 7.76	40 33 + 8 57	0 8464	40 62 + 8 05
Smoking		8 (57 1%)	10 (66 7)	0.8845	18 (62 1%)
Hypertens	sion	1 (7 1%)	1 (6 7%)	0 4694	2 (6 9%)
Dyslipider	nia	2 (14.3%)	2 (13.3%)	0.1288	4 (13.8%)
Hg Blood				0.0040	
(µg/L)		274.86 ± 201.8	503.13 ± 291.92	0.0219	392.93 ± 273.85
Hg Urine		00.04 \ 07.07		0.004.4	
(µg/g Cr)		99.21±97.27	492.93 ± 489.50	0.0014	302.86 ± 405.36
Erethism		11 (78.6%)	15 (100%)	0.0996	26 (89.7%)
	N	1(7.1%)	-	0.4828	1 (3.4%)
	SP	8 (57.1%)	6 (40%)	0.4661	14 (48.3%)
EIVIG	ASP 🤇	1 (7.1%)	6 (40%)	0.0801	7 (24.1%)
patterns	MM	2 (14.3)	2 (13.3%)	1.0	4 (13.8%)
	N/A	2 (14.3%)	1 (6.7%)	0.5977	3 (10.3%)
EMG	SM (ms)	30.63 ± 3.82	35.33 ± 8.26	0.6026	33.5 ± 7.13
CVA	MN (ms)	36.29 ± 6.19	40.24 ± 6.73	0.1123	38.78 ± 6.65
Psychiatric treatment		3 (21.4%)	10 (66.6%)	0.0253	13 (44.8%)

			_	
Table 1 Baceline characteristics	Inhorator	1 and algotromy	voaranh	/ findinge
	labulatory	anu electioni	voulabili	v innunnus.
,				

Group 1: Patients without chelation; Group 2. Chelated patients; EMG:

Electromyography; N: normal pattern; SP: sensorimotor polyneuropathy; ASP: axonal sensory polyneuropathy; MM: multiple mononeuropathy; N/A: not performed. EMG CV: Electromyography: conduction velocity assessment; SN: Sensory nerve; MN: Motor nerve.

Reference values [32,33]: normal velocity conduction in SN >40ms. Normal speed conduction in MN >49ms.

		Gro	up 1	Gro	p-value		Total p	Reference values		
N (eye	es)	2	8	30		-		5	-	
BCVA	Logmar	0.017 :	£ 0.151	0.078 :	± 0.865	0.6	221	0.048 ± 0.126		0.0 [6/6]
[Snell	en]	[0.887 :	£ 0.238]	[0.950 :	± 0.172]	0.0	551	[0.920 ± 0.205]		0.0 [0/0]
CVS		7 (5	0%)	6 (4	0%)	0.715		13 (4	4.8%)	-
CCI		1.872 -	£ 1.407	1.278 :	± 0.597	0.1	46	1.642 :	± 1.183	1.0
	Eye	RE	LE	RE	LE	RE	LE	RE LE		-
	CS3	9 (64.29%)	10 (71.43%)	7 (46.67%)	11 (73.33%)	0.4621	0.9999	16 (55.17%)	21 (72.41%)	-
CSA	CS6	12 (85.71%)	10 (71.43%)	10 (66.67%)	10 (66.67%)	0.3898	0.9999	22 (75.86%)	20 (68.97%)	-
	CS12	12 (85.71%)	11 (78.57%)	11 (73.33%)	11 (73.33%)	0.6513	0.9999	23 (79.31%)	22 (75.86%)	-
	CS18	13 (92.86%)	11 (78.57%)	13 (86.67%)	13 (86.67%)	0.9999	0.6513	26 (89.65%) 24 (82.75%)		-
	Eye	RE	LE	RE	LE	RE	LE	RE	LE	-
	MD	-5.52 ± 7.33	-6.88 ± 8.18	-5.76 ± 8.7	-6.86 ± 9.11	0.8614	0.8272	-5.64 ± 7.92	-6.87 ± 8.52	0.0
VEL	VFI	88.0 ± 18.4	85 ± 20.3	85.4 ± 24.1	85.7 ± 23.0	0.7093	0.4294	86.7 ± 21.2	85.4 ± 21.4	100%
	Total 8 (57.1%)		10 (6	10 (66.6%)		104	18 (62.1%)		-	
	Eye	RE	LE	RE	LE	RE	LE	RE	LE	-
OCT	CRT	249.8 ± 15.9	248.9 ± 18,8	249.0 ± 25.5	247.4 ± 23,5	0.9288	0.8537	249.4 ± 21,0	248.1 ± 20,7	233.6±19.7
	RNFLT	103.2 ± 13.2	100.4 ± 12.0	101.3 ± 7.77	100.1 ± 11.1	0.3536	0.3536	102.2 ± 10.5	100.2 ±11.3	100 ± 18

Table 2. Ophthalmic examination findings. BCVA; CV; CCI; CS; VFt; and OCT

Group 1: Patients without chelation. Group 2. Chelated patients. EMG: Electromyography; CVS: Color vision scores; CCI: Color confusion index; CSA: alterations in the achromatic contrast sensitivity; CS3: spatial frequency at 3cycles/degree; CS6: spatial frequency at 6 cycles/degree; CS12: spatial frequency at 12 cycles/degree; CS18: spatial frequency at 18 cycles/degree; VFt: visual field test; DM: Mean deviation; VFI: Visual field index; OCT: optical coherence tomography; CRT: central retinal thickness; RNFLT: retinal nerve fiber layer thickness;

Table.3. Correlation between BML and BCVA

BN	/L	Group 1	Group 2	Total patients		
BCVA	DE	r=-0.56	r=-0.34	r=-0.36		
	RE	p=0.038	p=0.204	p=0.049		
		r=-0.54	r=-0.32	r=-0.37		
		p=0.042	p=0.245	p=0.042		
	Clabal	r=-0.54	r=-0.30	r=-0.36		
	Giobai	p=0.042	p=0.274	p=0.048		

Group 1: Patients without chelation. Group 2. Chelated patients. BML: Blood mercury levels; BCVA: best corrected visual acuity.

or per peries on one

 Clinical Toxicology

Table 4. Full-field ERGs. Amplitude of a- and b-waves for the SRR, MSR, OP, Flicker 30Hz and SFCR

F	ull-field ERGs		Group 1	Group 2	p-values	Total patients	Control group (n=11)	p-values	95%CI
		RE	-15.62 ± 22.4	-13.98 ± 15.3	0.7819	-14.74 ± 18.6	-11.07 ± 53.48	0.745	
SDD	a-wave (µv)	LE	-7.76 ± 7.70	-8.21 ± 10.37	0.9015	-8.0 ± 9.06	-11.15 ± 60.88	0.783	
SKK		RE	270.21 ± 93.8	259.4 ± 60.8	0.7161	264.42 ± 76.3	177.55 ± 46.49	0.0011	[-136.8 to -36.9]
	D-wave (µv)	LE	261.53 ± 90.0	262.46 ± 66.3	0.975	262.03 ± 76.7	172 ± 45.57	0.0006	[-142.2 to -42.5]
		RE	-161.46 ± 69.1	159.13 ± 50.7	0.7296	-160.21± 58.8	-198 ± 50.49	0.065	
MOD	a-wave (µv)	LE	-166.86 ± 71.2	-152.88 ± 57.9	0.475	-159.37 ± 63.6	-155 ± 75.88	0.857	
INISIC	b-wave (μV)	RE	414.69 ± 106.4	414.66 ± 68.65	0.7821	414.67 ± 86.4	366.98 ± 138,9	0.115	
		LE	407.15± 102.6	401.13 ± 86.61	0.747	403.92 ± 92.6	381.48 ± 145.9	0.606	
OP	Amplitude (μ V)	RE	564.66 ± 282.2	574.68 ± 239	0.9197	570.02 ± 254.9	206.24 ± 56.85	0.0001	[259.7-467.8]
		LE	519.66 ± 298.1	531.3 ±185.4	0.9002	525.93 ± 239.4	184.03 ± 54.08	0.0001	[248.69-453.91]
Flicker	h w o v o (w) ()	RE	94.74 ± 39.0	86.64 ±15.1	0.4918	90.40 ± 28.5	82.81± 22.27	0.431	
30Hz	D-wave (µv)	LE	98.33 ± 41.3	83.03 ± 22.4	0.2259	90.13 ± 32.8	82.6 ± 18.63	0.762	
		RE	-14.51± 5.74	-12.05 ± 5.65	0.2642	-13.19 ± 5.72	-16.64 ± 2.57	0.062	
	a-wave (µv)	LE	15.34 ± 5.55	-12.13 ± 6.45	0.1731	-13.62 ± 6.15	-18.08 ± 7.37	0.059	
SFUR	h w o v o (w) ()	RE	72.42 ± 26.24	58.74 ±17.4	0.2135	65.09 ± 22.6	64.43 ± 8.54	0.926	
	D-wave (µv)	LE	72.69 ± 28.19	56.55 ± 19.2	0.0851	64.04 ± 24.7	57.65 ± 14.49	0.426	

SRR: scotopic rod response; MSR: maximal scotopic response; OP: oscillatory potential; Flicker 30Hz; SFCR: single flash cone response

BML			Gro	un 1	Gro	2	Total patients		
Full-f	Full-field ERGs			up i	GIU	up z			
CDD	h wava (u)/)	RE	r=0.49	p=0.084	r=-0.35	p=0.197	r=-0.02	p=0.918	
SKK		LE	r=0.61	p=0.025	r=-0.12	p=0.648	r=0.18	p=0.353	
MCD		RE	r=0.61	p=0.024	r=-0.17	p=0.528	r=0.08	p=0.918	
INISK	D-wave (µv)	LE	r=0.81	p=0.001	r=-0.02	p=0.935	r=0.26	p=0.171	
Eliokor 20 Hz	b-wave (μV)	RE	r=-0.06	p=0.825	r=-0.51	p=0.047	r=-0.24	p=0.214	
FIICKEI JU HZ		LE	r=0.06	p=0.841	r=0.08	p=0.772	r=-0.04	p=0.812	
	Amplitude () ()DE	RE	r=0.06	p=0.023	r=-0.57	p=0.024	r=-0.05	p=0.771	
UP	Amplitude (µv)RE	LE	r=0.70	p=0.007	r=-0.47	p=0.073	r=0.10	p=0.607	
0500		RE	r=0.19	p=0.531	r=-0.31	p=0.259	r=-0.19	p=0.327	
SFUR	b-wave (µv)	LE	r=0.26	p=0.380	r=-0.07	p=0.787	r=0.07	p=0.708	

Table 5. Correlation BML and b-wave amplitudes for the SRR, MSR, OP, Flicker 30Hz and SFCR

 Group 1: Patients without chelation. Group 2. Chelated patients. BML: Blood mercury levels; SRR: scotopic rod response; MSR: maximum scotopic response; OP: oscillatory potential; Flicker 30Hz; SFCR: single flash cone response

Page 21 of 21

Clinical Toxicology

Table 6. PERG test (P50 and N95 components) and transient pattern visual evoked potential (tPVEP)

PERG		1	Group 1 Non-chelated	Group 2 Chelated	p-values Total patients Re		Reference values p-val		p-values		95% CI					
DEO	Amplit	do(u)/	, , RE		4.2 ± 1.59	4.41 ± 1.5	0.9805	4.32 ± 1.51	76.45		0.0004		[2.51-4.04]			
P50	Ampilu	ude (µv)	LE		4.56 ± 1.93	4.19 ± 1.72	0.6044	4.35 ± 1.78		7.0 ± 1.5		01	[2.44-4.06]			
NOF	A no na lite	uda ()()	RE		-5.98 ± .548	-5.84 ± .314	0.4719	-5.90 ± .293	4	7 . 0 2	0.00	04		[4.04-4.35]		
1195	Ampilu	ude (µv)	LE		-5.04 ± .688	-5.30 ± .637	0.1126	-5.19 ± .460	- 1	.1 ± 0.5	0.00	01		[3.30-3.67]		
	tPVEP			Group 1 Non-chelated	Group 2 Chelated	p-values	Total patien	Total patients		nce p-value		lues	95% CI			
				RE	9.72 ± 4.69	7.97 ± 3.94	0.2853	8.82 ± 4.33	8 82 + 4 33		Valaco			[2.78-7.89]		
P100-	-Da 60	Amplitud	le (μV)	LE	8.82 ± 4.54	8.11 ± 4.32	0.6467	8.45 ± 4.36		-14.16 ± 6.11		5.11 0.00		[3.14-8.27]		
RI	Lob		(ma)	RE	116.78 ± 13.24	113.6 ± 6.39	0.4211	115.17±10.21		100 50 1 4 00		4.60 0.0004		[-11.8 to -5.32]		
	Latency (ms)		(ms)	LE	119.4 ± 11.93	117.5 ± 7.51	0.5993	118.06 ± 9.7	0.71		4.02 0.0		JU1	[-14.6 to -8.33]		
		Amplitud	$\alpha(u)$	RE	8.93 ± 4.07	8.83 ± 3.67	0.9476	8.88 ± 7.44	1/ 16 + 6 11		1/ 16 + 6 11		<u>116 + 6 11</u> 0.0)09	[2.23-8.33]
P100-	-Da 60	a 60 Amplitude (µV)		LE	8.41 ± 3.36	7.61 ± 3.97	0.5608	8 ± 3.65		14.10 ± 0.11		0.00	001	[3.68-8.63]		
LL	_ob	Latonov (mc)		RE	114.64 ± 12.15	113.4 ± 5.73	0.8264	114 ± 9.24		106 56 +	+ 4 62 0 00		101	[-10.5 to -4.37]		
		Latency	(115)	LE	119.4 ± 12.31	117.5 ± 8.49	0.6173	118.47 ± 10.	36	100.00 ±	5 ± 4.02 0.0		101	[-15.2 to -8.58]		
		Amplitud		RE	8.1 ± 4.3	8.47 ± 3.23	0.7926	8.29 ± 3.72	2	16 54 +	6 01	1 0.0001		[5.49-11.01]		
P100-	-Da 30	Amplituu	e (μv)	LE	7.65 ± 4.4	7.24 ± 3.53	0.7835	7.44 ± 3.91		10.54 1	0.31			[6.32-11.8]		
RI	Lob	Latency	(me)	RE	116.57 ± 6.81	117 ± 5.83	0.8566	116.79 ± 6.2	21	112 12 +	1 71	0.00	003	[-7.11 to -2.22]		
		Latency	(113)	LE	124.43 ± 18.42	120.47 ± 6.48	0.9474	122.38 ± 13.	51	112.12 ± 4.11		0.00	001	[-14.3 to -6.15]		
		Amplitud		RE	8.2 ± 4.56	7.71 ± 3.56	0.7471	7.94 ± 4.01		16.54 ± 6.91 0		0.00	101	[5.81-11.39]		
P100-	-Da 30	Amplituu	e (μv)	LE	6.85 ± 4.74	6.14 ± 2.73	0.6222	6.48 ± 3.78	3			0.0001		[7.29-12.82]		
LL	_ob	Latency	(ms)	RE	116 ± 8.03	118.2 ± 6.97	0.4367	117.14 ± 7.4	15	112 12 +	4 71	0.00)04	[-7.71 to -2.33]		
		Latency (ms)		LE	126.14 ± 24.24	119.93 ± 6.13	0.5524	122.93 ± 17.	36 112.12 ± 4.71		0.0001		[-7.71 to -2.33]			

2	
3	
4	
5	
6	
0	
/	
8	
9	
10	
11	
12	
12	
15	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
33	
24	
54	
35	
36	
37	
38	
39	
40	
- 1 0 //1	
41	
42	
43	
44	
45	
46	

Group 2 Group 1 Group 3 Reference Ring Eye p-value 95%CI p-value Non-chelated Chelated **Total patients** values 45.30± 8.96 38.92 ± 12.4 0.1415 42.35 ± 10.95 [12.69 to 23.37] RE 0.0001 Ring 5-10° $60.38 \pm 7.65^*$ Amplitude 0.2596 LE 45.8 ± 7.22 41.2 ± 12.58 43.74 ± 10.10 0.0001 [11.58 to 21.70] P1-N1 43.01 ± 12.77 RE 46.28 ±10.06 39.2 ±14.89 0.163 0.4821 -Ring 10–15° 45.12 ± 7.88* LE 46.7 ± 6.95 38.7 ± 14.59 0.1728 43.06 ± 11.62 0.4614 _ RE 12.9 ± 2.48 11.7 ± 3.89 0.3513 12.36 ± 3.20 [22.95 to 29.09]

0.2608

11.7 ± 3.82

Peripheral Rings : Ring $3 = 5^{\circ} - 10^{\circ}$; Ring $4 = 10^{\circ} - 15^{\circ}$; and Ring $5 = > 15^{\circ}$ Amplitude P1-N1 (nV/deg2).

LE

 13.2 ± 2.0

Ring > 15°

URL: http://mc.manuscriptcentral.com/lclt E-mail: ICTX-peerreview@journals.tandf.co.uk

12.5 ± 3.0

0.0001

0.0001

[22.84 to 28.92]

 $\textbf{38.38} \pm \textbf{7.08^*}$

Table 7. mERG values in peripheral rings and reference values