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A B S T R A C T

This work calculates the collapse load and collapse mechanism of 2D frames with slender structural members
and uniformly distributed loads. The search for the collapse mechanism and the collapse load is carried out
using step by step method: the load factor is increased and at each step the balance and compatibility equations
must be satisfied that the value of the plastic moment is not exceeded in any section. It is verified that the
results are different in the cases of point loads and uniform distributed loads, both from a qualitative and
quantitative point of view.
1. Introduction

Steel framed structures show high non-linear behavior due to the
plasticity of the material and the slenderness of its elements and are
always the test bed for many areas of research. The initial development
of many structural software is based on the study of this structural
typology.

At the beginning of the study of the behavior of steel structures, the
terminology plastic hinge was used to indicate a section (zero length)
in which all its points reach the plastic regime. The term collapse
mechanism was introduced by Kazinczy [1] in 1914 who was the first
to investigate the reserve of plastic strength in a hyperstatic beam
structure. In limit analysis it is common to adopt the plastic hinge
approach to describe the inelasticity of the material [2].

Plastic behavior of structures in general and of framed structures in
particular has been dealt with in many text books. The first reference
to limit analysis came from Van den Broek [3], followed by the contri-
butions of Baker and Heyman [4], Horne [5], Neal [6], and Hodge [7],
all between 1955 and 1960. Considering only the bending effect, the
other effects are neglected. By its simplicity, this approach is popularly
applied to 2D steel frames.

The great momentum acquired by limit analysis was possible thanks
to the rigorous establishment of the basic theorems, which was carried
out by Gvozdev [8], in 1938. Basic theorems: static, kinematic and
uniqueness, which give rise to kinematics or direct method based on
the mechanism combination method [9–11].

There are two fundamental theorems: static and kinematic. This
leads to two corresponding approaches: the static approach which
gives rise to step-by-step methods; and the kinematic approach, which
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gives rise to the so-called direct methods. The term ‘‘direct’’ means
that the collapse load factor is found directly without calculating any
intermediate loading state of the structures. Both the static method and
the kinematic method have been continuously exploited and improved
for more than 50 years until today, all of them have difficulties in
solving large-scale problems, with many possible plastic hinges.

The classical formulation of the kinematic or direct method has
important drawbacks from the point of view of its practical application:
first, it is neither systematic nor general; and secondly, it requires
testing possible collapse mechanisms, which even with few plastic
hinges implies many possible collapse mechanisms that will have to
be tested and verified. Recent methodologies [12] have reduced these
drawbacks, as demonstrated for cases of simple structures.

On the other hand, step-by-step methods based on the matrix formu-
lation are systematic but require employing a large number of degrees
of freedom, since a solution of displacements is not always necessary in
a plastic calculation problem. In a first analysis, it may be interesting
to estimate the collapse mechanism and the maximum applicable load
level. They are efficient for cases of concentrated load in the nodes of
the structure [13,14], but not very precise for the analysis of structures
with uniformly distributed loads. New non-matrix ‘‘vector’’ methodolo-
gies (requiring a smaller number of unknown quantities) have been
efficient for these load cases, applied to simple cases [15].

In general, the plastic zone or plastic hinge approach is adopted to
capture both the material inelasticity and the geometric non-linearity
of a framed structure. In the plastic hinge approach, only one beam–
column element per physical member can model the nonlinear proper-
ties of the structures. It leads to a significant reduction in calculation
time.
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Fig. 1. Methodology. Beam/column element.
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In the case of arbitrary loads, step-by-step methods are cumbersome
nd involve many difficulties, which is why the distributed load is usu-
lly replaced by concentrated loads at the nodes in statically equivalent
heory [16]. Compared to other works [17] this work treats uniform
oads as distributed loads and not as equivalent point loads. It was
ound that it is not equivalent and it is a topic that represents an
nteresting challenge. The main objective of this work is: to carry out
he limit analysis of building structures, with many degrees of freedom
nd uniform distributed loads with a simple and precise methodology.

This paper has been organized as follows: after this brief introduc-
ion, the methodology is applied to various types of planar building
rames. Finally, the main conclusions and contributions of the work are
ummarized.

. Methodology

In this section, the calculation hypotheses are established, the ob-
aining of the equilibrium equations is explained and the resolution of
he problem is proposed by means of step by step techniques [18,19].

.1. Hypotheses

• The beams and columns are assumed to be slender rectilinear
lines of constant section.

• They are assumed to be free of residual or initial stresses.
• Plastic collapse implies unlimited displacement at constant load,

and the level of load that causes it is called the collapse load.
• The value of the maximum bending moment that the section can

transmit is called plastic moment (𝑀𝑝,𝑘).
• When the bending moment reaches the value of the plastic mo-

ment, the rotation of the section where it occurs can increase
indefinitely.

• The plastic moment depends on the material yielding stress and
the cross-sectional area.

• The formation of each plastic hinge is supposed to take place in
a sudden and concentrated way in the section where the bending
moment reaches the value of the plastic moment.

• The hypothesis of small displacements and rotations of the sec-
tions of the structure at the moment of collapse is assumed;
therefore, the accumulated rotations between beams or columns
in the plastic hinges must also be small.

.2. Equilibrium equations

To obtain the equations of equilibrium, the matrix method of
nalysis of beam/column structures is considered, but in its vector
ormulation [15,20]. The balance of each bar is considered as follows
see Fig. 1). The end forces are calculated and the force vector is
ormed:
2
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where (𝑁𝑘𝑖, 𝑁𝑘𝑗) are the axial forces, (𝑉𝑘𝑖, 𝑉𝑘𝑗) are the shear forces,
(𝑀𝑘𝑖,𝑀𝑘𝑗) are the bending moments at the ends of the beam/column
(𝑘) and being 𝐿𝑘 the length of the structural member (𝑘); the first
subscript indicates the element bar (𝑘) and the second superscript
indicates the node (𝑖, 𝑗), (𝑞) is the transversal uniform distributed load.
All magnitudes are expressed as functions of the axial force (𝑁𝑘) and
the values of the bending moments in both end sections (𝑀𝑘𝑖,𝑀𝑘𝑗) and
the applied load (𝑞).

The previous vector is expressed in the coordinates (𝑥, 𝑦) of the
beam/column, and must be expressed in a global coordinate system
(𝑋, 𝑌 ) common to the structure, through the corresponding coordinate
transformation (𝑻 (𝛼)):

𝑭 𝑘 = 𝑻 𝑻 (𝛼) ⋅ 𝒇𝑘 (2)

where (𝑭 𝑘) are the forces (and moment) at the ends of the bar k,
expressed in a common system for all the members of the structure,
and (𝑻 𝑻 (𝛼)) indicates the operation of transposing rows and columns
in the matrix (𝑻 (𝛼)) of change of coordinates.

Finally, the vector of internal forces (𝑭 𝑖𝑛𝑡) must be assembled. It
alances the external loads (𝑭 𝑒𝑥𝑡) applied at the nodes of the structure:

𝑖𝑛𝑡 = 𝑭 𝑒𝑥𝑡 (3)

In the case of point loads, it is known that the sections of the
tructure that are candidates for forming a possible plastic hinge are:
he nodes (joints between beams/columns), the fixed supports, the
ection of application of the loads and section changes [21,22], and
he total number of possible plastic hinges is called (npPH).

In the case of beams with distributed load, plastic hinges can
dditionally be formed in the intermediate sections of the beams with
pplied uniform distributed load. Logically, it is then necessary to carry
ut the corresponding checks from the bending moments calculated at
he nodes of the structure [23,24].

It is important to bear in mind that if a plastic hinge is produced
n an intermediate section, then its location at the beam (given by
arameter 𝑥𝑘) can be modified during the plasticizing process, up until
he formation of the collapse mechanism.

𝑘 =
𝑀𝑘𝑗 −𝑀𝑘𝑖

𝐿𝑘
𝑥𝑘 +𝑀𝑘𝑖 +

𝜆𝑞𝐿𝑘𝑥𝑘
2

−
𝜆𝑞𝑥2𝑘
2

𝑥𝑘 =
𝜆𝑞𝐿2

𝑘 − 2𝑀𝑘𝑖 + 2𝑀𝑘𝑗
(4)
2𝜆𝑞𝐿𝑘
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where 𝜆 is the load factor, (𝑀𝑘) is the maximum bending moment in
the beam k and (𝑥𝑘) is the section where the maximum value occurs.

2.3. Compatibility equations

From Eqs. (3), the rows associated with the reactions in the supports
are eliminated. The resulting equations only depend on the axial forces
and the bending moments in the beams/columns, and the applied loads.
And the Virtual Works Principle (VWP) (see Annex A) is formulated
as [21]:

0 =
𝑛𝑏
∑

𝑘=1

(

∫

𝐿𝑘

0
𝑀𝑘(𝑥)

𝛿𝑚𝑘(𝑥)
𝐸𝐼𝑘

𝑑𝑥 + 𝛿𝑚𝑘𝑖𝜃𝑘𝑖 + 𝛿𝑚𝑘𝑗𝜃𝑘𝑗

)

+
∑

𝑘
𝑚𝑘 ⋅ 𝜃𝑘

𝑘 =
(𝑚𝑘𝑗 − 𝑚𝑘𝑖)

𝐿𝑘
𝑥𝑘 + 𝑚𝑘𝑖

(5)

where 𝑛𝑏 is the number of beams and columns in the structure, 𝑀𝑘(𝑥) is
the bending moment in the beams and columns of the structure, 𝛿𝑚𝑘(𝑥)
is the bending moment of the auxiliary or virtual problems, 𝛿𝑚𝑘𝑖 is the
virtual moment at node i of bar k, and 𝜃𝑘𝑖 is the accumulated rotation
in the plastic hinges [22].

From a mathematical point of view, the null space of matrix A
(see Annex B) allows sets of values of linearly independent (virtual
problems) to be obtained that, through the Virtual Works Principle
(VWP), allow the calculation of the necessary compatibility equations
to be systematized [23,24].

Finally, the steps in order to apply the methodology correctly is
summarized:

• Step 1: all the data of the problem are defined, geometric and
mechanical properties of the beams and columns, elastic and
plastic properties of the material, supports and loads applied to
the structure.

• Step 2: the internal forces vector of each beam/column is calcu-
lated.

• Step 3: vector of equivalent forces of the structure is assembled
(balance equations at the structure nodes).

• Step 4: from the previous equations, the supports’ equations are
eliminated, resulting in the minimum number of equilibrium
equations to solve the limit analysis problem.

• Step 5: next the Virtual Works Principle (VWP) is applied for each
beam/column based on the equations indicated in annexes A and
B, then the compatibility equations of the problem are obtained.

• Step 6: once all the equations are in place, the process of forming
plastic hinges is systematized, step by step method, until the
structure becomes a mechanism.

• Step 7: final, problem solved, the collapse mechanism and the
associated collapse load factor are obtained, and all intermediate
results during the loading and hinge formation process.

3. Numerical results and discussion

In this section, the methodology is applied to the study of five
application problems.

3.1. Numerical data

The numerical data in common for all the problems are: 𝐸 = 3 ⋅
108 kN/m2; 𝐹 = 500 kN; 𝑞1 = 10 kN/m; 𝑞2 = 5 kN/m; where 𝐸 is Young’s

odule and 𝑞1, 𝑞2 are two uniformly distributed loads.
All the columns have the same mechanical and geometric proper-

ies, they are: 𝐿𝑐 = 3m; 𝑀𝑝𝑐 = 1800 kN m; 𝐼𝑐 = 54000 cm4 where 𝐿𝑐
is the length of the columns; 𝑀𝑝𝑐 is the columns plastic moment and
column inertia moment.

All the beams have the same mechanical and geometric properties,
they are: 𝐿𝑏 = 4m; 𝑀𝑝𝑏 = 450 kN m; 𝐼𝑏 = 6750 cm4 where 𝐿𝑏 is the
length of the beams; 𝑀𝑝𝑏 is the beams plastic moment and beam inertia
moment.
3

𝑥

Table 1
3 × 4 frame. Collapse step by step.

Step 𝜆𝑖
𝑥𝑎
𝐿𝑏

Step 𝜆𝑖
𝑥𝑎
𝐿𝑏

Step 𝜆𝑖
𝑥𝑎
𝐿𝑏

1 1.0 – 11 1.4862 – 21 2.4344 0.4449
2 1.2916 – 12 1.5037 – 22 2.4401 0.4456
3 1.3100 – 13 2.2584 – 23 2.4440 0.4460
4 1.3149 – 14 2.2650 0.4246
5 1.3686 – 15 2.2683 0.4250
6 1.3742 – 16 2.2775 0.4261
7 1.3797 – 17 2.2826 0.4268
8 1.3816 – 18 2.3032 0.4292
9 1.4007 – 19 2.4255 0.4437
10 1.4588 – 20 2.4281 0.4442

Table 2
3 × 4 frame. Collapse load factor.

This work Casciaro & Garcea [25] CEPAO [26] Difference

𝜆𝑐 2.4440 2.4612 2.4612 0.70%

Table 3
4 × 6 frame. Collapse load factor.

This work Casciaro & Garcea [25] CEPAO [26] Difference

𝜆𝑐 1.7796 1.8610 1.8610 4.57%

3.2. Problem 1

In this section, a 3 × 4 frame is solved, the base of four columns
re fixed, concentrated loads and uniform distributed loads are applied
see Fig. 2).

The methodology outlined in Section 2 is applied using a Mathematic
otebook that systematically solves the plastic problem. To do so, it
irst calculates the equilibrium equations and compatibility equations
or this problem. Limit analysis steps are included in Table 1.

In Table 1 not only the successive values of the load factor are
ndicated but also the location of the internal plastic hinge a (bounded
y 𝑥𝑎 relative to 𝐿𝑏 and measured from left to right in the beam
lement), see Fig. 2.

In this case, the collapse mechanism of the structure involves the
ormation of plastic hinges in sections show in Fig. 2, and the collapse
oad factor is in Table 2.

It is interesting to note that at the end of the structure loading
rocess, all the internal hinges are formed in the same location in the
orresponding beam 𝑥 = 0.4460 ⋅ 𝐿𝑏, logically due to the geometry and
he support and load conditions of the structure.

.3. Problem 2

In this section, this work methodology is used to solve a 4 × 6 planar
rame with concentrated loads as well as uniform distributed loads.
ig. 3 not only shows the definition of the problem but also the plastic
inges that give rise to the collapse mechanism of the structure.

The Table 3 shows the numerical results and compares them with
he indicated references. It is verified that there are not only quan-
itative but also qualitative differences, since the intermediate plastic
inges due to the distributed loads are not formed in the central section
f the beam but approx for 𝑥 = 0.3508 ⋅ 𝐿𝑏.

.4. Problem 3

The structure that is resolved in this section is a 5 × 9 planar frame,
ee Fig. 4. The collapse mechanism shows that the intermediate plastic
inge forms closer to the left end of the beam, in this case at a distance

= 0.1914 ⋅ 𝐿𝑏 (see Table 4).
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Fig. 2. 3 × 4 frame. Plastic hinges.

Fig. 3. 4 × 6 frame. Plastic hinges.
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Fig. 4. 5 × 9 frame. Plastic hinges.
Table 4
5 × 9 frame. Collapse load factor.

This work Casciaro & Garcea [25] CEPAO [26] Difference

𝜆𝑐 1.1470 1.2000 1.2000 4.62%

3.5. Problem 4

The next 6 × 10 frame type is solved. Fig. 5 shows the problem
efinition and plastic hinges location for the collapse mechanism. The
able 5 includes the collapse load factor value.

And the intermediate plastic hinges due to the distributed loads are
ormed approx for 𝑥 = 0.1778 ⋅ 𝐿𝑏 relative to beam length.

.6. Problem 5

The resolution of a 2 × 10 frame with point loads and distributed
loads is considered in this section, see Fig. 6. Table 6 shows the numeric
results where a difference of 12.33% is observed.
5

Table 5
6 × 10 frame. Collapse load factor.

This work Casciaro & Garcea [25] CEPAO [26] Difference

𝜆𝑐 1.1095 1.1532 1.1532 4.85%

Table 6
2 × 10 frame. Collapse load factor.

This work Casciaro & Garcea [25] CEPAO [26] Difference

𝜆𝑐 1.9822 2.0444 2.0444 12.33%

After applying the same methodology as in the previous section,
a collapse load factor 𝜆𝑐 = 1.9822 is obtained and the intermediate
plastic hinge forms at a distance 𝑥 = 0.3849 ⋅ 𝐿𝑏. The plastic collapse
mechanism is formed that involves the formation of hinges as indicated
in Fig. 6. One of the advantages of the methodology is that the uniform
distributed loads case is solved using the same discretization of nodes
and elements that for concentrated loads case.
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Fig. 5. 6 × 10 frame. Plastic hinges.
Step by step method allows the behavior of the structure to be
known as the load increases. It facilitates the study of real cases, since
more beams/columns and loads can be used with uniform distributed
loads. And it is immediate to obtain the safety factor of the elastic-linear
design.

4. Conclusions

The classic formulation for plastic methods of planar frames is very
unsystematic. It is based on the Virtual Works Principle (VWP) and use
equilibrium equations to find the structure’s collapse mechanism and
requires using virtual problems in displacements (virtual mechanisms).
Technique based on testing possible mechanisms until the collapse
mechanism is found and it is much more complicated if it would had
distributed loads.

However, this work applies the Virtual Works Principle (VWP)
during the loading process. In order to avoid having to test possi-
ble mechanisms one by one, it leads directly to the collapse mecha-
nism corresponding to the structure with given loads, geometry and
boundary conditions.
6

Table 7
Collapse load factor (𝜆𝑐 ), comparative (problems 1 to 5).

Problem This work Casciaro & Garcea [25] CEPAO [26] Difference

1 2.4440 2.4612 2.4612 0.70%
2 1.7796 1.8610 1.8610 4.57%
3 1.1470 1.2000 1.2000 4.62%
4 1.1095 1.1532 1.1532 4.85%
5 1.9822 2.0444 2.0444 12.33%

This work systematizes the plastic analysis of the structure using a
step by step vector method. It is applied to the study of flat frames of
buildings, the limit analysis technique is applied with distributed loads
(common in this type of structure). And the method presented in this
work quickly provides the safety factor for a linear-elastic design of the
structure under study.

Summary Table 7 shows that the results obtained here differ from
those included in the references. It is proven that replacing some types
of loads in the structure with others that are theoretically equivalent
leads to different results. It is found that this difference is greater as
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Fig. 6. 2 × 10 frame. Plastic hinges.

he complexity of the building increases and that it could also imply
nsafe analyzes of the structure.
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Annex A. Compatibility equations (CEs)

The Virtual Works Principle (VWP) requires auxiliary problems in
balance to be posed. By posing virtual problems with concentrated
forces and moments, the calculation of the deformation energy can be
systematized.

• Concentrated loads
If the structure of the problem of interest only has concentrated
loads, the following deformation energy expression results for
each beam:

∫

𝐿𝑘

0
𝑀𝑘(𝑥)

𝛿𝑚𝑘(𝑥)
𝐸𝐼𝑘

𝑑𝑥 =
𝐿𝑘

6𝐸𝐼𝑘
(𝛿𝑚𝑘𝑖(2𝑀𝑘𝑖 +𝑀𝑘𝑗 )

+ 𝛿𝑚𝑘𝑗 (𝑀𝑘𝑖 + 2𝑀𝑘𝑗 )) (6)

• Uniform distributed load
If the structure beam is requested by uniform distributed load, the
following expression is as follows::

∫

𝐿𝑘

0
𝑀𝑘(𝑥)

𝛿𝑚𝑘(𝑥)
𝐸𝐼𝑘

𝑑𝑥 =
𝐿𝑘

6𝐸𝐼𝑘
(𝛿𝑚𝑘𝑖(2𝑀𝑘𝑖 +𝑀𝑘𝑗 )

+ 𝛿𝑚𝑘𝑗 (𝑀𝑘𝑖 + 2𝑀𝑘𝑗 ) +
𝑞𝑦𝐿2

𝑘
4

(𝛿𝑚𝑘𝑖 + 𝛿𝑚𝑘𝑗 ))

(7)

where 𝑀𝑘(𝑥) are the moments of the problem of interest, 𝛿𝑚𝑘(𝑥) are
he moments of the virtual problem and 𝛿𝑚𝑘𝑖; 𝛿𝑚𝑘𝑗 , the bending mo-
ents at the end sections and 𝑞𝑦 is the value of the uniform distributed

oad requested at the beam.

nnex B. Null space of a matrix

The solution sets of homogeneous linear systems provide an impor-
ant source of vector spaces. Let 𝐴 be an 𝑚 by 𝑛 matrix, and consider
he homogeneous system:

⋅ 𝑥 = 0 (8)

Since 𝐴 is 𝑚 by 𝑛, the set of all vectors 𝑥 which satisfy this equation
orms a subset of 𝑅𝑛 (it clearly contains the zero vector). This subset
s nonempty and forms a subspace of 𝑅𝑛, called the nullspace of the
atrix 𝐴, and is denoted as 𝑁(𝐴).

Thus, the solution set of a homogeneous linear system forms a vector
pace. Note that if the system is not homogeneous, then the set of
olutions is not a vector space, since the set will not contain the zero
ector.
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