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The Q8
Q9

Ala
®
sil infusion was on the market for clinical use under the Medical Devices

Directive (MDD) 93/42/EEC as an irrigating solution based on
polydimethylsiloxane (PDMS). The product was withdrawn in 2016, and to the
best of our knowledge, it did not cause any health damage. A bibliographic review
and experimental analysis were conducted to evaluate whether this CE-marked
product could have been used in patients under the current Medical Devices
Regulation (MDR) legislation. Only one study related to Ala

®
sil clinical use was

found, describing a pilot series of five patients. The authors rated the product as
not helpful in three out of the five cases for internal searching of retinal breaks and
in four out of the five cases for drainage of subretinal fluid. No other scientific
papers or documentation was found regarding Ala

®
sil’s safety. Nevertheless, the

product was introduced in the market after achieving the CE marking. Analytical
results from gas chromatography–mass spectrometry (GC-MS) and matrix-
assisted laser desorption ionization (MALDI) performed by our group showed
that the polymer has a low molecular weight of 1,000 g/mol. Several linear and
cyclic low-molecular-weight components (LMWCs) were identified as impurities
ranging from L3 to D8, with a molecular weight below 600 g/mol. The Ala

®
sil

sample was cytotoxic after 24 h of cell culture but non-cytotoxic after 72 h,
probably due to the cellular regeneration capacity of an immortalized cell line.
Tissular cytotoxicity Q10revealed an increased apoptosis rate but without
morphological modifications. Although Ala

®
sil cannot be classified as

cytotoxic, this substance appears to increase retinal cell death processes. This
study supports the notion that theMDDwas not functioning adequately to ensure
the safety of medical devices. However, the current MDR 2017/745 imposes
stricter standards to prevent the commercialization of medical devices without
high-quality preclinical and clinical information, as well as precise clinical
verification for their use, information not available for Ala

®
sil infusion. Q11
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1Q13 Introduction

Ala®sil infusion, according to its instructions for use (IFU), was
an irrigation solution based on polydimethylsiloxane (PDMS)
(Alamedics, 2023). PDMS is commonly used in medical devices
as an infusion liquid because of its biocompatibility, chemical
stability, and low toxicity (Miranda et al., 2022). As an infusion
fluid, PDMS can be used as a drug delivery vehicle and a blood-
contacting biomaterial (Subramaniam and Sethuraman, 2014). In
ophthalmology, PDMS is used as a material in medical devices
such as intraocular lenses, contact lenses, and vitreous substitutes
(Lin et al., 2014; Jellali et al., 2017; Chen et al., 2021). As silicone oil,
PDMS has been used as a long-term tamponade to treat
complicated vitreoretinal diseases (Januschowski et al., 2018;
Chen et al., 2021). However, PDMS chains with molecular
weight <1 kDa (low-molecular-weight components) are
synthesized during the manufacturing process (Mendichi et al.,
2019) and can increase emulsification and, if diffused into ocular
tissues, create inflammatory reactions (Nakamura et al., 1991;
Pastor et al., 1998; Mendichi et al., 2019; Dresp, 2021; Steel
et al., 2021).

During the time of Ala®sil commercialization, the Medical
Devices Directive (MDD) 93/42/EEC was in force. However, its
application revealed several formal defects not only in the
ophthalmic products but also in others (Januschowski et al.,
2018; The International Consortium of Investigative Journalists,
2023). In ophthalmology, toxic batches of perfluorocarbon liquids
(PFCLs) caused hundreds of blind cases worldwide, causing a real
concern among retinologists (Méndez-Martínez et al., 2018;
Tobalem et al., 2020). Toxicity was not revealed by the
cytotoxicity tests used, although it was accomplished with the
ISO guidelines (Srivastava et al., 2018; Menz et al., 2019), and
new methodologies for cytotoxic and chemical evaluation have
had to be developed, allowing the specific identification of the
impurities causing these toxic effects (Srivastava et al., 2020;
Coco-Martin et al., 2021). In this context, the value of biological
tests is emphasized, employing cells in direct contact. This approach
is deemed significant because this particular medical device directly
engages with the retina during its clinical application (Ruzza et al.,
2019; Romano et al., 2021). Other authors have suggested that
healthcare providers should require purity tests from companies
to better select the products to use for their patients (Steel et al.,
2021). However, the confidence of doctors and surgeons must rest
on what the CE marking represents, which is an authentic guarantee
of quality and safety. This marking must be a sign of trust between
the patients and healthcare agents.

In this context, since May 2021, all manufacturers of medical
devices who wish to obtain the CE marking have to follow the rules
of the new Medical Devices Regulation (MDR) 2017/
745 [Regulation (EU) 2017/745 (EU MDR), n. d.]. The MDR is
intended to avoid, among other objectives, safety concerns such as
the acute toxicity caused by some perfluorocarbon liquids (Pastor
et al., 2017; Coco et al., 2019) or toxicity caused by some inner
limiting membrane stains (Gerding, 2016). Hence, the MDR
emphasizes the necessity for manufacturers to guarantee that
their medical devices possess a justification for the intended use.
This information should be substantiated by pertinent preclinical
and clinical data or other studies, reports, and clinically relevant

information found in the scientific literature of a device, for which
equivalence to the given device can be demonstrated [Regulation
(EU) 2017/745 (EU MDR), n. d.].

In this regard, the transition from the MDD to the MDR
represents a substantial regulatory overhaul, evident in the
increased scope and depth of the MDR. The MDR focuses on the
entire product lifecycle, encompassing the development, testing,
manufacturing, commercialization, efficacy, safety, and long-term
use. The prominence of the term “safety” is markedly elevated in the
MDR, appearing 290 times compared with the MDD’s
40 occurrences. These changes significantly impact companies in
the medical device industry, requiring them to reassess their
portfolios and conduct a global impact assessment for
compliance. Annex I of the MDR specifies new safety and
performance requirements, necessitating the re-certification of
existing devices, particularly those previously CE-marked under
the MDD. Manufacturers face the challenge of generating more
in-depth clinical and preclinical data to meet the heightened safety
and performance standards. The reporting landscape is undergoing
a transformation, requiring incidents, injuries, and deaths to be
reported to the centralized EU portal, EUDAMED, with revised
timelines. This study assesses whether Ala®sil could have been
brought to the market for clinical application in accordance with
the current MDR, examining both its safety and potential
effectiveness. Through a bibliographic review, this study aims to
define its clinical use, design characteristics, and chemical and
cytotoxic characterization using cellular and tissue models
according to ISO standards.

2 Materials and methods

2.1 Sample information

The Ala®sil (Alemedic, Dornstadt, Germany) sample arrived in
its original box containing a sealed 70-mL bottle of the product to be
tested. This product corresponds to polydimethylsiloxane (PDMS),
lot number INF 220413, with the expiration date of 04/30/2016,
EAN: 04250736800801, and code AMSILINFUSIO, and, according
to the packaging, it was distributed in Spain by Bloss S.A. (Barcelona,
Spain). It came with its corresponding IFU (Alamedics, 2023).

2.2 Literature review

The literature review searched for preclinical and clinical studies
performed on Ala®sil and was developed in the PubMed, Science
Direct, Scopus, and ClinicalTrials.gov electronic databases from
1990 to December 2022 Q14. Potentially relevant articles were sought
using the following search terms in combination: medical subject
headings terms and text words: silicon oil infusion, silicon oil
irrigation, continuous silicon infusion, low viscosity silicon oil,
preoperative tool + ophthalmology, and Ala®sil. No language
restrictions were applied. We also scanned the reference lists of
the retrieved publications to identify additional relevant articles
(cross-reference strategy), used the MEDLINE option “Related
Articles,” and consulted review articles on the topic to
supplement the search.
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2.3 Sample analysis by headspace gas
chromatography–mass spectrometry (HS-
GC-MS)

For the HS-GC-MS analysis of Ala®sil, 2 mL of the sample was
added to 20-mL dark vials sealed with silicone septa (Merck,
United States of America). The samples were analyzed in triplicate.
LMWC analysis was performed following the Agilent Technologies
application note for oligosiloxanes in silicon oil (Agilent-Technologies,
2011). The headspace incubation time was set at 110 °C for 60 min, and
the syringe temperature was 115 °C. Then, 0.5 mL of the sample was
injected using the coupled HS autosampler (CombiPAL, CTC) into a
7890B GC system gas chromatograph (Agilent Technologies,
United States of America), and the inlet temperature was set at
250°C, connected to a 5977A MSD (Agilent Technologies,
United States of America) single quadrupole mass spectrometer. For
gas chromatographic separation, an HP-5ms capillary column of
30 m × 0.25 mm × 0.25 μm (Agilent Technologies, United States of
America) was used; the chromatography oven was set as follows: initial
temperature 50°C during 5 min and then raised to 160°C at 10°C/min,
raised to 220°C at 20°C/min, and maintained during 20 min. Detection
and data acquisition were performed in the scan mode from 40 to
600 Da, with MS source 230°C and MS quad 150°C. Data analysis was
performed using MassHunter Data Acquisition software (quantitative
analysis B.07.00, Agilent Technologies, United States of America). The
impurities were identified using the NIST17 MS search 2.3 library and
the EIC of the characteristic ions. Identification of the L2, D3, D4, and
D5 compounds was performed by comparison with the standards
(Sigma-Aldrich, United States of America). Standard calibration curves
were used to quantify L2 (R2 = 0.9969), D3 (R2 = 0.9967), D4 (R2 =
0.999), and D5 (R2 = 0.9947) (calibration curves can be found in
Supplementary Material S1). For the other linear and cyclic
oligosiloxanes (L3, L4, L5, L6, L7, D6, D7, and D8), a semi-
quantitative approach was taken using the L2 calibration curve for
the linear oligosiloxanes L3, L4, L5, and L6; and theD5 calibration curve
for the cyclic oligosiloxanes D6, D7, and D8.

2.4 Sample analysis by matrix-assisted laser
desorption ionization–time of flight
detector (MALDI-TOF)

Mass spectra were acquired on an Autoflex Speed mass
spectrometer (Bruker Daltonics, Bremen, Germany) using a
SmartbeamTM laser as the ionization source. The acceleration
voltage was 20 kV in the reflection mode. We accumulated
2,000 shots in the positive mode for all spectra in the range of
m/z 200–2000 Da. All the samples were analyzed using 2,5-
dihydroxybenzoic acid (2,5-DHB) as the matrix. Data analysis
was performed using flexAnalysis 3.4 and PolyTools 1.0.

2.5 Cytotoxicity evaluation

2.5.1 Human retinal pigment epithelial cells
(ARPE-19 cells)

Direct contact cytotoxicity tests were performed as previously
described by our group (Srivastava et al., 2018; 2020; Coco et al.,

2019). In brief, cultures of the human retinal pigment epithelial cell
line (ARPE-19) were prepared in 96-well culture plates, followed by
24-h cell cycle synchronization in a fetal bovine serum (FBS)-free
cell culture medium (Gibco, UK). The cultures were then exposed
directly to the samples for 30 min. After exposure, the samples and
the culture medium were removed from each well and washed to
remove any remnants. Then, the cells were incubated for 24 h and
72 h for cell growth. Subsequently, viability was measured by the
MTT assay, as previously described (Srivastava et al., 2018).

All the experiments were performed following the ISO
guidelines and under Good Laboratory Practices certification.
Viability values <70% were considered cytotoxic, according to
UNE-EN ISO 10993-5. Data were analyzed by calculating each
well’s optical density value of cell culture viability, which was
recorded with a SpectraMax M5 Microplate Reader (Molecular
Devices, United States of America).

2.5.2 Porcine neuroretina explants
Fresh eyes (n = 3) were obtained from pigs aged 6–8 months

from a local slaughterhouse. Neuroretina (NR) explants were
obtained, as described (Di Lauro et al., 2016), and directly
exposed to the test samples (Ala®sil) or phenol (positive control;
Sigma-Aldrich) for 30 min. Then, the NR explants were laid on
Transwell membranes 24 mm in diameter with a 0.4-mm-pore
polycarbonate membrane insert (Corning Life Sciences) with the
photoreceptor layer facing the membrane and maintained at culture
conditions until 72 h, as previously described (Usategui-Martín
et al., 2020). In parallel, NR explants were extracted and
processed (fresh NR) or cultured without exposure to any
substance (not exposed) as the negative controls. Experiments
were run in triplicate; three retinal explants were used for each
experimental condition; therefore, 12 retinal explants were used.

NR explants were fixed with 4% paraformaldehyde (PANREAC
Química S.A.U Q15., Barcelona, Spain) for 2 h at 4 °C and then
embedded in paraffin (Paraplast Plus, Leica Biosystems,
Nussloch, Germany) using an automatic tissue processor
(ASP300; Leica Microsystems, Wetzlar, Germany). Paraffin-
embedded sections were deparaffinized in xylene (Sigma-Aldrich)
and rehydrated in decreasing ethanol concentrations. The sections
were then stained with hematoxylin and eosin (Sigma-Aldrich). As
previously described, the tissue and cellular morphological
modifications of the neuroretina explants were qualitatively
graded according to UNE-EN ISO 10993-5 (Pastor et al., 2017).
A single masked researcher performed this analysis, and scores more
outstanding than two suggested a cytotoxic effect according to the
UNE-EN ISO guidelines.

Furthermore, to quantify cellular death, TUNEL
immunostaining was performed with an in situ cell death
detection kit (Roche Diagnostics, Mannheim, Germany). Nuclei
were counterstained with DAPI. TUNEL analysis was performed
in triplicate with four samples/for each experimental condition.
Control slides in which primary antibodies were omitted were also
processed in parallel. To quantify the TUNEL assay,
immunofluorescence micrographs were acquired at the same
exposure, intensity, and gain (magnification × 40 images: n =
8 sections per experimental condition). Then, the TUNEL-stained
nuclei were manually counted in each nuclear layer using ImageJ
software (1.49 version; National Institutes of Health). Finally, the
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TUNEL-labeled nuclei were correlated with the total DAPI-stained
nuclei to obtain quantifiable percentage results. A single masked
researcher performed the analysis.

2.6 Data acquisition and analysis

All data were collected in an Excel database (Microsoft Office
Excel, 2016; Microsoft Corporation, Redmond,WA, United States of
America). SPSS (version 24.0, SPSS Inc., Chicago, IL, United States
of America) was used for statistical analyses. After confirming the
homogeneity of variance and normal distribution of the data,
ANOVA, followed by pairwise comparisons, was carried out
(Tukey test). Differences were considered statistically significant
at p < 0.05. Data are expressed as means ± SEM.

3 Results

After an extensive literature review, we did not find any
references to support the specific information in the product IFU
(Alamedics, 2023). To the best of our knowledge, there is only one
paper, with a short series of cases (five patients) (Wong et al., 2011).
However, the authors also recognize the inherent risk of using this
product (Wong et al., 2011). The adverse effects reported include
increased intraocular pressure due to a steroid response, Ala®sil
viscosity reduction at body temperature (from 5 to 0.8 mPa), and
intraocular pressure drop during silicone oil infusion at vitreous
fluid aspiration. In addition, they reported that if traces of Ala®sil
remain, it can mix with the conventional silicone oil and promote
emulsification; therefore, it must be removed entirely. Finally, the
authors did not select cases with retinal breaks to avoid the infusion
of the low-molecular-silicone oil under the retina (Wong et al.,
2011). There are no references to the chemical analysis of the
substance in this paper, and no document has been found to

prove its equivalence. This unique pilot series of five patients was
published by a single surgeon who declared interest in a patent on
the product.

According to the IFU (Alamedics, 2023), Ala®sil infusion is a
colorless, homogeneous liquid composed of ultrapure PDMS with
the formula CH3 [Si(CH3)2O]n-Si(CH3)3, where n is the number of
monomer units [SiO(CH3)2]. Ala®sil infusion is chemically and
physiologically inert and has a density of 0.9 g/cm3 and a viscosity of
5 mPas, which corresponds to 5 cst.

To analyze the polymer characteristics, the MALDI-TOF
analysis was performed. The sample spectrum showed a PDMS
polymer with repetitive units of C2H6OSi (74 m/z) (Figure 1). Data
analysis of the sample showed that the most abundant distribution
corresponded to a number average molecular weight (Mn) of
992.23 g/mol, a weight average molecular weight (Mw) of
1005.10 g/mol, and a polydispersity index of 1.01.

To evaluate the cyclic and linear oligosiloxanes, the HS-GC-MS
analysis was performed. The chromatogram showed that the Ala®sil
sample contained many volatile LMWCs (Figure 2). In the analyzed
sample, several linear (from L3 to L7) and cyclic (from D3 to D8)
oligosiloxanes with Mw below 600 g/mol were found (Table 1). The
concentration of the identified linear and cyclic LMWC (L3 to D8)
in the Ala®sil sample was 5308.84 ppm ± 7.06 ppm (6% error).

A comparison was conducted between m/z profiles obtained by
MALDI and Mw of the LMWC found in GC-MS. It has to be
considered that MALDI-TOF operating in a positive mode with
DHB as the matrix allowed the acquisition of positive-ion mass
profiles. In contrast, GC-MS facilitates compound identification by
their molecular weight and the m/z values in the chromatogram
spectra. The comparison process involved normalizing MALDI-
TOF data, subtracting thematrix peaks, and considered the potential
addition of ions to align with GC-MS Mw data (Supplementary
Material, Supplementary Tables S2.1, S2.2). Thus, the predominant
ionization species commonly observed in the positive ion mode is
the protonated ion [M + H]+, and other forms are possible as the
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FIGURE 1
MALDI spectrum of the polymer. Mass charge (m/z) vs. intensity. Gaussian bell characteristic of polymers and siloxane repeating units (74.02 m/z).Q23
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DHBmatrix can form complexes with sodium cations, leading to the
formation of sodium ions [M + Na]+. Although not common, the
[M] value could be observed at low ranges of the spectra. The
MALDI-TOF spectra for lower ranges can be observed in
Supplementary Material slx.

It should be noted that GC-MS and MALDI-TOF are analytical
techniques with different principles and use two completely different
ionization methods. This disparity makes direct comparisons
difficult, especially at low molecular weights, due to the presence
of the matrix in MALDI-TOF. GC-MS involves the separation of

volatile compounds by chromatography, followed by electron
impact ionization. In contrast, MALDI-TOF is optimized for
larger, less volatile molecules using laser-induced desorption and
matrix-assisted ionization. Variations in sample preparation,
ionization mechanisms, matrix effects, mass range, sensitivity,
and resolution make it even more difficult to compare the results
between the two techniques. Consequently, only compounds
D3 with [M + H]+ and [M + Na]+ and perhaps L3 and L5 with
[M] were tentatively identified in MALDI (Supplementary Material
S2.2). Regarding the biological evaluation of the product, the cell
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FIGURE 2
TIC scan chromatogram of the Ala

®
sil sample. Counts (8.6 × 106) vs. acquisition time (minutes). Identified LMWCs were D3:

hexamethylcyclotrisiloxane, L3: octamethylcyclotrisiloxane, D4: octamethylcyclotetrasiloxane, L4: decamethyltetrasiloxane, D5:
decamethylcyclopentasiloxane, L5: dodecamethylpentasiloxane, D6: dodecamethylcyclohexasiloxane, L6: tetradecamethylcyclooctasiloxane, D7:
tetradecamethylcycloheptasiloxane, L7: hexadecylcycloheptasiloxane, D8: hexademethylcyclooctasiloxane, and L8: hexadecamethyloctasiloxane.

TABLE 1 Linear and cyclic low-molecular-weight compounds (LMWCs) identified in Ala®Sil by HS-GC-MS. Names of the LMWC, retention time (Rt),
molecular formula, molecular weight (Mw), and spectrum match values form NIST mass spectra library Match and Reverse Match (R.Match).

LMWC Name Rt Formula Mw Match R.Match

D3 Hexamethylcyclotrisiloxane 5.413 C6H18O3Si3 222 935 938

L3 Octamethyltrisiloxane 7.161 C8H24O2Si3 236 916 916

D4 Octamethylcyclotetrasiloxane 9.888 C8H24O4Si4 296 928 945

L4 Decamethyltetrasiloxane 11.265 C10H30O3Si4 310 948 948

D5 Decamethylcyclopentasiloxane 12.753 C10H30O5Si5 370 911 917

L5 Dodecamethylpentasiloxane 14.172 C12H36O4Si5 384 909 910

D6 Dodecamethylcyclohexasiloxane 15.353 C12H36O6Si6 444 941 988

L6 Tetradecamethylhexasiloxane 16.507 C14H42O5Si6 458 868 919

D7 Tetradecamethylcycloheptasiloxane 17.423 C14H42O7Si7 518 808 823

L7 Hexadecamethylheptasiloxane 18.106 C16H48O6Si7 532 861 909

D8 Hexadecamethylcyclooctasiloxane 18.842 C16H48O8Si8 592 857 875

L8 Hexadecamethyloctasiloxane 19.241 C16H50O7Si8 578 808 725
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culture analysis after 30 min of direct contact with Ala®sil and 24 h
of posterior cell growth showed that the Ala®sil sample was cytotoxic
with a viability value of 49% (Figure 4A). However, after 30 min of
direct contact and 72 h of posterior cell growth, the Ala®sil sample
was not found to be cytotoxic, showing a viability value of
85% (Figure 3A).

Neuroretina evaluation of the fresh porcine samples (Figure 4A)
had a clearly defined, layered retinal structure and adequate cellular
preservation before culture, corresponding to a degeneration degree
of 0–1. The structure of the NRs that were not exposed (Figure 4B),
and after direct contact with Ala®sil (Figure 4C), revealed a loss of
photoreceptor outer segment and partial photoreceptor inner
segment edema, reduction in the number of nuclei in the inner
nuclear layer, and the beginning of retinal tissue vacuolization.
These modifications corresponded to 1–2 degeneration degrees,
according to ISO 16672 (ISO, 2020). NR, after direct contact
with phenol (Figure 4D), showed a significant loss of retinal
structure, loss of cell nuclei, and loss of retinal parenchyma,
corresponding to a degeneration degree of 4.

The apoptosis analysis performed with the TUNEL detection kit
labels DNA strand breaks in cells that undergo apoptosis (Gavrieli
et al., 1992). TUNEL immunoreactivity was undetectable in fresh
NR (Figure 5A). In the case of not exposed NR, TUNEL

immunoreactivity was noticeable at the GCL and INL
(Figure 5B), while in NR exposed to Ala®sil (Figure 5C) or to
phenol (Figure 5D), labeling was detected in all the retinal layers.
Data from the TUNEL analysis were evaluated, obtaining apoptosis
rate results in the total retinal layers significantly higher (p < 0.05) in
NR exposed to phenol with results of 76.19% apoptosis rate of total
retina ± 6.65% standard deviation and Ala®sil with an 18.63%
apoptosis rate of total retina ± 3.92% standard deviation
compared to fresh NR (0.23% apoptosis rate of total retina ±
0.22% standard deviation) and those not exposed (7.31%
apoptosis rate of total retina ± 3.61% standard deviation).

4 Discussion

Ala®sil infusion was introduced into the healthcare market for its
application as an infusion liquid during vitrectomies, aiming to
prevent intraocular hemorrhages and manage challenging cases of
ocular trauma. However, the available information about this
product was limited.

The MDR presents stricter criteria and clearer guidelines for
medical device classification mainly based on the risk, and some
devices have been reclassified (Annex VIII). In the case of Ala®Sil
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FIGURE 3
Cell culture viability assessed by the MTT assay. Cell cultures were exposed to the samples for 30 min, followed by 24 (A) and 72 (B) hours of
incubation for cell growth.
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infusion, the classification should be a surgically invasive device
for transient use (short term), and it will be classified as Class IIa,
requiring a notified body approval and conformity assessment of
the technical documentation. In this regard, manufacturers need
to demonstrate that their medical device meets the requirements
by conformity assessment based on a quality management system
and an assessment of technical documentation (Annex IX), type
examination (Annex X), and/or product conformity validation
(Annex XI). Here are the key considerations for the
documentation of Class IIa devices compared to the
previous MDD:

a. Clinical evidence: manufacturers should provide clinical
evidence to demonstrate the safety and performance of
their devices. Manufacturers are required to provide
comprehensive clinical data, including detailed clinical
evaluations, post-market clinical follow-up plans, and
systematic literature reviews, which assess the relevant
scientific literature and clinical data pertaining to the
device’s intended use. The MDR places increased emphasis
on the clinical evaluation process compared with the MDD,
ensuring a thorough and systematic assessment of the
available clinical data.

b. Technical documentation: the technical documentation for
Class IIa devices should contain detailed information about
the device’s design, intended purpose, risk management, and
essential performance characteristics. The technical
documentation must also include a biological evaluation,
which involves assessing the biological safety of the
medical device.

As explained above, sufficient clinical evidence of the usefulness
and safety of the medical device is necessary. Therefore, we
conducted an extensive literature search for clinical evidence.
However, as mentioned, we found only one scientific manuscript
related to Ala®sil (Wong et al., 2011). This clinical paper does not
adequately verify the necessity of this product by claiming
advantages that were not justified in that paper. The product was

tested for break localization, vitreous base dissection, and drainage
of subretinal fluid in only five patients. Three patients exhibited
long-standing retinal detachment, another patient presented with
diabetic retinal detachment along with rhegmatogenous retinal
detachment, and the final case involved a giant retinal break. The
surgeon evaluated that the product contributed to the most
thorough removal of the vitreous base in all five cases. However,
the product was useless in three of the five cases for internal search of
retinal break application and four over five cases for drainage of
subretinal fluid (Wong et al., 2011). This seems to be insufficient
clinical support. Furthermore, the indications claimed on the
commercial product are not supported by that paper.
Fortunately, the follow-up of these five patients did not show
adverse events related to its use.

Due to the lack of the scientific literature that would support a
clear clinical evidence of its intended use in the market and its safety,
it was decided to conduct a study on the characteristics of the
material (chemical composition) and its biological safety. In this
regard, we analyzed the medical device to provide a detailed
composition, and we also conducted biocompatibility tests of this
CE-marked medical device.

Because it is a medical device based on the PDMS polymer, the
potential toxicity of LMWCs must be considered. It has been a well-
established issue since the early 1990s (Nakamura et al., 1991; Pastor
et al., 1992; 1998; Mendichi et al., 2019). Its capacity to diffuse into
the surrounding tissues has been reported (Nakamura et al., 1991),
and it is assumed that they are related to the rate of emulsification
and intraocular inflammatory reactions (Mendichi et al., 2019).
Another possible harmful effect of LMWCs could be related to
their ability to facilitate the denaturation and aggregation of human
serum albumin and, presumably, other human blood proteins
present in the vitreous cavity during surgery (Romano et al.,
2020). In the case of silicone oil (PDMS with a high degree of
polymerization), polymer chains with molecular weight <10,000 g/
mol (LMWC), and particularly cyclic or linear LMWC with a
molecular weight <1,000 g/mol, are considered “impurities”
(Mendichi et al., 2019). In this regard, the molecular weight of
Ala®sil was 1,005 g/mol, which would be within the LMWC

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

FIGURE 4
Morphological modifications of neuroretina explants. (A) Before culture, fresh NR structure and general morphology were adequately preserved
(grade 0–1). (B) Not-exposed NR showed a loss of photoreceptor outer segment and partial photoreceptor inner segment edema with an incipient
reduction in the number of nuclei at the INL and beginning of retinal tissue vacuolization (grade 1–2). (C) NR exposed to Ala

®
sil and cultured for 72 h

showed similar morphological modifications as the not-exposed NR (B). (D)NR exposed to phenol showed a significant loss of retinal structure, cell
nuclei, and retinal parenchyma (grade 4). GCL: ganglion cell layer; INL: inner nuclear layer; ONL: outer nuclear layer; scale bar: 25 μm
*Transwell membranes.
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category, while also having a high concentration of linear and cyclic
LMWC below 600 g/mol, as demonstrated by MALDI and HS-
GC-MS.

Moreover, volatile components such as short-chain cyclic
oligosiloxanes D4, D5, and D6 have been recognized as toxic
compounds by the European Chemical Agency (ECHA) and
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FIGURE 5
Apoptosis characterization in neuroretina explants. (A) Fresh NR did not show TUNEL immunoreactivity. (B) Not-exposed NR showed detectable
labeling at the GCL and the INL. (C) In NR exposed to Ala

®
sil or (D) phenol (Fig. 6D), TUNEL labeling was observed in all the retinal layers. (E) Apoptosis rate

in the total retinal layers was significantly higher in NR exposed to phenol or Ala
®
sil compared to fresh NR and those not exposed. *p < 0.05. GCL: ganglion

cell layer; INL: inner nuclear layer; ONL: outer nuclear layer; scale bar: 25 μm.
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have been listed in the Candidate List of Substances of Very High
Concern for Authorization (Mendichi et al., 2019; Romano et al.,
2020; Dresp, 2021; European Chemicals Agency, 2023). These
compounds (D4, D5, and D6) are part of the composition of the
Ala®sil PDMS sample. In addition, silicon oil has been reported to be
non-cytotoxic at a concentration of 1,493.75 ppm LMWC (Romano
et al., 2020). However, Ala®sil is a polymer with a high rate of linear
and cyclic oligosiloxanes with Mw < 600 and LMWC values of
5,319.5 ppm ± 7.08 (6% error) (L3 to D8). This corresponds to a
concentration 3.5 times higher than the LMWC concentration tested
by Romano et al. (2020).

Regarding the biological assays, cell cytotoxicity tests showed
that Ala®sil was cytotoxic after 24 h of cell growth. ISO guidelines
consider a sample cytotoxic with viability values below 70% (ISO,
2009). However, after 72 h of cell growth, the sample showed non-
cytotoxicity, probably due to the cellular regeneration capacity of
the ARPE-19 immortalized cell line after the next 48 h of growth, a
fact that has already been pointed out by our group (Srivastava
et al., 2018; Coco et al., 2019). The neuroretina spontaneously
degenerates during culture (Fernandez-Bueno et al., 2008), so the
morphological changes observed in the neuroretinas exposed to
Ala®sil were similar to that in the not-exposed control. However,
specific evaluation and quantification of apoptosis revealed
significantly higher levels in Ala®sil-exposed NR. Therefore,
although Ala®sil cannot be classified as cytotoxic (Pastor et al.,
2017), according to UNE-EN ISO 10993-5:2009, this substance
seems to increase the processes of retinal cell death. In this regard,
we hypothesize that if we extend the culture time of the samples to
reveal cell death, morphological changes will be observed, and
Ala®Sil can be classified as cytotoxic.

Therefore, it is evident that Ala®sil presented a series of
weaknesses that should have required a detailed justification
before being approved for the CE mark. This product is an
element of a series of medical devices manufactured by
AlaMedics. Some cases of suspected toxicity have been reported
with a dye for internal limiting membranes (AlaPurple®), which was
also marketed by the same company. It seemed that the
concentration of the product finally dealt with was higher than
that which had been experimentally tested (Green, 2015; Ärzteblatt,
2015; Gerding, 2016; Januschowski et al., 2018). In addition, this
company manufactured the perfluorocarbon liquid AlaOcta®; some
batches of this product were highly cytotoxic, leaving hundreds of
people blind worldwide (Pastor et al., 2017; Coco et al., 2019;
Srivastava et al., 2020; Coco-Martin et al., 2021).

Currently, the MDR is established as a stricter regulation than
the previous MDD. Additionally, the manufacturer will demonstrate
a positive benefit–risk ratio for the product and compliance with the
general safety and performance requirements. Therefore, it shall be
shown from an experimental and clinical point of view that its
tolerance is excellent and that its indications are fully justified by the
corresponding scientific support (European Union Medical Device
Regulation, 2023).

5 Conclusion

According to the chemical and biological evaluation of the Ala®sil
infusion, signs of toxicity are evident and its clinical use was not

justified by appropriate literature studies. All of this, together with a
single clinical reference for this product, corroborate that the
European Union’s medical device safety system was not working
properly to assure safety. Fortunately, the current MDR 2017/
745 applies stricter standards, including the medical personnel’s
participation in evaluating the devices to have safer and more
effective products. In addition, it efficiently promotes the CE
marking as a clear sign of safety. In this way, the full
implementation of the MDR will make it possible to avoid the
commercialization of medical devices without high-quality
preclinical and clinical information and precise clinical verification
for their use, as has been demonstrated with the Ala®sil infusion.
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