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Abstract. The occurrence of tracking or tipping situations for a transition

equation x′ = f(t, x,Γ(t, x)) with asymptotic limits x′ = f(t, x,Γ±(t, x)) is
analyzed. The approaching condition is just limt→±∞(Γ(t, x)− Γ±(t, x)) = 0

uniformly on compact real sets, and so there is no restriction to the dependence

on time of the asymptotic equations. The hypotheses assume concavity in x
either of the maps x 7→ f(t, x,Γ±(t, x)) or of their derivatives with respect

to the state variable (d-concavity), but not of x 7→ f(t, x,Γ(t, x)) nor of its

derivative. The analysis provides a powerful tool to analyze the occurrence of
critical transitions for one-parametric families x′ = f(t, x,Γc(t, x)). The new

approach significatively widens the field of application of the results, since
the evolution law of the transition equation can be essentially different from

those of the limit equations. Among these applications, some scalar population

dynamics models subject to non trivial predation and migration patterns are
analyzed, both theoretically and numerically.

Some key points in the proofs are: to understand the transition equation

as part of an orbit in its hull which approaches the α-limit and ω-limit sets;
to observe that these sets concentrate all the ergodic measures; and to prove

that in order to describe the dynamical possibilities of the equation it is suffi-

cient that the concavity or d-concavity conditions hold for a complete measure
subset of the equations of the hull.

1. Introduction

Tipping points or critical transitions are significant nonlinear phenomena that
occur in complex systems subject to smooth changes of the external conditions.
Roughly speaking, they are sudden and often irreversible changes in the state of
the system caused by small changes in the external input. During the last years,
they have frequently appeared in the literature as an explanation of abrupt changes
in climate [2, 9, 27, 42], ecology [4, 40, 41, 46], biology [23, 32] or finances [31, 49],
among other scientific areas of great interest. For this reason, critical transitions
have become an important topic of multidisciplinary research.

A branch of the mathematical formulation of this problem focuses on one-
parametric ordinary differential equations (ODEs). The parameter is replaced by
a map (a parameter shift) with constant asymptotic limits as t → ±∞, and the
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two limit equations, given by these constant limits of the parameter, are frequently
assumed to have the same type of global dynamics. The initial ODE is understood
as a transition between the past equation and the future equation. Sometimes, the
dynamics of this transition equation reproduces those of the asymptotic limits and
approaches them as time decreases and increases. This situation is usually referred
to as tracking, and the remaining situations as tipping. In general, tracking means
the survival over time of a local pullback attractor which represents the desirable
state of the system, and hence tipping may mean a catastrophe. If the parameter
shift, itself, depends on a parameter, a critical value of the parameter, resulting in
a critical transition, occurs if there is tracking to its left and tipping to its right, or
viceversa.

This is the approach of the reference work [8], as well as of [3, 26, 36, 47, 48],
among many other papers. In the recent works [17, 19, 28, 29, 30, 38], the limit
equations are allowed to be nonautonomous, and the law of the (scalar) ODE is
assumed coercive and either concave or with concave derivative (d-concave) with
respect to the state variable. The analysis of ODEs for which the evolution law
satisfies certain coercive and concavity conditions is a classical subject in the theory
of (autonomous or nonautonomous) dynamical systems: on the one hand, these
properties imply a structure in the space of solutions that simplifies the study; and,
on the other hand, the number of mathematical models that respond to laws of this
type is high.

However, many interesting basic models do not fit such conditions, as the next
populations dynamics cases will show. The starting point are the classical nonau-
tonomous equations x′ = −r(t)x (1 − x/K(t)) and x′ = −r(t)x (S(t) − x) (1 −
x/K(t)), with r, K and S continuous and r and K positively bounded from below,
which model the evolution of a single population without or with Allee effect, and
which are respectively given by a concave map and a d-concave map. That is, the
maps sending x to −r(t)x (1− x/K(t)) (or to −r(t)x (S(t)− x) (1− x/K(t))) are
concave (or d-concave) for all t ∈ R. Let us focus on the concave case, introduc-
ing a continuous net emigration rate per unit of time ϕ(t) < 0 and a predation
term ∆d(t, x) := −dΓ(t)x2/(b(t)+x2) which is a modification of a Holling type III
functional response term: the continuous map Γ ≥ 0 vanishes outside an interval
[−t0, t0] (responding to predators attacking for a finite period of time), d > 0 de-
termines the intensity of predation, and the continuous map b > 0 corresponds to
the average time between attacks. Taken together, we obtain the model

x′ = r(t)x

(
1− x

K(t)

)
+ ϕ(t)− dΓ(t)

x2

b(t) + x2
,

whose law, in general, does not provide a concave map in x for all t ∈ R. The
framework we present in this paper allows the analysis of this model. This is
done in Section 4.2, where we establish conditions that guarantee, among other
properties, the existence of a single critical transition as d increases: there exists a
value d0 > 0 of the intensity before which an initially healthy population survives,
and after which it is doomed to extinction.

Since limt→±∞ ∆d(t, x) = 0 uniformly in x, the previous example introduces
some “autonomous ingredients” of the asymptotic equations. In Section 6.2, we
add a predation term to the equation x′ = −r(t)x (S(t)−x) (1−x/K(t)) similar to
the previous one, but now without assuming limt→∞ ∆d(t) = 0: the predation term
also appears in the future equation, and it depends on t and x. Again, we study
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the occurrence of critical transitions as the involved parameters change. These two
examples are chosen to show that the theoretical analysis performed in the paper
considerably widens the field of application of the results.

Weaker hypotheses and main results. In order to briefly describe the main
results of the paper and their hypotheses (which, as already mentioned, are less re-
strictive than in previous approaches), we need to explain the framework of the anal-
ysis: the classical hull construction allows us to embed one single nonautonomous
ODE in a family which provides a skewproduct flow, to which techniques coming
from topological dynamics and ergodic theory can be applied. The conclusions ob-
tained for the flow are then particularized to the original equation. In our opinion,
the skewproduct formalism provides the most suitable framework to understand
the occurrence of critical transitions in nonautonomous models, and pointing out
this fact is one of the main contributions of this paper.

So, we work with a nonautonomous scalar ODE

x′ = g(t, x) , (1.1)

given by a regular enough map g for which the hull Ωg, defined as the closure of the
set of time shifts gs(t, x) := g(t+s, x) in the compact-open topology of C(R×R,R),
is compact. Equation (1.1) is hence embedded in the family

x′ = ω(t, x) , ω ∈ Ωg , (1.2)

which defines a skewproduct flow on Ωg × R. The set Ωg is composed by three
(possibly nondisjoint) sets: {gs | s ∈ R} and the corresponding α-limit and ω-limit
sets, Ωα

g and Ωω
g ; and, as a consequence, the ergodic measures on the hull are

concentrated in Ωα
g ∪ Ωω

g . This point is key in our approach: it turns out that
assuming conditions on concavity with respect to x of ω (in the so-called concave
case) or of its derivative ωx (in the d-concave case) for all ω ∈ Ωα

g ∪ Ωω
g suffices

to determine the maximum number of hyperbolic solutions for (1.1): two in the
concave case, and three in the d-concave case. In addition, if they exist, and if an
extra coercivity assumption on all the involved equations holds and hence the set of
bounded solutions is bounded (if nonempty), then the hyperbolic solutions yield a
very fixed type of global dynamics. These assertions are proved in the concave and
d-concave cases in the main Theorems 3.6 and 5.6, respectively, as consequences
of general results on skewproducts, with interest by their own, that we previously
prove. We point out that no concavity condition is required on g or on gx, which is
one of the two most significative advantages with respect to previous approaches.

In order to formulate the necessary conditions on the α-limit and ω-limit sets
in the language of processes rather than in the language of skewproducts, and thus
be able to apply our results to particular examples, we assume the existence of
two regular enough functions g± with limt→±∞(g(t, x)−g±(t, x)) = 0 uniformly on
compact sets of R, and which are concave and coercive with respect to x. These
conditions are inherited by all the elements of the corresponding hulls Ωg± , and the
asymptotic approach yields Ωα

g = Ωα
g− and Ωω

g = Ωω
g+ . So, we are in the suitable

framework of the previous paragraph. In order to describe scenarios as rich in
dynamical possibilities as possible, we assume that the limit equations x′ = g±(t, x)
have the maximal number of hyperbolic solutions. And then we describe all the
dynamical cases for (1.1) (which are three) and explain the strong connection among
critical transition and nonautonomous saddle-node bifurcation. The classification
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is provided by the main Theorems 4.7 and 6.4 in the concave and d-concave cases,
respectively. In both cases, all the scenarios are persistent under small perturbations
excepting one of them. A critical transition will occur when the dynamics jumps,
as the external input varies, from one stable scenario to another one, which (as
Theorems 4.9 and 6.6 show) means crossing the nonstable scenario and can be
understood as a nonautonomous saddle-node bifurcation phenomenon.

The words asymptotically concave or d-concave ODEs, appearing in the title of
this work, refer to equations x′ = g(t, x) satisfying the conditions described in the
previous paragraph. Once again, observe that no concavity condition is required
on g or on gx, but in the (not necessarily univocally determined) maps g±.

When trying to build realistic mathematical models, it is common to replace a
parameter that appears in a first and simple approximation to the law of evolution
of a given system, say x′ = f(t, x, γ), by a map that may depend on time, state,
and new parameters. Our approach allows us to deal with

x′ = f(t, x,Γ(t, x)) (1.3)

assuming the existence of two maps Γ± such that limt→±∞(Γ(t, x)− Γ±(t, x)) = 0
uniformly on compact sets of R. Of course, we must assume conditions on f,Γ and
Γ± guaranteing the previous hypotheses on g(t, x) := f(t, x,Γ(t, x)) and g±(t, x) :=
f(t, x,Γ±(t, x)). The second fundamental advantage arises here: in previous ap-
proaches, Γ is just a map of t (and often the unique time-dependent part of the
evolution law) with constant asymptotic limits; but, in this new formulation, also
the asymptotic part Γ± of the past and future equations x′ = f(t, x,Γ±(t, x))
may depend on t and x. In order to analyze the occurrence of critical transi-
tions, we let the transition map to depend on a parameter c which moves, getting
x′ = f(t, x,Γc(t, x)). It is reasonable to assume that the asymptotic equations
do not depend on the parameter c, whose variations represent different ways to
approach the past and the future. Theorems 4.15, 4.17 and 4.18 (in the concave
case) and 6.10, 6.11 and 6.12 (in the d-concave setting) describe several scenar-
ios of occurrence and/or absence of critical transitions, focusing on rate-induced,
phase-induced and size-induced tipping points.

As already pointed out, the lack of general requirements on concavity of f or
fx with respect to x combined with the possible dependence of Γc

± on t and x
significatively increases the number of possible applications of our results. We
complete the paper by combining theoretical and numerical techniques to analyze
the examples mentioned above in Sections 4.2 and 6.2.

Paper structure. Let us describe with some more detail the contents of the
paper. Section 2 summarizes several basic concepts and results used throughout the
paper: we characterize concavity and d-concavity in terms of divided differences,
describe the skewproduct construction from a scalar nonautonomous ODE, and
recall some properties of hyperbolicity and Lyapunov exponents. The remaining
sections present the analysis in the concave case (Sections 3 and 4) and the d-
concave case (Sections 5 and 6). Sections 3 and 5 deal with general properties
of skewproduct flows, which include those arising from families of the type (1.2).
Section 3 deals with the concave case. Under some assumptions which are weaker
than the strict concavity of the equations of a set with full measure for any ergodic
measure, we prove the existence of at most two hyperbolic solutions for each one
of the equations, characterize this existence by the occurrence of two uniformly
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separated bounded solutions, and describe the global dynamics in this situation.
Section 5 contains the analogous results for the d-concave case: now there are at
most three hyperbolic solutions for each equation, which happens if and only if
there are three uniformly separated bounded solutions and forces a certain type of
global dynamics.

At the beginning of Section 4, with g and g± as above described, we assume the
strict concavity on x of the maps g±(t, x) and the existence of the maximum number
of hyperbolic solutions for x′ = g±(t, x): two, which form an attractor-repeller pair.
Then, there are three possibilities for (1.1): Case A, when it also has an attractor-
repeller pair which connects with that of the past as time decreases and with that of
the future as time increases (i.e., when there is tracking); Case C, when it has no
bounded solutions; and Case B, when it has exactly one bounded solution, which is
nonhyperbolic. In Section 6, we assume the strict concavity on x of the derivatives
(g±)x(t, x) and the existence of the maximum number of hyperbolic solutions for
x′ = g±(t, x): three. Again, the dynamical possibilities for (1.1) are three: Case A,
if it also has three hyperbolic solutions which connect with those of the past as time
decreases and with those of the future as time increases (tracking); Case C, if it
has two hyperbolic solutions, which approach each other as time increases; or Case
B, if it has just one hyperbolic solution. In both cases, a typical critical transition
occurs when a small variation on g causes the dynamics to move from Case A to
Case C. We also establish nonrestrictive conditions guaranteing the persistence
under small perturbations of these two cases, and show that a critical transition
means that the (highly nonpersistent) Case B occurs and can be understood as a
nonautonomous saddle-node bifurcation phenomenon (see [6, 19, 30, 33]).

Sections 4.1 and 6.1 are centered in equations of the type (1.3), and hence the
corresponding general hypotheses are given for f , Γc, and the maps Γc

± before
mentioned. In scenarios suitable for raising the question of the occurrence of rate-
induced, phase-induced and size-induced critical transitions, we add extra condi-
tions of f and Γ ensuring the existence and/or absence of these types of tipping
points. These results, as well as the techniques used in their proofs, are the key
points to analyze some population dynamics models including those mentioned at
the beginning of this Introduction, which is the goal of Sections 4.2 and 6.2: the sur-
vival of a given population subject to emigration and predation depends on several
factors, as the speed of arrival of the predators, the quantity of them, the moment
at which they arrive, or the length of their periods of permanence in the preys’
habitat. We point out once again that the purpose of the models that we consider
is showing the applicability of this new approach to the analysis of critical transi-
tions due to a fairly general parametric variation in a nonautonomous dynamical
system.

2. Some preliminary results

The following subsections collect basic concepts and some general results needed
throughout the paper. We also provide some suitable references for further infor-
mation on those results which we do not prove here.

2.1. Concave and d-concave real functions, and divided differences. Recall
that a map h ∈ C(R,R) is concave if h(αx1+(1−α)x2) ≥ αh(x1)+(1−α)h(x2) for
all x1, x2 ∈ R and α ∈ [0, 1] (which ensures that h′ is nonincreasing if h ∈ C1(R,R)).
And we say that h ∈ C1(R,R) is d-concave if h′ is concave. The simplest examples
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of concave and d-concave maps are h(x) := −x2 and h(x) := −x3, respectively.
Our next result explains that both properties can be characterized in terms of the
divided differences of first and second order of h, defined as

h[x1, x2] :=
h(x2)− h(x1)

x2 − x1
and h[x1, x2, x3] :=

h[x2, x3]− h[x1, x2]

x3 − x1
.

Both of them are invariant under any permutation of their nodes.

Proposition 2.1. (i) h ∈ C(R,R) is concave if and only if h[x0, x1] ≥ h[x0, x2]
whenever x1 < x2 and x0 ̸= xi for i ∈ {1, 2}.

(ii) h ∈ C1(R,R) is d-concave if and only if h[x1, x0, x2] ≥ h[x1, x0, x3] when-
ever x1 < x2 < x3 and x0 ̸= xi for i ∈ {1, 2, 3}.

Proof. (i) Sufficiency is proved by taking x0 := αx1 + (1− α)x2 for α ∈ (0, 1). To
check necessity, we rewrite the intermediate node as a convex combination of the
other two, write the parameter (always in (0, 1)) in terms of the nodes, and apply
the definition of concavity. (ii) See [45, Lemma 2.1 and remark after it]. □

Let us take x1 < x2 < x3 and x0 ̸= xi for i ∈ {1, 2, 3}, and define

a(x0, x1, x2) := h[x0, x1]− h[x0, x2] ,

b(x0, x1, x2, x3) := h[x1, x0, x2]− h[x1, x0, x3] .

Clearly, limx0→xi
h[x0, xi] = h′(xi) for all xi ∈ R if h ∈ C1(R,R). Hence, there

exist limx0→xi
h[x1, x0, xj ] for i ∈ {1, 2, 3} and j ∈ {2, 3}. We call

ai(x1, x2) := lim
x0→xi

a(x0, x1, x2) ,

bj(x1, x2, x3) := lim
x0→xj

b(x0, x1, x2, x3)
(2.1)

for i ∈ {1, 2} and j ∈ {1, 2, 3}. Our next result establishes an equivalence between
the sign of ai (resp. bi) and the decreasing properties of h′ (resp. h′′).

Proposition 2.2. (i) Let h ∈ C1(R,R) be concave and x1 < x2. Then, for
i ∈ {1, 2}, ai(x1, x2) ≥ 0, and ai(x1, x2) > 0 if and only if h′(x1) > h′(x2).

(ii) Let h ∈ C2(R,R) be d-concave and x1 < x2 < x3. Then, for i ∈ {1, 2, 3},
bi(x1, x2, x3) ≥ 0, and bi(x1, x2, x3) > 0 if and only if h′′(x1) > h′′(x3).

Proof. (i) The first assertion follows from Proposition 2.1(i). For the second one,
we take i = 1 and write

a1(x1, x2) = h′(x1)− h[x1, x2] =

∫ 1

0

(
h′(x1)− h′(sx1 + (1− s)x2)

)
ds . (2.2)

Since h is C1 and concave, the integrand is continuous on s, nonnegative for all
s ∈ [0, 1] and nonincreasing with respect to s. Hence, the integral is strictly positive
if and only if h′(x1) > h′(x2). An analogous argument proves the assertion for i = 2.
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(ii) The first assertion follows from Proposition 2.1(ii). For the second one, we
work in the case i = 2. It is easy to check that

b2(x1, x2, x3) =
1

x2 − x1

(
h′(x2)−

x3 − x2
x3 − x1

h[x1, x2]−
x2 − x1
x3 − x1

h[x2, x3]

)
=

1

x2 − x1

(
x3 − x2
x3 − x1

∫ 1

0

(h′(x2)− h′(sx1 + (1− s)x2)) ds

+
x2 − x1
x3 − x1

∫ 1

0

(h′(x2)− h′(sx3 + (1− s)x2)) ds

)
=
x3 − x2
x3 − x1

∫ 1

0

∫ 1

0

s
(
h′′(sx1 + (1− s)x2 + ts(x2 − x1))

− h′′(sx3 + (1− s)x2 − ts(x3 − x2))
)
dt ds .

Since h is C2 and d-concave, the integrand is continuous on s, t and nonnegative
for all t ∈ [0, 1]. If h′′(x1) > h′′(x3), then the integrand is strictly positive at
(t, s) = (0, 1), and hence b2(x1, x2, x3) > 0. Conversely, if h′′(x1) = h′′(x3), then
h′′ is constant on [x1, x3], and hence the integrand is identically zero. We proceed
analogously with b1 and b3. □

2.2. Skew-product flows. Throughout the paper, the basic concepts of flows,
orbits, invariant sets, ergodic measures, α-limit sets and ω-limit sets will be used.
Their well-known definitions and some basic properties can be found, e.g., in [10].

Let Ω be a compact metric space and σ : R × Ω → Ω, (t, ω) 7→ σ(t, ω) =: ω·t
a global continuous flow on Ω. Throughout the paper, C0,1(Ω × R,R) represents
the set of continuous functions h : Ω × R → R for which the derivative hx with
respect to the second variable exists and is continuous, and C0,2(Ω × R,R) is the
subset of C0,1(Ω × R,R) of maps h for which the second derivative hxx exists
and is continuous. Given h ∈ C0,1(Ω × R,R), we consider the family of scalar
nonautonomous differential equations

x′ = h(ω·t, x) , ω ∈ Ω . (2.3)

For each ω ∈ Ω, (2.3)ω is the particular equation of the family. We use similar
notation throughout the paper to refer to elements of the hull or parameters. For
each ω ∈ Ω and x ∈ R, the map t 7→ v(t, ω, x) is the maximal solution of (2.3)ω
with v(0, ω, x) = x, and (αω,x, βω,x) is its interval of definition, with −∞ ≤ αω,x <
0 < βω,x ≤ ∞. Throughout the paper, any solution will be assumed to be maximal.
By uniqueness of solutions, v(t+ s, ω, x) = v(t, ω·s, v(s, ω, x)) when the right-hand
term is defined. Hence, if V :=

⋃
(ω,x)∈Ω×R((αω,x, βω,x)× {(ω, x)}), then

τ : V ⊆ R× Ω× R → Ω× R , (t, ω, x) 7→ (ω·t, v(t, ω, x)) (2.4)

defines a (possibly local) continuous flow on Ω×R, of skewproduct type. As we will
see in Section 2.3, families of this type appear in a natural way when we construct
the hull of a single equation.

A τ -equilibrium is a map b : Ω → R whose graph is τ -invariant (i.e., with
v(t, ω, b(ω)) = b(ω·t) for all ω ∈ Ω and t ∈ R). If it is continuous, then its
compact graph, which we represent by {b}, is a τ -copy of the base or τ -copy of Ω.
A τ -copy of the base {b} is hyperbolic attractive if there exists δ > 0, γ > 0 and
k ≥ 1 such that, if |b(ω) − x| < δ for any ω ∈ Ω, then v(t, ω, x) is defined for all
t ≥ 0 and |b(ω·t)−v(t, ω, x)| ≤ k e−γ t |b(ω)−x| for t ≥ 0. Replacing t ≥ 0 by t ≤ 0
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and −γ by γ provides the definition of repulsive hyperbolic τ -copy of the base. We
will usually call b̃ := b if {b} is a hyperbolic τ -copy of the base, and we will often
omit the prefix τ .

Given a bounded τ -invariant set B ⊂ Ω × R projecting onto Ω, the maps ω 7→
inf{x ∈ R | (ω, x) ∈ B} and ω 7→ sup{x ∈ R | (ω, x) ∈ B} define τ -equilibria. We
will refer to these maps as the lower and upper equilibria of B. Observe that, if B
is compact, then they are lower and upper semicontinuous, respectively, and hence
m-measurable for all m ∈ Merg(Ω, σ), where Merg(Ω, σ) is the (nonempty) set of
σ-ergodic measures on Ω.

We complete this part with two more definitions. If there exists a compact τ -
invariant set A ⊂ Ω × R such that limt→∞ dist(C·t,A) = 0 for every bounded set
C, where C·t = {(ω·t, v(t, ω, x)) | (ω, x) ∈ C} and

dist(C1, C2) = sup
(ω1,x1)∈C1

(
inf

(ω2,x2)∈C2

(
distΩ×R((ω1, x1), (ω2, x2))

))
,

then A is the global attractor for τ . And given two compact subsets K1 and K2 of
Ω×R, we say that they are ordered with K1 < K2 if x1 < x2 whenever there exists
ω ∈ Ω such that (ω, x1) ∈ K1 and (ω, x2) ∈ K2.

2.3. Admissible processes and their hull extensions. Let U ⊆ Rn be an
open set. We say that a continuous map h : R × U → R is admissible and write
h ∈ C0,0(R × U ,R) if the restriction of h to R × J is bounded and uniformly
continuous for any compact set J ⊂ U . In most of the cases, we will work with
U = R. We say that h : R × R → R is C1-admissible (resp. C2-admissible) and
write h ∈ C0,1(R×R,R) (resp. h ∈ C0,2(R×R,R)) if there exists its derivative hx
with respect to the second variable and it is admissible (resp. there exist hx and
hxx and they are admissible).

Given h ∈ C0,1(R× R,R), we represent by xh(t, s, x) the maximal solution of

x′ = h(t, x) (2.5)

with xh(s, s, x) = x. By uniqueness of solutions, xh(t, s, xh(s, r, x)) = xh(t, r, x).
Often, the map (t, s, x) 7→ xh(t, s, x) is called a process.

We say that two solutions b1(t) and b2(t) of (2.5) are uniformly separated if they

are bounded and inft∈R |b1(t)−b2(t)| > 0. A bounded solution b̃(t) of (2.5) is hyper-
bolic attractive (resp. hyperbolic repulsive) if there exist k ≥ 1 and γ > 0 such that

exp
( ∫ t

s
hx(r, b̃(r)) dr

)
≤ ke−γ(t−s) whenever t ≥ s (resp. exp

( ∫ t

s
hx(r, b̃(r)) dr

)
≤

keγ(t−s) whenever t ≤ s); and, in both cases, (k, γ) is a dichotomy constant pair

of b̃. For the reader’s convenience, we state the next fundamental result. A
partial proof, strongly based on [13, Lecture 3], can be found in [19, Theorem
2.2]; and a proof of the last assertion, strongly based on [22, Theorem III.2.4],
can be found in [16, Theorem 3.2.3] (just use the admissibility of hx instead of
the existence and boundedness of the second derivative). We denote ∥h∥1,ρ :=

sup(t,x)∈R×[−ρ,ρ] |h(t, x)|+ sup(t,x)∈R×[−ρ,ρ] |hx(t, x)| and ∥b∥∞ := supt∈R |b(t)|.

Theorem 2.3. Let h be C1-admissible, let b̃h be an attractive (resp. repulsive)
hyperbolic solution of (2.5) with dichotomy constant pair (k0, γ0), and take ρ >

∥b̃h∥∞. Then, for every γ ∈ (0, γ0) and ε > 0, there exists δε > 0 and ρε > 0 such
that, if g is C1-admissible and ∥h− g∥1,ρ < δε, then



CRITICAL TRANSITIONS WITH APPLICATIONS IN ECOLOGY 9

(i) there exists an attractive (resp. repulsive) hyperbolic solution b̃g of x′ =

g(t, x) with dichotomy constant pair (k0, γ) which satisfies
∥∥b̃h− b̃g

∥∥
∞ < ε;

(ii) if |b̃g(t0) − x0| ≤ ρε, then |b̃g(t) − xg(t, t0, x0)| ≤ k0 e
−γ(t−t0)|b̃g(t0) − x0|

for all t ≥ t0 (resp. |b̃g(t) − xg(t, t0, x0)| ≤ k0 e
γ(t−t0)|b̃g(t0) − x0| for all

t ≤ t0).

A solution b̄ : (−∞, β) → R of (2.5) is locally pullback attractive if there exists
s0 < β and δ > 0 such that, if s ≤ s0, then xh(t, s, b̄(s)±δ) exists for t ∈ [s, s0], and

lim
s→−∞

|b̄(t)− xh(t, s, b̄(s)± δ)| = 0 for all t ≤ s0 .

Analogously, a solution b̄ : (α,∞) → R of (2.5) is said to be locally pullback repulsive
if and only if there exist s0 > α and δ > 0 such that, if s ≥ s0 and |x − b̄(s)| < δ,
then xh(t, s, b̄(s)± δ) exists for t ∈ [s0, s] and

lim
s→∞

|b̄(t)− xh(t, s, b̄(s)± δ)| = 0 for all t ≥ s0 .

Let us describe the already mentioned hull construction. Given an admissible
function h : R × R → R, we define h·t(s, x) := h(t + s, x). The hull Ωh of h is
the closure of the set {h·t | t ∈ R} on the set C(R × R,R) provided with the
compact-open topology. The set Ωh is a compact metric space, the time-shift map
σh : R×Ωh → Ωh, (t, ω) 7→ ω·t defines a global continuous flow, and the map h given
by h(ω, x) = ω(0, x) is continuous on Ωh×R. In addition, if h is C1-admissible then
Ωh ⊂ C0,1(R×R,R), and the continuous map hx(ω, x) := ωx(0, x) is the derivative
of h with respect to x; and, if h is C2-admissible then Ωh ⊂ C0,2(R × R,R), and
the continuous map hxx(ω, x) := ωxx(0, x) is the second derivative of h with respect
to x. The proof of these properties can be found in [44, Theorem I.3.1] and [43,
Theorem IV.3]. Note that (Ωh, σh) is a transitive flow, i.e., there exists a dense
σh-orbit: that of the point h ∈ Ωh. More precisely, if Ωα

h and Ωω
h are the α-limit

set and ω-limit set of the element h ∈ Ωh, then

Lemma 2.4. Ωh = Ωα
h ∪ {h·t | t ∈ R} ∪ Ωω

h .

Proof. We can write any ω ∈ Ωh as ω = limn→∞ h·tn in the compact-open topology
for a suitable sequence (tn). If a subsequence (tk) has limit −∞ or +∞, then ω
belongs to Ωα

h or Ωω
h . Otherwise, there exists a subsequence (tk) with limit t0 ∈ R,

and it is easy to check that ω = h·t0. □

The map h is recurrent if (Ωh, σh) is a minimal flow, i.e., if every σh-orbit is
dense in Ωh.

Assume that h is (at least) C1-admissible, and let us call τh the skewproduct flow
defined on Ωh×R by the family of equations (2.3) corresponding to the constructed
function h. Note that this family includes (2.5): it is given by the element ω = h ∈
Ωh, and, if τh(t, ω, x) = (ω·t, vh(t, ω, x)), then xh(t, s, x) = vh(t− s, h·s, x). This is
the skewproduct flow induced by h on its hull. The next basic result will be used in
Sections 4 and 6.

Proposition 2.5. Let h be C1-admissible and let Ωh be its hull. If x′ = h(t, x) has
a bounded solution b (resp. n uniformly separated solutions b1 < b2 < . . . < bn),
then x′ = ω(t, x) has a bounded solution (resp. n uniformly separated solutions) for
all ω ∈ Ωh.
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Proof. We write ω = limn→∞ h·tn in the compact-open topology for a sequence (tn).
Let x0 be the limit of a suitable subsequence (b(tk)) of (b(tn)). Then, the solution
vh(t, ω, x0) of x′ = ω(t, x) (with value x0 at 0) is bounded, since vh(t, ω, x0) =
limk→∞ b(t+ tk). The same argument proves the other assertion. □

In what follows, we will consider both processes and skewproduct flows. Observe
that (t, x) 7→ h(ω·t, x) is C1-admissible for all ω ∈ Ω if h ∈ C0,1(Ω× R,R).

Proposition 2.6. (i) Let b̃(t) be an attractive (resp. repulsive) hyperbolic so-

lution of (2.5) for h ∈ C0,1(R × R,R). Then, inft<t0 |b̃(t) − x̄(t)| > 0

(resp. inft>t0 |b̃(t)− x̄(t)| > 0) for any t0 ∈ R and any solution x̄(t) ̸= b̃(t)
defined on (−∞, t0] (resp on [t0,∞)).

(ii) Let the family (2.3) be given by h ∈ C0,1(Ω × R,R), and assume that the
α-limit set (resp. ω-limit set) of (ω̄, b0) is an attractive (resp. repulsive)
hyperbolic copy of the α-limit set Ωα

ω̄ (resp. ω-limit set Ωω
ω̄ ) of ω̄, say

{b̃}. Then, {b̃} does not intersect the α-limit set (resp. ω-limit set) of any
(ω̄, x) with x ̸= b0 and bounded backward semiorbit (resp. bounded forward
semiorbit).

Proof. (i) We reason in the attractive case, assuming for contradiction the exis-

tence of (tn) ↓ −∞ such that limn→∞ |b̃(tn) − x̄(tn)| = 0. According to the First
Approximation Theorem (see [22, Theorem III.2.4] and [19, Proposition 2.1]), the

attractive hyperbolicity of b̃ provides k ≥ 1 and γ > 0 such that, for large enough n,

|b̃(t0)− x̄(t0)| = |xh(t0, tn, b̃(tn))− xh(t0, tn, x̄(tn))| ≤ k e−γ(t0−tn)|b̃(tn)− x̄(tn)| .

The contradiction follows, since the last term tends to 0 as n→ ∞.

(ii) We reason in the attractive case. Assume the existence of the α-limit set K
of a point (ω̄, x) with x ̸= b0, and, for contradiction, the existence of (ω, b̃(ω)) ∈ K.

We write (ω, b̃(ω)) = limn→∞(ω̄·tn, v(tn, ω̄, x)) for a suitable sequence (tn) ↓ −∞,
assume without restriction the existence of limn→∞ v(tn, ω̄, b0), observe that this

limit is also b̃(ω), and note that this contradicts (i). □

Proposition 2.7. Let h ∈ C0,1(Ω×R,R), and let b̃ : Ω → R determine an attractive

(resp. repulsive) copy of the base for (2.3). For any ω ∈ Ω, the function b̃ω defined

by b̃ω(t) := b̃(ω·t) is an attractive (resp. repulsive) hyperbolic solution of (2.3)ω.

Proof. Let us reason in the attractive case, fixing ω ∈ Ω. Let us define ω∗(t, x) :=
h(ω·t, x) and v as in (2.4). Then, the solution xω(t, s, x) of x′ = ω∗(t, x) (i.e., of

(2.3)ω), coincides with v(t − s, ω·s, x), and b̃ω(t) = v(t − s, ω·s, b̃ω(s)). Hence, the

hyperbolicity of b̃ ensures that, if |x − b̃ω(s)| ≤ δ for an s ∈ R, then xω(t, s, x)

exists for all t ≥ s and it satisfies |xω(t, s, x)− b̃ω(t)| ≤ ke−γ(t−s)|x− b̃ω(s)|. There-
fore, (∂/∂x)xω(t, s, x)|x=b̃ω(s) = limε→0

(
xω(t, s, b̃ω(s) + ε) − xω(t, s, b̃ω(s))

)
/ε ≤

ke−γ(t−s). This derivative solves the variational equation z′ = (ω∗)x(t, b̃ω(t)) z and
has value 1 at t = s, from where the assertion follows. □

2.4. Lyapunov exponents. Let K ⊂ Ω × R be τ -invariant compact set project-
ing onto Ω, and let Minv(K, τ) and Merg(K, τ) be the (nonempty) sets of the τ -
invariant and τ -ergodic measures on K. A value γ ∈ R is a Lyapunov exponent of

K if there exists (ω, x) ∈ K such that γ = limt→±∞(1/t)
∫ t

0
hx(τ(r, ω, x)) dr. In this

case, there exists ν ∈ Minv(K, τ) such that γ =
∫
K hx(ω, x) dν: this fact can be
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deduced from Riesz Representation Theorem and Kryloff-Bogoliuboff’s Theorem.
In addition, Birkhoff’s Ergodic Theorem ensures that γ(K, ν) :=

∫
K hx(ω, x) dν

is a Lyapunov exponent of K for each ν ∈ Merg(K, τ). Since the ergodic mea-
sures are the extremal points in the set of invariant measures, the upper and
lower Lypaunov exponents of K are γ(K, νu) and γ(K, νl) for suitable measures
νu, νl ∈ Merg(K, τ). According to [20, Theorem 4.1] and [7, Theorem 1.8.4], if
ν ∈ Merg(K, τ) projects onto m ∈ Merg(Ω, σ), then there exists an m-measurable
τ -equilibrium b : Ω → R such that γ(K, ν) =

∫
Ω
hx(ω, b(ω)) dm. Therefore, there

exists ml,mu ∈ Merg(Ω, σ), an ml-measurable equilibrium bs : Ω → R and an
mu-measurable equilibrium bu : Ω → R such that the lower and upper Lyapunov
exponents of K are given by

∫
Ω
hx(ω, b

l(ω)) dml and
∫
Ω
hx(ω, b

l(ω)) dml, respec-
tively. Finally, if m ∈ Merg(Ω, σ) and b : Ω → R is an m-measurable τ -equilibrium
with graph in K, then

∫
Ω
hx(ω, b(ω)) dm is one of the Lyapunov exponents of K.

Theorem 2.8. Let K ⊂ Ω × R be a τ -invariant compact set projecting onto Ω.
Assume that its upper and lower equilibria coincide (at least) on a point of each
minimal subset M ⊆ Ω. Then, all the Lyapunov exponents of K are strictly negative
(resp. positive) if and only if K is an attractive (resp. repulsive) hyperbolic copy of
the base.

In addition, if either K (and hence Ω) is minimal or its upper and lower equilibria
coincide on a τ -invariant subset Ω0 ⊆ Ω with m(Ω0) = 1 for all m ∈ Merg(Ω, σ),
then the condition on its upper and lower equilibria holds.

Proof. We reason in the attractive case. Let l and u be the lower and upper equi-
libria of K. We take (ω, l(ω)) ∈ K, a point ω0 in a minimal subset of the α-
limit set of ω with l(ω0) = u(ω0), and a sequence (tn) ↓ −∞ with (ω0, l(ω0)) =
limn→∞ τ(tn, ω, l(ω)) and such that there exists (ω0, x0) := limn→∞ τ(tn, ω, u(ω)).
Then, l(ω0) ≤ x0 ≤ u(ω0) = l(ω0); i.e., x0 = l(ω0). This property allows us to
repeat the proof [10, Proposition 2.8] in the attractive case: just replace the points
(ω1, x1) and (ω1, x2) of that proof by (ω, l(ω)) and (ω, u(ω)). For the repulsive case,
we work with the ω-limit set.

The last assertion is proved in [10, Section 2.4] in the minimal case. In the other
one, it follows from the existence of a measure m ∈ Merg(Ω, σ) concentrated on
each minimal set. □

3. The concave and nonlinear case

The main purpose in this section is to extend previous results on families of
equations on which hypotheses on concavity were globally assumed (as in [5, 34, 28,
30, 17]) to a significantly less restrictive setting, on which the concavity hypotheses
are assumed just in measure.

Let (Ω, σ) be a global continuous real flow on a compact metric space, and let
us consider the family of scalar ordinary differential equations

x′ = h(ω·t, x) (3.1)

for ω ∈ Ω, where h : Ω× R → R satisfies (all or part of) the next conditions:

c1 h ∈ C0,1(Ω× R,R),
c2 lim supx→±∞ h(ω, x) < 0 uniformly on Ω,
c3 m({ω ∈ Ω | x 7→ h(ω, x) is concave}) = 1 for all m ∈ Merg(Ω, σ),
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c4 m({ω ∈ Ω | x 7→ hx(ω, x) is strictly decreasing on J }) > 0 for all compact
interval J ⊂ R and all m ∈ Merg(Ω, σ).

Recall that Merg(Ω, σ) is the (nonempty) set of σ-ergodic measures on Ω. To
simplify language, under these conditions we will say that (3.1) is a family of concave
ordinary differential equations, although the concavity of the map x 7→ h(ω, x) is
not required for all ω ∈ Ω. Note also that the words do not make reference to the
coercive character of the equation, although it is required.

Remark 3.1. Let Ω0 ⊂ Ω be a nonempty compact σ-invariant subset. Then, any
m0 ∈ Merg(Ω0, σ) can be extended to m ∈ Merg(Ω, σ) by m(U) = m0(U ∩Ω0). So,
if h satisfies cj for j ∈ {1, 2, 3, 4}, also the restriction h : Ω0 × R → R satisfies cj.

Let τ be the skewproduct flow defined by (2.4), with τ(t, ω, x) = (ω·t, v(t, ω, x)).
Before working under the coercive property c2, we want to explain some conse-
quences of the concavity assumptions c3 and c4, fundamental in what follows.
They are based on the next fundamental proposition, that establishes conditions
under which two different bounded ordered m-measurable τ -equilibria give rise to
two Lyapunov exponents with different signs on two compact τ -invariant sets (or
only one) containing their graphs (see Section 2.4). Its proof is based on that of
[18, Theorem 4.1].

Proposition 3.2. Let h : Ω × R → R satisfy c1, let us fix m ∈ Merg(Ω, σ), and
let b1, b2 : Ω → R be bounded m-measurable τ -equilibria with b1(ω) < b2(ω) for
m-a.e. ω ∈ Ω. Assume that m({ω ∈ Ω | x 7→ h(ω, x) is concave}) = 1 and m({ω ∈
Ω | hx(ω, b1(ω)) > hx(ω, b2(ω))}) > 0. Then,∫

Ω

hx(ω, b1(ω)) dm > 0 and

∫
Ω

hx(ω, b2(ω)) dm < 0 .

In particular, there are at most two bounded m-measurable τ -equilibria which are
strictly ordered m-a.e.

Proof. We call Ωc := {ω ∈ Ω | x 7→ h(ω, x) is concave}, which satisfies m(Ωc) =
1, and Ω0 := {ω ∈ Ω | b1(ω) < b2(ω)}, which is σ-invariant (since bi(ω·t) =
v(t, ω, bi(ω)) for i ∈ {1, 2}) and with m(Ω0) = 1. For each ω ∈ Ωc, we represent by
ai(ω, x1, x2) the expression ai(x1, x2) of (2.1) associated to the concave map x 7→
h(ω, x) and observe that (x1, x2) 7→ ai(ω, x1, x2) is continuous on R2 for every ω ∈
Ωc: see (2.2). For i ∈ {1, 2}, we define a∗i : Ω → R by a∗i (ω) := ai(ω, b1(ω), b2(ω))
if ω ∈ Ωc ∩Ω0 and a∗i (ω) := 0 otherwise, and observe that a∗i is m-measurable and
that a∗i ≥ 0 (see Proposition 2.2(i)). Let us take i = 1 and write

hx(ω·t, b1(ω·t))− a∗1(ω·t) =
h(ω·t, b2(ω·t))− h(ω, b1(ω·t))

b2(ω·t)− b1(ω·t)
=

b′2(ω·t)− b′1(ω·t)
b2(ω·t)− b1(ω·t)

for ω ∈ Ω0, where b′i(ω·t) is the derivative of t 7→ bi(ω·t). This yields

1

t

∫ t

0

hx(ω·s, b1(ω·s)) ds =
1

t

∫ t

0

a∗1(ω·s) ds+
1

t
log

(
b2(ω·t)− b1(ω·t))
b2(ω)− b1(ω)

)
. (3.2)

Lusin’s Theorem provides a compact subset ∆ ⊂ Ωc with m(∆) > 0 such that
b1|∆, b2|∆ : ∆ → R are continuous. Since hx(·, b1(·)) is bounded and a∗1(·) is
nonnegative, Birkhoff’s Ergodic Theorem (see [14, Theorem 1 in Section 1.2] and
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[25, Proposition 1.4]) ensures the existence of a σ-invariant subset Ω∗
0 ⊆ Ω0 with

m(Ω∗
0) = 1 such that, for every ω ∈ Ω∗

0,

lim
t→∞

1

t

∫ t

0

hx
(
ω·s, b1(ω·s)

)
ds =

∫
Ω

hx
(
ω, b1(ω)

)
dm ∈ R ,

lim
t→∞

1

t

∫ t

0

a∗1(ω·s) ds =
∫
Ω

a∗1(ω) dm ∈ [0,∞] ,

lim
t→∞

1

t

∫ t

0

χ∆(ω·s) ds = m(∆) > 0 .

In particular, if ω ∈ Ω∗
0, there exists a sequence (tn) ↑ ∞ such that ω·tn ∈ ∆.

Hence, the sequence {log((b2(ω·tn) − b1(ω·tn))/(b2(ω) − b1(ω))}n∈N is bounded.
We write (3.2) for t = tn and take limit as n → ∞ to get

∫
Ω
hx(ω, b1(ω)) dm =∫

Ω
a∗1(ω) dm. So,

∫
Ω
hx(ω, b1(ω)) dm > 0 follows from

∫
Ω
a∗1(ω) dm > 0. To prove

this last inequality, we deduce from Proposition 2.2(i) that a∗1(ω) > 0 if and only if
hx(ω, b1(ω)) > hx(ω, b2(ω)), and hence use the last hypothesis on hx to get m({ω ∈
Ωc : a∗1(ω) > 0}) > 0. An analogous argument proves that

∫
Ω
hx(ω, b2(ω)) dm < 0.

The last assertion is an easy consequence of the previous ones. □

Theorem 3.3. Let h satisfy c1, c3 and c4. Then, there exist two disjoint and
ordered τ -invariant compact sets K1 < K2 projecting onto Ω if and only if there
exist two different hyperbolic copies of the base {r̃} and {ã} with r̃ < ã. In this
case, K1 = {r̃} and it is repulsive; K2 = {ã} and it is attractive; and B := {(ω, x) ∈
Ω × R | r̃(ω) ≤ x ≤ ã(ω)} is the set of globally bounded orbits. In particular, there
are at most two disjoint and ordered τ -invariant compact sets projecting onto Ω.

Proof. Sufficiency is obvious. To check necessity, we observe that h satisfies the
conditions of Proposition 3.2 for any m ∈ Merg(Ω, σ) and any pair of bounded
ordered m-measurable equilibria. This result ensures that all the Lyapunov ex-
ponents of K1 are positive and all the Lyapunov exponents of K2 are negative:
the lower one of K1 is given by

∫
Ω
hx(ω, b(ω)) dm for m ∈ Merg(Ω, σ) and an m-

measurable τ -equilibrium b which is strictly smaller than the (m-measurable) lower
τ -equilibrium of K2, so that Proposition 3.2 ensures that it is positive; and the other
property is proved similarly. The last assertion in Proposition 3.2 ensures that the
upper and lower equilibria of Ki coincide on a τ -invariant set with m(Ω0) = 1 for all
m ∈ Merg(Ω, σ) for i ∈ {1, 2}, and hence Theorem 2.8 ensures that K1 is a repulsive
hyperbolic copy of Ω and K2 is an attractive hyperbolic copy of Ω. Observe that
this fact precludes the existence of more than two disjoint and ordered τ -invariant
compact sets projecting onto Ω.

Let us write K1 = {r̃} and K2 = {ã} for continuous maps r̃, ã : Ω → R. Clearly,⋃
ω∈Ω({ω}× [̃r(ω), ã(ω)]) ⊆ B. To prove the converse inclusion, we assume for con-

tradiction the existence of (ω0, x0) with x0 > ã(ω0) and with globally defined and
bounded τ -orbit. Then, the α-limit set K of this orbit exists and is a τ -invariant
compact set projecting onto a compact set ΩK ⊆ Ω. Since {ã} is attractive, Propo-
sition 2.6(ii) restricted to ΩK (see Remark 3.1) ensures that K > K2|ΩK > K1|ΩK ,
which contradicts the last assertion of the previous paragraph. A similar argument
working with ω-limit sets shows that x0 ≥ r̃(ω0) for all (ω0, x0) ∈ B. □

We say that there exists an attractor-repeller pair (ã, r̃) of copies of the base (or
of Ω) for (3.1), or that (ã, r̃) is an attractor-repeller pair of copies of the base for
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(3.1), if {ã} is an attractive hyperbolic copy of Ω and {r̃} is a repulsive hyperbolic
copy of Ω. So, Theorem 3.3 characterizes its existence under conditions c1, c3 and
c4, in which case, in addition, r̃ < ã.

Remark 3.4. Theorem 3.3 shows that, if there exists an attractor-repeller pair of
copies of the base, then the set B of bounded τ -orbits is nonempty, bounded, and
the pair is given by its upper and lower equilibria. Assume now that we previously
know that B is nonempty and bounded, with B ⊆ Ω × JB for a compact interval
JB ⊂ R. Then all the conclusions of Theorem 3.3 apply if, for all m ∈ Merg(Ω, σ),
m({ω ∈ Ω | x 7→ h(ω, x) is concave}) = 1 and m({ω ∈ Ω | x 7→ hx(ω, x) is strictly
decreasing on JB}) > 0.

Let us now derive consequences of the coercivity property.

Proposition 3.5. Let h satisfy c1 and c2, and take δ > 0 and m1 < m2 with
h(ω, x) ≤ −δ for all ω ∈ Ω if x /∈ (m1,m2). Then,

(i) lim inft→(αω,x)+ v(t, ω, x) > m1 and lim supt→(βω,x)− v(t, ω, x) < m2 for any

solution v(t, ω, x): any solution remains lower bounded as time decreases
and upper bounded as time increases.

(ii) If v(t, ω, x) is bounded, then v(t, ω, x) ∈ [m1,m2] for all t ∈ R: the set

B :=
{
(ω, x) | sup

t∈R
|v(t, ω, x)| <∞

}
is either empty or contained in Ω× [m1,m2].

(iii) If B is nonempty, then the projection Ωb of B onto Ω is a σ-invariant
compact set.

(iv) For each ω ∈ Ωb, let us write Bω := {x | (ω, x) ∈ B} = [r(ω), a(ω)]. Then,
the maps r, a : Ωb → [m1,m2] are lower and upper semicontinuous equilibria
for the restriction of τ to Ωb × R.

(v) If, for a point ω ∈ Ω, there exists a bounded C1 function b : R → R such that
b′(t) ≤ h(ω·t, b(t)) for all t ∈ R, then ω ∈ Ωb, and r(ω·t) ≤ b(t) ≤ a(ω·t)
for all t ∈ R. If b′(t) < h(ω·t, b(t)) for all t ∈ R, then r(ω·t) < b(t) < a(ω·t)
for all t ∈ R.

(vi) If ω ∈ Ωb, then v(t, ω, x) is bounded from below if and only if x ≥ r(ω), and
from above if and only if x ≤ a(ω).

(vii) Assume that h satisfies also c3 and c4, and that (ã, r̃) := (a, r) is an
attractor-repeller pair of copies of the base. Then, limt→∞(v(t, ω, x) −
ã(ω·t)) = 0 if and only if x > r̃(ω), limt→−∞(v(t, ω, x) − r̃(ω·t)) = 0 if
and only if x < ã(ω), and t 7→ r̃(ω·t), ã(ω·t) define the two unique hyper-
bolic solutions of (3.1)ω.

Proof. The existence ofm1 andm2 is ensured by property c2. The proofs of (i) and
(ii) are classical exercises on ODEs. It is easy to check that B is closed, and hence
compact, and clearly it is τ -invariant. Assertions (iii) and (iv) follow from here.
The properties stated in (v) follow from (i) and standard comparison arguments:
see e.g. the proof of [30, Theorem 3.1(v)]. Easy contradiction arguments using (i)
prove (vi).

To check the first assertion in (vii), we first take x > r̃(ω), assume for contra-
diction that the ω-limit set of (ω, x) is not contained in {ã}, deduce from Theorem
3.3 (restricted to the projection of the ω-limit set: see Remark 3.4) that it in-
tersects {r̃}, and observe that this contradicts Proposition 2.6(ii). Conversely, if
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limt→∞(v(t, ω, x) − ã(ω·t)) = 0, then (vi) and the τ -invariance of {r̃} ensure that
x > r̃(ω). The same arguments prove the second assertion in (vii), and the last one
follows from Propositions 2.7 and 2.6. □

Note that the previous property (iv) ensures that r and a arem-measurable equi-
libria for all m ∈ Merg(Ω

b, σ). We will use this property when we apply Proposition
3.2 to these equilibria.

The last result in this section characterizes the existence of an attractor-repeller
pair of copies of the base in terms of the existence of two uniformly separated
hyperbolic solutions of a given equation when the base is constructed as the hull of
that equation: see Section 2.3.

Theorem 3.6. Let h : Ω × R → R satisfy c1, c2, c3 and c4. Let us fix ω̄ ∈ Ω.
Then, the following assertions are equivalent:

(a) Equation (3.1)ω̄ has two hyperbolic solutions.
(b) Equation (3.1)ω̄ has two uniformly separated hyperbolic solutions.
(c) Equation (3.1)ω̄ has two uniformly separated bounded solutions.
(d) There exists an attractor-repeller pair (ã, r̃) of copies of the base for the

restriction of the family (3.1) to the closure Ωω̄ of {ω̄·t | t ∈ R}.
In this case, t 7→ ã(t) := ã(ω̄·t) and t 7→ r̃(t) := r̃(ω̄·t) are the two unique uniformly
separated solutions of (3.1)ω̄, they are hyperbolic, and there are no more hyperbolic
solutions. In addition, if xω̄(t, s, x) is the solution of (3.1)ω̄ with xω̄(s, s, x) = x,
then: it is bounded if and only if x ∈ [r̃(s), ã(s)], limt→∞ |xω̄(t, s, x) − ã(t)| = 0 if
and only if x > r̃(s), and limt→−∞ |xω̄(t, s, x)− r̃(t)| = 0 if and only if x < ã(s).

Proof. The statements after the equivalences follow from (d) and Proposition 3.5(vi)
and (vii). We will check (b)⇒ (c)⇒ (d)⇒ (a)⇒ (b). Recall that the hypotheses
on h are also valid for its restriction to Ωω̄ × R: see Remark 3.1.

(b)⇒ (c)⇒ (d). Obviously, (b) implies (c). Now we assume (c) and observe that
it ensures that the lower and upper bounded solutions, r(t) and a(t), are uniformly
separated. We call δ := inft∈R(a(t) − r(t)) > 0. Let Ka be the closure of the
τ -orbit of (ω̄, a(0)). It projects on Ωω̄, and hence Ωω̄ ⊂ Ωb: there exist r(ω) and
a(ω) for all ω ∈ Ωω̄. Let us check that x0 ≥ r(ω0) + δ for all (ω0, x0) ∈ Ka. We
write (ω0, x0) = limn→∞(ω̄·tn, a(tn)) and assume without restriction the existence
of (ω0, x

0) := limn→∞(ω̄·tn, r(tn)), which belongs to the (closed) set B. If x0 <
r(ω0)+ δ, then x

0 ≤ x0− δ < r(ω0)+ δ− δ = r(ω0), impossible. Let us consider the
restriction τ̄ of τ to Ωω̄ × R. Since any τ̄ -equilibrium with graph in Ka is strictly
above r, Proposition 3.2 shows that all the Lyapunov exponents of Ka are strictly
negative, and that its upper and lower equilibria coincide on a σ-invariant set Ω0

with m0(Ω0) = 1 for all m0 ∈ Merg(Ωω̄, σ). Hence, Theorem 2.8, ensures that Ka

is an attractive hyperbolic copy of Ωω̄. This fact and the previous property ensure
that Ka is strictly above the closure Kr of {(ω, r(ω)) | ω ∈ Ωω̄}. Hence, Theorem
3.3 ensures that Kr is a repulsive hyperbolic copy of Ωω̄: (d) holds.

(d)⇒ (a)⇒ (b). If (d) holds, then t 7→ ã(ω̄·t) and t 7→ r̃(ω̄·t) are two hyperbolic
solutions of (3.1)ω̄ (see Proposition 2.7), which ensures (a). Let us assume (a),
and let x̃1 < x̃2 be the two hyperbolic solutions of (3.1)ω̄. Let us first check that
x̃1 is repulsive, assuming for contradiction that it is attractive. We call a(t) :=
a(ω̄·t), with a given by Proposition 3.5(iv). Proposition 2.6(i) ensures that δ :=
inft≤0(a(t) − x̃1(t)) > 0. Let M1 and Ma be the α-limit sets of (ω̄, x̃1(0)) and
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(ω̄, a(0)), which project on the α-limit set Ωα
ω̄ ⊆ Ωω̄ of ω̄. Repeating the argument

of the previous paragraph, we check that x0 ≤ a(ω0)− δ whenever (ω0, x0) ∈ M1,
and deduce that M1 is a repulsive copy of Ωα

ω̄ . Proposition 2.7 shows that any orbit
in M1 corresponds to a repulsive hyperbolic solution. On the other hand, it is easy
to check that any orbit in the α-limit set of the orbit of an attractive hyperbolic
solution corresponds to an attractive hyperbolic solution. And these facts provide
the sought-for contradiction, since a solution cannot be at the same time hyperbolic
attractive and repulsive.

Hence, x̃1 is repulsive. Proposition 2.6(i) provides δ > 0 such that inft≥0(a(t)−
x̃1(t)) > δ. Let M̄1 be the ω-limit set of (ω̄, x̃1(0)), which projects on the ω-
limit set Ωω

ω̄ ⊆ Ωω̄ of ω̄. Repeating again the arguments used to prove (c)⇒ (d),
we check that x0 ≤ a(ω0) − δ whenever (ω0, x0) ∈ M̄1; and we deduce that M̄1

is a repulsive copy of Ωω
ω̄ . Hence, M̄1 does not intersect the ω-limit set M̄2 of

(ω̄, x̃2(0)): see Proposition 2.6(ii). So, we have M̄1 < M̄2. Theorem 5.3 applied to
Ωω

ω̄ × R ensures that M̄2 is an attractive hyperbolic copy of Ωω
ω̄ , which according

to Proposition 2.7 is only possible if x̃2 is attractive. Proposition 2.6(i) ensures that
the two solutions are uniformly separated. So, (b) holds. □

We will refer to the situation described by the equivalences of Theorem 3.6 as
the existence of an attractor-repeller pair of solutions of (3.1)ω̄.

4. Asymptotically concave transition equations

Let g : R×R → R be a C1-admissible function. The hull construction described
in Section 2.3 allows us to understand the σ-orbit of g, {g·t | t ∈ R}, which is dense
in the hull Ωg, as a connection between its α-limit set Ωα

g and its ω-limit set Ωω
g . In

fact, the hull Ωg is the union of these three sets: see Lemma 2.4. Our goal in this
section is to describe the dynamical possibilities of an “asymptotically concave”
equation

x′ = g(t, x) (4.1)

under conditions which ensure that the families of equations defined over Ωα
g (α-

family) and Ωω
g (ω-family) satisfy the regularity, coercivity and strict concavity

properties c1-c4, as well as the existence of attractor-repeller pairs of copies of the
base for the α-family and the ω-family. Since the structures of these sets represent
the past and future of g, we are understanding (4.1) as a transition between the
α-limit and ω-limit families.

Proposition 2.5 precludes the existence of uniformly separated solutions of (4.1)
unless all the equations of the α-family and the ω-family have uniformly sepa-
rated solutions. Hence, to consider a transition scenario with interesting dynamical
possibilities, it is reasonable to assume the existence of attractor-repeller pairs of
solutions for all the (concave) equations of the limit families: see Theorem 3.6. We
will achieve these properties by assuming the existence of strictly concave (in x)
maps g− and g+ such that g and g− (resp. g and g+) form an asymptotic pair
as t → −∞ (resp. as t → ∞) in the common hull of g and g− (resp. g and g+).
(The common hull of two admissible maps h1 and h2 is the compact metric space
defined as the closure of {hi·t | i = 1, 2, t ∈ R} in the compact-open topology, and
ω1 and ω2 form an asymptotic pair as t → ±∞ if the distance from ω1·t to ω2·t
tends to 0.) The required existence of these maps does not imply their uniqueness,
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Figure 1. In the left panel, the surface z = g(t, x) for g(t, x) := 1.2x (1 − x/90) − 5 −
20Γ(t)x2/(20 + x2), and the plane z = 0. The map Γ is the unique C1 cubic spline which

takes value 1 on [−5, 5] and 0 outside [−10, 10]: see Figure 2. It is easy to check that conditions
gc1-gc4 are satisfied by this map g and the maps g±(t, x) = g±(x) := 1.2x (1 − x/90) − 5, as

well as the no concavity of the maps x 7→ g(t, x) for t close to 0: the right panel depicts the maps

x 7→ g(0, x) (in red) and x 7→ g(t0, x) = g±(x) for |t0| ≥ 10 (in blue). It is clear that the limit
equations x′ = g±(x) have two hyperbolic constant solutions, given by the zeros of g±. So, gc5

also holds. The map g is a simplification from that giving rise to the model analyzed in Section

4.2, which has the same properties but a less clear graph.

but Lemma 4.2 below also shows that Ωα
g and Ωω

g respectively coincide with Ωα
g−

and Ωω
g+ , which is a key point in our analysis.

So, we fix g and assume the existence of g− and g+ such that:

gc1 g, g−, g+ ∈ C0,1(R× R,R).
gc2 limt→±∞(g(t, x)− g±(t, x)) = 0 uniformly on each compact subset J ⊂ R.
gc3 lim supx→±∞ h(t, x) < 0 uniformly on R for h = g, g−, g+.

gc4 inft∈R
(
(g±)x(t, x1)− (g±)x(t, x2)

)
> 0 whenever x1 < x2.

gc5 Each one of the equations

x′ = g−(t, x) and x′ = g+(t, x) (4.2)

has two hyperbolic solutions, r̃g− < ãg− and r̃g+ < ãg+ .

Under these conditions we will say that (4.1) is an (asymptotically) concave ordinary
differential equation. Observe that the concavity of the map x 7→ g(t, x) is not
required for all t ∈ R: see Figure 1. Note also that the coercive character of the
equation is required without making explicit reference to it.

As Lemma 4.3 will prove, conditions gc1-gc4 provide a setting satisfying the
hypotheses of Section 3, that is, a family of concave ordinary differential equations
(see Section 3).

Remarks 4.1. 1. Slightly abusing language, we will say that “g satisfies conditions
gc1-gc5” if there exist g− and g+ such that all the listed conditions are satisfied.

2. To simplify the language, we will refer to (4.1) as a transition equation between
the past equation and the future equation, which are the first one and the second one
in (4.2). That the use of these words is accurate is partly justified by the previously
mentioned equalities Ωα

g− = Ωα
g and Ωω

g+ = Ωω
g , which mean that the hyperbolic

structures of the equations (4.2) condition that of (4.1) and viceversa; and it will
be better justified by the main results of this section. But observe that the future
of the dynamics of the nonautonomous equation x′ = g−(t, x) is not necessarily
related to its past (since Ωα

g− can be different Ωω
g−), and hence it can be not related



18 J. DUEÑAS, C. NÚÑEZ, AND R. OBAYA

to the dynamics of x′ = g(t, x). And the same happens with the past dynamics of
x′ = g+(t, x) and x

′ = g(t, x).

We will classify the dynamical scenarios for (4.1) and relate them to those of
(4.2) under the above conditions, which include coercivity of all the involved equa-
tions (gc3) but strict concavity in x only of the limit ones (gc4). As said in the
Introduction, several fundamental differences arise with respect to previous ap-
proaches, which, on the one hand, are restricted to maps g(t, x) := f(t, x,Γ(t))
and g±(t, x) := f(t, x, γ±), where γ± := limt→±∞ Γ(t) are assumed to exist and
be real; and, on the other hand, are analyzed under much more exigent con-
cavity hypothesis. So, we will extend part of the results of [30], formulated for
x′ = −(x − Γ(t))2 + p(t) and with constant asymptotic limits of Γ, to a much
more general setting. The problem is also analyzed in [28] for x′ = h(t, x − Γ(t))
assuming (less restrictive) Carathéodory conditions on h and properties concerning
its concavity with respect to the second variable and the asymptotic limits of Γ
which are much stronger than those assumed here. Thus, the current formulation
of our results considerably broadens their possibilities of application, as we will see
in Section 4.2.

Theorem 4.7 provides the above mentioned classification of the dynamical pos-
sibilities for (4.1) when all the previous conditions hold. Its proof is strongly based
on Theorem 3.6 and Proposition 4.6, and this last one also requires some previous
work. Our first two results, fundamental for the subsequent application of Theo-
rem 3.6, refer to the hull extensions (see Section 2.3). Recall that we represent by
xh(t, s, x) the maximal solution of x′ = h(t, x) which satisfies xh(s, s, x) = x: we
will use this notation for h equal to g, g−, g+, and some other auxiliary admissible
functions. In all these cases, the set Ωh is the hull of h, and Ωα

h and Ωω
h are the α-

limit set and ω-limit set of the element h ∈ Ωh. Recall that h·t(s, x) := h(t+ s, x),
and that h(ω, x) := ω(0, x) if ω ∈ Ωh. We represent by g, g− and g+ the extensions
to the corresponding hulls of g, g− and g+. These auxiliary results do not need all
the conditions gc1-gc5: we will specify the required ones.

Lemma 4.2. Let g and g± satisfy gc1 and gc2. Then, Ωα
g = Ωα

g− and Ωω
g = Ωω

g+ .

Hence, Ωg = Ωα
g− ∪ {g·t | t ∈ R} ∪ Ωω

g+ .

Proof. Given a sequence (tn) with limit ±∞, it is easy to check that ω(t, x) =
limn→∞ g(t + tn, x) uniformly on the compact subsets of R × R if and only if
ω(t, x) = limn→∞ g±(t + tn, x) uniformly on the compact subsets of R × R. This
proves the first equalities, which combined with Lemma 2.4 prove the last one. □

Lemma 4.3. If h ∈ C0,1(R × R,R) then h satisfies c1 on Ωh. If h ∈ C0,1(R ×
R,R) and lim supx→±∞ h(t, x) < 0 uniformly on R, then h satisfies c2 on Ωh.
And, if gc1, gc2 and gc4 hold, then g and g± satisfy c3 and c4 on Ωg and Ωg± ,
respectively.

Proof. As explained in Section 2.3, c1 for h follows from the C1-admissibility of h.
If, in addition, lim supx→±∞ h(t, x) < 0 uniformly on R, then there exists δ > 0
and ρδ > 0 such that h(t, x) ≤ −δ if |x| ≥ ρδ and t ∈ R. Since any ω ∈ Ωh satisfies
ω(0, x) = limn→∞ h(tn, x) for a sequence (tn), we have h(ω, x) = ω(0, x) ≤ −δ if
|x| ≥ ρδ: c2 holds on Ωh.

Now, we assume that gc1, gc2 and gc4 hold. To prove the last assertion, it
is enough to reason with g, since g− and g+ satisfy the conditions assumed on g.
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To check that g satisfies c3 and c4 on Ωg, we use the ideas of the proof of [19,
Proposition 3.16]. Lemma 2.4 ensures that Ωg = Ωα

g ∪ {g·t | t ∈ R} ∪ Ωω
g . In

particular, given m ∈ Merg(Ωg, σg), m(Ωα
g ) = 1 or m(Ωω

g ) = 1 (or both): this is
trivial if g is independent of t or t-periodic (since Ωg = Ωα

g = Ωω
g ); and, in the

remaining cases, {g·t | t ∈ R} =
⋃

n∈Z σn({g·t | t ∈ [0, 1)}) (where σn(ω) = ω·n)
is a nonfinite union of disjoint sets. Therefore, m(σn({g·t | t ∈ [0, 1)})) = 0 for
all n ∈ N, since this measure is independent of n. Hence, it suffices to check that
x 7→ gx(ω, x) is strictly decreasing on R for all ω ∈ Ωα

g ∪ Ωω
g : this ensures that

m({ω ∈ Ωg | x 7→ gx(ω, x) is strictly decreasing on R}) = 1 for allm ∈ Merg(Ωg, σg),
which is stronger than c3 and c4. We reason for ω ∈ Ωω

g . According to Lemma 4.2,
ω = limn→∞ g+·tn (in the compact-open topology) for a sequence (tn) with limit∞.
Then, ωx is the limit of any subsequence of ((g+)x·tn) which uniformly converges
on the compact subsets of R × R, and hence ωx = limn→∞(g+)x·tn uniformly on
the compact subsets of R× R. We take x1 < x2, and apply gc4 to get

gx(ω, x1)− gx(ω, x2) = ωx(0, x1)− ωx(0, x2)

= lim
n→∞

((g+)x(tn, x1)− (g+)x(tn, x2)) > 0 ,

which completes the proof. □

Remark 4.4. Lemma 4.3 shows that g− satisfies c1, c2, c3 and c4 if g− sat-
isfies the conditions assumed on it on gc1, gc3 and gc4. Hence, in this case,
and according to Theorem 3.6, the property corresponding to g− in condition gc5
can be reformulated as: “the equation x′ = g−(t, x) has an attractor-repeller pair
of solutions (ãg− , r̃g−)”, which determines its corresponding global dynamics: see
Theorem 3.6. The same applies to g+. We will use these facts without further
reference.

The next result allows us to apply Theorem 2.3 in the proof of Proposition 4.6.

Lemma 4.5. If g and g± satisfy gc1 and gc2, then limt→±∞(gx(t, x)−(g±)x(t, x)) =
0 uniformly on each compact subset J ⊂ R.

Proof. Let us reason for g−, taking (tn) ↓ −∞ and a compact subset J ⊂ R.
Since h− := g − g− is C1-admissible, every subsequence (tm) has a subsequence
(tk) such that there exists d−(x) := limk→∞(h−)x(tk, x) and is uniform on J .
We assume for contradiction that d− ̸≡ 0 and, without restriction, that d−(x) ≥
ε > 0 for x ∈ [x1, x2] ⊆ J . Then, 0 = limk→∞(h−(tk, x2) − h−(tk, x1)) =
limk→∞

∫ x2

x1
(h−)x(tk, s) ds =

∫ x2

x1
d−(s) ds ≥ ε(x2 − x1), which is impossible. □

Proposition 4.6. Assume that g satisfies gc1-gc5, and let (ãg± , r̃g±) be the attractor-
repeller pairs of solutions of x′ = g±(t, x) given by gc5. Then,

(i) there exists a unique solution ag of (4.1) defined at least on a negative half-
line and characterized by “x > ag(s) if and only if xg(t, s, x) is unbounded
from above as time decreases”. It satisfies limt→−∞(ag(t) − ãg−(t)) = 0
and, if there exists ag(s), then x < ag(s) if and only if limt→−∞ |xg(t, s, x)−
r̃g−(t)| = 0. In addition, ag is locally pullback attractive.

(ii) There exists a unique solution rg of (4.1) defined at least on a positive half-
line and characterized by “x < rg(s) if and only if xg(t, s, x) is unbounded
from below as time increases”. It satisfies limt→∞(rg(t)− r̃g+(t)) = 0 and,
if there exists rg(s), then x > rg(s) if and only if limt→∞ |xg(t, s, x) −
ãg+(t)| = 0. In addition, rg is locally pullback repulsive.
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(iii) There exists a bounded solution b : R → R of (4.1) if and only if rg and ag
are globally defined, in which case rg ≤ b ≤ ag.

(iv) If ag and rg are bounded and different, then (ãg, r̃g) := (ag, rg) is an
attractor-repeller pair of solutions for (4.1). In particular, this is the sit-
uation if: there exists s ∈ R such that ag(s) and rg(s) exist and satisfy
rg(s) < ag(s); or if ag ̸= rg and one of them is bounded.

(v) If (4.1) has no hyperbolic solutions, then it has at most one bounded solution
ag = rg.

Proof. If gc1 and gc3 hold, then there exist m > 0 and ε > 0 such that g(t,±x) ≤
−ε and g±(t,±x) ≤ −ε for all t ∈ R if x ≥ m. So, we can repeat the proofs
of points (i) and (ii) of [30, Theorem 3.1], in order to proof that, if there are
solutions which remain bounded as time decreases (resp. as time increases), then
there exists the (possibly local) map ag : (−∞, sa) → (−∞,m], with −∞ < sa ≤ ∞
(resp. rg : (sr,∞) → [−m,∞) with and −∞ ≤ sr < ∞), characterized as in the
first assertion of (i) (resp. of (ii)). The same arguments show that m is a bound for
the absolute value of any bounded solution of x′ = g±(t, x). Hence, −m ≤ r̃g±(t) ≤
ãg±(t) ≤ m for all t ∈ R. We also point out that the characterizations of ag and
rg combined with the existence of an upper bound for ag and a lower bound for rg
prove (iii).

Now, we proceed as in the proof of [28, Theorem 3.4]. We detail it, since the
scenario here is much more general, and some technical differences arise.

Let us take ε > 0. Since gc1 holds, Theorem 2.3 provides δ− = δ−(ε) > 0
such that, if f is C1-admissible and ∥g− − f∥1,m < δ−, then x′ = f(t, x) has an

attractor-repeller pair (ãf , r̃f ) with ∥ãg− − ãf
∥∥
∞ ≤ ε and ∥r̃g− − r̃f

∥∥
∞ ≤ ε. It also

ensures the existence of a common dichotomy constant pair for all these hyperbolic
solutions. We fix the same for both hyperbolic solutions: (kε, βε).

We choose t− = t−(ε) < 0 such that |g(t, x) − g−(t, x)| < δ−/2 and |gx(t, x) −
(g−)x(t, x)| < δ−/2 if t ≤ t− and |x| ≤ m (see Lemma 4.5), and define f−(t, x)
as g(t, x) if t < t− and as g−(t, x) − g−(t

−, x) + g(t−, x) otherwise. It is easy to
check that f− is C1-admissible and ∥g− − f−∥1,m ≤ δ−, and so x′ = f−(t, x) has an

attractor-repeller pair (ãf− , r̃f−), with
∥∥ãf− − ãg−

∥∥
∞ ≤ ε and

∥∥r̃f− − r̃g−
∥∥
∞ ≤ ε.

Let us now define âf− as the solution of x′ = g(t, x) with âf−(t
−) = ãf−(t

−).
We will check that âf− = ag. Since âf−(t) = ãf−(t) for t ≤ t−, it remains bounded
as t decreases, which, as seen before, ensures that ag exists and that âf− ≤ ag.
To prove that âf− ≥ ag, we take x > âf−(t

−) in order to check that xg(t, t
−, x) is

unbounded as time decreases: Lemma 4.3 guarantees that the map f− defined on
the hull of f− satisfies the hypotheses of Proposition 3.5; hence, this result ensures
that the solution xf−(t, t

−, x) of x′ = f−(t, x) is unbounded as time decreases; and
the assertion follows from here and from xg(t, t

−, x) = xf−(t, t
−, x) for t ≤ t−.

Note that we have proved that limt→−∞(ag(t)− ãg−(t)) = 0. On the other hand,
if x < ag(s), then there exists t0 < t− = t−(ε) such that xg(t0, s, x) < ag(t0) =
ãf−(t0). Since xg(t, s, x) = xg(t, t0, xg(t0, s, x)) solves x′ = f−(t, x) for t ≤ t0,
we conclude from Theorem 3.6 that limt→−∞ |xg(t, s, x) − r̃f−(t)| = 0. Therefore,
|xg(t, s, x) − r̃g−(t)| < 2 ε if t ≤ t−(ε), which ensures that limt→−∞ |xg(t, s, x) −
r̃g−(t)| = 0. To check that ag is locally pullback attractive (and so complete the
proof of (i)), we observe that the attractive hyperbolicity of ãf− provides δ > 0,
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k ≥ 1 and γ > 0 such that |ag(t)− xg(t, s, ag(s)± δ)| = |ãf−(t)− xf−(t, s, ãf−(s)±
δ)| ≤ k δ e−γ(t−s) if s ≤ t− and t ∈ [s, t−] (see, e.g., [19, Proposition 2.1]).

Analogous arguments prove (ii). If ag and rg are bounded and different, then
(iii) yields rg < ag, and hence the limiting properties established in (i) and (ii)
prove that they are uniformly separated. Therefore, Theorem 3.6 proves that they
form an attractor-repeller pair. The last assertions in (iv) follow from (i), (ii) and
(iii), and the bounds −m ≤ rg and ag ≤ m. Finally, (v) follows easily from (iv). □

Theorem 4.7. Assume that g satisfies gc1-gc5, let (ãg± , r̃g±) be the attractor-
repeller pairs of solutions of x′ = g±(t, x) given by gc5, and let ag and rg be the
solutions of (4.1) provided by Proposition 4.6. Then, the dynamics of the transition
equation (4.1) fits in one of the following dynamical scenarios:

• Case A: there exists an attractor-repeller pair of solutions (ãg, r̃g), with ãg := ag
and r̃g := rg. In this case, limt→±∞(r̃g(t) − r̃g±(t)) = 0 and limt→±∞(ãg(t) −
ãg±(t)) = 0.

• Case B: there are bounded solutions but no hyperbolic ones. In this case, rg = ag
is the unique bounded solution, and it is locally pullback attractive and repulsive.

• Case C: there are no bounded solutions.

Proof. Assume that Case C does not hold; i.e., that there exists a bounded solution
of (4.1). Proposition 4.6(iii) ensures that rg and ag are bounded. If they are
different, point (iv) of Proposition 4.6 ensures that they form an attractor-repeller
pair of solutions, and points (i) and (ii) yield the asymptotic behaviour described in
Case A. If, on the contrary, ag = rg, then Proposition 4.6(iii) ensures that ag = rg
is the unique bounded solution. As stated in Theorem 2.3, its hyperbolicity would
ensure its exponential asymptotic stability as time either increases or decreases,
which contradicts either point (ii) or (i) of Proposition 4.6. Hence, Case B holds.

□

Let us analyze part of the information provided by Proposition 4.6 and Theorem
4.7. In all the cases, the locally pullback attractive solution ag of the transition
equation “connects” with the attractive hyperbolic solution of the past equation as
time decreases. The differences arise with its behavior in the future: in Case A,
usually referred to as (end-point) tracking, ãg := ag also connects with the attractive
hyperbolic solution of the future as time increases, while in Case C, of tipping, ag
is unbounded, and hence the connection is lost. In the extremely unstable Case
B, ag is still bounded but it connects with the repulsive hyperbolic solution of the
future. The interested reader can in find [30, Figures 1-6] some drawings depicting
the dynamical behavior in each one of these three cases. (There is a typo there:
the graphs of Cases A and C are interchanged).

The next result provides a useful comparison criterion ensuring Case A.

Proposition 4.8. Assume that g satisfies gc1-gc5. If there exists a continuous
map h : R× R → R such that h(t, x) ≤ g(t, x) for all (t, x) ∈ R× R and

- either x′ = h(t, x) has two different bounded solutions,
- or x′ = h(t, x) has a bounded solution which does not solve x′ = g(t, x),

then (4.1) is in Case A.

Proof. In both cases, Proposition 3.5(v) ensures that (4.1) has two bounded solu-
tions, so that Theorem 4.7 proves the assertion. □
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As explained in the Introduction, a critical transition (or tipping point) occurs
when a small variation on the external input of the equation causes a dramatic
variation on the dynamics. We will focus on critical transitions associated to one-
parametric families of equations which occur when the dynamics moves from Case
A to Case C of Theorem 4.7 as the parameter crosses a particular critical value.
Theorem 4.9 shows that, if the parametric variation is smooth enough, this tran-
sition means Case B for the critical value, and that these critical transitions can
be understood as nonautonomous saddle-node bifurcations: they occur as a conse-
quence of the collision of an attractive hyperbolic solution with a repulsive one as
c varies. It also shows the persistence of Cases A and C.

Theorem 4.9. Let C ⊆ R be an open interval, and let ḡ : R × R × C → R be a
map such that gc(t, x) := ḡ(t, x, c) satisfies gc1-gc5 for all c ∈ C. Let ḡx be the
partial derivative with respect to the second variable and assume that ḡ and ḡx are
admissible on R × R × C. Assume also that lim supx→±∞ ḡ(t, x, c) < 0 uniformly
on R× J for any compact interval J ⊂ C.

(i) Assume that there exist c1, c2 in C with c1 < c2 such that the dynamics
of x′ = gc(t, x) is in Case A for c = c1 and not for c = c2. If c0 :=
inf{c > c1 | Case A does not hold}, then c0 > c1. Let (ãgc , r̃gc) be the
attractor-repeller pair for c ∈ [c1, c0). Then, the dynamics of x′ = gc0(t, x)
is in Case B, and limc→c−0

(ãgc(t)− r̃gc(t)) = 0 for all t ∈ R. The result is

analogous if c1 > c2.
(ii) Assume that there exist c3, c4 in C with c3 < c4 such that the dynamics

of x′ = gc(t, x) is in Case C for c = c3 and not for c = c4. If c0 :=
inf{c > c3 | Case C does not hold}, then c0 > c3, and the dynamics of
x′ = gc0(t, x) is in Case B. The result is analogous if c3 > c4.

Proof. (i) The admissibility hypotheses ensure that, for c ∈ C, ρ > 0 and δ > 0
fixed, there exists ε0 > 0 such that

sup
(t,x)∈R×[−ρ,ρ]

|gc(t, x)− gc+ε(t, x)|+ sup
(t,x)∈R×[−ρ,ρ]

|gcx(t, x)− gc+ε
x (t, x)| < δ

if |ε| ≤ ε0. Hence, Theorems 4.7 and 2.3 guarantee the persistence of Case A under
small variations of c, which in turn ensures that c0 > c1 and that x′ = gc0(t, x)
is not in Case A. (Note that the last condition on coercivity is not yet required.)
On the other hand, the hypothesis on lim supx→±∞ ḡ(t, x, c) (which is stronger
than “gc3 for all c”) ensures the existence of a constant m > 0 and δ > 0 such
that gc(t, x) ≤ −δ if t ∈ R, |x| > m, and c ∈ C is close enough to c0. This
fact allows us to reason as in the proof of Proposition 3.5(ii) in order to check
that the lower and upper bounded solutions (r̃gc and ãgc) of x′ = gc(t, x) are
lower bounded by −m and upper bounded by m for c ∈ C close enough to c0.
Hence, for a common sequence (cn) ↑ c0, there exist r̄0 := limn→∞ r̃gcn (0) and
ā0 := limn→∞ ãgcn (0). It is easy to deduce that the solutions of x′ = gc0(t, x)
with values r̄0 and ā0 at t = 0 are bounded. Hence we are in Case B, and
both solutions coincide. It is easy to check that this unique bounded solution, bc0 ,
satisfies bc0(t) = limn→∞ ãgcn (t) = limn→∞ r̃gcn (t) for all t ∈ R, which combined
with the uniqueness of bc0 guarantees that limc→c−0

(ãgc(t)− r̃gc(t)) = 0 for all t ∈ R,
as asserted. It is clear that the argument can be repeated if c1 > c2.

(ii) We assume for contradiction the existence of (cn) ↓ c3 such that there exists
a bounded solution bcn for all n, and reason as before to conclude that b̄3 :=
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limn→∞ bcn(0) is finite and provides the value at 0 of a bounded solution for c3,
impossible. This shows the persistence of Case C under small variations in c, which
in turn ensures that c0 > c3 and that x′ = gc0(t, x) is not in Case C. The previously
proved persistence of Case A proves the last assertion. And the argument can be
repeated if c3 > c4. □

We complete this part with a consequence of Proposition 4.8 which ensures the
existence of at most a unique tipping point for certain parametric families:

Corollary 4.10. Let C ⊆ R be an open interval and let {gc | c ∈ C} be a family
of functions satisfying gc1-gc5. Assume that there exists c0 ∈ C such that the
dynamics of x′ = gc0(t, x) is in Case B, and such that, for all c−, c+ ∈ C with
c− < c0 < c+: g

c−(t, x) ≤ gc0(t, x) ≤ gc+(t, x) for all (t, x) ∈ R × R; and there
exist tc− and tc+ such that the first and second inequality are strict for t = tc− and
t = tc+ (respectively) and all x ∈ R. Then, x′ = gc(t, x) is in Case C for c ∈ C
with c < c0 and in Case A for c ∈ C with c > c0.

Proof. The hypotheses ensure that, if c+ > c0, any bounded solution of x′ =
gc0(t, x) does not solve x′ = gc+(t, x), and hence Proposition 4.8 shows that x′ =
gc(t, x) is in Case A for c > c0 in C. Analogously, if c− < c0, any bounded solution
of x′ = gc−(t, x) does not solve x′ = gc0(t, x), and hence Proposition 4.8 also
shows that x′ = gc0(t, x) would be in Case A (which is not true, by hypothesis) if
x′ = gc(t, x) were in Cases A or B for c < c0 in C. □

4.1. Some scenarios of critical transitions in the concave case. Let I ⊆ R be
an open interval, and let the functions f : R×R×I → R and Γ,Γ−,Γ+ : R×R → R
satisfy

fc1 there exist the derivatives fx and fγ , and f , fx and fγ are admissible on
R× R× I.

fc2 Γ,Γ− and Γ+ take values in [a, b] ⊂ I, are C1-admissible, and limt→±∞(Γ(t, x)−
Γ±(t, x)) = 0 uniformly on each compact subset J ⊂ R.

fc3 lim supx→±∞ f(t, x, γ) < 0 uniformly in (t, γ) ∈ R×J for all compact interval
J ⊂ I.

fc4 inft∈R
(
(∂/∂x)f(t, x,Γ±(t, x))|x=x1 − (∂/∂x)f(t, x,Γ±(t, x))|x=x2

)
> 0 when-

ever x1 < x2.
fc5 Each equation x′ = f(t, x,Γ±(t, x)) has two hyperbolic solutions r̃Γ± < ãΓ± .

Observe that condition fc2 allows us to understand the equations

x′ = f(t, x,Γ−(t, x)) and x′ = f(t, x,Γ+(t, x)) (4.3)

as the “past” and “future” of

x′ = f(t, x,Γ(t, x)) . (4.4)

We will say that the pair (f,Γ) satisfies fc1-fc5 whenever there exist Γ± such
all the listed properties hold. Note that, in this case, also the pairs (f,Γ±) satisfy
fc1-fc5. We omit the almost immediate proof of the next result, which shows that
the previous ones apply to the current setting.

Proposition 4.11. Assume that (f,Γ) satisfies fc1-fc5. Then, the maps g, g− and
g+ given by g(t, x) := f(t, x,Γ(t, x)), g−(t, x) := f(t, x,Γ−(t, x)) and g+(t, x) :=
f(t, x,Γ+(t, x)) satisfy the conditions gc1-gc5. Therefore, the dynamical possibili-
ties for (4.4) are those described in Theorem 4.7.
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Remarks 4.12. 1. It is easy to check that the proof of Proposition 4.11 can be re-
peated in the next cases: if we remove the boundedness of Γ and Γ± from condition
fc2 but assume that I = R and that the limit in fc3 is uniform in (t, γ) ∈ R× R;
and if we remove the assumptions on the derivative fγ of fc1 but assume that Γ,
and hence Γ±, depend only on t. Hence, the conclusions of Proposition 4.6 and
Theorem 4.7 also hold under these conditions.

2. As explained in Remark 4.4, Proposition 4.11 applied to the pairs (f,Γ±)
allows us to reformulate condition fc5 as: “each equation x′ = f(t, x,Γ±(t, x)) has
an attractor-repeller pair of solutions”, which determines its global dynamics.

In this section (as in Section 6.1), we analyze some mechanisms of occurrence
(or lack) of tipping points for transition equations (4.4) due to small parametric
variations in the transition function: we work with one-parametric families

x′ = f(t, x,Γc(t, x)) . (4.5)

Let us mention three of the large variety of physical mechanisms that may cause
critical transitions:

- Rate-induced critical transitions: if Γc(t, x) = Γ(ct, x) for a fixed Γ and any c > 0,
then the parameter c > 0 determines the speed of the transition Γc. In order
to have a past and a future independent of the rate, we require Γ− and Γ+ to
be independent of t. So, a larger c means a significant distance from Γ(ct, x) to
Γ±(x) during a shorter period.

- Phase-induced critical transitions: if Γc(t, x) = Γ(c + t, x), then the parameter
c ∈ R represents the initial phase of the transition function. As before, we assume
Γ− and Γ+ independent of t.

- Size-induced critical transitions: with Γ− ≡ 0 and Γc(t, x) := cΓ(t, x), different
values of c > 0 mean different sizes of the transition function which “takes”
x′ = f(t, x, 0) to x′ = f(t, x, cΓ+(t, x)).

The next result establishes conditions on a parametric family of maps {Γc} and
f which are enough to guarantee the persistence of Cases A and C, and to show
that the occurrence of a critical transition means the occurrence of Case B and
can be understood as a nonautonomous saddle-node bifurcation: see Theorem 4.9.
We omit the (easy) proof.

Proposition 4.13. Let C ⊆ R be an open interval, and let the maps {Γc | c ∈ C}
be a family of functions such that all the pairs (f,Γc) satisfy fc1-fc5 and such that
R× R× C → R, (t, x, c) 7→ Γc(t, x) is admissible. Assume also that, for any c ∈ C,
there exists δc > 0 such that sup(t,x)∈R×R, |ε|≤δc |Γ

c+ε(t, x)| < ∞. Then, the map

ḡ(t, x, c) := f(t, x,Γc(t, x)) satisfies all the hypotheses of Theorem 4.9.

Remark 4.14. Note that if, in the considered case of rate and phase variation,
with Γ± independent of t, all the pairs (f,Γc) satisfy fc1-fc5 if (f,Γ) does, with the
same maps Γ±. The same occurs in the size-variation case if we also assume Γ+ ≡
0. In addition, in the three considered cases, the admissibility and boundedness
hypotheses of Proposition 4.13 also hold.

In the rest of this section, we will describe conditions ensuring the lack of rate-
induced and phase-induced critical transitions (in Theorem 4.15), as well as the
occurrence of size-induced critical transitions (in Theorem 4.17). These scenarios
assume monotonicity of f with respect to γ. Theorem 4.15 establishes conditions
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on f(t, x, γ0) ensuring that [γ0,∞) or (−∞, γ0] is a safety halfline: if Γ takes values
in it, then neither rate-induced tipping nor phase-induced tipping occurs.

Theorem 4.15. Assume that (f,Γ) satisfy fc1-fc5. Assume also that γ 7→ f(t, x, γ)
is nondecreasing (resp. nonincreasing) for all (t, x) ∈ R × R and that one of the
following situations holds:

(1) there exists a constant γ0 ≤ Γ (resp. γ0 ≥ Γ) such that x′ = f(t, x, γ0) has
either two different bounded solutions or a bounded solution which does not
solve (4.4);

(2) there exists a continuous map ∆: R × R → R with ∆ ≤ Γ (resp. ∆ ≥ Γ)
such that x′ = f(t, x,∆(t, x)) has either two different bounded solutions, or a
bounded solution which does not solve (4.4);

Then, (4.4) is in Case A.
In particular, if (1) or (2) holds, and if we assume in addition that Γ± do not

depend on t, then the equations x′ = f(t, x,Γ(ct, x)) and x′ = f(t, x,Γ(t+ c, x)) are
in Case A for all c > 0 and c ∈ R, respectively: there are neither rate-induced nor
phase-induced critical transitions.

Proof. All the assertions follow easily from Propositions 4.11 and 4.8, and from
Remark 4.14. □

Remark 4.16. In the increasing (resp. decreasing) scenario of Theorem 4.15, con-
dition fc5 ensures (2) if either Γ−(t, x) ≤ Γ(t, x) or Γ+(t, x) ≤ Γ(t, x) (resp. either
Γ−(t, x) ≥ Γ(t, x) or Γ+(t, x) ≥ Γ(t, x)) for all (t, x) ∈ R × R: it suffices to take
∆ = Γ− or ∆ = Γ+.

Our next result provides another scenario of lack of critical transitions or occur-
rence of exactly one. Now, the variation of the parameter precludes the transition
map to remain always in the safety half-line, and hence the dynamics cannot be
always (if ever) in Case A. The interval I of variation of the third argument of f
must be R.

Theorem 4.17. Assume that I = R. Let Γ: R× R → R and Γ0 : R× R → [0,∞)
be globally bounded and C1-admissible, and such that the pair (f,Γ+ dΓ0) satisfies
fc1-fc5 for all d ∈ R. Assume that Γ0(t0, x) > 0 for all x ∈ R and a t0 ∈ R.
Assume also that γ 7→ f(t, x, γ) is strictly increasing on R for all (t, x) ∈ R × R,
with limγ→−∞ f(t, x, γ) = −∞ uniformly on compact sets of R× R. Then, either

x′ = f(t, x,Γ(t, x) + dΓ0(t, x)) (4.6)

is in Case C for all d ∈ R, or there exists d0 such that (4.6) is in Case A for
d > d0, in Case B for d = d0 and in Case C for d < d0.

Proof. Let us assume for contradiction that (4.6)d is in Case A for all d ∈ R, and
fix d̄ ∈ R. We take δ > 0 and m1,m2 ∈ R such that f(t, x,Γ(t, x)+ d̄Γ0(t, x)) ≤ −δ
for all t ∈ R if x /∈ (m1,m2). Since f is nondecreasing in γ and Γ0 ≥ 0, the map d 7→
f(t, x,Γ(t, x)+dΓ0(t, x)) is nondecreasing, and hence, for all d ≤ d̄, f(t, x,Γ(t, x)+
dΓ0(t, x)) ≤ −δ for all t ∈ R if x /∈ (m1,m2). As in the proof of Proposition 3.5(ii),
we check that m1 ≤ ãd ≤ m2 if d ≤ d̄, where ãd is the upper bounded solution of
(4.6)d. We look for t1 < t0 < t2 and k > 0 such that Γ0(t, x) > k if t ∈ [t1, t2]
and x ∈ [m1,m2], and call kd := sup(t,x)∈[t1,t2]×[m1,m2] f(t, x,Γ(t, x)+dΓ0(t, x)) for

d ≤ d̄. Then, kd ≤ sup(t,x)∈[t1,t2]×[m1,m2] f(t, x,Γ(t, x)+ dk) if d ≤ min(0, d̄), which
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combined with the hypothesis on limγ→−∞ f(t, x, γ) ensures that limd→−∞ kd =
−∞. Hence, m1 − m2 ≤ ãd(t2) − ãd(t1) ≤ (t2 − t1) kd for all d ≤ d̄, which is
impossible.

Now we assume that (4.6)d is not in Case C for all d ∈ R. Theorem 4.9 ensures
the existence of d0 such that (4.6)d0

is in Case B, and Corollary 4.10, all whose
hypotheses are satisfied, completes the proof. □

By reviewing the proof of Theorem 4.17, we observe that we have in fact proved
the next result, which considerably weakens the conditions of the previous one (but
with a statement quite harder to read, so we keep both of them).

Theorem 4.18. Assume that I = R. Let Γ: R× R → R and Γ0 : R× R → [0,∞)
be globally bounded and C1-admissible, and such that the pair (f,Γ+ dΓ0) satisfies
fc1-fc5 for all d ∈ R. Assume that there exists d̄ ∈ R such that

x′ = f(t, x,Γ(t, x) + dΓ0(t, x)) (4.7)

is in Cases A or B for d = d̄. Let δ > 0 and m1,m2 ∈ R satisfy f(t, x,Γ(t, x) +
d̄Γ0(t, x)) ≤ −δ for all t ∈ R if x /∈ (m1,m2). Assume that there exists t0 such that
Γ0(t0, x) > 0 for all x ∈ [m1,m2], that γ 7→ f(t, x, γ) is nondecreasing for all (t, x) ∈
R × R and strictly increasing for (t, x) ∈ R × [m1,m2], with limγ→−∞ f(t, x, γ) =
−∞ uniformly on compact sets of R× [m1,m2]. Then, there exists d0 ≤ d̄ such that
(4.7) is in Case A for d > d0, in Case B for d = d0 and in Case C for d < d0.

Remark 4.19. Frequently, the limit maps providing condition fc2 for all d are
Γ± + dΓ0,± for C2-admissible maps Γ± and Γ0,± ≥ 0. If so, condition fc5 for all
x′ = f(t, x,Γ±(t, x) + dΓ0,±(t, x)) is only possible if, for any t0 ∈ R, each map
x 7→ Γ0,±(t0, x) vanishes at least for an x±t0 ∈ [m1,m2]: otherwise, Theorem 4.18
precludes hyperbolic solutions if −d is large enough. Also often, Γ± ≡ Γ and
Γ0,− ≡ 0, and so Theorems 4.17 and 4.18 study the occurrence of size-induced
critical transitions: just define f∗(t, x, dΓ0(t, x)) := f(t, x,Γ(t, x) + dΓ0(t, x)).

4.2. Numerical simulations in asymptotically concave models. In this sec-
tion, we consider a single-species population whose intrinsic dynamics is governed
by a nonautonomous quadratic equation (see [17]) subject to two external phenom-
ena: migration and predation. The inclusion of time-dependent intrinsic parameters
and functions in the model naturally arises when considering the influence of ex-
ternal factors which vary over time, such as climatic or meteorological factors (see
e.g. [39]). In this way, the evolution of the population size is governed by

x′ = r(t)x

(
1− x

K(t)

)
+∆(t, x) , (4.8)

where r(t) is the growth rate of the population at time t, K(t) is closely related
to the carrying capacity of the environment, and ∆(t, x) represents the migration
and predation factors. We assume r and K to be positively bounded from below
quasiperiodic functions, and ∆ to be C1-admissible: so, if we define h(t, x, δ) :=
r(t)x (1− x/K(t)) + δ, then h satisfies fc1 and fc3. In addition, we assume (h,∆)
to satisfy conditions fc2, fc4 and fc5 for certain maps ∆± which do not play a
role for the moment. The function r represents the intrinsic growth rate of the
species, that is, the growth rate per individual in an ideal situation of unlimited
resources; K does no longer represent, as in the autonomous case, the maximal
population allowed by the resources if ∆ ≡ 0 (unless it is constant), but there exists
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positive hyperbolic attractive solution which describes this target population; and
the function ∆ quantifies the net contribution per unit of time of both external
phenomena: migration and predation. In this framework, the locally pullback
attractive solution ah of (4.8) provided by Proposition 4.6 (which can be applied,
as Proposition 4.11 ensures) describes the evolution of the target population during
the transition. The dynamical possibilities described by Theorem 4.7 are: the stable
Case A, that means the survival of the population ah, which approaches the upper
bounded solution of the future equation as time increases; the stable Case C, which
means the extinction of that population due to predation and migration; and Case
B, which is the highly unstable situation which separates the other two.

Before choosing a particular function ∆, we apply Theorem 4.15(1) to prove the
existence of a safety halfline: a threshold δ0 < 0 such that, if inf(t,x)∈R×R ∆(t, x) ≥
δ0 and ∆ ̸≡ δ0, then (4.8) is in Case A. That is, if the combined effect of predation
and migration never eliminates more than |δ0| individuals per unit of time, then the
target population persists. To apply Theorem 4.15, we use the information provided
by [30, Theorem 3.6] (which remains unchanged except for the bound for λ∗ when
multiplying the leading term by r), according to which there exists δ0 ∈ R such that
x′ = r(t)x (1−x/K(t))+δ is in Case A if δ > δ0, in Case B if δ = δ0, and in Case
C if δ < δ0. In addition, since we can take ε > 0 such that 0 < r(t) ε (1−ε/K(t)) for
all t ∈ R, Proposition 3.5(v) ensures that x′ = r(t)x (1− x/K(t)) has two distinct
bounded solutions, and hence it is in Case A; that is, δ0 < 0. Observe that this
choice of δ0 is optimal for the application of Theorem 4.15(1), since it is the smallest
value of δ for which x′ = r(t)x (1− x/K(t)) + δ has a bounded solution.

In the following examples, we will give explicit expressions to the function ∆,
depending on several bifurcation parameters, and we will find critical transitions:
changes from Cases A to Case C through Case B as one of those parameters
changes. We will prove the uniqueness of almost all those critical transitions and
find numerical evidence of nonuniqueness of the remaining one.

Example 4.20. We assume that the predation in (4.8) can be suitably modeled by
a Holling type III functional response term −γ x2/(b(t) + x2) (see [17, 19]), where
γ represents the predator density and b depends on the average time between two
attacks of a predator (which is related to the food processing time); and we also
assume that the net migration rate per unit of time ϕ(t) is negative for all t ∈ R.
Therefore, the model is

x′ = r(t)x

(
1− x

K(t)

)
+ ϕ(t)− γ

x2

b(t) + x2
, (4.9)

where −ϕ and b are positively bounded from below and quasiperiodic (as r and K).
Let us introduce a specific time-variation on the predator density γ: we assume

that the habitat is initially free of predators, that a certain time a group of predators
arrives in, and that all of them leave away after some time. A wide range of causes
can give rise to this transitory phenomenon in the case of predatory birds: adverse
winds, storms, orientation errors, changing attractiveness of the breeding colony,
etc. (see [37]). A somehow related real-life example, with foxes as predators, can
be found in the work [35], which describes the colonization of Punta de la Banya
by the Audouin’s gull: an increasing population began to severely decline from a
certain time due to the arrival of foxes, whom later were removed; and then the
gull population began to increase again.
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Figure 2. The C1 transition map Γρ,L for L = 5 and several values of ρ > 0. This map is

defined as the unique C1 cubic spline which takes value 1 on [−L,L] and 0 outside [−L−ρ, L+ρ]:

if Q(y) := 2y3 − 3y2 + 1, then Γρ,L(t) := Q(−(t + L)/ρ) for t ∈ [−L − ρ,−L] and Γρ,L(t) :=
Q((t−L)/ρ) for t ∈ [L,L+ρ]. This map is increasing on [−L−ρ,−L] and decreasing on [L,L+ρ],

and hence Γρ,L(·) is nondecreasing with respect to L and with respect to ρ.

Figure 3. Numerical depiction of the existence of a unique size-tipping point for (4.10)d for ρ = 1,

L = 10 and p = 0. The central panel depicts the dynamics just before the tipping point d(1, 10, 0)
(see Table 1): the two hyperbolic solutions are so close within the representation window that any

of them is a good approximation (green) to the unique (nonhyperbolic) bounded solution of Case

B. The left panel depicts Case A (persistence), which is the dynamics for any d < d(1, 10, 0):
the attractive hyperbolic solution which represents the behavior of the population in red, and the

repulsive one in blue. The right panel depicts Case C (extinction), which is the dynamics for

any d > d(1, 10, 0): the locally pullback attractive solution which represents the behavior of the
population in red, and the locally pullback repulsive in blue. (They are given by Proposition 4.6.)

To model the effect of this type of phenomena in a simple way, we use a multiple
of a C1 approximation to the characteristic function of [−L,L]. More precisely, we
substitute the predator density parameter γ in (4.9) by the compactly supported
four-parametric transition function t 7→ dΓρ,L(t − p), where d ≥ 0 and Γρ,L is the
unique C1 cubic spline which takes the value 1 on [−L,L] and 0 outside [−L −
ρ, L + ρ]. Its asymptotic limits are 0 for any choices of ρ and L, and so, the past
and future equations coincide: the predation term disappears. Figure 2 depicts
Γρ,L for L = 5 and some values of ρ. Altogether, we get the four-parameter model

x′ = r(t)x

(
1− x

K(t)

)
+ ϕ(t)− dΓρ,L(t− p)

x2

b(t) + x2
, (4.10)

where d ≥ 0 is proportional to the size of the group of predators, ρ > 0 is inversely
related to the average speed at which the predators arrive and leave, 2L ≥ 0 is the
period of time during which the action of the predators is most intense, and p ∈ R
fixes the arrival and departure times p− L− ρ and p+ L+ ρ of the predators.

Let us define f(t, x, γ) := r(t)x
(
1 − x/K(t)

)
+ ϕ(t) − γ x2/(b(t) + x2). It is

easy to check that (f, dΓρ,L(· − p)) satisfies fc1-fc4 with Γ± ≡ 0 independently
of the choice of the parameters. We emphasize that f(t, x, dΓρ,L(t − p)) is not
a concave function if d > 4 maxt∈R r(t) b(t)/K(t), what is easy to check: we are
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dealing with an asymptotically concave equation which is not concave. In addition,
we assume that r, K and ϕ are chosen in such a way that x′ = f(t, x, 0) has two
(bounded) hyperbolic solutions: fc5 is also fulfilled. Observe also that we can take
m1 < m2 as in Proposition 3.5 with m1 > 0: we take m1 ∈ (0, inft∈R(−ϕ(t)/r(t)))
and check that f(t, x, dΓρ,L(t − p)) ≤ f(t, x, 0) ≤ r(t)m1 + ϕ(t) < −δ for certain
δ > 0 if x ≤ m1. Hence, all the bounded solutions of (4.10) are strictly positive
(and hence they are biologically meaningful) for all d ≥ 0, ρ > 0, L ≥ 0 and p ∈ R.
Besides, γ 7→ f(t, x, γ) is nonincreasing for all (t, x) ∈ R×R and strictly decreasing
for (t, x) ∈ R × (0,∞) ⊃ R × [m1,m2], and limγ→∞ f(t, x, γ) = −∞ uniformly
on R × [m1,m2]. Recall also that we have chosen the coefficients to ensure that
x′ = f(t, x, 0) is in Case A. So, if we fix (ρ, L, p) ∈ (0,∞)× [0,∞)× R and define
g(t, x, γ) := f(t, x,−γ), then the pairs (g, dΓρ,L(· − p)) satisfy all the hypotheses
of Theorem 4.18 (with Γ(t) := 0, Γ0(t) := Γρ,L(t− p) and d̄ = 0). Therefore, there
exists a unique tipping point d(ρ, L, p) > 0: for 0 ≤ d < d(ρ, L, p) (as for d < 0),
the dynamics of (4.10)d fits Case A, and it fits Cases B and C for d = d(ρ, L, p)
and for d > d(ρ, L, p), respectively. In addition, d(ρ, L, p) varies continuously with
respect to each parameter, as Theorem 4.9 shows.

This critical transition is depicted in Figure 3 for ρ = 1, L = 10 and p = 0, with
the next choices: r(t) := 1 + 0.2 sin2(t), K(t) := 90 + 20 sin(

√
5 t), ϕ(t) := −5, and

b(t) := 20+cos(t). Numerical evidences show that the corresponding equation x′ =
f(t, x, 0) has two (strictly positive) hyperbolic solutions, as our analysis requires.
For these choices, the right size of (4.10) is not concave in x if d > 1.44.

In Table 1, we numerically approximate the unique bifurcation points d(1, L, p)
for some pairs (L, p) and the previous choices. The bifurcation points have been
approximated through bisection methods.

d(1, L, p) p = 0 p = 2 p = 5

L = 1 40.2455300 42.2034404 41.9617506

L = 5 23.0532048 22.9017928 22.8172667

L = 10 20.5947898 20.5342198 20.4768856

L = 15 19.9425668 19.9151819 19.8875532

L = 20 19.6805426 19.6731947 19.6649049

Table 1. Numerical approximations up to seven decimal places to the bifurcation point d(1, L, p)

of (4.10)d. The displayed number is a value of d for which (4.10)d is in Case A and (4.10)d+1e−7

is in Case C. The Matlab2023a ode45 algorithm has been used with AbsTol and RelTol equal to
1e-12. The final integration has been carried out over the interval [−1e4, 1e4].

Let us briefly extract some conclusions from the data of Table 1. In this three-
parametric model (we have fixed ρ = 1), we may find changes from Case A to Case
C by varying any of the three parameters d, L or p (and ρ, although we work with
a fixed value for simplicity). In fact, since Γρ,L(·) is nondecreasing and nonconstant
with respect to L (and also with respect to ρ), Corollary 4.10 (applied to the maps
g(t, x, dΓρ,L(t − p))) shows that there exists at most a critical value L0 (or ρ0) if
the rest of the parameters are fixed, and that Case A holds to its left. Figure 4
depicts the occurrence of this critical transition as L increases for a fixed value of d
(which is our previous approximation to d(1, L, 0)). (In fact, it can be proved that
this tipping point indeed exists if d is large enough and ρ is small enough, but we
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Figure 4. Numerical depiction of a time-of-action-tipping point for (4.10)L for d = 20.5947898,
ρ = 1 and p = 0. The central panel approximates the dynamics at the tipping point d(1, 10, 0)

(see Table 1 and Figure 3): Case B. The left panel depicts Case A (persistence) and the right

panel depicts Case C (extinction). Recall that the predators act during t ∈ [−L− ρ, L+ ρ].

Figure 5. Numerical depiction of the existence of at least two critical values of the phase p: for

L = 1 and d = 42, we find Case C (extinction) for p = 0 and p = 5, and Case A (persistence) for
p = 2. See Figure 3 for the meaning of the different elements.

omit this nontrivial analysis.) On the other hand, the lack of monotononicity in
the first row of Table 1 shows the possible lack of uniqueness of the tipping point
as p varies: for L = 1 and d = 42, we are in Case C for p = 0 and p = 5 (in those
cases d(1, 1, p) < 42), and in Case A for p = 2 (because d(1, 1, 2) > 42): there are
at least two critical transitions, i.e., two Cases B. This fact is depicted in Figure 5.
This lack of uniqueness of phase-induced critical transitions was already observed
in [29, Section 6].

Summing up, we find a unique size-induced critical transition as d varies (see
Figure 3), a unique time-of-action-induced critical transition as L varies (see Figure
4) if d is large enough, and possibly several phase-induced critical transitions as p
varies (see Figure 5), also for a large enough d.

Let us finally analyze the occurrence of rate-induced critical transitions, fix-
ing d, L, ρ and taking p = 0. By writing the expression of Γρ,L, we check that
Γρ,L(ct) = Γρ/c,L/c(t) for all ρ, L, c > 0 and t ∈ R. This formula relates the study
of rate-induced critical transitions to one induced by a simultaneous change of time-
of-action L and the time spent in arrival ρ. It also shows that c 7→ Γρ,L(ct) is a
nonincreasing and nonconstant map. Therefore, Corollary 4.10 shows the unique-
ness of the tipping point in case of existence, and that Case A holds to its right:
we are in cases of rate-induced tracking. (And, as in the case of variation of L, the
existence of this unique tipping value c0 for each fixed ρ > 0, L > 0, p ∈ R and
large enough d can be indeed proved.)

Example 4.21. The analysis in Example 4.20 has been carried out considering an
x-independent transition function t 7→ dΓρ,L(t−p). Now we add another parameter
shift t 7→ Λ(t − p) in the migration part of the driving law. The results presented
in this paper can still be applied to an x-dependent transition function (t, x) 7→
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∆d,ρ,L,p(t, x) (recalling the formulation of (4.8)) that encompasses the above two
parameter shifts. The presented theory allows to understand separately a stationary
part and a transient part of the law that generates the dynamics.

So, we consider a slightly more complicated emigration phenomena: due to the
arrival to the habitat of the predator species, the attractiveness of the habitat
is reduced, and, as a consequence, the emigration increases. To model this, we
consider that r, K, b and ϕ satisfy the conditions assumed in Example 4.20, and
replace the quasiperiodic emigration function ϕ by an asymptotically quasiperiodic
emigration function ϕ(t) + (ψ(t)− ϕ(t)) Λρ,L(t− p), where ψ is quasiperiodic with
ψ(t) ≤ ϕ(t) for all t ∈ R, and Λρ,L(t) is the unique C1 cubic piecewise polynomial
which takes values 0 for all x ≤ −L− ρ and 1 for all x ≥ −L. So, we work with

x′ = r(t)x

(
1− x

K(t)

)
+ϕ(t)+(ψ(t)−ϕ(t)) Λρ,L(t−p)−

dΓρ,L(t− p)x2

b(t) + x2
. (4.11)

If, as before, h(t, x, δ) := r(t)x (1−x/K(t))+ δ, and ∆d,ρ,L,p(t, x) := ϕ(t)+(ψ(t)−
ϕ(t)) Λρ,L(t − p) − dΓρ,L(t − p)x2/(b(t) + x2), then (h,∆d,ρ,L,p) satisfies fc1-fc4
with ∆− := ϕ and ∆+ := ψ. We also assume that x′ = h(t, x, ψ(t)) has two
hyperbolic solutions and deduce from Proposition 3.5(v) that this property also
holds for x′ = h(t, x, ϕ(t)): fc5 is also fulfilled. Proposition 3.5(v) also shows that
x′ = h(t, x, ϕ(t)+(ψ(t)−ϕ(t)) Λρ,L(t−p)) has two hyperbolic solutions for all L ≥ 0
and ρ > 0. This fact allows us to repeat the arguments of Example 4.20 in order
to prove the existence and uniqueness of the bifurcation point d(ρ, L, p) > 0, giving
rise to a unique size-induced critical transition.

d(1, L, p) p = 0 p = 2 p = 5

L = 1 34.1938684 36.9449750 35.7506039

L = 5 18.8506812 18.6486286 18.6059557

L = 10 16.4930418 16.4318568 16.3869395

L = 15 15.8700118 15.8460071 15.8202938

L = 20 15.6203137 15.6150934 15.6065018

Table 2. Numerical approximations up to seven decimal places to the bifurcation point d(1, L, p)

of (4.11)d. The displayed number is a value of d for which (4.11)d is in Case A and (4.11)d+1e−7

is in Case C. The Matlab2023a ode45 algorithm has been used with AbsTol and RelTol equal to
1e-12. The final integration has been carried out over the interval [−1e4, 1e4].

We repeat the choices of r, K, ϕ and b of the first example, and take ψ(t) :=
−9−cos t. Again, numerical evidences show that x′ = h(t, x, ψ(t)) has two (positive)
hyperbolic solutions, as required. Table 2 shows numerical approximations of the
unique bifurcation point d(1, L, p) for some pairs (L, p). The arguments of Example
4.20 also work to prove the existence of a unique bifurcation value L0 > 0 if d is
large enough, ρ > 0 is small enough, and p ∈ R. Note that, for L = 1, we find
the phenomenon of multiple phase bifurcation points already mentioned in Table 1
and shown in Figure 5. As expected, the bifurcation points d(1, L, p) for (4.11)
in Table 2 are lower than those for (4.10) in Table 1: an increased emigration
means that fewer predators are needed to cause the population extinction. We
point out that, in this example, the asymptotic limits of the transition map are
time-dependent.
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5. The d-concave and nonquadratic case

The results of this section partly extend those of [18] to a less restrictive setting.
Let (Ω, σ) be defined as in Section 3. Now, we work with the family

x′ = h(ω·t, x) (5.1)

for ω ∈ Ω, and with the flow τ defined by (2.4), τ(t, ω, x) = (ω·t, v(t, ω, x)), assum-
ing that h : Ω× R → R satisfies (all or part of) the next conditions:

d1 h ∈ C0,2(Ω× R,R),
d2 lim supx→±∞(±h(ω, x)) < 0 uniformly on Ω,
d3 m({ω ∈ Ω | x 7→ hx(ω, x) is concave}) = 1 for all m ∈ Merg(Ω, σ),
d4 m({ω ∈ Ω | x 7→ hxx(ω, x) is strictly decreasing on J }) > 0 for all compact

interval J ⊂ R and all m ∈ Merg(Ω, σ).

We will refer to the concavity of the derivative as d-concavity and, for the sake of
simplicity, we will say that, under all these hypotheses, (5.1) is a (coercive) family
of d-concave ordinary differential equations. Note that the concavity of all the maps
x 7→ h(ω, x) is not required.

Remark 5.1. As explained in Remark 3.1, if h satisfies dj for j ∈ {1, 2, 3, 4}
and Ω0 ⊂ Ω is a nonempty compact σ-invariant subset, then also the restriction
h : Ω0 × R → R satisfies dj.

The following results establish properties analogous to those of Proposition 3.2
and Theorem 3.3, now for the new hypotheses on d-concavity.

Proposition 5.2. Let h : Ω×R → R satisfy d1, let us fix m ∈ Merg(Ω, σ), and let
b1, b2, b3 : Ω → R be bounded m-measurable τ -equilibria with b1(ω) < b2(ω) < b3(ω)
for m-a.e. ω ∈ Ω. Assume that m({ω ∈ Ω | x 7→ hx(ω, x) is concave}) = 1 and
m({ω ∈ Ω | hxx(ω, b1(ω)) > hxx(ω, b3(ω))}) > 0. Then,∫

Ω

hx(ω, b2(ω)) dm > 0 and

∫
Ω

hx(ω, bi(ω)) dm < 0 for i = 1, 3 .

In particular, there are at most three bounded m-measurable τ -equilibria which are
strictly ordered m-a.e.

Proof. We call Ωc := {ω ∈ Ω | x 7→ hx(ω, x) is concave}, which satisfies m(Ωc) > 0,
and Ω0 := {ω ∈ Ω | b1(ω) < b2(ω) < b3(ω)}, which is invariant and withm(Ω0) = 1.
For each ω ∈ Ωc, we represent by bi(ω, x1, x2, x3) the expression bi(x1, x2, x3) of
(2.1) associated to the d-concave map x 7→ h(ω, x). For i ∈ {1, 2, 3}, we define
b∗i : Ω → R by b∗i (ω) := bi(ω, b1(ω), b2(ω), b3(ω)) for ω ∈ Ω0 ∩ Ωc and b∗i (ω) := 0
if ω /∈ Ω0 ∩ Ωc. The hypothesis on hxx and Proposition 2.2(ii) (see also its proof)
ensure that b∗i is m-measurable, with b∗i ≥ 0 and m({ω ∈ Ω | b∗i (ω) > 0}) > 0.
These are the key properties to repeat the arguments of [18, Theorem 4.1] in order
to check that, if v1 := 1/(b2 − b1) − 1/(b3 − b1) (which satisfies v1(ω) > 0 for
ω ∈ Ω0), then

∫
Ω
hx(ω, b1(ω)) dm = −

∫
Ω
(b∗1(ω)/v1(ω)) dm < 0. The argument is

similar for b2 and b3, and the last assertion follows from the previous ones and a
simple contradiction argument. □

Theorem 5.3. Let h satisfy d1, d3 and d4. Then, there exist three disjoint and
ordered τ -invariant compact sets K1 < K2 < K3 projecting onto Ω if and only
if there exist three hyperbolic copies of the base {̃l}, {m̃} and {ũ} with l̃ < m̃ <

ũ. In this case, K1 = {̃l} and K3 = {ũ} and they are attractive; K2 = {m̃}
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and it is repulsive; and B := {(ω, x) ∈ Ω × R | l̃(ω) ≤ x ≤ ũ(ω)} is the set of
globally bounded orbits. In particular, there are at most three disjoint and ordered
τ -invariant compact sets projecting onto Ω.

Proof. Observe that h satisfies the conditions of Proposition 5.2 for any m ∈
Merg(Ω, σ) and any three bounded ordered m-measurable equilibria. This fact
allows us to use the arguments of the proof of Theorem 3.3 to check all the asser-
tions. □

Remark 5.4. An analogue of Remark 3.4 applies to Theorem 5.3.

Now, the coercivity property d2 comes into play. Recall that a τ -invariant
compact set A ⊂ Ω×R is the global attractor of τ if it attracts every bounded set
C ⊂ Ω × R; that is, if τt(C) is defined for any t ≥ 0 and limt→∞ dist(τt(C),A) =
0, where dist(C1, C2) is the Hausdorff semidistance from C1 to C2 and τt(C) :=
{τ(t, ω, x) | (ω, x) ∈ C}.

Proposition 5.5. Let h ∈ C0,1(Ω×R,R) satisfy d2, and take δ > 0 and m1,m2 ∈
R with h(ω, x) ≥ δ if x ≤ m1 and h(ω, x) ≤ −δ if x ≥ m2 for all ω ∈ Ω. Then,

(i) v(t, ω, x) exists for (t, ω, x) ∈ [0,∞)×Ω×R, andm1 ≤ lim inft→∞ v(t, ω, x) ≤
lim supt→∞ v(t, ω, x) ≤ m2: any forward τ -semiorbit is bounded.

(ii) There exists the global attractor for τ , it is of the form

A =
⋃
ω∈Ω

(
{ω} × [l(ω), u(ω)]

)
, (5.2)

it is the union of all the globally defined and bounded τ -orbits, and it is
contained in Ω× [m1,m2].

(iii) The maps l and u are, respectively, lower and upper semicontinuous τ -
equilibria.

(iv) If, for a point ω ∈ Ω, there exists a bounded C1 function b : R → R such
that b′(t) ≤ h(ω·t, b(t)) (resp. b′(t) ≥ h(ω·t, b(t))) for all t ∈ R, then b(t) ≤
u(ω·t) (resp. b(t) ≥ l(ω·t)) for all t ∈ R. If b′(t) < h(ω·t, b(t)) (resp.
b′(t) > h(ω·t, b(t))) for all t ∈ R, then b(t) < u(ω·t) (resp. l(ω·t) < b(t)) for
all t ∈ R.

(v) v(t, ω, x) is bounded from below if and only if x ≥ l(ω), and from above if
and only if x ≤ u(ω).

(vi) Assume that h satisfies also d1, d3 and d4, and that {̃l}, {m̃} and {ũ}
are three hyperbolic copies of the base with l̃ < m̃ < ũ. Then, A =⋃

ω∈Ω({ω} × [̃l(ω), ũ(ω)]); {̃l} and {ũ} are attractive and {m} is repulsive;
limt→∞(v(t, ω, x)− ũ(ω·t)) = 0 if and only if x > m̃(ω); limt→∞(v(t, ω, x)−
l̃(ω·t)) = 0 if and only if x < m̃(ω); and limt→−∞(v(t, ω, x) − m̃(ω·t)) = 0

if and only if x ∈ (̃l(ω), ũ(ω)).

Proof. The existence of m1 and m2 is ensured by d2. The properties stated in (i)
are a nice exercise on ODEs. To prove (ii), we take n1 < m1 and n2 > m2 and
check that v(t, ω, ni) ∈ [m1,m2] for all ω ∈ Ω and i = 1, 2 if t ≥ (1/δ)max(m1 −
n1, n2 −m2). We deduce from this fact that limt→∞ dist(τt(C),Ω × [m1,m2]) = 0
for every bounded set C ⊂ Ω × R; i.e., Ω × [m1,m2] is a compact absorbing set.
This property and [12, Theorem 2.2] prove the existence of the global attractor
A ⊆ Ω× [m1,m2], and [11, Theorem 1.7] ensures the last assertion in (ii).



34 J. DUEÑAS, C. NÚÑEZ, AND R. OBAYA

Assertion (iii) is a consequence of the compactness of A; and the properties in
(iv) follow from (i) and standard comparison results: see, e.g., the proof of [18,
Theorem 5.1(iii)]. The assertions in (v) follow from (i) and (ii). In the conditions

of (vi), Theorem 5.3 shows that A =
⋃

ω∈Ω({ω}× [̃l(ω), ũ(ω)]), and that {̃l} and {ũ}
are attractive and {m̃} is repulsive. The remaining assertions are proved with the
arguments used to check Proposition 3.5(vii), working with the ω-limit sets in the

cases of x > m̃(ω) and x < m̃(ω), and with the α-limit set for l̃(ω) < x < ũ(ω). □

It follows from the previous property (iii) that l and u arem-measurable equilibria
for any m ∈ Merg(Ω, σ), which we will use without further reference. In the line
of Theorem 3.6, our next result establishes equivalences regarding the existence of
three uniformly separated hyperbolic solutions of a given equation in terms of the
existence of three ordered hyperbolic copies of the corresponding hull.

Theorem 5.6. Let h : Ω × R → R satisfy d1, d2, d3 and d4. Let us fix ω̄ ∈ Ω.
Then, the following assertions are equivalent:

(a) Equation (5.1)ω̄ has three hyperbolic solutions.
(b) Equation (5.1)ω̄ has three uniformly separated hyperbolic solutions.
(c) Equation (5.1)ω̄ has three uniformly separated bounded solutions.
(d) There exist three hyperbolic copies of the base for the restriction of the

family (5.1) to the closure Ωω̄ of {ω̄·t | t ∈ R}, given by l̃ < m̃ < ũ.

In this case, t 7→ l̃(t) := l̃(ω̄·t), t 7→ m̃(t) := m̃(ω̄·t) and t 7→ ũ(t) := ũ(ω̄·t) are the
three unique uniformly separated solutions of (5.1)ω̄, they are hyperbolic, and there
are no more hyperbolic solutions. In addition, if xω̄(t, s, x) is the solution of (5.1)ω̄
with xω̄(s, s, x) = x, then: limt→∞(xω̄(t, s, x) − ũ(t)) = 0 if and only if x > m̃(s);

limt→∞(xω̄(t, s, x) − l̃(t)) = 0 if and only if x < m̃(s); and limt→−∞(xω̄(t, s, x) −
m̃(t)) = 0 if and only if x ∈ (l̃(s), ũ(s)).

Proof. The proof of this result follows the line of that Theorem 3.6. The assertions
after the equivalences follow from (d) and Proposition 5.5(v) and (vi). We will
check (b)⇒ (c)⇒ (d)⇒ (a)⇒ (b). Recall that the hypotheses on h are also valid
for its restriction to Ωω̄ × R: see Remark 5.1.

(b)⇒ (c)⇒ (d). Obviously, (b) implies (c). Now we assume (c) and observe that
there is no restriction in assuming that the three uniformly separated solutions are
l(t) := l(ω̄·t), u(t) := u(ω̄·t), and m(t) with l(t) < m(t) < u(t). We will check that
the closures Kl, Km and Ku of the corresponding τ -orbits are three different ordered
compact sets projecting on Ωω̄. Reasoning as in Theorem 3.6, we check that, for a
δ > 0, x0 ≤ u(ω0)− δ and x0 ≥ l(ω0) + δ whenever (ω0, x0) ∈ Km. Proposition 5.2
allows us to assert that all the Lyapunov exponents of Km are positive, and that
the upper and lower equilibria of Km coincide on a set Ω0 with m0(Ω0) = 1 for all
m0 ∈ Merg(Ωω̄, σ). Theorem 2.8 ensures that Km is a repulsive hyperbolic copy of
the base Ωω̄, say Km = {m̃}. Now, it is easy to deduce from the previous separation
properties that Kl < Km < Ku, as asserted. Theorem 5.3 applied to Ωω̄ ×R shows
that (d) holds.

(d)⇒ (a)⇒ (b). If (d) holds, then t 7→ l̃(ω̄·t), t 7→ m̃(ω̄·t) and t 7→ ũ(ω̄·t) are
three hyperbolic solutions of (5.1)ω̄ (see Proposition 2.7), so (a) holds. Let us
assume (a), and let x̃1 < x̃2 < x̃3 be the three hyperbolic solutions of (5.1)ω̄. Let
us first eliminate the possibility that x̃2 is attractive, assuming it for contradiction.
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Let us call l(t) := l(ω̄·t) and u(t) := u(ω̄·t), where l and u are the lower and upper τ -
equilibria: see (5.2). Proposition 2.6(i) yields δ > 0 such that inft≤0(u(t)− x̃2(t)) >
δ and inft≤0(x̃2(t)− l(t)) > δ. Let Ml, M2 and Mu be the α-limit sets of (ω̄, l(0)),
(ω̄, x̃2(0)) and (ω̄, u(0)), which project on the α-limit set Ω− ⊆ Ωω̄ of ω̄. As in the
previous paragraph, we check that l(ω0)+ δ ≤ x0 ≤ u(ω0)− δ if (ω0, x0) ∈ M2; and
deduce thatM2 is a repulsive copy of Ω−. As explained in the proof of Theorem 3.6,
this contradicts Proposition 2.7.

Hence, x̃2 is repulsive. Proposition 2.6(i) yields δ > 0 such that inft≥0(u(t) −
x̃2(t)) > δ and inft≥0(x̃2(t) − l(t)) > δ. Let M̄2 be the ω-limit set of (ω̄, x̃2(0)),
which projects on the ω-limit set Ω+ ⊆ Ωω̄ of ω̄. As in the proof of (c)⇒ (d), we
check that l(ω0) + δ ≤ x0 ≤ u(ω0) − δ whenever (ω0, x0) ∈ M̄2; and we deduce
that M̄2 is a repulsive copy of Ω+. Hence, M̄2 does not intersect the ω-limit sets
M̄1 of (ω̄, x̃1(0)) and M̄3 of (ω̄, x̃3(0)): see Proposition 2.6(ii). So, we have M̄1 <
M̄2 < M̄3. Theorem 5.3 applied to Ω+×R ensures that M̄1 and M̄3 are attractive
hyperbolic copies of Ω+, which according to Proposition 2.7 is only possible if x̃1 and
x̃3 are attractive. Proposition 2.6(i) ensures that the three solutions are uniformly
separated: (b) holds. □

In Section 6.1, we will analyze a situation precluding the occurrence of critical
transitions. Some of the hypotheses will refer to the relative order of the three
hyperbolic copies of the base of two “ordered” equations which are in the situation
of Theorem 5.3. For the sake of completeness, Proposition 5.8 proves that there are
just two relative positions in the case of a minimal base under the hypotheses so
far assumed. In Section 6.3, we will check that the minimality of the base is indeed
required for Proposition 5.8, whose proof is based on the next result.

Lemma 5.7. Let h0, h1 : Ω × R → R satisfy d1 and d2, with h0(ω, x) ≤ h1(ω, x)
for all (ω, x) ∈ Ω× R.

(i) Let li (resp. ui) be the lower (resp. upper) bounds of the global attractor
(5.2) of x′ = hi(ω·t, x) for i = 0, 1. Then, l0 ≤ l1 and u0 ≤ u1.

(ii) Assume also that h0 and h1 satisfy d3 and d4, and that there exists ω̄ ∈ Ω

such that x′ = hi(ω̄·t, x) has three hyperbolic solutions l̃i < m̃i < ũi for

i = 0, 1. Then, inft∈R(m̃0(t) − l̃1(t)) > 0 if and only if inft∈R(ũ0(t) −
m̃1(t)) > 0, in which case l̃0 ≤ l̃1 < m̃1 ≤ m̃0 < ũ0 ≤ ũ1. If, in addition,
h0(ω̄·t, x) < h1(ω̄·t, x) for all (t, x) ∈ R × R, then all the inequalities are
strict.

Proof. The proof repeats that of [19, Proposition 4.2], which is generalized by this
result. We must just use Theorem 5.6 instead of [19, Theorem 3.3]. □

Proposition 5.8. Assume that (Ω, σ) is minimal. Let h0, h1 : Ω × R → R satisfy
d1, d2, d3 and d4, and with h0(ω, x) < h1(ω, x) for all (ω, x) ∈ Ω × R. Assume

that the family x′ = hi(ω·t, x) has three hyperbolic copies of the base l̃i < m̃i < ũi
for i = 0, 1. Then, one of the following orders holds:

(1) l̃0 < l̃1 < m̃1 < m̃0 < ũ0 < ũ1,

(2) l̃0 < m̃0 < ũ0 < l̃1 < m̃1 < ũ1.

Proof. Let us assume (2) does not hold. Hence, there exists ω̄ ∈ Ω with l̃1(ω̄) ≤
ũ0(ω̄). A comparison argument ensures that l̃1(ω̄·t) < ũ0(ω̄·t) for all t < 0, and

hence the minimality of Ω ensures that l̃1 ≤ ũ0. If, in addition, l̃1(ω0) = ũ0(ω0)
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for an ω0 ∈ Ω, then a new comparison argument shows that ũ0(ω0·t) < l̃1(ω0·t)
for all t > 0, impossible. Therefore, l̃1 < ũ0. Now, for contradiction, we assume
that neither (1) holds, and deduce from Lemma 5.7(ii) and the minimality of Ω the

existence of ω̄ ∈ Ω with m̃0(ω̄) ≤ l̃1(ω̄). Hence, m̃0(ω̄·t) < l̃1(ω̄·t) for all t > 0.
We fix t0 > 0 and call ω0 := ω̄·t0. Proposition 5.5(vi) yields limt→∞(ũ0(ω0·t) −
v0(t, ω0, l̃1(ω0))) = 0, where v0 stands for the solutions of x′ = h0(ω·t, x). Since

v0(t, ω0, l̃1(ω0)) < l̃1(ω0·t) for all t > 0, we deduce that lim supt→∞(ũ0(ω0·t) −
l̃1(ω0·t))) ≤ 0, which combined with the minimality of Ω contradicts l̃1 < ũ0. □

We point out that, under the hypotheses of Proposition 5.8, part of the arguments
of [18, Section 5] show that the situation (1) is equivalent to the absence of a
bifurcation value λ0 ∈ [0, 1] for the family x′ = h0(ω·t, x)+λ(h1(ω·t, x)−h0(ω·t, x)).

6. Asymptotically d-concave transition equations

Let g : R × R → R be a C2-admissible function. As explained at the beginning
of Section 4, we can understand

x′ = g(t, x) (6.1)

as a transition between the corresponding α-family and ω-family. Now, we will
assume that these limit families satisfy conditions d1-d4, as well as the existence
of three hyperbolic copies of the base for the α-family and the ω-family. These
last conditions are those which provide a wider range of dynamical possibilities
for (6.1) under conditions d1-d4: the maximum number of uniformly separated
solutions for each equation of the α-family or the ω-family is three (see Theorem
5.6); hence, Proposition 2.5 precludes the existence of more than three uniformly
separated solutions of (6.1); and, if there are three, then Theorem 5.6 yields three
hyperbolic copies of the base for the α-family and the ω-family.

As in Section 4, we will achieve the required properties by assuming the existence
of strictly d-concave (in x) maps g− and g+ forming asymptotic pairs with g. More
precisely, we fix g and assume the existence of g− and g+ such that

gd1 g, g−, g+ ∈ C0,2(R× R,R).
gd2 limt→±∞(g(t, x)− g±(t, x)) = 0 uniformly on each compact subset J ⊂ R.
gd3 lim supx→±∞(±h(t, x)) < 0 uniformly on R for h = g, g−, g+.

gd4 inft∈R
(
(g±)xx(t, x1)− (g±)xx(t, x2)

)
> 0 whenever x1 < x2.

gd5 Each one of the equations

x′ = g−(t, x) and x′ = g+(t, x) (6.2)

has three hyperbolic solutions, l̃g− < m̃g− < ũg− and l̃g+ < m̃g+ < ũg+ .

If all these conditions hold, we say that (6.1) is a (coercive and asymptotic) d-
concave ordinary differential equation. Note once again that the d-concavity of
x 7→ g(t, x) is not required for all t ∈ R. The maps g(t, x) := −x(x − 1)(x −
2) − Γ(t)x2/(1 + x2) with Γ continuous and limt→±∞ Γ(t) = 0 and g±(t, x) :=
−x(x − 1)(x − 2) satisfy these conditions, and if we choose Γ with Γ(0) = 5, then
x 7→ gx(0, x) is not concave.

As in Section 4 (see Remarks 4.1), we will say that “g satisfies conditions gd1-
gd5” if there exist g− and g+ such that all the listed conditions are satisfied, and we
will refer to the first and second equations in (6.2) as the past and future equations
of the transition equation (6.1). Some of the results of this section extend part of
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those of [19] to a much more general setting: the setting and hypotheses of this
section are considerably less restrictive than those leading to the analogous results
in [19].

Our initial purpose is to classify the dynamical scenarios for the transition equa-
tion (6.1) when g satisfies gd1-gd5, which is achieved in Theorem 6.4. Its proof is
based on some previous results. The notation established before Lemma 4.2 is used
in what follows. The next result shows that conditions gd1-gd4 provide a family of
d-concave ordinary differential equations (see Section 5) via the hull construction.
Its proof, which uses Lemma 4.2, is almost identical to that of Lemma 4.3. The
only difference is that we must work with the second derivative in the last step of
the proof.

Lemma 6.1. If h ∈ C0,2(R×R,R) then h satisfies d1 on Ωh. If h ∈ C0,2(R×R,R)
and lim supx→±∞(±h(t, x)) < 0 uniformly on R, then h satisfies d2 on Ωh. And,
if gd1, gd2 and gd4 hold, then g and g± satisfy d3 and d4 on Ωg and Ωg± ,
respectively.

Assume that h ∈ C0,2(R × R,R) and lim supx→±∞(±h(t, x)) < 0. Lemma 6.1

and Proposition 5.5 ensure the existence of the global attractor Ah =
⋃

ω∈Ωh

(
{ω}×

[lh(ω), uh(ω)]
)
of the flow τh defined by x′ = h(ω·t, x) on Ωh × R. In particular,

if ω0 := h, then the maps lh(t) := lh(ω0·t) and uh(t) := uh(ω0·t) define the lower
and upper bounded solutions of x′ = h(t, x). In addition, the global pullback
attractor of the induced process is {[lh(s), uh(s)] | s ∈ R} (see e.g. [11, Definition
1.12, Theorem 2.12 and Corollary 1.18], and the proof of Proposition 5.5(ii)). Recall
that xh(t, s, x) satisfies x

′ = h(t, x) and xh(s, s, x) = x.
Proposition 6.3, key in the proof of Theorem 6.4, establishes the existence of three

solutions which govern the dynamics of (6.1) if gd1-gd5 hold: the two previously
described solutions lg and ug, which are locally pullback attractive, and a locally
pullback repulsive one, mg. Its proof requires the next previous result:

Proposition 6.2. Assume that (6.1) has three uniformly separated hyperbolic so-

lutions l̃g < m̃g < ũg, with l̃g and ũg attractive and m̃g repulsive.

(i) If g and g+ satisfy all the conditions involving them in gd1-gd5, then
limt→∞(xg(t, s, x) − ũg+(t)) = 0 for x > m̃g(s) and limt→∞(xg(t, s, x) −
l̃g+(t)) = 0 for x < m̃g(s).

(ii) If g and g− satisfy all the conditions involving them in gd1-gd5, then t 7→
xg(t, s, x) is bounded from above (resp. from below) as time decreases if and

only if x ≤ ũg(s) (resp. x ≥ l̃g(s)); and limt→−∞(xg(t, s, x)− m̃g−(t)) = 0

for x ∈ (l̃g(s), ũg(s)).

Proof. We proceed as in the proof of [19, Proposition 3.5]: Lemma 6.1 allows us
to use the information of Theorem 5.6 instead of that of [19, Theorem 3.3], and
Proposition 2.6 provides the necessary information on uniform separation of the
α-limit and ω-limit sets of the points (g, l̃g(0)), (g, m̃g(0)) and (g, ũg(0)) for the
corresponding skewproduct. □

Proposition 6.3. Assume that g satisfies gd1-gd5, let l̃g± < m̃g± < ũg± be the
hyperbolic solutions given by gd5, and let lg and ug be the lower and upper bounded
solutions of (6.1). Then,
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(i) ug and lg are the unique solutions of (6.1) satisfying limt→−∞(ug(t) −
ũg−(t)) = 0 and limt→−∞(lg(t)− l̃g−(t)) = 0, and they are locally pullback
attractive.

(ii) There exists a unique solution mg of (6.1) defined at least on a positive half-
line and satisfying limt→∞(mg(t) − m̃g+(t)) = 0, and it is locally pullback
repulsive.

Moreover, for s ∈ R in the interval of definition of mg, limt→∞(xg(t, s, x) −
ũg+(t)) = 0 if and only if x > mg(s), and limt→∞(xg(t, s, x) − l̃g+(t)) = 0 if and
only if x < mg(s). In addition, for any s ∈ R, limt→−∞(xg(t, s, x) − m̃g−(t)) = 0
if and only if x ∈ (lg(s), ug(s)).

Proof. The assertions reproduce those of [19, Theorem 3.7], formulated under more
restrictive hypotheses. The proof basically repeats step by step that one, using the
information provided by Proposition 6.2 to check the last assertions. The differences
rely on the first steps, which we detail. We take m > 0 such that ∥b∥∞ ≤ m for
any bounded solution of x′ = g(t, x) and x′ = g±(t, x) (see Proposition 5.5(ii)).
Given ε > 0, Theorem 2.3 provides δ± > 0 such that, if ∥g± − h±∥1,m < δ±, then

each one of the equations x′ = h±(t, x) has three hyperbolic solutions, at a uniform
distance from those of x′ = g±(t, x) bounded by ε. We choose t0 = t0(ε) > 0
such that |g(t, x) − g±(t, x)| < δ±/2 and |gx(t, x) − (g±)x(t, x)| < δ±/2 if ±t ≥ t0

and |x| ≤ m (see Lemma 4.5), and define f±(t, x) as g(t, x) if ±t > t0 and as
g±(t, x) − g±(±t0, x) + g(±t0, x) otherwise. The solutions of x′ = g(t, x) with

values l̃f−(−t0), ũf−(−t0) and m̃f+(t
0) provide the solutions lg, ug and mg of the

statement, as we can proof by repeating the remaining arguments of [19]. □

We will denote lg, mg and ug by l̃g, m̃g and ũg when they are hyperbolic. Now
we will formulate the announced result concerning the dynamical possibilities for
(6.1). Recall that two uniformly separated solutions are, by definition, bounded.
Clearly, there exist (at least) two uniformly separated solutions if and only if lg and
ug satisfy this property.

Theorem 6.4. Assume that g satisfies gd1-gd5, let l̃g± < m̃g± < ũg± be the
hyperbolic solutions given by gd5, and let lg, ug and mg be the solutions of (6.1)
provided by Proposition 6.3. Then, the dynamics of the transition equation (6.1)
fits in one of the following dynamical scenarios:

• Case A: there exist exactly three hyperbolic solutions, l̃g := lg and ũg := ug,
which are attractive, and m̃g := mg, which is repulsive. In addition, the unique

solution uniformly separated from l̃g and ũg is m̃g. In this case, l̃g < m̃g < ũg,

limt→±∞(l̃g(t)−l̃g±(t)) = 0, limt→±∞(m̃g(t)−m̃g±(t)) = 0 and limt→±∞(ũg(t)−
ũg±(t)) = 0.

• Case B: there exists exactly one hyperbolic solution, which is attractive, and uni-
formly separated only from another solution, which is locally pullback attractive
and repulsive. There are two possibilities:
– Case B1: ũg = ug is hyperbolic attractive and uniformly separated of lg = mg.

In this case, limt→∞(ũg(t)− ũg+(t)) = 0 and limt→∞(lg(t)− m̃g+(t)) = 0.

– Case B2: l̃g = lg is hyperbolic attractive and uniformly separated of mg = ug.

In this case, limt→∞(l̃g(t)− l̃g+(t)) = 0 and limt→∞(ug(t)− m̃g+(t)) = 0.
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• Case C: there are no uniformly separated solutions. In this case, l̃g = lg and
ũg = ug are the unique hyperbolic solutions, they are attractive, and the locally
pullback repulsive solution mg is unbounded. There are two possibilities:

– Case C1: mg < l̃g in its domain of definition. In this case, limt→∞(l̃g(t) −
ũg+(t)) = limt→∞(ũg(t)− ũg+(t)) = 0.

– Case C2: mg > ũg in its domain of definition. In this case, limt→∞(l̃g(t)−
l̃g+(t)) = 0 = limt→∞(ũg(t)− l̃g+(t)) = 0.

Proof. Proposition 6.3 allows us to repeat the proofs of [19, Theorems 3.9 and 3.10
and Corollary 3.11] under conditions gd1-gd5. The statement of this theorem
follows from those ones and Proposition 6.3. □

Figures 2, 3 and 4 of [19] depict these five dynamical possibilities in the case
of a map f which is asymptotically periodic with respect to t. In addition, they
can be characterized in terms of the forward attraction properties of the global
pullback attractor for (6.1): the proof of [19, Proposition 3.12] can be repeated in
our framework.

In the line of Proposition 4.8, the next result establishes two conditions preclud-
ing some of the five cases, and which, together, guarantee Case A. The example
depicted in Figure 6 shows that the hypotheses concerning the relative order of
m̃g+ and the bounded solution bi are not superfluous. So, the conditions are more
exigent than those of the analogous result in the concave case, Proposition 4.8.

Proposition 6.5. Assume that g satisfies gd1-gd5. Then,

(i) if there exists h1 : R×R → R such that h1(t, x) ≤ g(t, x) for all (t, x) ∈ R×
R, and x′ = h1(t, x) has a bounded solution b1 such that lim inft→∞(b1(t)−
m̃g+(t)) > 0, then x′ = g(t, x) is in Case A, B1 or C1.

(ii) If there exists h2 : R×R → R such that h2(t, x) ≥ g(t, x) for all (t, x) ∈ R×
R, and x′ = h2(t, x) has a bounded solution b2 such that lim inft→∞(m̃g+(t)−
b2(t)) > 0, then x′ = g(t, x) is in Case A, B2 or C2.

Proof. Let us check (i): the second proof is analogous. Let ug be the upper bounded
solution for x′ = g(t, x) (see Proposition 5.5(ii)). Then, b1 ≤ ug (see Proposition
5.5(iv)). Hence, lim inft→∞(ug(t) − m̃g+(t)) ≥ lim inft→∞(b1(t) − m̃g+(t)) > 0,
which according to Theorem 6.4 precludes Cases B2 and C2. □

As in the concave case, we will focus on critical transitions associated to one-
parametric families of equations which occur when the dynamics moves from Case
A to one of the Cases C of Theorem 6.4 as the parameter crosses a critical value.
Theorem 6.6 shows the persistence of Cases A, C1 and C2 under small suitable
parametric variations, as well as the occurrence of a saddle-node bifurcation phe-
nomenon when Case A transits to one of the Cases B as the parameter varies.

Theorem 6.6. Let C ⊆ R be an open interval, and let ḡ : R × R × C → R be a
map such that gc(t, x) := ḡ(t, x, c) satisfies gd1-gd5 for all c ∈ C. Let ḡx be the
partial derivative with respect to the second variable, and assume that ḡ and ḡx are
admissible on R×R×C. Assume also that lim supx→±∞(±ḡ(t, x, c)) < 0 uniformly
on R× J for any compact interval J ⊂ C.

(i) Assume that there exist c1, c2 in C with c1 < c2 such that the dynamics of
x′ = gc(t, x) is in Case A for c = c1 and not for c = c2. If c0 := inf{c >
c1 | Case A does not hold}, then c0 > c1. Let l̃gc < m̃gc < ũgc be the three
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Figure 6. We define Γ(t) = arctan(5t)/π + 1/2 ∈ (0, 1), g(t, x) = −x3 + sin(t) + sin(
√
2 t) +

(5/2)x + Γ(t) a(3x2 − 3ax + a2 − 5/2), and g−(t, x) and g+(t, x) by replacing Γ(t) by 0 and 1

in g(t, x), respectively. Then, gd1-gd5 hold. The central panel shows that the dynamics of
x′ = g(t, x) for a = 4.2 corresponds to Case C2: we depict in red the two attractive hyperbolic

solutions l̃g and ũg , and in blue the unbounded locally pullback repulsive solution mg . It is easy

to check that g−(t, x) ≤ g(t, x) for this choice of a. But, as checked below, any bounded solution
of x′ = g−(t, x) (which are bound by the red curves in the left panel) is below mg+ (depicted

in blue in the right panel), and hence neither the hypotheses nor the thesis of Proposition 6.5(i)
are fulfilled. It is also easy to check that g−(t, x − a) = g+(t, x) and that ±g−(t, r) < 0 for

±r > 2. Hence, −2 ≤ l̃g− (t) < ũg− (t) ≤ 2, and 2.2 ≤ l̃g+ (t) < ũg+ (t) ≤ 6.2, which implies the

assertion. In addition, since lim inft→−∞(l̃g+ (t)−ug(t)) > limt→−∞(ũg− (t)−ug(t))+0.2 = 0.2,

we get ug(t) < l̃g+ (t) for t ≤ t0; and u′
g(t) < l̃′g+ (t) if ug(t) = l̃g+ (t), from where we deduce that

ug(t) < l̃g+ (t) for all t ∈ R. This is only possible in Case C2.

hyperbolic solutions of x′ = gc(t, x) for c ∈ [c1, c0). Then, the dynamics of

x′ = gc0(t, x) is either in Case B1, with limc→c−0
(m̃gc(t) − l̃gc(t)) = 0 for

all t ∈ R, or in Case B2, with limc→c−0
(ũgc(t)− m̃gc(t)) = 0 for all t ∈ R.

The results are analogous if c1 > c2.
(ii) Assume that there exist c3, c4 in C with c3 < c4 such that the dynamics

of x′ = gc(t, x) is in Case C1 for c = c3 and not for c = c4. If c0 :=
inf{c > c3 | Case C1 does not hold}, then c0 > c3, and the dynamics of
x′ = gc0(t, x) is in Case B1. The results are analogous by replacing C1
and B1 by C2 and B2, and also if c3 > c4.

Proof. As in the proof of Theorem 4.9, the admissibility hypotheses combined with
Theorems 6.4 and 2.3 guarantee the persistence of Case A under small variations
of c. Let us check that also Case C1 is persistent, assuming for contradiction that
x′ = gc3(t, x) is in this case and the existence of a sequence (cn) with limit c3 such
that x′ = gcn(t, x) is not Case C1 for all n ∈ N. (The same argument works
for Case C2.) Theorem 2.3 shows that x′ = gcn(t, x) has two different attractive

hyperbolic solutions for large enough n, which must be l̃gcn and ũgcn (see Theorem

6.4), and which satisfy limn→∞
∥∥l̃gcn − l̃gc3

∥∥
∞ = limn→∞

∥∥ũgcn − ũgc3

∥∥
∞ = 0.

This precludes Cases B. Let ρ be the radio of the common domains of attraction
also provided by Theorem 2.3, and let us take n0 such that

∥∥l̃gcn − l̃gc3

∥∥
∞ <

ρ/3 and
∥∥ũgcn − ũgc3

∥∥
∞ < ρ/3 for all n ≥ n0. If n ≥ n0, we deduce from

limt→∞(ũgc3 (t)− l̃gc3 (t)) = 0 the existence of t0 such that |ũgcn (t0)− l̃gcn (t0)| < ρ,

and hence that limt→∞(ũgcn (t) − l̃gcn (t)) = 0, which precludes Case A. That is,
x′ = gcn(t, x) is in Case C2 for all n ≥ n0.

Let k be a common bound for the ∥·∥∞-norm of the bounded solutions of x′ =
gc3(t, x) and x′ = gc3+ (t, x), and let ε > 0 be smaller than inft∈R(ũgc3

+
(t)− m̃g

c3
+
(t))

and inft∈R(m̃g
c3
+
(t)− l̃gc3

+
(t)). Theorem 2.3 applied to ε/4 provides δ > 0 such that,
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if f is C1-admissible and
∥∥f − gc3+

∥∥
1,k

< δ, then x′ = f(t, x) has three hyperbolic

solutions at a ∥·∥∞-distance of those of x′ = gc3+ (t, x) less that ε/4, and hence with
a separation between of at least ε/2. The admissibility of ḡ and condition gd2
applied to gc3 and gc3+ allow us to choose t0 and n0 large enough to get

sup
(t,x)∈[t0,∞)×[−k,k]

|gcn(t, x)− gc3+ (t, x)|+ sup
(t,x)∈[t0,∞)×[−k,k]

|(gcn)x − (gc3+ )x(t, x)| < δ

for all n ≥ n0: we just write |gcn−gc3+ | ≤ |gcn−gc3 |+|gc3−gc3+ |, do the same with the
derivatives, and apply Lemma 4.5. Let us define f cn+ (t, x) by truncating gcn at t0,

as in the proof of Proposition 6.3. Since
∥∥f cn+ − gc3+

∥∥
1,k

< δ, x′ = gcn(t, x) has three

(possibly locally defined) solutions, bcn1 < bcn2 < bcn3 , with |bcni (t)| ≤ k + ε/4 and
bcni+1(t)− bcni (t) ≥ ε/2 for all t ≥ t0 and n ≥ n0. We define b̄c3i (t) := limn→∞ bcni (t)
for i = 1, 2, 3, and get three solutions of x′ = gc3(t, x) defined and uniformly
separated by ε/2 on [t0,∞). Since we are in Case C2, we have bcn2 (t) ≥ ũgcn (t) for
all t ∈ [t0,∞): there cannot be two different solutions separated on [t0,∞) strictly
below ũgcn . Hence, b̄c33 (t) ≥ b̄c32 (t) + ε/2 ≥ ũgc3 (t) + ε/2 for all t ∈ [t0,∞), which is
not possible in Case C1. This is the sought-for contradiction.

Let us complete the proof of (i) with c1 < c2. The persistence of Cases A and
C ensures that c0 > c1 and that x′ = gc0(t, x) is in one of the Cases B, say B1.

Let us prove that limc→c−0
(m̃gc(t) − l̃gc(t)) = 0 by checking that, given (cn) ↑ c0,

limn→∞ m̃gcn (t) = limn→∞ l̃gcn (t) = mgc0 (t) for all t ∈ R. The existence of these
limits follows from the existence of a common bound for all the bounded solutions
if n is large enough. A new application of last assertion of Theorem 2.3 applied to
ũgc0 and its approximants ũgcn shows that ũgcn (t)− l̃gcn (t) > ũgcn (t)−m̃gcn

(t) ≥ ρ
if n is large enough, with a common ρ > 0. And hence both limits are mgc0 ,
which is the unique bounded solution of x′ = gc0(t, x) uniformly separated from
ũgc0 = limn→∞ ũgcn (see Theorem 6.4). The remaining situations are proved with
similar arguments.

To complete the proof of (ii) if c3 < c4 and with x′ = gc3(t, x) in Case C2,
we deduce from the proved persistence that c0 > c3 and that the dynamics of
x′ = gc0(t, x) is in one of the Cases B. Let us assume for contradiction that it is
in Case B1, so that ũgc0 is hyperbolic. We take (cn) ↑ c0, with x′ = gcn(t, x) in
Case C2, and get the sought-for contradiction by repeating the last paragraph of
the proof of the persistence of Case C1: just replace c3 by c0. The remaining cases
are proved with similar arguments. □

We complete this part with an analogue of Corollary 4.10 for the d-concave case.

Proposition 6.7. Let C ⊆ R be an open interval, and let {gc | c ∈ C} be a family of
functions satisfying gd1-gd5 and such that, if ḡ(t, x, c) := gc(t, x), then ḡ and ḡx
are admissible on R×R×C. Assume that there exists c̄ ∈ C such that the dynamics
of x′ = gc̄(t, x) is in Case B1 (resp. Case B2), and such that, for all c−, c+ ∈ C
with c− < c̄ < c+: g

c−(t, x) ≤ gc̄(t, x) ≤ gc+(t, x) for all (t, x) ∈ R × R; and there
exist tc− and tc+ such that the first and second inequalities are strict for t = tc− and
t = tc+ (respectively) and all x ∈ R. Then, there exists ρ > 0 such that x′ = gc(t, x)
is in Case A (resp. Case C2) for c ∈ (c̄− ρ, c̄) and in Case C1 (resp. Case A)
for c ∈ (c̄, c̄+ ρ).

Proof. Let lc, mc and uc be the three solutions of x
′ = gc(t, x) given by Proposition

6.3. Let gc+ be the globally bounded and C2-admissible function associated to gc
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by gd2 at +∞, and let l̃gc
+
< m̃gc

+
< ũgc

+
be the three hyperbolic solutions of

x′ = gc+(t, x) provided by gd5. Let k be a common bound for the ∥·∥∞-norm of
these three solutions. We take 2ε > 0 smaller than inft∈R(ũgc̄

+
(t) − m̃gc̄

+
(t)) and

inft∈R(m̃gc̄
+
(t)−l̃gc̄

+
(t)). Then, Theorem 2.3 provides δ > 0 such that if ∥gc̄+−g∥1,k <

δ for a C1-admissible map g, then x′ = g(t, x) has three hyperbolic solutions at
∥·∥∞-distance of those of x′ = gc̄+(t, x) less than ε.

The admissibility of ḡ and (ḡ)x provide ρ > 0 such that ∥gc̄−gc∥1,k < δ/3 for all
c ∈ (c̄−ρ, c̄+ρ). Our hypotheses provide tc ≥ 0 with sup(t,x)∈[tc,∞)×[−k,k] |gc(t, x)−
gc+(t, x)| + sup(t,x)∈[tc,∞)×[−k,k] |gcx(t, x) − (gc+)x(t, x)| < δ/3: see gd2 and Lemma

4.5. We take c∗ ∈ (c̄ − ρ, c̄ + ρ) and t0 := max(tc̄, tc∗). For h(t, x), we denote by

ĥ(t, x) the map given by h(t, x) for t ≥ t0 and by gc̄+(t, x) − gc̄+(t
0, x) + h(t0, x)

for t < t0. In this way, we construct ĝc
∗

+ , ĝc̄ and ĝc
∗
from gc

∗

+ , gc̄ and gc
∗
, and

note that they are C1-admissible. Then: ∥ĝc̄− ĝc∗∥1,k < δ/3, since the difference is

ĝc̄(t0, x)− ĝc
∗
(t0, x) for t < t0 and gc̄(t, x)−gc∗(t, x) for t ≥ t0; and ∥gc∗ −gc∗+ ∥1,k <

δ/3 and ∥gc̄+ − ĝc̄∥1,k < δ/3 for analogous reasons. So, ∥gc̄+ − ĝc
∗

+ ∥1,k < δ, and

hence x′ = ĝc
∗

+ (t, x) has three hyperbolic solutions at a distance less than ε of

those of x′ = gc̄+(t, x). In addition, since they solve x′ = gc
∗

+ (t, x) on [t0,∞),
the middle one coincides with m̃gc∗

+
on [t0,∞): m̃gc∗

+
is the unique solution of

x′ = gc
∗

+ (t, x) uniformly separated from two other solutions as t increases. Hence,

ũgc̄
+
(t) ≥ m̃gc∗

+
(t) + ε and l̃gc̄

+
(t) ≤ m̃gc∗

+
(t)− ε for t ≥ t0.

Let us assume that x′ = gc(t, x) is in Case B1 for c = c̄, associate ρ to c̄ as
above, and check that x′ = gc(t, x) is in Case C1 for any c∗ ∈ (c̄, c̄+ ρ), which we
fix. Since gc

∗
(t, lc∗(t)) ≥ gc̄(t, lc∗(t)) for all t ∈ R, Proposition 5.5(iv) shows that

lc̄ ≤ lc∗ . These inequalities combined with gc
∗
(t0, lc∗(t0)) > gc̄(t0, lc∗(t0)) yield

lc̄(t) < lc∗(t) for all t > t0, and hence limt→∞(xc̄(t, t0+1, lc∗(t0+1))− ũgc̄
+
(t)) = 0:

see Proposition 6.3 and Theorem 6.4. A standard comparison argument shows that
xc̄(t, t0+1, lc∗(t0+1)) ≤ lc∗(t) for t ≥ t0+1, and hence lim inft→∞(lc∗(t)−ũgc̄

+
(t)) ≥

0. Thus, lim inft→∞(lc∗(t) − m̃gc∗
+
(t)) ≥ ε, which means Case C1 for c∗: see

Theorem 6.4. Similar comparison arguments show that Case A holds c∗ ∈ (c̄−ρ, c̄),
as well as the stated properties if x′ = gc̄(t, x) is in Case B2. □

6.1. Some scenarios of critical transitions in the d-concave case. Let I ⊆ R
be an open interval, and let f : R× R× I → R and Γ,Γ−,Γ+ : R× R → I satisfy

fd1 there exist the derivatives fx, fxx, fγ , fγγ , fxγ and fγx, and f , fx, fγ , fxx,
fxγ , fγx and fγγ are admissible on R× R× I.

fd2 Γ,Γ− and Γ+ take values in [a, b] ⊂ I, are C2-admissible, and limt→±∞(Γ(t, x)−
Γ±(t, x)) = 0 uniformly on each compact subset J ⊂ R.

fd3 lim supx→±∞(±f(t, x, γ)) < 0 uniformly in (t, γ) ∈ R × J for all compact
interval J ⊂ I.

fd4 inft∈R
(
(∂2/∂x2)f(t, x,Γ±(t, x))|x=x1−(∂2/∂x2)f(t, x,Γ±(t, x))|x=x2

)
> 0 when-

ever x1 < x2.
fd5 Each equation x′ = f(t, x,Γ±(t, x)) has three hyperbolic solutions l̃Γ± <

m̃Γ± < ũΓ± .

With the same abuse of language as in Section 4.1, we will say that (f,Γ) satis-
fies fd1-fd5 if there exist maps Γ− and Γ+ such that the previous conditions are
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satisfied, and refer to the equations

x′ = f(t, x,Γ−(t, x)) and x′ = f(t, x,Γ+(t, x)) (6.3)

as the “past” and “future” of

x′ = f(t, x,Γ(t, x)) . (6.4)

We can easily prove the next result, analogous to Proposition 4.11:

Proposition 6.8. Assume that (f,Γ) satisfies fd1-fd5. Then, the maps g, g−, g+
given by g(t, x) := f(t, x,Γ(t, x)), g−(t, x) := f(t, x,Γ−(t, x)) and g+(t, x) :=
f(t, x,Γ+(t, x)) satisfy the conditions gd1-gd5. Therefore, the dynamical possi-
bilities for (6.4) are those described in Theorem 6.4.

Remark 6.9. The conditions on (f,Γ) can be weakened, as in Remark 4.12.1.

In the line of Theorem 4.15, Theorem 6.10, based on Proposition 6.5, establishes
conditions providing a safety interval [γ1, γ2]: if Γ(R × R) ⊆ [γ1, γ2], then neither
rate-induced tipping nor phase-induced tipping takes place. As seen in its state-
ment, this safety interval depends on the C2-admissible function Γ+ determining
the future equation, which is an important difference with respect to the concave
analogue, Theorem 4.15. And Theorems 6.11 and 6.12, based on Proposition 6.7,
provide the d-concave analogues of Theorems 4.17 and 4.18: under hypotheses pre-
cluding the transition map Γd to take values in any fixed interval for all the values
of the parameter, they show either the absence of critical transition or the occur-
rence of exactly two tipping points. Looking for clarity in their statements, we just
analyze the situation precluding Γd to be always bounded from below.

Theorem 6.10. Assume that (f,Γ) satisfies fd1-fd5. Assume also that γ 7→
f(t, x, γ) is nondecreasing for all (t, x) ∈ R × R, and that there exist γ1 ≤ γ2
such that: Γ(R × R) ⊆ [γ1, γ2], x

′ = f(t, x, γ1) has a bounded solution b1 with
lim inft→∞(b1(t)− m̃Γ+

(t)) > 0; and x′ = f(t, x, γ2) has a bounded solution b2 with
lim inft→∞(m̃Γ+

(t)− b2(t)) > 0. Then, (6.4) is in Case A.
If, in addition, we assume that Γ± do not depend on t, then the equations x′ =

f(t, x,Γ(ct, x)) and x′ = f(t, x,Γ(t+ c, x)) are in Case A for all c > 0 and c ∈ R,
respectively: there is neither rate-induced tipping nor phase-induced tipping.

Proof. Take hi(t, x) = f(t, x, γi) for i = 1, 2 and apply Proposition 6.5. □

Theorem 6.11. Assume that I = R. Let Γ: R× R → R and Γ0 : R× R → [0,∞)
be globally bounded and C2-admissible, and such that the pair (f,Γ+ dΓ0) satisfies
fd1-fd5 for all d ∈ R. Assume that Γ0(t0, x) > 0 for all x ∈ R and a t0 ∈ R.
Assume also that γ 7→ f(t, x, γ) is strictly increasing on R for all (t, x) ∈ R × R,
with limγ→±∞ f(t, x, γ) = ±∞ uniformly on compact sets of R× R. Then,

x′ = f(t, x,Γ(t, x) + dΓ0(t, x)) (6.5)

is either in Case C1 for all d ∈ R, in Case C2 for all d ∈ R, or there exist
d− < d+ such that it is in Case C2 for d < d−, in Case B2 for d = d−, in Case
A for d ∈ (d−, d+), in Case B1 for d = d+, and in Case C1 for d > d+.

Proof. It is easy to check that the family of maps gd(t, x) := f(t, x,Γ(t, x) +
dΓ0(t, x)) satisfies all the hypotheses of Proposition 6.7, with C = R and c̄ equal to
any d̄ ∈ R. We assume that (6.5)d is in Case A for d = d̄ and, for contradiction that
d+ := inf{d > d̄ | Case A does not hold} = ∞. Theorem 2.3 ensures that d̄ < d+.
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Let l̃d < m̃d < ũd be the three hyperbolic solutions of (6.5)d for d ∈ [d̄, d+). Propo-

sition 5.5(iv) yields l̃d̄ ≤ l̃d for all d ∈ [d̄, d+). Let us prove that m̃d ≤ m̃d̄ for all
d ∈ [d̄, d+). Clearly, it suffices to check it for d ∈ [d̄, d̄+ ρ) for a small ρ > 0, which
we choose (applying Theorem 2.3) to ensure ũd̄ > m̃d + ε for an ε > 0 common
for all d ∈ [d̄, d̄+ ρ). For contradiction, we take x0 ∈ (m̃d̄(0), m̃d(0)). Theorem 6.4

yields limt→∞(xd(t, 0, x0) − l̃d(t)) = 0 and limt→∞(xd̄(t, 0, x0) − ũd̄(t)) = 0, and
hence xd(t, 0, x0) ≥ xd̄(t, 0, x0) for t ≥ 0 yields lim supt→∞(xd(t, 0, x0)− ũd̄(t)) ≥ 0.
Therefore, lim supt→∞(xd(t, 0, x0)− m̃d(t)) ≥ ε, impossible.

So, we can take m1 < m2 such that m1 ≤ l̃d̄ ≤ l̃d < m̃d ≤ m̃d̄ ≤ m2. An
argument similar to that involving kd in the proof of Theorem 4.17 provides the
sought-for contradiction. Similarly, d− := sup{d < d̄ | Case A does not hold} < d̄
is finite. It easy to deduce from Proposition 6.7 that the variation is the stated one:
C2 for all d < d−, B2 at d−, B1 at d+, and C1 for all d > d+.

Since Case A cannot occur for all d, there are equations either in Case C1 or in
Case C2. Assume that (6.5)d is in Case C2 for d = d̄, but not for all d. Theorem
6.6 and Proposition 6.7 ensure the existence of d− > d̄ for which the dynamics is
in Case B2 and that Case A holds for close values of d > d−. So, we are in
the situation of the previous paragraphs. The argument is analogous if (6.5)d is in
Case C1 for d = d̄, but not for all d, and the proof is complete. □

By reviewing the previous proof, we observe that we have proved the next result:

Theorem 6.12. Assume that I = R. Let Γ: R× R → R and Γ0 : R× R → [0,∞)
be globally bounded and C2-admissible, and such that the pair (f,Γ+ dΓ0) satisfies
fd1-fd5 for all d ∈ R. Assume that there exists d̄ ∈ R such that

x′ = f(t, x,Γ(t, x) + dΓ0(t, x)) (6.6)

is in Case A for d = d̄, and let l̃d̄ < m̃d̄ < ũd̄ be its three hyperbolic solutions. Let

m1 < m2 and m3 < m4 be such that m1 ≤ l̃d̄(t) < m̃d̄(t) ≤ m2 for all t ∈ R and
m3 ≤ m̃d̄(t) < ũd̄(t) ≤ m4 for all t ∈ R.
(1) Assume that there exists t0 such that Γ0(t0, x) > 0 for all x ∈ [m1,m2], that

γ 7→ f(t, x, γ) is nondecreasing for all (t, x) ∈ R×R and strictly increasing for
(t, x) ∈ R × [m1,m2], with limγ→∞ f(t, x, γ) = ∞ uniformly on compact sets
of R× [m1,m2]. Then, there exists d+ > d̄ such that (6.6)d is in Case C1 for
d > d+, in Case B1 for d = d+, in Case A for d ∈ [d̄, d+).

(2) Assume that there exists t0 such that Γ0(t0, x) > 0 for all x ∈ [m3,m4], that
γ 7→ f(t, x, γ) is nondecreasing for all (t, x) ∈ R×R and strictly increasing for
(t, x) ∈ R× [m3,m4], with limγ→−∞ f(t, x, γ) = −∞ uniformly on compact sets
of R× [m3,m4]. Then, there exists d− < d̄ such that (6.6)d is in Case C2 for
d < d−, in Case B2 for d = d−, in Case A for d ∈ (d−, d̄].

An analysis similar to that of Remark 4.19 applies to this d-concave case.

6.2. Numerical simulations in asymptotically d-concave models. In this
section, we consider two different single-species population models whose internal
dynamics are driven by nonautonomous cubic equations and which include preda-
tion phenomena. The intrinsic cubic dynamics is indebted to the Allee effect (see
[15, 17, 19]), e.g., due to some breeding cooperative mechanism or to an easier mate
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Figure 7. The transition map ∆(dn) defined in (6.9) for ρ = 1, L1 = 10, L2 = 40, d+ = 0.5,

d = 2.5, dn = d+ + d/((n− 1)/4 + 1)2, and pn = (n− 1)L2 + (−1)(n−1)/n for all n ∈ N.

finding. In both cases, the evolution of the population is modeled by

x′ = r(t)x

(
1− x

K(t)

)
x− S(t)

K(t)
+ ∆(t, x) , (6.7)

where we assume r, K and S to be quasiperiodic functions with r and K positively
bounded from below, and ∆ to be C2-admissible. So, analogously to Section 4.2,
the map h(t, x, δ) := r(t)x (1 − x/K(t))(x − S(t))/K(t) + δ satisfies fd1 and fd3.
In addition, we will assume that (h,∆) satisfies fd2, fd4 and fd5 for some maps
∆±. The meaning of r and K is the same as in Section 4.2, while S (on which we
assume K(t) + S(t) ≥ 0 for all t ∈ R) stands for the force of the Allee effect, and
∆ models the contribution of a single external effect: predation.

Each one of the two examples tries to emphasize some of the novel aspects of
the theory presented in this paper: the possibility of non asymptotically constant
transition functions in the first one, and the possibility of intrinsically x-dependent
transition functions in the second one. As in Section 4.2, we find Cases A, B and
C for different values of certain parameters, and we point to certain parametric
variations as possible causes of tipping. Throughout the section, Case A means
the survival of the species, while Case C2 means its extinction (and Case B2 is
the highly unstable situation which separates the other two).

Example 6.13. We begin by assuming that, in (6.7), the predation is modeled by
a Holling type III functional response term −γ x2/(b(t) + x2), where γ and b > 0
have the same meaning as in Example 4.20:

x′ = r(t)x

(
1− x

K(t)

)
x− S(t)

K(t)
− γ

x2

b(t) + x2
. (6.8)

Next, we assume that the population is attacked by a predator species which be-
haves as follows: the habitat is initially free of predators; at a certain time a group
of predators arrives at the ecosystem, which they leave after some time; and this
behavior repeats yearly. Such a pattern may correspond to the colonization of
a new patch by a migratory species of predators, due to the reproductive, nutri-
tional, breeding or wintering interest of the habitat. (See, e.g., [1] for a study on
the evolution of some migration patterns of common swift, an insectivorous bird.)

Let L2 be the length of the year. We assume that the n-th predation season
occurs during the time [pn−L1−ρ, pn+L1+ρ], with maximum number of predators
during [pn − L1, pn + L1]: ρ > 0 is the (short) time needed to reach and leave the
patch. We assume L2 > 2(L1 + ρ), pn+1 − pn > 2(L1 + ρ) for all n ∈ N, and
pn−(n−1)L2 → 0 as n→ ∞. The size of the n-th group of predators is determined
by the constant dn ≥ 0, and we assume that the sequence (dn) is bounded with
limit d+. The possible differences between pn and (n− 1)L2 capture variations in
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Figure 8. Numerical depiction of the existence of a unique size-tipping point for (6.10)d. The
central panel shows the dynamics for an accurate approximation to the tipping point d0: the

two upper hyperbolic solutions are so close within the representation window that are a good

approximation (green) to the nonhyperbolic solution of Case B2. The left panel depicts Case A,
which is the dynamics for any d ∈ [0, d0) and means survival: the attractive hyperbolic solutions

in red, and the repulsive one in blue. The right panel depicts Case C2, which is the dynamics

for any d > d0 and means extinction: the hyperbolic solutions in red, and the locally pullback
repulsive solution in blue.

the start date of the yearly predation season, and the hypothesis pn+1 − pn → L2

is made for the sake of simplicity: combined with the existence of d+, it describes
an asymptotically periodic phenomenon, which means that the behavior of the
predators becomes as regular as possible over time. Other more complicated types
of recurrence in the future equation may fit in the model. (See [21] for a study
on the variation of arrival dates of common swift and barn swallow to the Iberian
Peninsula.) The phenomenon of lack of predators in some occasional years can
be described through null elements in the sequence (dn). We use the map Γρ,L of
Example 4.20 (see Figure 2) to model this behavior: the amount of predators at
the ecosystem at time t is

∆(dn)(t) :=

∞∑
n=1

dn Γρ,L1
(t− pn) , (6.9)

which is a bounded continuous function due to the boundedness of (dn) and to the
disjointness of the intervals of predation. Figure 7 depicts ∆(dn) for ρ = 1, L1 = 10,
L2 = 40 and certain sequences (dn) and (pn).

So, we study the transition equation

x′ = r(t)x

(
1− x

K(t)

)
x− S(t)

K(t)
−∆(dn)(t)

x2

b(t) + x2
, (6.10)

which represents the dynamics of the single-species population through the repeated
passage (which tends to be periodic) of groups of predators starting at certain time
p1 − L1 − ρ. We define ∆− := 0 and

∆+(t) :=

∞∑
n=−∞

d+Γρ,L1

(
t− (n− 1)L2

)
,

which is bounded, continuous, and L2-periodic in time. Then, limt→−∞(∆(dn)(t)−
∆−(t)) = 0, since ∆(dn)(t) = 0 for all t ≤ p1 − L1 − ρ, and limt→∞(∆(dn)(t) −
∆+(t)) = 0, since the uniform continuity of Γρ,L1

on compact sets ensures that
∥Γρ,L1(t− pn)− Γρ,L1(t− (n− 1)L2)∥∞ → 0 as n→ ∞, and the separation of the
supports of the terms of the series guaranteed by the conditions L2 > 2(L1 + ρ)
and pn+1 − pn > 2(L1 + ρ) ensures that we can compare the series term-by-term.
That is, (6.9) corresponds to a transition between these two limit functions, and
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fd2 is fulfilled. It can be checked that the right-hand side of equation (6.10) is
not d-concave if maxt∈R ∆(dn)(t) = maxn∈N dn is large enough, while r(t)x (1 −
x/K(t))(x− S(t))/K(t)−∆+(t)x

2/(b(t) + x2) is d-concave if d+ is not too large,
in which case also fd4 is fulfilled: see [19, Section 5.2].

Let us choose: r(t) := 0.7+0.3 sin2(t), K(t) := 70+20 cos(
√
5 t) and S(t) = 20+

30 cos2(
√
3 t) for the internal dynamics of the species, b(t) := 200 for the influence

of the predation, and L1 = 10, L2 = 40, d+ = 0.3, dn = d++d/((n−1)/20+1)2 and
pn = (n−1)L2+(−1)(n−1)/n (for all n ∈ N) for the shape of the transition function.
The particular expression of dn implies that the yearly density of predators dn
decreases to d+. The decreasing attractiveness of the habitat can be indebted to
different causes: learning of defensive mechanisms, overpopulation in the previous
season, insufficient nesting or breeding space, etc. The constant d of the definition
of dn is a size bifurcation parameter in terms of which we will study the dynamical
cases of (6.10). The choice of d+ (below 0.32) guarantees fd4. We numerically
check fd5, and hence fd1-fd5 hold for all d ≥ 0. In addition, the size of dn for
small n provides a not d-concave equation (6.10) if d is large enough (above 0.96).

Clearly, ∆(dn) = ∆̃+ + d∆0 for ∆̃+(t) :=
∑∞

n=1 d+Γρ,L1

(
t − pn

)
and the con-

tinuous nonnegative map ∆0(t) :=
∑∞

n=1(1/((n− 1)/20 + 1)2)Γρ,L1
(t− pn), whose

limits as t→ ±∞ are 0. We define f(t, x, γ) := r(t)x (1−x/K(t))(x−S(t))/K(t)−
∆̃+(t)x

2/(b(t) + x2)− γ x2/(b(t) + x2) and g(t, x, γ) := f(t, x,−γ), and check that
the pairs (g, d∆0) satisfy the hypotheses of Theorem 6.12(ii) (with Γ(t) := 0,
Γ0(t) := ∆0(t), and d̄ = 0). To this end, we numerically check that x′ = g(t, x, 0)
has three hyperbolic copies of the base and that the lower one, attractive, is 0 (and
hence m̃0 is positively bounded from below). Hence, Theorem 6.11 ensures the ex-
istence of a unique size-induced tipping point d0 > 0 for x′ = f(t, x, d∆0(t)) (i.e.,
for (6.10)): Case A holds for 0 ≤ d < d0, and Case C2 holds for d > d0. That
is, an excessive increase in the number of predators visiting the habitat leads to
the extinction of the species. The existence of this critical transition is depicted in
Figure 8.

Example 6.14. Now, we consider that a flock of x animals described by (6.7)
grazes in a patch which is initially free of predators. We assume that at time t = 0
a group of predators, which we suppose that have constant density d (due to the
time scale in which we work) and whose predation mechanism is assumed to be
suitably modeled by a Holling type III functional response term −d x2 /(b(t) + x2)
reaches the patch. (See Example 4.20 for the meaning of d and b.) The function b
is assumed to be quasiperiodic and positively bounded from below. At time L > 0,
the threat is identified by the flock owner and s shepherds per unit of time are hired
to protect the flock: there are s (t−L) shepherds at time t ≥ L, and each shepherd
is assumed to be able to protect h heads of livestock. As soon as there are enough
shepherds to protect the whole herd, i.e, when x ≤ h s (t − L), predators are not
able to attack the flock. That is, predation occurs while 0 ≤ t ≤ L (cx+ 1), where
c = 1/hsL. So, for x ≥ 0, we can model the evolution of the flock by the equation

x′ = r(t)x

(
1− x

K(t)

)
x− S(t)

K(t)
− dΓL

(
2 t

cx+ 1
− L

)
x2

b(t) + x2
, (6.11)

where we take ΓL := Γρ,L for some small fixed ρ > 0, with Γρ,L defined in Example
4.20 (see Figure 2). So, the predation term practically vanishes when t is outside
the interval [0, L (cx+ 1)]. By multiplying the Holling type III functional response
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Figure 9. Numerical depiction of the existence of a unique size-tipping point for (6.12)d when

L and c are fixed. In this example, L = 20 and c = 0.02. The central panel corresponds to the
approximation for d(20, 0.02) of Table 3: Case B2. To its left and right, we find Cases A and

C2. See Figure 8 to understand the color code.

term by ΓL, it is implicitly assumed that the search for prey mechanism, i.e. the
Holling type III interaction, is not affected by the presence of shepherds as long
as there are not enough of them to protect the whole herd. (See the biological
meaning of Holling functional response in [24].) This assumption, made for the
sake of simplicity, can be understood as follows: if a shepherd has more sheep in his
care than he can protect, then a predator, once it has located its prey, can wait a
negligible amount of time on the timescale we are working with until the shepherd
moves on to other sheep, far enough away to allow the predator to hunt the prey.

Since R × [0,∞) is an invariant set for the process given by (6.11) and only
nonnegative solutions have biological meaning, we can replace the predation term
by a globally defined one. To this end, we take a a globally defined C2-map k(x)
which coincides with 1/(cx+ 1) on [0,∞), and consider the equation

x′ = r(t)x

(
1− x

K(t)

)
x− S(t)

K(t)
− dΓL(2 t k(x)− L)

x2

b(t) + x2
, (6.12)

Let ΛL,c(t, x) := ΓL(2 t k(x)−L). Then, for any choices of d ≥ 0, L > 0 and c > 0,
dΛL,c is globally bounded, C2-admissible on R×R, and with limt→±∞ dΛL,c(t, x) =
0 uniformly on each compact set J ⊂ R. That is, dΛL,c globally satisfies fd2, with
Λ± = 0. In addition, if f is the right-hand term of (6.8), then it is not difficult to
check that fd1, fd3 and fd4 hold.

We choose r(t) := 0.7 + 0.3 sin2(t), K(t) := 70 + 20 cos(
√
5 t), S(t) := 20 +

30 cos2(
√
3 t), and b(t) := 20+cos(t) to construct Table 3 and Figures 9, 10 and 11,

and numerically check that fd5 holds for these choices, being 0 the lower bounded
solution of x′ = f(t, x, 0). That is (f, dΛL,c) satisfies fd1-fd5 for all d ≥ 0, L > 0
and c > 0, and hence the dynamics of (6.12) fits in one of the cases described
by Theorem 6.4. Moreover, since 0 is the lowest bounded solution for the past
and future equations, Cases B1 and C1 are preluded. In addition, if g(t, x, γ) :=
f(t, x,−γ), then the pairs (g, dΛL,c) satisfy all the hypotheses of Theorem 6.12(2)
(with Γ(t) := 0, Γ0(t) := ΛL,c(t) and d̄ = 0). This result shows the existence of a
unique tipping value d(L, c) > 0: (6.12)d is in Case A for all d ∈ [0, d(L, c)), in
Case B2 for d = d(L, c) and in Case C2 for all d > d(L, c). Figure 9 depicts the
upper locally pullback attractive and the locally pullback repulsive solutions of the
transition equation (6.12)d for d close to the bifurcation point, for some fixed L and
c, and Table 3 shows numerical approximations to d(L, c) for different L, c > 0.

Let the other parameters vary. The monotonicity of L 7→ ΓL(2t/(cx + 1) − L)
for any (t, x) ∈ R × [0,∞) yields the uniqueness of a possible tipping point L0
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d(L, c) c = 0.01 c = 0.02 c = 0.03

L = 2 9.5918417988 7.8400146619 6.6406325271

L = 10 3.5156887400 3.1640725896 2.9522195572

L = 20 2.7559336044 2.5806400722 2.4622290038

L = 30 2.4757094854 2.3677420953 2.3132184604

L = 40 2.3543746813 2.2850546293 2.2459305139

Table 3. Numerical approximations up to ten places to the bifurcation points d(L, c) of (6.12)d.
The displayed number is a value of d for which (6.12)d is in Case A and such that (6.12)d+1e−10

is in Case C. The numerical integration has been done using Matlab2023a ode45 algorithm with
AbsTol and RelTol equal to 1e-12. The final integration has been carried out over the interval

[−1e4, 1e4].

Figure 10. Numerical depiction of an L-induced tipping point: for c = 0.02 and d =
2.5806400722, we find Case A for L = 10, Case B2 for L = 20 and Case C2 for L = 30.

for (6.12)L for d and c fixed. In fact, if ũL and m̃L are the upper and middle
hyperbolic solutions if (6.12)L is in Case A and L1 < L2 provide this case, then
Proposition 5.5(iv) shows that ũL1

> ũL2
, and a new comparison argument shows

that m̃L1
≤ m̃L2

. So, if Case B2 (the unique possible one) occurs as L ↑ L0, then
they collide, and Case A cannot occur for L > L0.

Analogously, the monotonicity of c 7→ ΓL(2t/(cx + 1) − L) for any (t, x) ∈
R × [0,∞) ensures the uniqueness of the bifurcation for (6.12)c for d and L fixed
in the case of existence. The biological sense of the problem makes reasonable
expecting no more than one critical transition as L or c varies: the decrease in
L means an earlier detection of the problem and therefore the extinction of the
hinders; and the decrease in c means an increase in the rate of recruitment of
shepherds, i.e., a faster response to the problem that facilitates survival.

Figures 10 and 11 represent the behaviour of the locally pullback attractive
and locally pullback repulsive solutions of the transition equation (6.12)L for fixed
d and c, and (6.12)c for fixed d and L, respectively. As in the case of Figure
9, the left-hand panel corresponds to the survival of the species (Case A), the
right-hand panel corresponds to extinction (Case C2), and the middle panel is an
approximation to the intermediate unstable situation between them (Case B2).

6.3. Example on the necessity of minimality in Proposition 5.8. In this
section, we present an example which shows that the minimality of (Ω, σ) is indeed
required in Proposition 5.8. We will construct a non minimal set Ω and a pair
of functions h1, h2 : Ω × R → R satisfying d1-d4 with h1(ω, x) > h2(ω, x) for
all (ω, x) ∈ Ω × R, such that x′ = hi(ω·t, x) has three hyperbolic copies of the
base li < mi < ui for i = 1, 2 which do not satisfy none of the two possible
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Figure 11. Numerical depiction of a c-induced tipping point: for L = 20 and d = 2.5806400722,

we find Case A for c = 0.01, Case B2 for c = 0.02 and Case C2 for c = 0.03.

orders described in Proposition 5.8. We make use of the transition framework of
Section 6 to construct the example: x′ = hi(ω·t, x) for i = 1, 2 will be transition
equations, with Ω composed by a heteroclinic orbit connecting two singletons, which
are minimal. The cornerstone of the example is the fact that we construct three
hyperbolic copies of the base Ω contained in Ω×R projecting onto each one of the
two minimal subsets of Ω, and the three copies of the base have the two distinct
orders allowed by Proposition 5.8 over each minimal.

Let Γ: R → (0, 1) be a continuous map with limt→∞ Γ(t) = Γ+ := 1 and

limt→−∞ Γ(t) = Γ− := 0 (as Γ(t) := arctan(t)/π + 1/2). We take a ≥
√
10 and

hb(x, α) := −x3 + x+ α (3x2a− 3xa2 + a3 − a) + α (1− α) b ,

for some b ≥ 0 which will be properly fixed later on. Note that: hb(x, α) =
h0(x, α)+α(1−α) b; hb(x, 0) = −x(x−1)(x+1); hb(x, 1) = −(x−a)(x−a−1)(x−
a+1); and 3x2a−3xa2+a3−a ≥ 0 for all x ∈ R by the choice of a, so α 7→ h0(x, α)
is nondecreasing for all x ∈ R. For each b ≥ 0, we consider the equation

x′ = hb(x,Γ(t)) . (6.13)

It is easy to check that (hb,Γ) satisfies fd1-fd5 for any b ≥ 0: the past equation
x′ = hb(x, 0) has three hyperbolic critical points −1, 0 and 1, and the future
equation x′ = hb(x, 1), which is a shift of the past one, has three hyperbolic critical
points a− 1, a and a+ 1. So, the dynamics of (6.13)b fits in one of the dynamical
cases of Theorem 6.4.

We will check later the existence of b0 > 0 such that (6.13)b is in Case A
for b = b0. Let Ω be the hull of (t, x) 7→ hb0(x,Γ(t)) (see Section 2.3), and let
h1 : Ω × R → R be given by h1(ω, x) := ω(0, x) for (ω, x) ∈ Ω × R, that is, the
extension of hb0 to Ω. Then, h1(ω, x) is a cubic polynomial with −1 as leading
coefficient for all ω ∈ Ω, and hence h1 satisfies d1-d4. Note that Ω is the union
of the (heteroclinic) σ-orbit {hb0(x,Γ(t + s)) | s ∈ R} and its α-limit and ω-limit
sets, {hb0(x, 0)} and {hb0(x, 1)}: see Lemma 2.4. Theorem 5.6 ensures that x′ =
h1(ω·t, x) has three hyperbolic copies of the base l1 < m1 < u1. In particular, the
restrictions of these three copies to the α-limit set {hb0(x, 0)} are −1, 0 and 1, and
to the ω-limit set {hb0(x, 1)} are a− 1, a and a+ 1.

Next, we define h2(ω, x) := −x3 + x − ε for ε ∈ (0, 2/(3
√
3 )), which clearly

satisfies d1-d4 and h1(ω, x) > h2(ω, x) for all (ω, x) ∈ Ω×R. It can be checked that
x′ = h2(ω·t, x) has three copies of the base: three constant equilibria. So, the order
of l1, m1, u1 and l2, m2, u2 is l2 < −1 < 0 < m2 < u2 < 1 (like in Proposition 5.8(i))
over the minimal set {hb0(x, 0)} ⊂ Ω, and l2 < m2 < u2 < a − 1 < a < a + 1 (like
in Proposition 5.8(ii)) over the minimal set {hb0(x, 1)} ⊂ Ω. Hence, the continuity
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of the copies of the base preclude any of the two possibilities of Proposition 5.8 to
hold over the whole Ω.

It remains to check the existence of b0 > 0 such that (6.13)b0 is in Case A,
for which it suffices to check (6.13)0 is in Case C2 and that there exists b1 > 0
such that (6.13)b1 is in Case C1: Theorem 6.6 precludes moving from Case C2
to Case C1 as b varies without crossing A.

We denote by lb and ub (resp.mb) the locally pullback attractive (resp. repulsive)
solutions of (6.13)b provided by Proposition 6.3, and recall that limt→−∞ ub(t) = 1,
limt→−∞ lb(t) = −1, and limt→∞mb(t) = a. Since Γ(t) ≤ 1 for all t ∈ R and
α 7→ h0(x, α) is nondecreasing for all x ∈ R, we have h0(a − 1,Γ(t)) ≤ h0(a −
1, 1) = 0 for all t ∈ R, so R × (−∞, a − 1] is positively invariant for (6.13)0.
Since limt→−∞ u0(t) = 1 < a − 1, we have u0(t) ∈ (−∞, a − 1] for all t ∈ R,
and hence limt→∞ u0(t) = a − 1: the other possible future limits a and a + 1 are
uniformly separated from u0. That is, (6.13)0 is in Case C2. To look for b1, we
first check that all the bounded solutions of (6.13)b take values in [−1,∞), since
hb(x, 0) < hb(x,Γ(t)) for all (t, x) ∈ R × R, and hence any m1 < −1 satisfies
the initial hypothesis of Proposition 5.5. Next, we take t0 > 0 in the domain of
definition of m0 with m0(t) < a + 1/2 for all t ≥ t0 and assume for contradiction
that lb(t) ≤ a + 1/2 for all b > 0 and t ∈ [t0, t0 + 1]. Let γ be a lower bound for

Γ(t)(1−Γ(t)) for t ∈ [t0, t0+1]. Then lb(t0+1) ≥ −2+
∫ t0+1

t0
(−(a+1/2)3+γ b) ds

for all b > 0, which is impossible. We take b0 and t1 with lb0(t1) > a + 1/2 >
m0(t1). Proposition 6.3 ensures that limt→∞(x0(t, t1, lb0(t1))− (a+ 1)) = 0, and a
comparison argument yields lb0(t) = xb0(t, t1, lb0(t1)) ≥ x0(t, t1, lb0(t1)) for t ≥ t1.
That is, lim inft→∞(lb0(t)− (a+ 1)) ≥ 0, which may only happen in Case C1 (see
Theorem 6.4). This completes the proof.
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