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Resumen

Los sistemas de Interfaz Cerebro-Computadora (BCI: Brain-Computer Interface) basados en
la imaginación motora (MI: Motor Imagery) tienen un gran potencial para la rehabilitación de
pacientes con discapacidades motoras, como las personas que han sufrido de accidentes cere-
brovasculares. Sin embargo, las metodologías actuales necesitan de una extensa calibración,
que puede no ser efectiva en todos los casos debido a la variabilidad entre sujetos y la cali-
dad de la ejecución de la tarea de MI. Esta limitación reduce la accesibilidad y eficacia de los
sistemas BCI en aplicaciones clínicas.

El objetivo de este Trabajo de Fin de Grado es desarrollar una estrategia innovadora para la
clasificación de actividad cerebral medida mediante el EEG mientras el sujeto hace una tarea de
MI. Con ese propósito, se han aplicado técnicas de aprendizaje por transferencia con el fin de
mejorar la efectividad y accesibilidad de los sistemas BCI para la neurorehabilitación, mediante
la reducción del tiempo de calibración, la realimentación más eficaz mediante el aprendizaje
de patrones de movimientos ejecutados, o la creación de programas de entrenamiento perso-
nalizados. Para ello, se ha realizado un experimento de caracterización donde se han analizado
las diferencias y similitudes en la actividad neuronal durante la ejecución motora (ME: Motor
Execution) y la MI mediante técnicas espectrales, como la potencia relativa, y técnicas tempo-
rales, como la desincronización/sincronización relacionada con eventos (ERD/ERS: Event Re-
lated Desynchronization/Event Related Synchronization). Posteriormente, se ha diseñado una
estrategia de aprendizaje por transferencia basado en modelos que consiste en aplicar modelos
preentrenados con datos de EEG durante ME para la clasificación de MI, sin necesidad de ex-
tensas calibraciones.

Los resultados de caracterización muestran que existen patrones similares en la actividad
neural asociados a ME y MI, lo cual valida la posibilidad de utilizar estos datos para la clasifi-
cación de MI. Los resultados de clasificación demostraron que la estrategia de aprendizaje por
transferencia permite el control de BCI, logrando una precisión del 80,31% en sujetos no en-
trenados al utilizar solo dos segundos de registros de EEG. Además, la utilización de registros
de mayor duración o la calibración específica para cada sujeto optimiza aún más el rendimiento
del sistema.

La implementación de la estrategia diseñada en este trabajo podría disminuir significativa-
mente el tiempo de calibración de los sistemas BCI basados en MI, lo cual es crucial para su
aplicación en la rehabilitación de pacientes con discapacidades motoras. Esta mejora en la ac-
cesibilidad y eficiencia de los sistemas BCI podría optimizar los protocolos de rehabilitación de
accidentes cerebrovasculares y mejorar la calidad de vida de los pacientes.

Palabras clave: Imaginación motora (MI), Clasificación, Aprendizaje por transferencia,
Interfaz Cerebro-Computadora (BCI), Neurorehabilitación, Ejecución motora (ME).
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Abstract

Motor imagery (MI)-based Brain-Computer Interface (BCI) systems hold great potential
for the rehabilitation of patients with motor disabilities, such as those who have suffered from
strokes. However, current methodologies require extensive calibration, which may not be ef-
fective in all cases due to intersubject variability and the quality of MI task execution. This
limitation reduces the accessibility and efficacy of BCI systems in clinical applications. The
objective of this Final Degree Project is to develop an innovative strategy for the classifica-
tion of brain activity measured by EEG while the subject performs an MI task. To that end,
transfer learning techniques have been applied to improve the effectiveness and accessibility
of BCI systems for neurorehabilitation, by reducing calibration time, providing more effective
feedback through the learning of executed movement patterns, or creating personalized training
programs. To achieve this, a characterization experiment was conducted to analyze the differ-
ences and similarities in neural activity during motor execution (ME) and MI using spectral
techniques, such as relative power, and temporal techniques, such as event-related desynchro-
nization/synchronization (ERD/ERS). Subsequently, a model-based transfer learning strategy
was designed, which involves applying pretrained models with EEG data during ME for MI
classification without the need for extensive calibration.

Characterization results show similarities in neural activity patterns associated with ME and
MI, validating the feasibility of using these data for MI classification. Additionally, classifica-
tion results demonstrated that the transfer learning strategy enables BCI control achieving an
accuracy of 80.31% in untrained subjects using only two seconds of EEG recordings, with the
possibility of using longer recordings or subject-specific calibration further optimizing system
performance.

The implementation of the strategy designed in this work could significantly reduce the cali-
bration time of MI-based BCI systems, which is crucial for their application in the rehabilitation
of patients with motor disabilities. This improvement in the accessibility and efficiency of BCI
systems could optimize stroke rehabilitation protocols and enhance patients’ quality of life.

Key words: Motor imagery (MI), Classification, Transfer learning, Brain-Computer Inter-
face (BCI), Neurorehabilitation, Motor execution (ME).
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1. INTRODUCTION

1.1. Stroke

Stroke is a medical emergency, second leading cause of death and third cause of disability in
adults worldwide (Feigin et al., 2018). It is characterized by a sudden disruption of blood flow
to the brain, leading to the rapid loss of brain function. This interruption deprives brain tissue
of essential oxygen and nutrients, causing cells to begin dying within minutes (Murphy and
Werring, 2020). The implications of a stroke are profound and multifaceted, affecting motor
control, sensory perception, language abilities, and cognitive functions. The extent and loca-
tion of brain damage determine the specific symptoms and their severity. Common symptoms
include sudden numbness or weakness in the face, arm, or leg, particularly on one side of the
body; confusion; trouble speaking or understanding speech; vision problems in one or both
eyes; difficulty walking; dizziness; and loss of balance or coordination (NIH, 2024).

Rapid diagnosis and intervention are crucial in stroke treatment. The medical community
uses the acronym F.A.S.T. (Face drooping, Arm weakness, Speech difficulties, and Time to call
emergency services) to help recognize and respond to the signs of stroke promptly. Treatment
options vary depending on the type of stroke and the time elapsed since symptoms began. They
may include medications to break up or remove clots, surgical interventions, and other medical
therapies to manage complications and support recovery (NIH, 2024).

Despite advancements in acute stroke management, many survivors face long-term chal-
lenges, calling for comprehensive rehabilitation efforts. This is where innovative approaches
like brain-computer interfaces (BCIs) can play a significant role, particularly in improving neu-
rorehabilitation outcomes. By exploiting BCIs, researchers and clinicians aim to better under-
stand brain activity associated with stroke and develop more effective therapeutic interventions,
ultimately improving the quality of life for stroke patients.

As seen on Figure 1.1, stroke can be classified into two main types: ischemic and hem-
orrhagic. Ischemic stroke, which accounts for about 85% of all cases (Murphy and Werring,
2020), occurs when a blood clot obstructs a blood vessel supplying the brain. This blockage
can be caused by thrombosis (a clot forming in an artery within the brain) or embolism (a clot
forming elsewhere in the body and traveling to the brain). Hemorrhagic stroke, on the other
hand, happens when a blood vessel in the brain bursts, leading to bleeding within or around
the brain. This type can be further divided into intracerebral hemorrhage (bleeding within the
brain tissue) and subarachnoid hemorrhage (bleeding in the space between the brain and the
surrounding membrane) (Unnithan et al., 2023).

Early diagnosis and treatment are vital to minimize brain damage and improve outcomes.
Medical imaging techniques such as CT scans and MRIs play a crucial role in diagnosing the
type and location of a stroke.
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Fig. 1.1. Differences between Ischaemic and Hemorrhagic stroke (Murphy and Werring, 2020).

1.1.1. Neurorehabilitation

Neurorehabilitation is a therapeutic process aimed at aiding recovery and improving the
functional abilities of stroke survivors. It encompasses a range of strategies, including physical
therapy, occupational therapy, speech and language therapy, and psychological support. The
goal is to help patients regain independence and increase their quality of life.

Physical therapy focuses on restoring movement and strength through exercises and activ-
ities tailored to the patient’s specific needs. Occupational therapy helps patients relearn daily
activities and adapt to their physical limitations by using adaptive tools and techniques. Speech
and language therapy addresses difficulties with communication and swallowing, often involv-
ing exercises to improve speech clarity, language skills, and cognitive functions related to com-
munication. Given that many stroke survivors experience aphasia and dysphagia, this therapy
is fundamental for improving their ability to safely consume food and liquids (Kelley and Bo-
razanci, 2009).

Psychological support is also a crucial component of neurorehabilitation, as stroke survivors
often experience emotional and cognitive challenges such as depression, anxiety, and memory
loss. Counseling, cognitive behavioral therapy, and community integration can help patients
and their families cope with these changes and improve their mental well-being (Perna and
Harik, 2020).

In addition to these traditional therapies, innovative techniques are being integrated into
neurorehabilitation programs to strengthen their effectiveness. These approaches play upon the
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concept of neural plasticity, the brain’s capacity to alter, reorganize, or develop new neural con-
nections. The brain’s ability to reorganize itself allows undamaged areas to take over functions
lost due to stroke, or to ’reconnect’ affected or isolated neurons in the damaged areas. Some of
the most promising approaches include (Gunduz et al., 2023):

• Mirror Therapy: This technique involves using a mirror to create a reflection of the un-
affected limb, giving the illusion that the affected limb is moving. This visual feedback
can help retrain the brain and improve motor function in the affected limb. Mirror ther-
apy has been particularly effective in reducing pain and improving movement in stroke
patients with hemiparesis, implying weakness on one side of the body (Gandhi et al.,
2020).

• Robotic-Assisted Therapy: Robotic devices are increasingly used to provide precise,
repetitive movements that aid in motor recovery and strength building. This technique can
deliver a high-intensity, standardized therapy, which is considered crucial for motor cortex
reorganization and improving recovery. These devices can be tailored to the patient’s
needs, offering support and resistance as necessary. It has has shown to improve outcomes
in both upper and lower limb rehabilitation in post-stroke patients, improving muscle
strength, coordination, and range of motion (Chang and Kim, 2013).

• Virtual Reality (VR): VR provides an immersive environment where patients can en-
gage in simulated activities that promote motor and cognitive recovery, specially of the
recovery of the motor function in upper body limbs. VR has also shown to improve motor
function, balance, and spatial awareness in stroke patients (Laver et al., 2018).

• Transcranial Magnetic Stimulation (TMS): TMS involves using magnetic fields to
stimulate specific areas of the brain. This non-invasive technique can reinforce neural
plasticity and promote recovery in stroke patients by modulating brain activity. TMS has
been found to be effective in improving motor function, language abilities, and mood in
stroke survivors (Sheng et al., 2023).

• Transcranial Direct Current Stimulation: It involves applying a low electrical current
to the scalp, which modulates neuronal activity. This technique alters the excitability of
neurons in the brain. Anodal stimulation generally increases cortical excitability, while
cathodal stimulation decreases it (Schlaug et al., 2008).

• Functional Electrical Stimulation (FES): FES uses electrical currents to stimulate mus-
cles affected by stroke, promoting muscle contraction and movement. Also as an alter-
native to TMS, electrical stimulation can also be applied to the brain, with less pinpoint
accuracy but at a much cheaper cost. This technique can be used to improve motor func-
tion, reduce spasticity, and prevent muscle atrophy. Moreover, FES can be combined with
other stroke rehabilitation therapies to improve overall outcomes (Sinha et al., 2021).

• Pharmacological and Cellular Therapies: These therapies include antidepressants, stim-
ulants, dopamine agonists, niacin, memantine, growth factors, monoclonal antibodies,
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and stem cells. Additionally, selective serotonin reuptake inhibitors are among the most
extensively studied pharmacological agents for stroke recovery due to their antidepres-
sant effects and possible increase in synaptic plasticity following ischemic brain injury.
Furthermore, stem cell therapies offer potential neuroprotection and neuroregeneration.
They aim to limit initial damage during the acute stroke phase and promote neuronal
replacement (Mahla, 2016).

• Brain-Computer Interfaces: BCIs enable direct communication between the brain and
external devices. By monitoring brain activity and providing real-time feedback, BCIs
can help retrain the brain and improve motor function, particularly for patients with severe
impairments. BCIs show great promise and their application in stroke rehabilitation is still
being researched and developed (Gunduz et al., 2023).

Through these innovative approaches, researchers have also focused on predicting individ-
ual stroke recovery outcomes more accurately. For example, a multimodal biomarker-based
algorithm has been designed to integrate clinical evaluations with neurophysiological and brain
imaging data. When patients demonstrate significant impairment in a basic bedside test of
shoulder abduction and finger extension, TMS is used to assess the functional integrity of the
corticospinal tract. If TMS produces a motor evoked potential, indicating that the tract remains
intact, these patients are expected to achieve notable recovery despite their initial severe im-
pairment. For patients who do not show motor evoked potentials, diffusion tensor imaging is
employed to further evaluate the corticospinal tract, aiding in the classification of those with
limited recovery potential (Anaya and Branscheidt, 2019).

In the context of stroke rehabilitation, BCIs can be used to monitor brain activity during
imagined movements, providing feedback to help retrain the brain and improve motor function.
Playing upon the concept of neural plasticity and while repeatedly imagining specific move-
ments, patients can strengthen neural pathways and strengthen their motor recovery (Khan et
al., 2020). This work delves into the application of BCIs as a promising tool for optimizing neu-
rorehabilitation after stroke. The following sections will introduce this technology, providing
context for the proposed study.

1.2. Brain Computer Interfaces (BCIs)

The field of BCI represents a revolutionary intersection of neuroscience, engineering, and
computer science, aiming to create a direct communication pathway between the human brain
and external devices. This technology has the potential to transform how we interact with the
digital world, offering new alternatives for communication and device control for individuals
with severe disabilities, improving cognitive and sensory experiences, and providing innovative
solutions for neurorehabilitation and mental health monitoring. The concept of BCIs has its
roots in the mid-20th century, starting with Jacques Vidal’s work on monkeys (Vidal, 1973),
but recent advances in neuroimaging, signal processing, and machine learning have acceler-
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Fig. 1.2. Simplified scheme of tpyical components of a BCI system and communication methods (Kawala-Sterniuk
et al., 2021).

ated its development and application. On Figure 1.2, we can view a simplified scheme of the
functioning of a BCI system.

1.2.1. Brain activity signal acquisition methods

Understanding and interfacing with brain activity begins with the precise acquisition of
neural signals. There is a wide variety of methods to acquire the brain activity signal, classified
between invasive and non-invasive techniques.

Invasive methods require previous surgical intervation in order to implant microelectrodes
that record brain signals directly from the cortex’s surface. The recorded signal captures high-
fidelity brain activity without damaging neurons. Since the electrodes are placed inside the
skull, it bypasses the filtering effects of the skull and several layers of tissue, leading to superior
signal quality. Additionally, invasive methods boast high signal-to-noise ratio, high spatial
and temporal resolution, larger signal amplitude, improved artifact rejection, and a broader
frequency range. However, due to the surgical nature of this technique and the risk factors
involved, it is less often applied in humans losing the edge against non-invasive methods (J.
Wolpaw and E. W. Wolpaw, 2012).

Non-invasive techniques don’t require any surgical intervention, measuring the brain activity
signal through sensors placed on the scalp. The most common non-invasing techniques are
(Shih et al., 2012):

• Near Infra-Red Spectroscopy (NIRS): Uses near-infrared light to measure changes in
blood oxygenation and blood volume in the brain. By shining light into the scalp and
detecting the reflected light, NIRS provides information about brain activity based on
the hemodynamic response. It offers good spatial resolution and is portable, making it
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suitable for real-world applications, though it has limited temporal resolution compared
to other methods.

• Functional magnetic resonance imaging (fMRI): fMRI measures brain activity by de-
tecting changes in blood flow using magnetic fields and radio waves. This technique
provides excellent spatial resolution and allows for the detailed mapping of brain func-
tion. However, fMRI is expensive, has poor temporal resolution, and requires the subject
to remain still within a large, noisy scanner, limiting its practicality for everyday BCI
applications.

• Magnetoencephalogram (MEG): Records the magnetic fields produced by neural elec-
trical activity using highly sensitive magnetometers. It offers better spatial resolution than
EEG and excellent temporal resolution. MEG is noninvasive and provides precise local-
ization of brain activity. However, it is costly and requires a magnetically shielded room,
limiting its accessibility and use in everyday settings.

• Electroencephalogram (EEG): EEG is a widely used noninvasive method that measures
electrical activity in the brain through electrodes placed on the scalp. It provides good
temporal resolution and is relatively inexpensive and easy to set up. While EEG offers
limited spatial resolution and is susceptible to noise and artifacts, its portability and ease
of use make it a popular choice for many BCI applications.

Particularly for BCI interest, we require a portable, low cost, non-invasive and simple to
operate system, hence the common and widespread use of EEG in BCI applications and its
selection for the development of our project.

1.2.2. Electroencephalography (EEG)

As previously mentioned, EEG is a non-invasive method used to record the electrical activ-
ity of the brain by placing electrodes on the scalp. This electrical activity is the result of the
combined signals generated by millions of neurons firing simultaneously, producing rhythmic
and oscillatory patterns known as brain waves or rhythms. These rhythms are classified based
on their frequency range and relative amplitude. The amplitude of EEG signals, which ranges
from a few microvolts to 200 µV, is associated with the synchronization of neuronal activity.
High amplitude signals occur when large groups of neurons fire in synchrony, creating con-
structive interference. Conversely, asynchronous firing results in lower amplitude signals due to
destructive interference (J. Wolpaw and E. W. Wolpaw, 2012). The advantages and limitations
of this signal acquistion technique can be seen on Table 1.1.

EEG rhythms are divided into several frequency bands, each associated with different brain
states and functions. They are usually divided in (Anilkumar and Nayak, 2023):

• Delta (0.5-4 Hz): Dominant during deep sleep and involved in restorative processes.
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Advantages Limitations

Non-invasiveness: EEG does not require
surgical procedures, making it safe and rel-
atively easy to use.

Spatial Resolution: EEG has relatively
low spatial resolution due to the diffusion
of electrical signals through the skull and
scalp. This blurring effect makes it diffi-
cult to pinpoint the exact source of brain
activity.

Temporal Resolution: EEG provides
excellent temporal resolution, capturing
rapid changes in brain activity with mil-
lisecond precision.

Susceptibility to Noise: EEG signals can
be contaminated by various artifacts, such
as muscle movements, eye blinks, and ex-
ternal electrical interference. This noise
can complicate the interpretation of the
data.

Portability: EEG equipment is relatively
portable, allowing for studies in various
settings outside the laboratory.

Depth Limitation: EEG primarily captures
activity from the cortical surface and is less
effective at detecting signals from deeper
brain structures.

Cost-effectiveness: Compared to other
neuroimaging techniques like fMRI or
MEG, EEG is more affordable and widely
accessible.

Table 1.1. Advantages and Limitations of EEG

• Theta (4-8 Hz): Linked to light sleep, relaxation, and meditation, as well as memory and
navigation.

• Alpha (8-13 Hz): Prominent when the eyes are closed and the mind is at rest, particularly
over the occipital lobe.

• Beta (13-30 Hz): Associated with active thinking, focus, and problem-solving, as well as
anxiety and arousal.

• Gamma (30-100 Hz): Involved in high-level cognitive processing, such as perception,
attention, and consciousness.

Additionally, for this study, we are going to make use of an additional band withing the
frequency of the SMR wave known as the mu band (12-15 Hz), in between alpha and beta, due
to its significance in EEG systems based on Motor Imagery (MI). We will further explore this
in chapter 2.

Ultimately, EEG electrodes can be classified into two main categories (Nunez and Srini-
vasan, 2006):
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• Active Electrodes: These electrodes have a preamplifier located near the scalp, which
amplifies weak signals before transmitting them to a distant amplifier. Active electrodes
reduce noise and improve signal quality but require careful placement to avoid electro-
magnetic interference.

• Passive Electrodes: Simpler and easier to place, these electrodes connect directly to a
distant amplifier without a preamplifier. However, they are more susceptible to noise due
to the longer distance the signal must travel.

1.2.3. Types of control signals in BCIs

The efficiency and functionality of BCIs rely heavily on the nature and quality of control
signals extracted from the brain. Control signals are crucial because BCIs cannot detect any
arbitrary brain activity; they can only recognize specific patterns of neural activity. Therefore,
engineering tools are necessary to identify these patterns and use them for practical applications.
As stated on subsection 1.2.1, EEG is the method of choice to obtain said signals. Depending
on the control signal of interest, the location and number of electrodes necessary for acquisition
may vary. These control signals are classified into two main categories (Ramadan and Vasilakos,
2017):

1. Exogenous Signals: These signals are generated in response to external stimulation. It’s
an unconscious response to an exterior stimuli that could in occasions be of discomfort
for the subject.

• Steady State Evoked Potentials (SSEP): SSEPs are brain responses that occur at a
fixed frequency in response to a continuous or repetitive stimulus, such as visual,
auditory, or tactile stimuli. When a user focuses on a stimulus that repeats at a con-
stant rate, the brain’s electrical activity synchronizes with this frequency, producing
detectable SSEPs withing the visual cortex in the occipital region.

• Code-modulated Visually Evoked Potential (c-VEP): In this situation, various visual
stimuli are modulated using a pseudorandom code. When a person focuses on a
specific stimulus, a c-VEP response is elicited, which can then be utilized to operate
the BCI.

• P300 Evoked Potentials: The P300 signal is an event-related potential (ERP) that
occurs approximately 300 milliseconds after the presentation of a rare or significant
stimulus, known as the "oddball" paradigm. The P300 is characterized by a positive
deflection in the EEG signal, and it is commonly used in BCIs due to its reliability
and ease of detection. The structure of a P300 BCI system can be observed in
Figure 1.3.

2. Endogenous signals: Spontaneous signals refer to brain activity that occurs naturally
and continuously without the need for external stimuli. Unlike evoked signals, which
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Fig. 1.3. P300 based BCI system structure. The subject is performing a mental task for the BCI
system to predict a letter (Onishi and Natsume, 2014)

are triggered by specific events or stimuli, spontaneous signals are intrinsic to the brain’s
ongoing neural processes.

• Sensorymotor Rhytms (SMRs): SMRs are oscillatory brain activities that are pri-
marily observed in the alpha (8-13 Hz) and beta (13-30 Hz) frequency bands over
the sensorimotor cortex. These rhythms are modulated by motor imagery (the men-
tal simulation of movement) or actual motor activity.

• Slow Cortical Potentials (SCP): SCPs are low-frequency EEG signals that fall below
1 Hz. These potentials are detected primarily in the frontal and central regions of
the cortex and result from shifts in the depolarization levels of upper cortical den-
drites. SCPs are characterized by very slow variations, either positive or negative,
in cortical activity, lasting from milliseconds (500ms) to several seconds (10s).

• Non-motor cognitive tasks: Non-motor cognitive tasks refer to the use of cognitive
processes, rather than physical or motor activities, to drive the BCI. Various cogni-
tive tasks can be employed, including music imagination, visual counting, mental
rotation, and mathematical computation. Back in 1990, Keirn and Aunon (1990)
evaluated on 7 subjects a mental arithmetic, mental letter composing, geometric
figure rotation and visual counting task in order to prove that they could be distin-
guishable through the analysis of the subjects brain waves.

1.2.4. Stages of BCI systems

The end goal of a BCI system, to interpret and convert EEG brain signals into commands that
fulfill the user’s intentions in real-time, is accomplished through a series of through a series of
stages: (1) signal acquisition; (2) signal processing, which includes feature extraction, selection
and classifying (Shih et al., 2012).
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1.2.4.1 Signal Acquisition

Signal acquisition involves capturing brain signals using EEG sensors placed on the scalp.
As previously stated, EEG measures the electrical activity of the brain, providing valuable data
on brain function. These signals are amplified to levels suitable for electronic processing and
may undergo filtering to remove electrical noise or other unwanted signal characteristics, such
as 60-Hz or 50-Hz power line interference. After amplification and cleaning, the signals are
digitized and transmitted to a computer for further processing.

Regarding the placement of electrodes for EEG recordings, several standardized systems are
used to ensure consistent electrode positioning. The 10-20 System is the international standard
for EEG electrode placement, where electrodes are spaced 10% or 20% apart relative to the
distance between anatomical landmarks (the nasion and the inion). Electrodes are labeled with
letters and numbers indicating their location (Fp for frontopolar, F for frontal, C for central, P for
parietal, T for temporal, O for occipital). Even numbers belong to the right hemishphere, while
odd numbers belong to the left counterpart, while electrodes in the mid-line receive the label
’z’. Additionally, the 10-10 and 10-5 Systems offer higher electrode density, with placements
at 10% and 10%, or 10% and 5% intervals, respectively, providing greater spatial resolution
(Nunez and Srinivasan, 2006).

1.2.4.2 Signal processing

Signal processing involves two main steps: feature extraction and classification (J. Wolpaw
and E. W. Wolpaw, 2012):

• Feature extraction is the process of analyzing digitized EEG signals to identify relevant
characteristics that correlate with the user’s intentions. These features must be compact
and suitable for translation into output commands. Since relevant brain activity is of-
ten transient or oscillatory, commonly extracted features in current BCI systems include
power within specific EEG frequency bands or EEG response amplitudes and latencies.

• Classification algorithms translate the extracted features into application commands. To
do so, you can use direct translations (i.e. a decrease in power within a specific frequency
band might be translated into an upward movement of a computer cursor), thresholds,
or classification algorithms. The translation algorithm must be dynamic, meaning it can
adapt to spontaneous or learned changes in the signal features. This ensures that the full
range of the user’s potential feature values is adequately covered for device control.

Machine Learning (ML) is a branch of Artificial Intelligence (AI) focused on developing
algorithms that can learn from and make decisions based on data. The most common ML
methods used in BCIs will be further explained in chapter 2. However, classical ML techniques,
present several limitations such as the extensive and labor-intensive manual feature engineering,
or the high computational complexity not powerful enough to discover complex patterns in data
(Kamath et al., 2018).
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Deep learning (DL) is an advanced subset of ML that utilizes neural networks with mul-
tiple layers (deep neural networks) to analyze complex data patterns. In the context of signal
processing for BCIs, deep learning techniques are increasingly being used to improve feature
extraction and processes (Iftikhar et al., 2018). DL models in BCIs, such as convolutional neu-
ral networks (CNNs) and recurrent neural networks (RNNs), are distinguished by their ability
to autonomously learn and extract intricate features directly from raw EEG data. Unlike tradi-
tional ML approaches that rely on manual feature engineering, DL optimizes the extraction and
classification of features in an end-to-end manner. This capability is particularly advantageous
for interpreting complex patterns within EEG signals, such as temporal dynamics and spatial
dependencies associated with user intentions (Miao et al., 2019).

By using DL, BCI systems can achieve better accuracy and robustness in translating brain
signals into meaningful commands. This technology also allows the BCI system to adapt more
effectively to individual users, as deep learning models can be trained on personalized datasets,
ensuring that the system’s responses are finely tuned to each user’s unique brain signal patterns.

In summary, DL represents a significant advancement in the development of more sophisti-
cated and efficient BCI systems, offering the potential for more intuitive and responsive inter-
faces.

1.2.5. Applications of BCI

BCI systems have a wide range of applications across various fields, translating brain ac-
tivity into actionable commands. These applications span from medical and therapeutic uses
to non-medical implementations, improving the quality of life and providing new interaction
paradigms. BCI systems can be based on how they utilize brain activity, categorized as active
or passive. An active BCI involves direct user engagement through intentional modifications
in brain activity to control the system. In contrast, a passive BCI decodes brain states by ana-
lyzing ongoing brain activity without requiring active user involvement in controlling the BCI
system. Additionally, active BCIs, rely on brain waves produced in response to external stimuli
(Sibilano et al., 2024). We will briefly discuss some of the most relevant uses of this technology
(Padfield et al., 2019; J. Wolpaw and E. W. Wolpaw, 2012):

• Assistive technologies for disabled individuals: It is the most common and intuitive
perception of application of BCIs in the medical field. BCIs can increase the indepen-
dence of individuals with severe physical disabilities by providing alternative means to in-
teract with their environment. For example, BCIs can enable users to control wheelchairs,
prosthetic limbs, or home automation systems using their brain signals. This empower-
ment leads to greater autonomy and integration into society, improving both physical and
mental well-being. Of particular interest is the application of BCI for individuals within
the locked-in syndrome, where voluntary muscle control is severely limited or absent,
BCIs offer a vital communication channel (Branco et al., 2021). By detecting brain sig-
nals associated with specific thoughts or intentions, BCIs can enable users to select letters,
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words, or phrases on a computer screen, allowing them to communicate with others. This
application significantly improves the quality of life for patients who otherwise have no
means of interaction (Hamzelou, 2022).

• Endogenous cerebral stimulation or Neurofeedback: Passive BCIs can be used for
managing mental workload. By monitoring brain activity, BCIs can provide insights into
a user’s cognitive state, such as attention levels or fatigue. This information can be used
to optimize work environments, improve learning outcomes, or increase performance in
various tasks. For instance, adaptive learning systems can adjust the difficulty of educa-
tional content based on the learner’s cognitive state, providing personalized and effective
learning experiences (Baldwin and Penaranda, 2012). In educational settings, BCIs can
be used to monitor students’ engagement and comprehension levels. Educators can ad-
just teaching methods in real-time to better suit the needs of the class, fostering a more
effective learning environment. Similarly, when consistently combined with various ped-
agogical teaching, BCIs can be applied in training programs to improve skill acquisition
and performance resulting in better academic results (Jamil et al., 2021). Furthermore,
several studies have explored the use of active BCIs for memory training. T. S. Lee et al.
(2013) developed a BCI training method that utilized EEG patterns to enhance cognitive
skills such as immediate and delayed memory, as well as visuospatial and constructional
attention. Other studies have also targeted cognitive improvements in older adults. For
instance, Gomez-Pilar et al. (2014) investigated tasks involving MI, which resulted in
improvements in visual perception, expressive speech, and immediate memory.

More particularly for stroke, Neurofeedback (NFB) techniques aimed at increasing neu-
ral plasticity within motor regions of the brain to foster functional improvement are be-
ing studied as a promising technique due to its potential as a non-pharmacological and
non-invasive alternative for treating non-degenerative brain disorders (Franc et al., 2022).
Furthermore, NFB modalities include visual, VR-based, haptic, FES, robotic and multi-
modal strategies. This innovative technique constitutes the basis of our hyptohesis that
will be further developed in section 1.3.

• Entertainment, gaming and VR: The integration of BCIs into gaming and VR offers
immersive and interactive experiences. By using brain signals to control game characters
or interact with virtual environments, users can experience a new level of engagement.
The integration of BCIs into entertainment opens up possibilities for innovative gaming
experiences and interactive virtual environments that respond directly to users’ cogni-
tive states and intentions. This application not only improves entertainment but also has
potential therapeutic benefits (Yadav et al., 2020).

1.2.5.1 BCI for Neurorehabilitation in Stroke

BCI systems for neurorehabilitation were initially evaluated using brain signals in stroke
patients, where cortical reorganization was observed following BCI-based training (Buch et
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al., 2008). Since then, Janis J. Daly and J. R. Wolpaw (2008) have categorized these systems
according to the learning strategy (see Figure 1.4):

1. Training for normal brain activity: This strategy involves training patients to generate
more typical brain activity patterns to control motor functions. The premise is that nor-
malizing brain activity will lead to improved central nervous system (CNS) function and
thereby improve motor control. Studies with stroke patients have shown that they can
learn to control specific brain activity patterns. BCIs can measure and extract EEG fea-
tures, translating them into feedback to help patients gain control. Bai et al. (2020) sys-
tematic review corroborated how numerous clinical studies have shown that BCI tech-
nology can induce functional recovery in stroke patients. Additionally, Enzinger et al.
(2008) reported significant motor function improvements through sensorimotor rehabili-
tation using BCI training combined with motor imagery.

2. Device-assisted movement: This approach uses BCI output to activate devices that assist
movement, such as FES or robotic aids. The hypothesis is that the sensory input gen-
erated by the strengthened motor function facilitated by these devices will induce CNS
plasticity, leading to improved motor control. Studies have demonstrated the effective-
ness of neurorehabilitation training with robotic devices in stroke patients. For example,
Janis J Daly et al. (2008) conducted promising preliminary work combining BCIs with
FES or assistive robotics to aid motor relearning in stroke patients. BCI-based therapy
could complement traditional neurorehabilitation methods and potentially reduce costs
by minimizing the need for constant supervision by a rehabilitation therapist.

Despite the promising potential of BCIs for neurorehabilitation, several challenges must be
addressed (Simon et al., 2021):

• User control and learning: Achieving effective control over the BCI requires significant
practice, with individual differences in motor imagery and learning strategies affecting
success rates. Multiple practice sessions are often needed for users to gain effective con-
trol, affecting to the motivation of the patient and reducing the effectivness of the therapy
and some even may never achieve it.

• Technological and practical barriers: Current BCI setups, which often involve cumber-
some EEG systems, require skilled operators and are not user-friendly. Advances in
wireless, high-impedance dry electrode systems show promise but are still in develop-
ment. The heterogeneity of brain lesions among patients complicates the development of
universally applicable BCI solutions. Adaptive algorithms are needed to tailor BCIs to
individual neural activity patterns.

• Mechanistic understanding: There is a lack of understanding of the specific neural mecha-
nisms through which BCIs facilitate functional improvement, complicating the prediction
of patient outcomes.
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Fig. 1.4. Two BCI-based training strategies aim to promote and guide CNS plasticity to increase motor function:
(A) Converts specific brain activity features into actions (e.g., cursor movement) and uses these actions
as feedback to train patients to produce more normalized brain activity. The plasticity resulting in this
more normal activity will also restore CNS function, thereby improving motor control. (B) Uses specific
brain activity features to activate a device that assists movement, compensating for the patient’s impaired
neuromuscular control during motor tasks. By increasing motor function, the assistance will generate
sensory input that induces CNS plasticity, leading to the restoration of more normal motor control. (C)
The first strategy focuses on normalizing brain activity with the expectation that this will lead to improved
motor function. In contrast, the second strategy uses brain activity to assist in practicing more normal
neuromuscular control, with the expectation that the sensory input generated by improved motor function
will induce plasticity, thereby improving neuromuscular control (Janis J. Daly and J. R. Wolpaw, 2008).

1.3. Hypothesis of the study

The motivation behind this study stems from the urgent need to improve rehabilitation
outcomes for stroke survivors, who often face significant challenges in regaining lost motor
functions and achieving optimal recovery. Additionally, this same scenario is applied to other
pathologies like progressive diseases, including amyotrophic lateral sclerosis, multiple sclero-
sis, or Parkinson’s Disease. In these others scenarios, motor recovery presents an incredible
challenge at present. Despite promising results from novel rehabilitation methods in clinical
trials, existing techniques often fall short of restoring normal or near-normal motor function
and quality of life for many patients (Janis J. Daly and J. R. Wolpaw, 2008). While traditional
rehabilitation approaches are effective to a degree, they may not consistently achieve optimal
recovery. Therefore, there is a critical demand for innovative and personalized therapeutic
strategies capable of accelerating and improving the rehabilitation process.

Through NFB training, users can learn to control the neural substrates related to specific
behavior patterns. Given that strokes frequently trigger upper limb hemiparesis, studying the
differences in brain activity patterns generated by executed and imagined movements represents
an interesting research area to drive significant advances in NFB-based neurorehabilitation ther-
apy. Currently, these therapies generate brain plasticity in the affected area through Motor Im-
agery. The main problem with these therapies, especially for stroke patients, is that the patient
imagines the movement due to the inability to control the hand or limb. Although there are
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certain similarities, the areas and the activity genereted in those areas during the imagination
and execution of the movement are not exactly the same.

An accurate characterization of the differences between the execution and imagination of
movements would allow for the optimization of these therapies and reduce the training time of
classification models through the use of transfer learning. Additionally, by identifying the sim-
ilarities between both tasks, the system aims to guide the user with feedback to better emulate
the patterns of the executed movement, endogenously stimulating more relevant areas.

The project would contribute to continuing the active national project "Platform for neuro-
motor and cognitive rehabilitation through active therapies in individuals who have suffered a
stroke -M3Rob" (Cisnal et al., 2022), which is already being carried out in the Brain Computer
Interface research line at the Biomedical Engineering Group at the University of Valladolid
(Spain). This project aims to design, develop, and validate a platform for neuromotor and cog-
nitive rehabilitation for stroke survivors, incorporating neurofeedback techniques for cognitive
function rehabilitation.

Regarding its application beyond the department, the project’s outcomes could be directly
applied in hospitals or rehabilitation centers with faster and less costly methods. Furthermore,
they could stimulate future research in the field of NFB therapies.

1.4. Aim of the study

The general objective of this project is to better understand the differences and similarities
of EEG features for executed and imagined movements and evaluate a transfer learning strategy
that allows the application of a ME trained model to a MI database. To achieve this, we have
the following specific objectives:

1. To conduct a state-of-the-art review on BCI rehabilitation in stroke and to search public
databases containing records of both execution and imagination of movements for the
proposed analyses.

2. To characterize of EEG during the execution and imagination of movements. Time-
frequency analysis techniques and power topography generation will be used to identify
specific patterns associated with each type of task This characterization will allow for a
detailed understanding of differences in brain activity between both types of movement.

3. To train of a DL model using records of executed movements. Subsequently, the pos-
sibility of applying various transfer learning techniques to adapt the model to recognize
imagined movements will be explored.

4. To discuss, draw conclusions from the obtained results, and suggest possible lines of
future research.
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1.5. Structure of the study

This Final Degree Project is organized into seven chapters.

The first chapter, Introduction, provides a comprehensive overview of stroke and its signifi-
cant impact on motor functions, which necessitates effective neurorehabilitation strategies. This
chapter introduces the concept of BCIs and their potential role in enhancing neurorehabilitation
outcomes. The methods for brain activity signal acquisition, particularly EEG, are discussed
in detail. Additionally, the chapter presents the different types of control signals used in BCI
systems and outlines the various stages involved in the operation of BCI systems. The introduc-
tion concludes with a discussion on the application of BCIs in the field of neurorehabilitation,
followed by the hypothesis and aim of the study. This section frames the key research questions
that guide the investigation, effectively setting the stage for the chapters that follow.

The second chapter, Motor Imagery Based BCIs, delves into the specifics of sensorimotor
rhythms and their significance during motor behaviors. It explores the methodologies for detect-
ing MI through EEG signals and discusses the preprocessing, feature extraction, and classifica-
tion techniques essential for MI-based BCIs. A comparative ME vs. MI analysis is provided,
highlighting the use of deep learning techniques for the effective decoding of EEG signals.

In the third chapter, Dataset & Signals, the EEG Motor Movement/Imagery Dataset (Phys-
ionet BCI2000) is described in detail. This chapter covers the protocols for signal acquisition
and the experimental setup used in the study. It also explains the EEG montage utilized, ensur-
ing a clear understanding of the dataset’s structure and the signals analyzed.

The fourth chapter, Methods, outlines the procedures for characterizing and preprocessing
the dataset. This chapter presents the MEDUSA framework and the various neural network
models employed in the study. Detailed descriptions of the preprocessing steps, the structure
of the neural networks, and the process of fine-tuning pre-trained models are provided, offering
insights into the methodological approach adopted in the research.

The fifth chapter, Results, presents the findings from the study. It includes an analysis of
the characterization of ME and MI, focusing on relative bandpower and event-related desyn-
chronization/synchronization. The classification performance of the neural network models is
evaluated, and the impact of transfer learning and fine-tuning on the results is discussed.

In the sixth chapter, Discussion, the results of the study are interpreted, and their implica-
tions for stroke rehabilitation are considered. This chapter also addresses the limitations of the
research.

The final chapter, Conclusion, summarizes the key findings of the study and presents the
overall conclusions drawn from the research. It encapsulates the contributions of the Final
Degree Project to the field of BCI-based neurorehabilitation and outlines potential avenues for
future research.

16



2. MOTOR IMAGERY BASED BCIs

2.1. Paradigm

The MI-based BCIs use imagined movements that trigger specific patterns of brain activity
that can be detected. By interpreting the brain’s electrical activity during imagined motor tasks,
these BCIs enable users to interact with technology in innovative ways, bypassing traditional
neuromuscular pathways. This section explores the principles, applications, and advancements
in MI-based BCIs, highlighting their potential to transform lives through neurorehabilitation
and assistive technology.

2.1.1. Brain dynamics during motor execution

ME involves a complex interplay of neural processes that initiate, coordinate, and regulate
movement. Particularly, neuronal activation is the cornerstone of ME, involving complex inter-
actions among various brain regions seen on Figure 2.1, to produce and regulate movement.

The main regions which which play integral roles in these neural processed are (Purves et
al., 2001; J. Wolpaw and E. W. Wolpaw, 2012):

• Primary Motor Cortex (M1): located in the precentral gyrus of the frontal lobe, is the prin-
cipal brain region responsible for generating neural impulses that control the execution
of voluntary movements. When an individual plans and executes a movement, pyramidal
neurons in M1 exhibit a burst of rapid firing. These neurons are characterized by their
ability to send long axons down the corticospinal tract to synapse onto motor neurons in
the spinal cord. Moreover, M1 is somatotopically organized, meaning different regions
of M1 correspond to different parts of the body. For instance, the lateral part of M1 con-
trols movements of the face and hands, while the medial part controls the legs. Moreover,
the hands are located in the upper part of the lateral region. During ME, neurons in the
relevant area of M1 increase their firing rates to initiate and control the movement of
the corresponding body part. This event causes a desynchronization, apparent through a
power decrease when activity is increased. Ultimately, neurons in M1 integrate a multi-
tude of excitatory and inhibitory synaptic inputs to produce a coherent motor output. The
precise timing and balance of these inputs are crucial for the smooth execution of move-
ments. Excitatory postsynaptic potentials and inhibitory postsynaptic potentials summate
to modulate the firing rate of motor neurons, translating into the precise control of muscle
contractions.

• Premotor Cortex and Supplementary Motor Area (SMA): The Premotor Cortex, located
anterior to the primary motor cortex, is involved in the planning and coordination of
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Fig. 2.1. Cortical Areas of Human Brain (Zippo, 2011)

movements. It helps in the preparation of movements by integrating sensory information
with motor commands. Meanwhile the SMA, located on the medial aspect of the frontal
lobe, is crucial for the initiation and coordination of complex movements, especially those
involving sequences or bilateral coordination. This region is essential for tasks that re-
quire the simultaneous use of both sides of the body, with neurons that exhibit preparatory
activity even before the movement begins, indicating their role in movement planning.

• Basal Ganglia and Cerebellum: The Basal Ganglia is a group of subcortical nuclei, es-
sential for movement initiation, modulation, and the inhibition of unwanted movements.
It plays a critical role in motor learning and executing smooth, purposeful movements.
Neuronal activity in the basal ganglia reflects the complex decision-making processes
involved in initiating movements. Alternatively, the cerebellum is involved in the fine-
tuning of movements, coordination, and balance. It receives input from sensory systems
and other brain regions to adjust motor output in real-time.

• Motor Pathways: The corticospinal tract is the primary pathway for motor signals from
the brain to the spinal cord. It tract transmits impulses from the motor cortex to the
motor neurons in the spinal cord, which then innervate the muscles. Additionally, the
corticobulbar tract transmits motor signals from the cortex to the brainstem, controlling
movements of the face, head, and neck (Biga et al., 2019).

The coordinated firing of neurons in motor-related areas and the modulation of cortical
rhythms are captured by EEG, offering a window into the brain’s motor control mechanisms.
Of particular interest during the execution of movement, and prominent above the sensorimotor
cortex, are the mu and beta rhythms previosuly mentioned due to their involvement with the
current motor state and the inhibition of new movements.
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2.1.2. Sensorimotor Rhytms

Sensorimotor rhythms (SMRs) are oscillations recorded over sensorimotor cortices, includ-
ing the posterior frontal and anterior parietal areas (J. Wolpaw and E. W. Wolpaw, 2012). EEG
commonly captures mu and beta activities, while ECoG and MEG can detect higher-frequency
activities. Within these frequency bands, the amplitudes of local rhythms in the pericentral re-
gions decrease significantly or are almost entirely inhibited by movements of the corresponding
body part. This phenomenon occurs regardless of whether the movements are active, passive,
or reflexive. These blocking effects are observable on both sides of the brain, although they are
more pronounced contralateral to the moving limb. This concept regarding the desynchroniza-
tion during movement through attenuation of brain rhythms is coined Event-Related Desyn-
cronization (ERD). This event is accompanied by a corresponding increase of brain rhythms
after the movement, the Event-Related Syncronization (ERS) (Pfurtscheller et al., 2006).

2.1.3. SMR During Motor Behaviors

Studies have shown that voluntary movements are associated with mu and beta ERD local-
ized over sensorimotor cortical areas. Mu rhythms exhibit two ERD patterns: lower frequency
mu ERD, which is widespread and reflects general motor preparation and attention, and higher
frequency mu ERD, which is topographically and functionally task-specific. Beta rhythms show
desynchronization during movement and a brief synchronization (beta rebound) post-movement
(J. Wolpaw and E. W. Wolpaw, 2012).

For instance, prior to finger flexion, mu ERD appears over the contralateral Rolandic region
and becomes bilaterally symmetrical during the execution of the movement. This phenomenon
is illustrated by a clear desynchronization pattern several seconds before movement onset, indi-
cating motor preparation and attentional processes (Pfurtscheller et al., 1996).

This localized mu ERD does not usually occur alone while related to a specific sensorimotor
event, meaning it will usually be accompanied by additional ERS in the surrounding cortical
areas. This concept is known as the focal ERD/surround ERS, as it can be seen in studies such
as Gerloff et al. (1998), where it was reported that the mu ERD observed during repetitive finger
movements was accompanied by a synchronization of the visual alpha rhythm in the parieto-
occipital (visual) cortex.

MI, the mental simulation of movement without actual execution, also induces changes in
SMRs similar to those observed during actual movements. Imagined movements of the limbs
produce ERD patterns in the mu and beta frequency bands in the contralateral sensorimotor
cortex, closely mirroring those seen during physical movement. These similarities have been
corroborated through studies involving both healthy individuals and patients with impaired mo-
tor function (Neuper et al., 2009; Pfurtscheller et al., 2006).
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2.1.4. EEG-Based strategies to detect MI

Over the years, diverse EEG-based strategies have been developed to reliably detect these
SMR signals. These strategies primarily encompass Operant Conditioning, Machine Learning,
and Adaptive Strategies, each with distinct approaches and applications (Ang and Guan, 2017).

Operant conditioning, as seen on Figure 2.2, involves training users to modulate specific
EEG features through repeated practice. Users learn to control their SMR by receiving feed-
back from the BCI system, which helps them understand how their mental imagery affects EEG
signals. This strategy utilizes a fixed model comprising parameters for EEG feature extraction,
feature selection, and translation into control commands. The operant conditioning approach
has been effectively applied in various scenarios, such as two-dimensional cursor control and
robotic limb movement. For example, controlling horizontal and vertical cursor movement us-
ing mu and beta rhythms, respectively, has been demonstrated in research studies (J. R. Wolpaw
and McFarland, 2004).

Alternatevely, the machine learning strategy visible on Figure 2.3 addresses the variability in
EEG signals and reduces the extensive training required for operant conditioning. This approach
involves creating a subject-specific model during a calibration phase, which is then used for
MI detection. Machine learning strategies tailor the BCI model to individual users based on
their calibration data. Algorithms such as CSP are used to improve the signal-to-noise ratio
(Blankertz et al., 2008), improving the detection of MI.

Ultimately, adaptive strategies continuously update the subject-specific model during use,
addressing non-stationarity properties of EEG signals. This approach, provided by Figure 2.4
ensures that the BCI system remains effective even as the user’s EEG patterns change over time.
Adaptation can be achieved through supervised or unsupervised learning, targeting aspects like
spatial filters, feature selection, or classifier parameters. A co-adaptive approach allows both the
user and the model to adjust together, improving the discrimination of brain activity over time
(Faller et al., 2014). Although adaptive strategies have shown potential in improving accuracy,
particularly in real-time applications (Nicolas-Alonso et al., 2015), their effectiveness in BCI
rehabilitation remains limited.

Fig. 2.2. Operant Conditioning strategy scheme (Ang and Guan, 2017).
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Fig. 2.3. Machine Learning strategy scheme (Ang and Guan, 2017).

Fig. 2.4. Adaptative strategy scheme (Ang and Guan, 2017).

2.1.5. Signal processing pipeline for MI-Based BCIs

SMR EEG signals are popular in BCI systems due to their naturally occurring discriminative
properties and the relatively low cost of signal acquisition. These signals provide valuable infor-
mation about the user’s intended movements without the need for actual physical activity, mak-
ing them ideal for various applications, including the rehabilitation of stroke patients. However,
processing SMR EEG data presents several challenges. The signals, typically obtained from a
small training since the training process is time consuming and demanding for the subjects, are
inherently unstable and susceptible to noise and artifacts, making accurate classification diffi-
cult. Furthermore, the high dimensionality of multichannel EEG data requires effective feature
extraction and selection techniques to ensure reliable system performance. Aditionally, many
classifiers do not adequately consider time-series information, which is crucial for improving
classification accuracy, and the neurophysiological and psychological state of the user signifi-
cantly affects BCI performance. Factors such as attention, fatigue, and individual differences in
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brain activity patterns can impact the detection of SMRs (Lotte et al., 2007).

Regarding the handling of raw EEG data, EEG signal events are frequently identified in
grouped data that has been averaged across subjects or trials. However, it can obscure poor
performance by presenting averaged results. Other studies focus on single-trial data, avoiding
the averaging across trials. This approach is valuable, as it allows for the analysis of variability
in performance across trials and offers unique insights into brain activity (Padfield et al., 2019).

2.1.5.1 Pre-processing

Pre-processing of EEG signals usually requires several steps:

• Artifact Removal: targeting the elimination of non-neural signals such as eye blinks,
muscle movements, and other artifacts. Common techniques include (Jiang et al., 2019):

– Independent Component Analysis (ICA): ICA is widely used to separate the mixed
signals into independent components, allowing the identification and removal of
artifacts. This method leverages the statistical independence of the source signals to
decompose the EEG into components that can be individually inspected and filtered
out if identified as artifacts. However, ICA is suitable for offline analysis as it cannot
be applied in real time.

– Regression-based methods: These methods use reference signals from known arti-
facts, such as EOG (electrooculography) for eye movements, to subtract the artifact
contribution from the EEG signals.

• Filtering: Artifact removal is accompanied by filtering in order to remove frequency com-
ponents that are not of interest. This includes bandpass filtering to focus on selected
frequency bands of interest depending on the objective of the study. Typically for SMR
detection, these frequency filters encompass the mu and beta bands. More importantly a
notch filter at 50Hz or 60Hz to remove line noise from electrical sources. Furthermore,
in EEG data spatial filters are commonly applied, for processing signals recorded from
multiple electrodes placed on the scalp, improving the signal-to-noise ratio and isoleting
signals originating from specific brain regions. Particularly, one of the most common
spatial filters used in EEG signal processing is the Common Average Reference (CAR).
It involves subtracting the average of all electrodes’ signals from each electrode’s signal,
reducing common noise (J. Wolpaw and E. W. Wolpaw, 2012).

• Segmentation: This stage involves dividing the continuous EEG signal into epochs or
time windows corresponding to specific events or tasks. This step is essential for ana-
lyzing the EEG data in a context-dependent manner. For MI-based BCIs, segmentation
typically aligns with the onsets and end periods when the user is instructed to perform
motor imagery tasks. These tasks may be executed during different time intervals to ex-
tract different segments, as seen in Zich et al. (2015), lasting between 2 and 4 seconds
so segmentation of the signal is performed in intervals of 2.5-4.5 seconds after the onset.

22



Additionally, it could include segmentation of the recording 3.5 to 0.5 s before fixation of
the onset (Zich et al., 2015).

• Normalization: Not always performed, as it depends on the particularity of the study.
It standardizes the EEG data, often by z-score normalization, to ensure that the data
from different channels and trials are on a comparable scale. Since EEG signals are
non-stationary and can vary with each recording session, direct data comparison is hard.
Normalization enables the comparison of EEG data across different recording sessions
and subject by transforming the EEG data into a standardized distribution with a standard
deviation of 1 and a mean of 0. This step is particularly important in multichannel EEG
setups to mitigate the effects of varying signal amplitudes across channels (J. Wolpaw and
E. W. Wolpaw, 2012).

Aditionally to the standard EEG pre-processing techniques, different studies have suggested
other advanced methods in order to improve the accuracy and strength of BCI systems. For
example, Multiscale Principal Component Analysis (MSPCA) is a technique which combines
the strengths of PCA and wavelet transform to decompose the EEG signals at multiple scales,
improving artifact removal while preserving the sharp transitions characteristic of neural activity
(Kevric and Subasi, 2017; Padfield et al., 2019).

2.1.5.2 Feature Extraction

After pre-processing the signal, our extracted features must capture prominent signal char-
acteristics that can serve as a basis for distinguishing between task-specific brain states. Some
of the most used techniques in MI-based BCIs are (Padfield et al., 2019):

• Fime-Domain Features: Autoregressive (AR) modeling is frequently used for feature ex-
traction in EEG analysis. This technique involves fitting an AR model to EEG data seg-
ments, using the resulting AR coefficients or spectrum as features. Additional methods
include root-mean-square and integrated EEG analysis.

• Frequency-Domain Features: They involve transforming the EEG signal into the fre-
quency domain to analyze its spectral properties. Common methods include:

– Power Spectral Density (PSD): This measures the power distribution of the EEG
signal across different frequency bands. It helps in identifying the dominant fre-
quencies associated with specific brain activities.

– Band Power: The power within specific frequency bands (e.g., delta, theta, alpha,
beta, gamma) is computed. For MI tasks, the alpha, mu, and beta bands are particu-
larly informative.

– Fourier Transform: This is used to convert the time-domain signal into its frequency
components, providing insights into the signal’s spectral content.
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• Time-Frequency Domain Features: These features provide a combined view of time and
frequency information, which is particularly useful for non-stationary EEG signals.

– Short-Time Fourier Transform (STFT): This method divides the signal into short
segments and applies the Fourier transform to each, offering a time-resolved fre-
quency analysis.

– Wavelet Transform: Wavelet transform decomposes the EEG signal into time-frequency
representations, enabling the detection of transient features and changes at different
scales.

– Empirical Mode Decomposition (EMD) is a powerful data-driven method used to
decompose EEG signals into intrinsic mode functions (IMFs). Each IMF represents
a simple oscillatory mode embedded within the signal. The EMD process is partic-
ularly suited for non-linear and non-stationary signals like EEG.

• Spatial Features: Spatial features take advantage of the multi-channel nature of EEG
recordings to extract information about the spatial distribution of brain activity.

– Common Spatial Patterns (CSP): CSP is a popular method for spatial filtering that
maximizes the variance difference between two classes of EEG data. It is widely
used in MI-based BCIs.

– Filter Bank Common Spatial Patterns (FBCSP): FBCSP improves the traditional
CSP method by applying it to multiple frequency bands. This approach captures
more detailed information by filtering the EEG signal into several sub-bands before
applying CSP to each one. The features from all sub-bands are then concatenated,
improving classification accuracy.

– Riemannian Geometry: This method involves representing the covariance matrices
of EEG signals on a Riemannian manifold. By treating these matrices as points on
the manifold, advanced mathematical tools can be used to compute distances and
extract features.

• Event-Related Features: ERD and ERS provide valuable insights into the temporal and
spectral characteristics of brain activity during motor tasks. Temporal analysis of ERD
and ERS examines the time course of EEG power changes, offering insights into the
timing of neural processes associated with motor preparation, execution, and termination.
Spectral power analysis identifies reductions in mu and beta bands during motor imagery
(ERD) and increases in power following the task (ERS). Time-frequency representations,
such as spectrograms, visualize how the power in different frequency bands evolves over
time, aiding in identifying periods of ERD and ERS and understanding their temporal
dynamics.
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2.1.5.3 Feature selection and classification

Feature selection involves choosing the most relevant features from the extracted data to
improve the classifier’s performance. This step reduces computational complexity and increases
classification accuracy. Techniques like Principal Component Analysis, filter bank selection,
and evolutionary algorithms are commonly employed (Padfield et al., 2019). These methods
help in identifying and retaining the most informative features while discarding redundant or
non-informative data.

The classification process in MI EEG-based BCIs involves using machine learning algo-
rithms to categorize the selected features into specific motor imagery tasks. Various classifiers
are used, including (Padfield et al., 2019):

• Linear Discriminant Analysis: Known for its simplicity and effectiveness in low-dimensional
feature spaces.

• Support Vector Machines: Effective in high-dimensional spaces and robust against over-
fitting.

• k-Nearest Neighbors: Simple but computationally intensive, often used when the number
of features is small.

• Recurrent Neural Networks: Suitable for time-series data, capturing temporal dependen-
cies in EEG signals.

• Deep Learning Approaches: CNNs integrate feature extraction, selection, and classifi-
cation into a single processing block, providing a comprehensive solution for handling
complex EEG data. We will further explore this approach in the next section.

2.1.6. BCI uses of SMRs

The usage of SMRs for BCI purposes have been developed in various ways, primarily ex-
ploiting the observation that SMRs change with motor imagery as well as with actual move-
ments. Users typically imagine specific actions, and the resultant changes in SMR amplitudes
are translated into outputs such as cursor movement or control commands.

SMR-based BCIs generally use motor imagery, but they vary significantly in how they in-
corporate this imagery. Some BCIs use imagery primarily as a starting point, allowing the user
to gain initial control. Over time, these BCIs rely on the mutual adaptation of the user and
the system, with the user’s control becoming more automatic and less dependent on explicit
imagery. Other BCIs maintain reliance on specific imagery or mental tasks throughout their
operation, requiring continuous recalibration to accommodate any changes in SMR patterns (J.
Wolpaw and E. W. Wolpaw, 2012). The different approaches to incorporating motor imagery in
SMR-based BCIs are reflected in various applications:
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• Cursor Movement in One or More Dimensions (J. R. Wolpaw et al., 1991): SMR-based
BCIs have been widely used for cursor control on computer screens. This application
often begins with users imagining movements that modulate the amplitude of their mu-
rhythm, which is recorded over sensorimotor areas. Over time, the control becomes more
automatic and less reliant on specific imagery. However, this use is now obsolete in
advantage of better paradigms for this application.

• Communication Applications: SMR-based BCIs facilitate communication for individuals
with conditions like ALS (Kübler et al., 2005) by enabling them to select letters or words
through imagined movements. This use is also obsolete in advantage of better paradigms.

• Control of Robotic Limbs: SMR-based BCIs can control robotic limbs, allowing users
to perform tasks despite paralysis or limb loss. Pfurtscheller et al. (2000) developed an
orthosis that closed and opened the subject’s paralyzed hand. Users imagine specific
movements of the paralyzed or missing limb, and the BCI translates these imaginations
into movements of a robotic arm or leg. This application improves the independence and
quality of life for individuals with amputations or paralysis by enabling them to perform
daily activities such as eating and manipulating objects.

• Virtual Reality and Gaming: VR environments and gaming are promising areas for SMR-
based BCIs, merging rehabilitation with entertainment. It also facilitates an environment
for testing BCI applications that would otherwise be very expensive, hazardous or cur-
rently physically not possible. Users navigate virtual environments or control game char-
acters through motor imagery, with the BCI interpreting SMR changes to move avatars
or interact within the virtual world. This use provides therapeutic advantages by offering
engaging environments for rehabilitation. It also offers recreational benefits, improving
mental well-being and quality of life for users with motor disabilities (Coogan and He,
2018).

• Neurorehabilitation: As stated in subsubsection 1.2.5.1, MI has been extensively utilized
for BCI control by decoding user intentions from changes in the SMR rhythms of the
EEG. SMR-based BCI, have garnered increasing attention for rehabilitation purposes by
enhancing the natural output of the CNS (Yuan and He, 2014). Real-time feedback from
these devices reinforces correct MI patterns. This approach is particularly beneficial for
stroke survivors and individuals with spinal cord injuries, as it aids in regaining motor
functions and improving overall quality of life (Cantillo-Negrete et al., 2023).

2.1.7. Motor Imagery vs Motor Execution

MI and ME are fundamental components in the study of BCIs) and neurorehabilitation.
The interplay between both paradigms is particularly significant for SMR-based BCIs, as both
processes elicit similar sensorimotor rhythms, albeit with varying magnitudes and spatial dis-
tributions.

26



There are different types of motor imagery (Yang et al., 2021; Ladda et al., 2021):

• Visual Motor Imagery (VMI): VMI involves the mental visualization of movements,
which can be further categorized based on the perspective of the imagery: first-person
and third-person perspectives (Yu et al., 2016).

– First-Person Perspective (Internal Visual Imagery): individuals imagine the move-
ment as if they are performing it themselves, seeing the actions through their own
eyes. For instance, when visualizing lifting an arm, they would see their arm moving
up from their own vantage point. First-person VMI primarily engages the motor cor-
tex, premotor areas, and SMA, suggesting a strong overlap with the neural processes
underlying actual movement.

– Third-Person Perspective (External Visual Imagery): individuals imagine watching
themselves perform the movement from an outsider’s viewpoint, akin to viewing a
video of themselves. For example, they would visualize their entire body performing
a task as if they were observing from a few meters away. Third-person VMI activates
visual processing areas, such as the occipital cortex, in addition to the motor-related
regions. This broader activation pattern reflects the involvement of visual spatial
processing and observation of movement dynamics.

• Kinesthetic Motor Imagery (KMI): Kinesthetic Motor Imagery focuses on the internal
sensations associated with movement, including muscle tension, joint position, and spatial
orientation. Unlike visual imagery, kinesthetic imagery emphasizes "feeling" the move-
ment rather than "seeing" it. For instance, when imagining lifting a weight, an individual
would focus on the sensation of muscle contraction and the weight’s resistance. KMI
engages the somatosensory cortex, which processes sensory information from the body,
along with the motor cortex (Ridderinkhof and Brass, 2015).

In this study, we focus on KMI due to it’s extensive research and available studies regarding
the MI paradigm and its similarity to the actual execution of movement, supporting our project
regarding the application of ME to predict MI.

In Miller et al. (2010), they quantitatively establish that the spatial distribution of local neu-
ronal population activity during motor imagery mimics the spatial distribution of activity during
actual motor movement. By comparing responses to electrocortical stimulation with imagery-
induced cortical surface activity, they demonstrate the role of primary motor areas in movement
imagery. The magnitude of imagery-induced cortical activity change was around 25% of that
associated with actual movement. However, when subjects learned to use this imagery to control
a computer cursor in a simple feedback task, the imagery-induced activity change was signifi-
cantly augmented, even exceeding that of overt movement. In Chen et al. (2021), they came to
the conclusion that there were no significant difference in ERD and laterality index between the
motor attempt and MI tasks in the 8–30 Hz frequency bands. Batula et al. (2017) performed a
fNIRS study to explore cortical activation differences between ME and MI for both upper and
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lower limb, coming to the conclusion that ME related with higher activation levels, a faster re-
sponse, and a different spatial distribution, which should be taken into account in the design of
a MI-based BCI. Additionally, when comparing right versus left tasks, upper limb movements
are the most clearly distinct. Dekleva et al. (2024) conducted a study to record intracortical
activity from the motor cortex of two people with residual wrist function following incomplete
spinal cord injury to evaluate the specific activity patterns and temporal dynamics within the
motor cortex. Their results suggest that during MI, motor cortex maintains the same overall
population dynamics as during ME by recreating the missing components related to motor out-
put and/or feedback within a unique imagery-only subspace. Hardwick et al. (2018) conducted
a meta-analysis comparison of the neural correlates of action between ME, MI and Action Ob-
servation with over 18000 participants. The study observed that ME and Action Observation
recruited similar premotor-parietal cortical networks. Additionally, MI and ME recruited a sim-
ilar subcortical network, while Action Observation did not consistently recruit any subcortical
areas. Another study performed by Kraeutner et al. (2014), recorded MEG with electromyog-
raphy (EMG) to further establish MI as a secondary modality of skill acquisition by providing
electrophysiological evidence of an overlap between brain areas recruited for motor execution
and imagery. Their results at source-level analysis showed that MI has similar patterns of spatial
activity as ME, including activation of contralateral primary motor and somatosensory cortices.
Yi et al. (2013) performed a study to investigate the differences of the EEG patterns between
simple limb motor imagery and compound limb motor imagery, and discuss the separability
of multiple types of mental tasks. Coming to the conclusion that there exists separable dif-
ferences between simple limb motor imagery and compound limb motor imagery, which can
be utilized to build a multimodal classification paradigm in MI-based BCI systems. In Lubbe
et al. (2021) a version of the Go/NoGo discrete sequence production paradigm, which typi-
cally involves presenting participants with a series of stimuli to which they must respond (Go)
or withhold a response (NoGo), was employed to compute band ERD in ME, MI and Motor
Preparation (MP). Their findings suggest that MI showed increased frontal theta power, which
could be caused by increased effort, and ME and MP showed decreased posterior alpha power,
which could indicate increased visual attention. The end results indicate positive results for the
motor-cognitive model, as it requires extra involvement of frontal executive processes during
MI.

Consequently caused by all the research available, it requires tools for monitoring and con-
trolling imagery performance. Some of the most relevant are mentioned on Table 2.1 and in-
clude:
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Method/Tool Explanation
KVIQ a Evaluates the clarity and vividness of mental visualizations

and sensory experiences related to general movements, par-
ticularly useful for elderly individuals or patients

TKBV b Assesses the capability to mentally simulate and manipulate
motor representations by performing six specified move-
ments mentally

MiScreen A mobile application designed to evaluate an individual’s
ability to perform motor imagery

Chronometry Measures the time taken for imagined and actual move-
ments to evaluate their synchronization

Autonomic Nervous System Measures Records physiological responses such as heart rate, respi-
ration, and skin conductance to gauge the physical effort
associated with imagined movements

Central Nervous System Measures Utilizes transcranial magnetic stimulation to compare
motor-evoked potentials in the target muscle with reference
muscles

EMG Electromyography recordings monitor muscle activity to
detect unwanted movements during motor imagery tasks in
experimental settings

Neurofeedback via EEG Uses EEG to assess brain activity related to motor imagery
and provides real-time feedback for performance improve-
ment

Table 2.1. Methods and tools for assessing motor imagery (Ladda et al., 2021).

aKVIQ: The Kinesthetic and Visual Imagery Questionnaire
bTKBV: Test zur Kontrollierbarkeit der Bewegungsvorstellungsfähigkeit (Testing the Assessability of Move-

ment Imagery Ability)

2.2. Deep Learning

Deep Learning (DL) is a subfield of Artificial Intelligence (AI) and ML that focuses on
using neural networks with many layers, known as deep neural networks, to model complex
patterns in large datasets. AI encompasses a broad range of techniques that simulate human
intelligence, including learning, reasoning, and self-correction, through well-defined algorithms
(Ávila-Tomás et al., 2021). Over the past decade, AI has gained substantial attention in both the
scientific community and the mainstream media. It falls within the realm of data science, which
also includes classical programming and machine learning techniques (Choi et al., 2020).

DL, a specific type of machine learning, allows computers to improve incrementally with
data and experience. It achieves impressive results by representing real-world problems as
computational models, building complex concepts from simpler ones. These end-to-end models
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streamline the process by combining feature extraction and classification into a single system.
As a result, they can automatically optimize features during training, eliminating the need for
extensive domain knowledge to manually design characteristics (Alzubaidi et al., 2021). In an
upcoming section we will discuss the most relevant architectures regarding our project.

2.2.1. Neural-Networks

Artificial Neural Networks (ANNs) are mathematical models inspired by the structure of
the human brain. They replicate how biological neurons transmit information to each other.
ANNs consist of layers of nodes or artificial neurons, including an input layer, one or more
hidden layers, and an output layer. Each artificial neuron, is connected to others with associated
weights and thresholds. Finally, if a neuron’s output exceeds its threshold, it activates, sending
data to the next layer (Walczak and Cerpa, 2003).

CNNs are a powerful architecture within neural networks, particularly effective for human
activity recognition. As it can be seen on Table 2.2, CNN are the most common approach
within studies to evaluate deep learning models for EEG decoding within the BCI framework.
A CNN consists of an input layer, one or more convolutional and pooling layers, followed by
fully connected layers. The convolutional layer in a CNN is responsible for extracting various
features from input data. It achieves this by applying multiple filters (or kernels) to the input
data through a process called convolution, computing a weighted sum of the values within the
convolutional kernel, adding a bias, and passing it through an activation function to form feature
maps (Indolia et al., 2018).

Following the convolutional layers, pooling layers are used to reduce the spatial dimensions
of the feature maps while retaining important information. Pooling operates by dividing the
feature map into non-overlapping or overlapping regions (e.g. 2x2 window) and applying a
pooling function such as max pooling or average pooling within each region. Max pooling se-
lects the maximum value from each region, thereby emphasizing the most prominent features,
while average pooling computes the average. This downsampling reduces the computational
load and the number of parameters in the network, leading to improved efficiency and some de-
gree of translation invariance. The fully connected layer, also known as the dense layer, follows
the convolutional and pooling layers in a CNN architecture. It serves to integrate the high-level
features learned by the convolutional and pooling layers into class scores or predictions. Each
neuron in the fully connected layer is connected to every neuron in the previous layer, forming
a dense network. The input to each neuron is multiplied by a weight matrix and then summed
with a bias term before passing through an activation function. This process allows the network
to learn complex relationships between features and produce final output predictions (Indolia
et al., 2018).
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2.2.2. Inception modules

Inception modules, introduced in the GoogLeNet architecture (Szegedy et al., 2015), rep-
resent a significant advancement in CNN design. They address the challenge of choosing the
appropriate kernel size for convolutional layers by incorporating multiple kernel sizes within
a single layer, capturing features at various scales simultaneously. An inception module in-
cludes several parallel convolutional and pooling layers with different kernel sizes, followed by
concatenation of their outputs. This structure enables effective learning and processing of spa-
tial hierarchies of features. The variety of operations withing this method allows the network
to handle information at multiple scales, which is advantageous for identifying objects with
significant scale variation.

This design has demonstrated an ability to produce more detailed feature maps with reduced
computational expense, improving performance while maintaining acceptable training and test-
ing durations (Francois Chollet, 2017). In this context, EEG comprises transient and oscillatory
patterns of varying temporal scales that reflect the brain’s active processes, thus making multi-
scale analysis with Inception modules particularly appropriate for these data.

The inception architecture has evolved through several iterations, each improving perfor-
mance and efficiency (Raj, 2019):

• Inception v1: The original design, employing 1x1 convolutions for dimensionality reduc-
tion.

• Inception v2 and v3: Introduced batch normalization and factorized convolutions to re-
duce computational cost and enhance training speed.

• Inception v4 and Inception-ResNet: Combined inception modules with residual connec-
tions to mitigate the vanishing gradient problem and facilitate deeper network training.

2.2.3. Regularization Techniques

In deep learning, constructing and training models often leads to overfitting or underfitting
due to the numerous parameters involved. Regularization techniques aim to mitigate these
issues and improve model performance. The most frequently used are (Wang et al., 2024):

• Dropout: Prevents overfitting by randomly and temporarily deactivating neurons in hid-
den layers, reducing parameter estimation and network complexity.

• Batch Normalization: Adds an extra step of normalizing activations between mini-batches,
accelerating network training.

• L1 and L2 Regularization: Updates the loss function with additional parameters. L2
regularization adds the sum of squared weight norms, while L1 adds the sum of absolute
weight values, reducing the influence of less important weights.
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• Early Stopping: Stops training when the validation loss starts increasing, preventing over-
fitting. It can be done by either restarting the model with all training data or continuing
training until a new minimum error is achieved.

• Reduce Loss on Plateau: Reduces the learning rate when the metric of interest stagnates,
helping the model to fine-tune its performance.

• Data Augmentation: it artificially creates new data from an existing source, in order to
train new models.

2.2.4. Validation techniques

Neural networks are trained with datasets to learn and improve their accuracy over time.
The data is divided into three sets: the training set, the validation set, and the test set. Each
set has a specific purpose. The training set is used for learning, where the model adjusts its
parameters to minimize prediction errors. The validation set is used to tune hyperparameters
and mitigate overfitting by evaluating the model’s performance during training. It helps ensure
the model generalizes well to new data. The test set is reserved for evaluating the model’s final
performance after training and validation, providing an unbiased assessment of its accuracy. To
ensure robust model evaluation, different validation schemes are employed. Validation schemes
for neural networks include within-subject (intra-subject) and cross-subject (inter-subject) ap-
proaches. Within-subject validation uses part of a subject’s data for training and the remaining
data of the same subject for testing, repeating this process for each subject in the dataset. Cross-
subject validation, on the other hand, can follow different schemes (Wang et al., 2024):

• Leave-n-subjects-out: Also known as subject-wise data split in the medical field, this
method selects data from a specific number of subjects for the training set and uses data
from the remaining subjects for the test set. This scheme is ideal for scenarios where BCI
systems need to predict unseen subjects’ data such our case in the study, assessing the
model’s ability to generalize to new subjects.

• Mix-up-all-subjects: This method involves combining training data from all subjects and
using the remaining data for testing. Though less frequently used, it is considered an
easier classification task compared to leave-n-subjects-out.

• Random-selection: Also called record-wise data split, this method randomly selects a
specific ratio of data from the whole dataset for training and the remaining data for testing.
This can result in training and test sets containing data from different subjects, both sets
containing data from all subjects, or a mix of seen and unseen subjects.

Furthermore, k-fold cross-validation involves splitting the data into k parts, training the
model k times , each time using k − 1 parts for training and the remaining part for validation.
This method reduces the variance of the model’s performance estimation (Jung and Hu, 2015).
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Finally, evaluating the performance of deep learning algorithms requires a suite of metrics
to provide a comprehensive view. Key metrics include (Wang et al., 2024):

• Confusion Matrix: A matrix representation of prediction results for unseen data, effective
for multi-class problems. Offers a detailed breakdown of prediction results for multi-
class problems, showing the frequency of true positives, false positives, true negatives,
and false negatives.

• Accuracy: The percentage of correct predictions. It may not be suitable for imbalanced
datasets.

• Recall (Sensitivity): The proportion of correctly classified positive cases (true positives).

• Specificity: The proportion of correctly classified negative cases (true negatives).

• Precision: The number of true positives compared to the total number of positive predic-
tions.

• F1-Score: it is the harmonic mean of recall and precision, is particularly useful for imbal-
anced datasets as it balances the trade-off between precision and recall.

2.2.5. Neural Networks for EEG decoding

One major counterpart of BCIs is the decoding accuracy of the EEG. Classical Machine
Learning approaches usually require calibration runs for the session being performed due to
the inter-subject variability and the intersession variability (Saha and Baumert, 2020). On the
other hand, DL models outperform the latter, while reducing the inter-subject and intersession
variability due to the ability to apply transfer learning techniques. Schirrmeister et al. (2017)
and Lawhern et al. (2018) proved across a variety of paradigms the ability of CNN architectures
for EEG decodification.

Table 2.2 provides a comprehensive review of the most relevant models for decoding EEG.
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Model Type Architecture & Key Features Advantages
CNN-BLSTM a CNN +

RNN
1D Convolutional layers for spatial feature
extraction followed by 2 Bidirectional Long
Short-Term Memory (BLSTM) layers for tem-
poral pattern detection. Combines RNN with
CNN.

Captures both spa-
tial and temporal
features, good for
sequential data anal-
ysis.

DeepConvNet b CNN 4 convolutional blocks with max-pooling lay-
ers, with a special first block designed for EEG
input. Ends with a dense softmax classification
layer.

Ability to decode
task-related infor-
mation from the raw
EEG without hand-
crafted features.

EEGNet c CNN Compact CNN tailored for EEG with depth-
wise and separable convolutions to tie spa-
tial filters directly to a temporal filter. In-
cludes batch normalization, dropout, and aver-
age pooling for dimensionality reduction.

Compact and effi-
cient, robust against
overfitting, suitable
for real-time appli-
cations.

ShallowConvNet d CNN Shallow Convolutional Network focusing on
frequency-related features. Includes fewer lay-
ers, suitable for low-complexity tasks. In com-
parison with DepthConvNet, the temporal con-
volution of the shallow ConvNet had a larger
kernel size (25 vs 10), allowing a larger range
of transformations in this layer, followed by
a squaring nonlinearity, a mean pooling layer
and a logarithmic activation function.

Ability to decode
band power features,
learning a temporal
structure of the
band power changes
within the trial.

EEG-Inception e CNN Incorporates inception modules within a CNN
architecture, facilitating the temporal multi-
scale extraction of feature maps.

Captures features at
various scales, ro-
bust, improved per-
formance over tra-
ditional and simpler
CNNs.

EEGSym f CNN Includes inception modules and residual con-
nections to improve spatial feature extraction.
Incorporates brain symmetry through mid-
sagittal plane in architecture. Includes patch
perturbation, hemisphere perturbation and ran-
dom shift for data augmentation.

Improved accuracies
on inter-subject MI
binary classification.

Table 2.2. Review of neural networks decoding EEG

aCNN-BLSTM: Santamaría-Vázquez et al. (2020)
bDeepConvNet: Schirrmeister et al. (2017)
cEEGNet: Lawhern et al. (2018)
dShallowConvNet: Schirrmeister et al. (2017)
eEEGInception: Santamaria-Vazquez et al. (2020)
fEEGSym: Perez-Velasco et al. (2022)
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As seen on Perez-Velasco et al. (2022), EEGSym and EEGInception achieved the highest
metrics on inter-subject MI binary classification between all the models provided above. Addi-
tionally, due to their robustness, ability to capture features at multi-scale level through inception
modules and ability for cross subject transfer learning and datasets, we selected EEG-Inception
and EEGSym for testing in our project.

2.2.6. Transfer learning from ME to MI

In order to increase efficiency and in search of better real-word applications of these neural
networks, we seek to apply transfer learning techniques to our selected model. The objective is
to obtain a pre-trained neural architecture trained with ME data, to be applied to MI subjects.

As previously seen in studies in Table 2.2, numerous studies have demonstrated that deep
CNNs are capable of effectively extracting features from MI EEG data and achieving high clas-
sification and recognition accuracy. However, the benefits of neural networks are contingent on
the availability of large training datasets. In the field of BCI, the application of CNNs is chal-
lenging due to the low SNR and the limited size of EEG data samples. Alternatively, traditional
machine learning methods usually necessitate the collection of a substantial amount of EEG
signals before MI-EEG recognition can be performed. This process significantly increases the
user’s calibration time and diminishes the overall user experience of the system (Zheng and Lin,
2024). Furthermore, EEG signals exhibit individual differences and possess a low SNR, making
them highly susceptible to external environmental influences, other physiological signals (eye
movements, electrocardiograms, and electromyography), and the user’s mental state. Conse-
quently, classification models trained on data from different users or at different times often
lack generalizability, presenting a major challenge for the practical implementation of MI-BCI
systems. Transfer learning originated as a solution to this problem, applied to certain scenarios
in which obtaining training data that matches the feature space and predicted data distribution
characteristics of the test data is difficult and expensive (Weiss et al., 2016).

Simply explained, transfer learning aims to make use of the available knowledge/data from
a particular source domain in order to help solve a task in another target source. Similarly, deep
transfer learning (DTL) aims to use the knowledge obtained from another task/dataset to reduce
the costs of learning (Iman et al., 2023).

According to Weiss et al. (2016) there are various different classifications of transfer learn-
ing, most of which can also be applied to DTL (Iman et al., 2023).

As seen in figure Figure 2.5 these categories are divided amongst Problem Categorization
and Solution/Approach Categorization.

Furthermore, the Solution Categorization is further subdivided in four main categories (Weiss
et al., 2016):

• Instance-Based Approaches: These methods utilize selected instances from the source
data, applying various weighting strategies to adapt them for use with the target data.
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Fig. 2.5. Taxonomy of transfer learning (Iman et al., 2023)

This approach is useful when there is some overlap in the distributions of source and
target data.

• Feature-Based/Mapping-Based Approaches: These techniques involve mapping instances
or features from both source and target data into a more homogeneous feature space. This
category is further divided into:

– Asymmetric Approaches: These transform source features to match the target fea-
tures.

– Symmetric Approaches: These find a common latent feature space and transform
both source and target features into a new feature representation that is more com-
parable.

• Model-Based/Parameter-Based Approaches: These methods leverage the knowledge ob-
tained from pre-trained models. They involve various strategies, such as freezing certain
layers, fine-tuning others, or adding new layers to the pre-trained model, to adapt it to
the target task. This approach is particularly beneficial when the source and target tasks
are closely related. The pre-trained model’s learned features can be directly used to pro-
cess new data. The model’s layers act as a fixed feature extractor, and a new classifier is
trained on these features for the target task. This approach is quick and useful when the
target dataset is small.

• Relational-Based/Adversarial-Based Approaches: These focus on extracting transferable
features by leveraging logical relationships or rules from the source domain. Methods
inspired by generative adversarial networks are often used to achieve this, as they can
generate realistic data representations that bridge the gap between source and target do-
mains.

Through our characterization of the dataset, we aim to prove the close relation between the
source (ME) and target (MI) tasks in order to apply a Model/Parameter-Based Approach transfer
learning. Due to the domain adaptation between the data, adjusting the model, this method is
the most applied technique in DTL (Iman et al., 2023).

Within this Model-Based approach transfer learning, there are several different types of
algorithms applied, which are generally a fusion between pre-training, freezing, fine-tuning
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and/or adding of layers (Weiss et al., 2016).

A deep learning network trained on source data is referred to as a pre-trained model. This
model comprises pre-trained layers that have already learned features from the source data. The
term ’Freezing’ involves keeping the parameters or weights of certain layers constant. These
layers retain the knowledge gained from the source data without any updates during the training
on target data. This technique is particularly handy when the initial layers capture general
features that are likely to be relevant to the new task. Moreover, ’finetuning’ entails initializing
the parameters of the pre-trained model with the learned values instead of random initialization.
These parameters are then adjusted during training on the target data. Typically, higher layers
are more tuned to the specifics of the original task, so fine-tuning might involve re-training only
the deeper layers or the entire network, depending on the target task’s similarity to the original
task. This allows the model to refine its knowledge and better adapt to the specifics of the new
task (François Chollet, 2021).

According to Wan et al. (2021), the benefits of transfer learning in the analysis of EEG
signals include:

1. Accounting for individual variability: In EEG signal processing, there is a significant
difference between training and testing data such as subjects, sampling times, and task
objectives, making analysis more challenging. Transfer learning enables the model to
adapt to different individuals and tasks through adjustments.

2. Minimizing data requirements: Data scarcity and insufficient labeling in EEG signal anal-
ysis impede the learning of the target task. Transfer learning leverages prior knowledge
from a related domain using a small amount of target domain data to adjust the classifier,
thereby reducing the data needed.

Many transfer learning techniques have been applied within the MI paradigm: in a similar
case to our study Dose et al. (2018) developed a DL approach for an EEG-Based BCI to im-
prove current stroke rehabilitation techniques. Contrastly, they applied TL only to a MI dataset
to adapt the global classifier to single individuals, achieving improved accuracy. In a recent
study, Zheng and Lin (2024) performed a MI-BCI study where they applied simultaneously two
domain adaptation modules to a deep transfer neural network to effectively use labeled EEG
data from previous times, hence achieving good recognition performance for a small number
of labeled EEG signals at the current time. The study showed a higher classification accuracy
to the compared models. Another study, Zhang et al. (2021) aimed to apply adaptative TL for
EEG-MI classificacion with deep CNNs by training with pre-existing data from other subjects
and evaluating the model on new target subjects. Other studies can also be found where they
combine ME with MI in order to decode the MI, as it can be seen D. Y. Lee et al. (2020), where
they collected EEG data regarding arm reaching within 3 directions. They developed a transfer
learning method based on a Relation Network architecture to decode MI while using ME as a
supporting tool.

Regarding the application of transfer learning from ME to MI, there are scarce articles
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available, with multiple avenues still to explore, such as the use of CNNs, optimizing cross-task
transfer learning frameworks, and improving the interpretability and efficiency of these models
in practical BCI applications. This method aims to take advantage of the information acquired
during the initiation phases of the movement in order to facilitate the adaptation process for the
new task.

In a study by D.-Y. Lee et al. (2022) focused on decoding various forearm movements
from EEG signals, ten healthy participants performed 4 ME and MI tasks of the right upper
limb (forearm extension, hand grasp, wrist supination, and rest). The research introduced a
convolutional neural network using a channel-wise variational autoencoder (CVNet) based on
inter-task transfer learning. The proposed CVNet was validated on the subjects achieving a
cross task classification accuracy of 0.83, and on the public BNCI Horizon 2020 dataset apply-
ing a combination of ME and MI for training, achieving a MI classification accuracy of 0.69.
In another example, Miao et al. (2023) introduce a novel explainable cross-task adaptive TL
method for MI EEG decoding. The method begins with similarity analysis and data alignment
for EEG data from ME and MI tasks. Subsequently, a MI EEG decoding model is developed
through pre-training with extensive ME EEG data and fine-tuning with a subset of MI EEG data.
Finally, an expected gradient-based post-hoc explainability analysis is performed to visualize
significant temporal-spatial features. The method achieved the highest average classification
accuracy of 80.00% for OpenBMI dataset and 72.73% for GIST dataset. Additionally, the ex-
plainability analysis results further confirmed the correlation between ME and MI EEG data
and the effectiveness of ME/MI cross-task adaptation.

In chapter 2, we explored the foundational aspects of MI-based BCIs, focusing on the un-
derlying paradigms, signal processing techniques, and the use of neural networks for decoding
EEG signals. We also examined the distinctions between MI and ME, as well as the applica-
tion of transfer learning to improve BCI performance. In the next chapter, chapter 3, we will
delve into the specifics of the dataset and signals used in this study. This will include a de-
tailed overview of the EEG Motor Movement/Imagery dataset, the experimental protocol, and
the EEG montage, setting the stage for the subsequent analysis and methodology.
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3. DATASET & SIGNALS

In order to perform our study, we searched for available public databases regarding healthy
subjects performing ME and MI. We performed our search in diverse repositories before making
a selection for PhysioNet. We selected the public database available EEG Motor Movement/Im-
agery Dataset v1.0.0 because of the large number of subjects available (109) in comparison
with others and due to being one of the scarce databases with EEG recording of the same sub-
ject during both ME and MI (Gerwin Schalk et al., 2022; G. Schalk et al., 2004; Goldberger
et al., 2000).

PhysioNet is a comprehensive repository of physiological and clinical data, managed by the
MIT Laboratory for Computational Physiology, and aimed at supporting the research and de-
velopment of computational medicine (Goldberger et al., 2000). It was established in 1999 as
part of the National Institutes of Health’s (NIH) Research Resource for Complex Physiologic
Signals, providing free access to large collections of recorded physiologic signals and related
open-source software. This platform serves as a critical resource for the scientific community,
fostering the development of innovative algorithms and tools for analyzing complex physiolog-
ical signals.

3.1. EEG Motor Movement/Imagery Dataset Physionet BCI2000

This dataset (Gerwin Schalk et al., 2022) was created by Gerwin Schalk and his colleagues
at the BCI R&D Program, Wadsworth Center, New York State Department of Health, Albany,
NY. It was created by the developers of BCI2000. This platform presents a versatile and open-
source software option designed for BCI research and development. It provides a comprehen-
sive framework for data acquisition, signal processing, and stimuli and feedback presentation in
real-time. It’s a valuable resource that supports a variety of data acquisition systems and can be
used for diverse BCI applications, including neurorehabilitation, communication, and control
tasks (G. Schalk et al., 2004).

Particularly to our dataset, it was published in 2009 with a set of 64-channel EEGs from
subjects who performed a series of motor/imagery tasks for the research in brain computer
interfaces. It contains over 1500 1 or 2 minute EEG recordings from 109 subjects. Sociodemo-
graphic data of the individuals that were subject to the recordings is not available.

3.1.1. Acquisition software

The EEG recordings to be analyzed were recorded using the BCI2000 system (G. Schalk
et al., 2004). The system is based on a model consisting of four modules:
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• Source Module: Digitizes and stores brain signals, passing them to the signal processing
module without preprocessing. Consists of data acquisition and data storage components,
with a documented file format including an ASCII header followed by binary signal sam-
ples and event marker values.

• Signal Processing Module: Converts brain signals into control signals through two stages:
feature extraction (e.g., extracting firing rates, amplitudes) and feature translation (e.g.,
translating features into control signals). Uses independent signal operators that can be
combined or interchanged flexibly.

• User Application Module: Uses control signals to drive applications, which can be visual
(e.g., selection of targets, letters) or other feedback forms (e.g., auditory, haptic). Supports
various applications including BCI control of neuroprostheses or orthoses.

• Operator Module: Defines system parameters and controls the onset and offset of opera-
tions. Displays real-time information from any module, enabling experiment control and
real-time monitoring.

Furthermore, these modules communicate via a documented network-capable protocol based on
TCP/IP, allowing flexibility in programming languages and networked machine usage. Compo-
nents are designed to be interchangeable and independent, allowing different implementations
to be used without affecting the system. Each module performs specific functions and commu-
nicates standardized information, reducing dependencies. Moreover, BCI2000 is designed to
minimize the effects of operating system and hardware interruptions on response time, ensuring
timely processing and response. Finally, BCI2000 incorporates three types of system variables:

• Parameters: Constant throughout a data file, such as signal sampling rates.

• Event Markers: Record events during operation, enabling full session reconstruction and
comprehensive data analysis. Modules can modify or monitor event markers.

• Signals: Functions of brain signals modified by modules. Modules can request the cre-
ation of various system parameters and event markers.

3.1.2. Experimental Protocol

As previously stated, in this experimental protocol subjects performed various motor and
motor imagery tasks while their brain activity was recorded using a 64-channel EEG system
and the BCI2000 software. The experiment included baseline measurements and four distinct
tasks, focusing on both actual and imagined movements (Gerwin Schalk et al., 2022).

The baseline runs consist of two separate runs, one with eyes closed and one with eyes
opened, of 1 minute each. As for the four tasks:
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1. Motor Execution of one hand: A visual target appeared on either the left or right side of
a screen. Subjects opened and closed the corresponding fist until the target disappeared,
then relaxed.

2. Motor Imagery of one hand: A visual target appeared on either the left or right side of
a screen. Subjects imagined opening and closing the corresponding fist until the target
disappeared, then relaxed.

3. Motor Execution of both fists or feet: A visual target appeared on either the top or
bottom of a screen. Subjects opened and closed both fists if the target was on top, or both
feet if the target was on the bottom, until the target disappeared, then relaxed.

4. Motor Imagery of both fists or feet: A visual target appeared on either the top or bottom
of a screen. Subjects imagined opening and closing both fists if the target was on top, or
both feet if the target was on the bottom, until the target disappeared, then relaxed.

Regrading the tasks runs order, three repetitions were performed of each Task 1, Task 2,
Task 3, and Task 4, in the following sequence:

1. Baseline, eyes open

2. Baseline, eyes closed

After these recordings, three repetitions were performed of each Task 1, Task 2, Task 3, and
Task 4, in the following sequence:

3. Task 1 (left or right fist movement)

4. Task 2 (left or right fist imagined movement)

5. Task 3 (both fists or both feet movement)

6. Task 4 (both fists or both feet imagined movement)

After the task sequence is repeated three times, we obtain a total of 14 experimental runs. The
resulting data obtained is provided in EDF+ format. Each annotation file of each recordings
contains the following event markers:

• T0: Indicates rest periods.

• T1: Indicates the onset of motion (real or imagined) of:

– The left fist in specific runs (3, 4, 7, 8, 11, and 12)

– Both fists in other specific runs (5, 6, 9, 10, 13, and 14)

• T2: Indicates the onset of motion (real or imagined) of:
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– The right fist in specific runs (3, 4, 7, 8, 11, and 12)

– Both feet in other specific runs (5, 6, 9, 10, 13, and 14)

It is worth noting that inside each task, the most common number of onsets for both ME and
MI paradigms that the subjects received were 30 (including T0, T1 and T2). However, some
particular subjects performing ME may have received 24, 38 or 44 repetitions, while subjects
performing MI may have received 24, 26 or 38 repetitions.

3.1.3. EEG Montage

The EEGs were recorded using the BCI2000 system previously explained with 64 electrodes
following the international 10-10 system, from which the following electrodes were excluded
Nz, F9, F10, FT9, FT10, A1, A2, TP9, TP10, P9, and P10. The resulting recordings contain 64
EEG signals, sampled at 160 or 128Hz. The montage can be seen on Figure 3.1.

Fig. 3.1. EEG montage. The number under the electrode’s name corresponds to the order in which they appear in
the recordings (Gerwin Schalk et al., 2022).
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4. METHODS

As our platform of choice, we have made use of MEDUSA©. We will be using the ker-
nel available within MEDUSA© in order to perform both the characterization as well as the
classification and transfer learning methods.

4.1. MEDUSA

MEDUSA© is a new versatile platform for contemporary non-invasive BCIs developed at
the Biomedical Engineering Group of Universidad de Valladolid (Santamaría-Vázquez et al.,
2023). Key features of this open-source solution include: (1) broad compatibility with various
signal acquisition systems, supported by advanced functionalities built on the lab-streaming
layer (LSL) protocol, allowing for simultaneous recording of multiple signals; (2) a compre-
hensive suite of BCI paradigms and cognitive neuroscience experiments, such as ERP spellers
based on c-VEP and P300, MI, neurofeedback, and neuropsychological tasks; (3) cutting-edge
signal processing methods and models for both offline and online analysis, including deep neu-
ral networks and connectivity analysis; (4) developer tools to facilitate the creation of custom
open-loop and closed-loop experiments; and (5) specific features to enable the sharing of ex-
periments and promote open science, reproducibility, and community collaboration, including
an app market and multiple discussion forums on our website.

This platform contains two different and independent services:

• MEDUSA© Kernel is a Python package that provides ready-to-use methods for analyz-
ing brain signals. It includes advanced techniques in signal processing, machine learning,
deep learning, and other high-level analyses. Additionally, it offers functions and classes
for managing various biosignals, including EEG and MEG, as well as for saving experi-
mental data or creating standalone processing pipelines.

• MEDUSA© Platform, a Python-based desktop application, delivers high-level function-
alities for experimental purposes. It features a modern graphical user interface (GUI)
with advanced signal acquisition capabilities and real-time charts. A key aspect of this
platform is its ability to install and create apps that implement neuroscience and BCI ex-
periments or paradigms. All these functionalities are built on MEDUSA© Kernel for the
required real-time signal processing.

The kernel provides several modules for different functionalities, such as artifact removal,
temporal and spatial filters, or local activation metrics. Even though we made use of most of the
modules available, of particular interest for our project is the Motor Imagery modules, providing
comprehensive classification pipelines that can be utilized in both offline and online modes; MI
analysis charts; and specialized data structures designed for MI decoding;
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For this project, we required the use of two similar, one for the characterization and one for
the neural network model, but different datasets with slightly different pre-processing.

4.2. Characterization

In order to better understand the difference and similarities between ME and MI, we created
specific datasets for the characterization experiments.

4.2.1. Dataset

As previously explained on subsection 2.1.5 for the characterization to be solid and reliable,
the raw signals provided have to be pre-processed. The following steps were applied iteratively
to all runs of each task of each subject.

4.2.1.1 Convert to MEDUSA Recording

Given that the recordings from the dataset are provided in EDF+ format, they require to be
converted to a Medusa Biosignal Data Recording class in order to be compatible with the rest
of the functionalities withing the Medusa Kernel package.

As upper limb movements seem to be the most clearly distinct (Batula et al., 2017), we will
only make use of tasks 1 and 2. Additionally, these tasks are also the most relevant for stroke
rehabilitation, regarding the execution or imagination of the left or right fist. The pipeline for
the creation of the dataset is the following:

1. Download ZIP file with all available recordings, containing 109 folders, with 28 files
each. These files correspond to the 14 runs performed by each subject, which information
available in .edf and .edf.event format.

2. Once downloaded, and imported into python using the MNE python package, we trans-
form the data of a RawArray data structure from mne to a MedusaData data structure
from MEDUSA. While doing so, we transfer all relevant information of the recording,
including sampling frequency, onset times, labels of the paradigm, montage used during
the acquisition, subject or task and run executed during the recording.

The ME and MI recordings are imported separately, with a generalized python function
we created that also allows you to import tasks 3 and 4 if wanted by the user. Additionally,
as we will be primarely working with the left and right tasks, the label annotation within
the recordings is changed for better and more effective use in future sections. In the
provided dataset T0 corresponds to the rest time period, T1 to the "left" time period and
T2 to the "right" time period. In this new configuration, label 0 corresponds to the "left"
time period, label 1 to the "right" time period and label 2 to the "rest" time period.
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3. The ME and MI MIData files of each run and subject are exported separately into the cor-
responding "PhysionetMI" or "PhysionetME" folders in BSON format in order to reduce
the data storage size as well as optimize as speed the creation different processed datasets.

4.2.1.2 Preprocessing and artifact removal

We applied a Infinte-Impulse Response Butterworth bandpass filter of 4th order in the fre-
quencies 1Hz-58Hz in order to remove the baseline drift of the recordings, avoid aliasing and
remove power-line interference. This bandpass filter also allows us to focus on the main fre-
quencies of interest within the EEG without removing relevant data. Moreover, a CAR spatial
filter was applied. This filter is frequently applied to EEG recordings to help detect small signal
sources in otherwise very noisy recordings, improving the Signal to Noise Ratio (Binnie et al.,
2003).

For this dataset, we selected all the available labels: left, right and rest. Even though the
time interval between onsets in the recordings was of 4 seconds, in the following epoch extrac-
tion section, it was observed how some subjects didn’t have enough samples on the last onset
in order to extract the full interval. For this reason, the maximum duration available for ex-
traction was 3400ms. The 3400 ms window was the maximum extractable duration that neither
required discarding trials due to insufficient samples nor necessitated artificial signal padding.
Additionally, as some recordings had a sampling frequency (fs) of 128Hz and others of 160Hz,
all recordings were subsampled to the lower fs to homogenize the dataset, while reducing the
computational cost of the neural network..

After being subsampled, all filtered and epochs recordings were concatenated and exported
as an .h5 file. Along with the EEG recordings, the stored data with the corresponding paradigm
labels (0, 1, 2) , run indexes (corresponding to ME or MI), subjects (from 1 to 109) and channels
selected was also exported as it will be needed for the posterior classification and characteriza-
tion of the signals.

The final technique applied in order to remove any additional artifacts present in the dataset
was an epoch rejection function. This technique was applied per subject after applying first
z-score normalization to each subjects epoch.

The epoch rejection technique applied is a simple thresholding method to reject noisy
epochs. It discards epochs with n samples greater than k*std in ncha channels. In our early
tests, we tried applying a k value of 4 in within 2 samples of 2 channales, but it was too strict,
forcing us to discard more than 7 subjects. Finally, we found satisfactory results applying a k
value of 5 within 3 samples and 5 channels, allowing us to keep all available subjects. This
technique resulted in the rejection of 5.15 % of epochs available within the MI paradigm, and
the rejection of 5.96 of % epochs available in ME.

Additionally to the explained pre-processing for this dataset, after performing some tests
on the datasets, it was observed that the periferial electrodes of the scalp, specially the frontal
electrodes, were interfering signifcantly with the results of the characterization. For this reason,
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we decided to remove the periferial electrodes since, as stated in subsection 2.1.3, our main
region of interest is located over the sensorimotor cortical areas.

• Removed Electrodes (23): [’FPZ’, ’FP2’, ’FP1’, ’AF7’, ’F7’, ’FT7’, ’T7’, ’T9’, ’TP7’,
’P7’, ’PO7’, ’O1’, ’OZ’, ’O2’, ’PO8’, ’P8’, ’TP8’, ’T8’, ’T10’, ’FT8’, ’F8’, ’AF8’, ’IZ’]

• Remaining Electrodes (41): [’FC5’ ’FC3’ ’FC1’ ’FCZ’ ’FC2’ ’FC4’ ’FC6’ ’C5’ ’C3’
’C1’ ’CZ’ ’C2’ ’C4’, ’C6’ ’CP5’ ’CP3’ ’CP1’ ’CPZ’ ’CP2’ ’CP4’ ’CP6’ ’AF3’ ’AFZ’
’AF4’ ’F5’, ’F3’ ’F1’ ’FZ’ ’F2’ ’F4’ ’F6’ ’P5’ ’P3’ ’P1’ ’PZ’ ’P2’ ’P4’ ’P6’ ’PO3’, ’POZ’
’PO4’]

It is worth noting that even through this pre-processing method, while manually observing
the recordings of certain subjects, some artifacts such as ECG may have persisted.

The final output of the exported dataset can be seen on Table 4.1

Features Labels Run Index Subjects Channels
Motor imagery (9836, 435, 41) (9836) (9836) (9836) (41)

Motor Execution (9854, 435, 41) (9854) (9854) (9854) (41)

Table 4.1. Size of the exported data on the created dataset. The first dimension of the features indicates the
number of epochs available for each paradigm, the second dimension shows the number of samples per epoch
(corresponding to 3400ms at a sampling frequency of 128Hz), and the last dimension contains all the channels
available. Features contains the values of the EEG signal; Labels contains values 0,1 and 2 representing each task;
Subjects contains values from 1 to 109 corresponding to each subject’s epoch; Channels contains the name of all
the electrodes selected

4.2.2. Relative Bandpower

The relative power (RP) is a linear measurement that provides information on the normalized
weight of each spectral band in the EEG signal distribution. The selected spectral bands for
assessing induced EEG changes were delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), mu
(12-15 Hz), beta (15–30 Hz) and gamma (30-50Hz).

In order to compute the RP from the extracted dataset, we split the dataset according to the
different tasks. To each epoch of each task we computed the power spectral density (PSD) of the
signal by means of the Welch method, applying a Dirichlet window, default option on Medusa
Kernel, with 80% of the signal (348 samples) and 50% overlap. The RP for each frequency
band is estimated (Marcos-Martínez et al., 2021):

RPi =

∑︁ui
f

f=lif
PSD( f )∑︁50Hz

f=0.1Hz PSD( f )
, i = {Delta,Theta,Alpha,Mu,Beta,Gamma} (4.1)

where f is the frequency, l is the lower frequency of each band, u is the upper frequency of
each band and i is the band of interest.
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4.2.3. ERD/ERS

The classical method to compute the time course of ERD includes the following steps
(Pfurtscheller, 2001):

1. Bandpass filtering of all event-related trials;

2. Squaring of the amplitude samples in each trial to obtain power samples;

3. Averaging of power samples across all epochs;

4. Averaging over time samples to smooth the data and reduce the variability.

To calculate percentage values for ERD/ERS, let A represent the power within the frequency
band of interest during the activity period, and R represent the power during the preceding
baseline or reference period. ERD or ERS is defined as the percentage decrease or increase in
power, respectively, and is calculated using the formula:

ERD% =
(A − R)

R
× 100 (4.2)

In our study, a moving average filter of 128 samples with a whole-sample symmetric setting
was applied to the ERD/ERS of each channel to smooth the data. Averages were computed
across trials per individual for each task and each frequency band. Conditions were compared
for 200 ms time windows from 0 to 3375 ms. The average power in the time interval from - 300
to 0 ms from each onset was taken as baseline.

For this computation, the same pre-processing pipeline was followed, but with the bandpass
filter being applied within the corresponding frequencies of interest (i.e theta, alpha, beta, etc.)
and an additional 300 ms of signal recording extracted before the onset. Hence, we obtained
one dataset for each of the bands of interest. However, since during epoch extraction the first
epoch to be extracted did not contain 300 ms prior to the onset, we had to remove the first
available onset for each subject. This did not affect the epoch rejection algorithm since we
selected the same epochs per subject as the RP dataset in order to continue analysing the dataset
with consistency.

4.3. Classification and transfer learning

As seen on subsection 2.2.5, our neural networks of choice for testing are EEG-Inception
and EEGSym. These models have been previously tested with MI data, however, they have not
been validated in cross-task transfer learning. In this study we will perform a preliminary test
of both models and choose one to assess the performance of our hypothesis.
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Fig. 4.1. Overview of EEG-Inception architecture: The architecture includes both 2D convolution blocks and
depthwise 2D convolution blocks, each incorporating batch normalization, activation functions, and
dropout regularization. The kernel sizes for convolutional and average pooling layers are specified
(Santamaria-Vazquez et al., 2020).

4.3.1. EEG-Inception

EEG-Inception is a novel CNN created by Santamaria-Vazquez et al., 2020, originally based
on a NN for image classification, and particularly adapted for EEG processing and ERP detec-
tion. The architecture developed incorporates image classification concepts, such as Inception
modules to capture relationships between features at different scales, and depthwise convolu-
tions.

The EEG-Inception architecture was specifically crafted to prevent overfitting, featuring an
output block that consolidates the data extracted by the Inception modules into a small number
of high-level features. Specifically, only 24 features are inputted into the final classification
layer. This strategy optimized the benefits of the fine-tuning process, which required only a
minimal number of calibration trials to adapt the model to new subjects.

The full architecture includes three main blocks, which can be seen on Figure 4.1:

1. Inception Module 1: This module processes the signal at three different temporal scales
for each EEG channel, using convolutional blocks C1, C2, and C3 with kernel sizes of 64
× 1, 32 × 1, and 16 × 1, respectively. Given the input sampling rate of 128 Hz, these sizes
correspond to temporal windows of 500 ms, 250 ms, and 125 ms. Following these layers,
the blocks D1, D2, and D3 process the signal in the spatial domain using depthwise con-
volutions. Depthwise convolutions, originally used in image classification to reduce the
number of parameters by factorizing a convolution kernel into smaller kernels, are applied
to each input channel separately. In EEG processing, they help learn optimal spatial filters
for each temporal pattern extracted by the previous layer. The output features from D1,
D2, and D3 are then merged by the concatenation layer N1, followed by average pooling
for dimensionality reduction.

2. Inception Module 2: This module is structured similarly to the first one, with three
branches processing the EEG signal at temporal scales of 500 ms, 250 ms, and 125 ms.
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After the average pooling layer of the first block, these scales correspond to kernel sizes
of 16 × 1, 8 × 1, and 4 × 1. This module extracts additional temporal features at a higher
level of abstraction across all EEG channels. The outputs of convolutional blocks C4, C5,
and C6 are concatenated, followed by average pooling for dimensionality reduction.

3. Output Module: The final two convolutional layers are designed to extract the most sig-
nificant patterns for classification, compressing the information into a few features. The
number of filters is progressively decreased to reduce dimensionality and avoid overfit-
ting, resulting in only 24 features being fed into the final classification layer. The softmax
output layer then estimates the probability for each class (target and non-target).

In Santamaria-Vazquez et al. (2020), the model was trained with the following configu-
ration: Adam optimizer with default hyperparameters β1 = 0.9 and β2 = 0.999, categorical
cross-entropy loss function, mini-batch size of 1024, and 500 epochs. To speed up training
and prevent overfitting, early stopping was applied when the validation loss did not improve
for 10 consecutive epochs, restoring the weights that minimized this metric. The learning rate
(lr), activation function ( fact), and dropout rate (dr) were automatically optimized using grid
search on the validation set. Specifically, the optimal set was lr = 0.001; fact = ELU ; dr = 0.25.
Remaining hyperparameters, including the number of layers, number of branches in Inception
modules, number of filters, kernel sizes, and pooling sizes, were chosen heuristically.

For our study, we will keep the same configuration, except due to our reduced number of
available data, we reduced the mini-batch size to 32 epochs.

4.3.2. EEGSym

Akin EEGInception, EEGSym developed, by Perez-Velasco et al. (2022), incorporates ef-
fective techniques previously validated for EEG decoding. These include the use of inception
modules early in the architecture and the adoption of grouped convolutions to emulate the suc-
cess of EEGNet and EEG-Inception with depthwise convolutions. Each convolution operation
is followed by batch normalization, ’elu’ activation, and dropout regularization. As before, hy-
perparameters such as dr (0.4), number of filters in inception modules (24), and lr (0.001) were
determined via grid search on the validation set.

EEGSym’s architecture, illustrated in Figure 4.2 unfolds across 5 stages:

1. Symmetric Division: Creates virtual divisions within the model, optimizing spatial filter
parameters for subsequent tempospatial analysis and reducing parameter redundancy.

2. Tempospatial Analysis: Captures detailed temporal relationships with two inception blocks
and three residual blocks. Inception module sizes (64, 32, and 16) align with that of EEG-
Inception, spanning temporal windows of 500 ms, 250 ms, and 125 ms. Results from each
convolution are concatenated and added via residual connections, followed by temporal
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Fig. 4.2. Figure overview for EEGSym architecture. (a) Illustration showing the distribution of input electrodes in
an 8-electrode configuration: Z denotes hemispheres (2), S denotes samples (384), C denotes electrodes
per hemisphere (5), and F denotes the number of filters. (b) Key explaining the architecture overview.
(c) Inception block. (d) Residual block. (e) Detailed representation of the EEGSym architecture. All
convolution and grouped convolution operations are followed sequentially by batch normalization, ’elu’
activation, and dropout regularization. Output sizes for each operation are displayed in gray, while af-
fected dimensions after each stage are highlighted in red. (Perez-Velasco et al., 2022)

dimension reduction with average pooling. Spatial extraction utilizes grouped convolu-
tion across hemisphere channels, reducing channels to 1, preserving residual connections.
The residual block includes temporal and spatial analyses with convolution, maintaining
residual connections for temporal relations post-spatial operation and average pooling.

3. Channel Merging: Reduces spatial dimensionality to 1 (Z and C) through two convolution
layers with residual connections, merged via grouped convolution across hemispheres and
channels (kernel size 2 × 1 × 5).

4. Temporal Merging: Further reduces temporal dimensionality to 1 (S) with convolution
and grouped convolution operations matching the temporal dimension.

5. Output Module: Final stage with features dependent on inception module filters (e.g.,
24 filters per branch yield 36 features), includes four convolution layers with residual
connections, flattening features for softmax classification across MI classes.

For our study, we will keep the same hyperparameter configuration, but contrary to the pre-
processing applied to the data on Perez-Velasco et al. (2022), we will not be applying any data
augmentation techniques.
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4.3.3. Adaptation to Torch framework

The EEGInception and EEGSym models are currently available as open source on MEDUSA
kernel in python using the Keras framework with Tensorflow backend, an open library package
for the creation of machine learning models.

On the other hand, PyTorch which is an optimized tensor library designed for deep learning
applications on both GPUs and CPUs, is another open library package for the creation of ma-
chine learning models (Paszke et al., 2019). Given the advantages for of each framework that
can be seen on Table 4.2, the advantages Torch presents for research, and the fact that Tenfor-
flow is not going to continue providing updates for Windows nor support new python updates,
we converted the models from Tensorflow to Pytorch. However, it is worth noting that No-
vac et al. (2022) observed that Pytorch framework falls slightly short of TensorFlow’s training
accuracy, showing a 1.16% disparity between the two frameworks.

In order to create a Neural Network model in Torch, it is required to create the model
within a nn.Module class. The __init__() method is used to define the layers and other
components of a model, while the forward() method is where the actual computation takes
place. Additionally, you can print the model or any of its submodules to inspect their structure.

For example, in the __init__()) you would declare and establish all layers, including con-
volutional, fully connected, batch normalization, depthwise convolutional, pooling or softmax
layers. Weight initialization is also established within this module.

’torch.nn.Module’ is the foundational class in PyTorch designed to encapsulate the behav-
iors and functionalities specific to PyTorch models and their components. Alternatively to
Keras, a 2D convolution within the torch module always receives and input of (N,Cin,H,W), be-
ing N the batch size, Cin the number of channels of the input, H the temporal axis (i.e. samples)
and W the spatial axis (i.e. channels of EEG). Considering a 3 second input to our network, the
input would be of size (N, 1, 384, 64).

In order to compute a 2D convolution required for EEGInception, we require the use of the
function nn.Conv2d, which applies a 2D convolution over an input signal composed of several
input planes.

In the simplest case, the output value of the layer with input size (N,Cin,H,W) and output
(N,Cout,Hout,Wout) can be precisely described as:

out(Ni,Cout j) = bias(Cout j) +
Cin−1∑︂
k=0

weight(Cout j , k) ∗ input(Ni, k)

In order to perform a specific 2D convolution in Keras with arguments:

unit = Conv2D(filters=self.filters_per_branch,

kernel_size=(self.scales_samples[i], 1),

kernel_initializer='he_normal',

padding='same')(input_layer)
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However, to perform a 2D convolution in PyTorch the input arguments are:

conv_layer = nn.Conv2d(in_channels=input_channels,

out_channels=self.filters_per_branch,

kernel_size=(self.scales_samples[i], 1),

stride=1,

padding='same')

nn.init.kaiming_normal_(conv_layer.weight)

As the torch equivalent can’t receive a kernel initializer argument, we are required to sep-
arately initizialize the weights. Furthermore, padding=’valid’ is the same as no padding and
padding=’same’ pads the input so the output has the same shape as the input.

Another consideration for the convolutional layers comes with the implementation of the
Depthwise Convolutional layer. Contrary to Keras, which has a DepthwiseConv2D function
available, a torch depthiwse convolution requires the use of the Conv2d function but with when
the arguments groups == in_channels and out_channels == K × in_channels, where K
is a positive integer known as depth multiplier.

In other words, for an input of size (N,Cin, Lin), a depthwise convolution with a depthwise
multiplier K can be performed with the arguments (Cin = Cin,Cout = Cin×K, . . . , groups = Cin).
Furthermore, in order to be able to apply a depthwise constraint to our convolution, as it isn’t
established as an argument, we must manually ’clamp’ the parameters. The PyTorch code for
clamping the weights of the depthwise convolution layer is:

self.Depth.weight = nn.Parameter(torch.clamp(self.Depth.weight, min=-1., max=1.))

Regarding the training of the model, Keras has a built-in ’fit’ method within the model.
However, for torch you must manually hardcode the iteration training loop within a function. A
training loop that performs one epoch performs the following actions:

1. Retrieves a batch of training data from the input.

2. Resets the optimizer’s gradients.

3. Conducts an inference to obtain predictions from the model for the input batch.

4. Computes the loss by comparing the predictions to the actual labels in the dataset.

5. Computes the backward gradients for the learning weights.

6. Instructs the optimizer to execute one learning step, adjusting the model’s weights based
on the calculated gradients for this batch, according to the chosen optimization algorithm.

7. Reports the loss every 1000 batches.

8. Reports the average loss per batch for the last 1000 batches, for comparison with the
validation run.
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In per-epoch activity, while training we must make sure gradient tracking is on, to then
set the model to evaluation mode, disabling dropout and using population statistics for batch
normalization. Gradient tracking must also be disabled while testing the model on your target
dataset, as we have found that it will cause memory leaks that will exacerbate runtime, even
capable of causing your model to crash. Additionally, EarlyStopping handlers can be found
in torch within complementary Pytorch libraries such as Pytorch-Ignite or Pytorch Lightning.
Nonetheless, we created our own Earlystopping class to keep our model only torch based. The
training loop and the Earlystopping class can also be found in chapter 7.3.

Finally, to work within the Pytorch framework, all arrays that interact with the framework
must be converted to torch.tensor, a multi-dimensional matrix containing elements of a uniform
data type. Most importantly if any GPUs are available, all tensors and models must be trans-
ferred from CPU to CUDA tensor in order to work within the GPU. CUDA (Compute Unified
Device Architecture), developed by NVIDIA, is a programming model and computing toolkit
that accelerates compute-intensive tasks by distributing them across GPUs in parallel. It stands
as one of the predominant API leveraged in deep learning for increased performance.

Criteria PyTorch Keras
Key Differences Deep integration with Python,

preferred for research.
High-level API, user-friendly,
and ideal for rapid prototyping.

Architecture Dynamic computation graph en-
abling real-time graph construc-
tion, suitable for complex mod-
els.

High-level API that operates on
top of TensorFlow, Theano, or
CNTK, abstracts complex opera-
tions.

Ease of Use Python based UI and intuitive,
though it requires more code for
defining models. Offers more
control and flexibility, great for
custom models and research

Simple and concise syntax, mini-
mal code required for model def-
inition. ideal for beginners and
rapid development.

Impact on Practical
Application

Facilitates quick iterations and
detailed debugging, with interac-
tive execution.

Allows for rapid prototyping and
experimentation, with less con-
trol over low-level operations.

Speed and Efficiency Efficient for small to medium-
scale models, offering more con-
trol over optimization.

Performance is dependent on the
backend (TensorFlow, Theano),
optimized for ease of use.

Scalability Suitable for experimental and re-
search projects, effective for cus-
tom implementations.

Scales well for production
through the TensorFlow back-
end, designed for high-level
applications

Table 4.2. Comparison between PyTorch and TensorFlow
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4.3.4. Classification Dataset

The Dataset used to train the NN, follows a similar pipeline as subsection 4.2.1. Alterna-
tively, due to the nature of Neural Network models and their capability for feature learning,
dimensionality reduction and noise handling, we made use of all 64 available channels with a
lower bandpass filter frequency being situated at 0.05 Hz instead of 1Hz. The epoch rejection
algorithm was not applied. Additionally, even though we also tested a 3 class classification
network, we mainly focused on the distinction between ’left’ and ’right’, therefore we removed
all the onsets corresponding to ’rest’ periods, keeping only labels 0 and 1.

4.3.5. Model selection

In order to make a final selection between our two networks, we performed a test run while
training the model with only MI the dataset. For computational purposes, as part of the test
run, we only took 8 of the 64 channels available within the dataset. For this selection we made
use of the optimal channels selected through eXplainable Artificial Inteligence (XAI) in Pérez-
Velasco et al. (2024). After running a 5 fold, similar accuracy results were obtained from both
models, 81% for EEGInception and 81.1% for EEGSym. Since both models provided similar
accuracy, we made the final decision to select EEGInception, as it can be seen the summary of
their arquitecture on Table 4.3 and Table 4.4, EEGSym presents a notable increase complexity
and encompasses over 9 times the number of trainable parameters compared to EEG-Inception,
thereby imposing a substantial burden on computational efficiency and runtime. Amongst all
the code used for the development of this Final Degree Project, only the adapted EEGSym
(hardcoded for 8 channels) and EEGInception torch models are provided in the Annex chapter.

4.3.6. Pre-trained model with transfer learning

As previously stated, the goal of the project is to train the neural network model with the
dataset corresponding to the execution of movements from the subjects, to then transfered the
acquired knowledge to predict the imagination of movement. A model-based approach was
selected as our transfer learning technique of choice.

After importing the h5 files with the pre-processed MI and ME dataset, we performed a
Leave-One-Subject-Out (LOSO) validation training strategy. Since the data imported from the
file presents all the EEG information concatenated, we must first split the features and labels
between the 109 subjects. The LOSO method implies that we pre-trained one model for each
of the available subjects. In this model, we will use all the available ME data except for the ME
data corresponding to said subject to train the model and validate the model. Once the model
has been trained, we test the model with the MI data from the corresponding subject. This
technique allows us to build a strong cross-subject model. We will further explain the pipeline
for the prediction of movement for subject 0, this pipeline is iterated on a loop for each of the
109 subjects.
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1. Split available data in train/development/test. Remove ME data corresponding to subject
0 from ME input data, including both features and labels. Once it has been removed, we
perform a 90% train / validation split amongst the ME data, meaning ME data from 97
subjects is used for training of the model, and data pertaining to the remaining 11 subjects
is used for the validation of the model. The subjects used for training is randomized and
different for each iteration to avoid bias. Finally, all data must be converted to torch.tensor
and transfered to CUDA, while also converting all the corresponding labels to one-hot
encoding.

2. Training of the model while utilizing the Adam optimizer, configured with the default
hyperparameters β1 = 0.9 and β2 = 0.999. The categorical cross entropy loss function
was employed, with a mini-batch size set at 32 and the model trained over 600 epochs.
To expedite the training process and mitigate overfitting, the programmed early stopping
was implemented. Specifically, training was halted if the validation set loss failed to
show improvement over 20 consecutive epochs, subsequently restoring the weights to
those which minimized the validation metric.

3. With gradient tracking disabled, the pre-trained model is tested on the corresponding MI
data from the subject that had been left out.

The selected classification statistic to be tracked is the command decoding accuracy. In
previous studies, it is considered that a user attains BCI control if he reaches accuracies higher
than 70% in MI binary classification (M. H. Lee et al., 2019).

4.3.6.1 Fine-Tuning

Once we have obtained a pre-trained model, we explore two different fine-tuning techniques
in order to try to improve our current model.

• Fine-tuning with MI data: Once the pre-trained model has been obtained with ME data
from available subjects, the premise of this technique, found on Figure 4.3, aims to further
improve the trained model to adapt to the user and reduce the calibration time required for
test subjects, as it only requires the subject to perform MI. However, since the available
MI data per subject is considerably low, we don’t have enough data to perform validation
of the fine-tuning. For this reason, we have heuristically established the fine-tuning model
to perform 10 epochs before arriving to a stop. In this fine tuning method. As stated on
subsection 3.1.2, for most subjects we only have 30 repetitions onsets per run, half of
which belong to ’rest’ periods. Considering we have 3 total MI runs for each task, that
makes a total of 45 repetitions available for each subject.

Considering our limited available data, we evaluated each LOSO subject in the test set
using a fine- tuning process with N = [10, 14, 18, 22, 26, 30] trials. For N = 0, it is
equivalent to testing directly in the pretained model simulating a plug and play device
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and thus assessing their robustness to inter-subject variability. For N > 0, the fine-tuning
process has 3 stages:

1. The algorithm picks N trials from each subject MI data.

2. The trained model is finetuned with the data from these trials, obtaining a subject-
specific model.

3. The fine-tuned model is tested with the rest of trials for each subject.

Fig. 4.3. Work flow of EEGInception. Fine-tuning process for each subject is applied with MI tials
(Santamaria-Vazquez et al., 2020).

• Fine-tuning with ME data: Since the available MI data for each subject is not resource-
ful enough to perform a validation approach during training, we also tried transfer learn-
ing to fine-tune the model with the subjects ME data to obtain a subject specific model.
This approach has the disadvantage of requiring the subject to perform additional calibra-
tion runs, but it is an interesting approach since it would be reinforcing the model with
data from actual execution of movement, which the subject will try to emulate during MI.
Hence, the model becomes more adept at recognizing the neural patterns associated with
actual movement, which should increase its ability to interpret similar patterns during
motor imagery tasks. In this method, we are capable of performing a validation of the
fine-tuning process, with early stopping also implemented. Withing this strategy visible
in Figure 4.4, we evaluated each LOSO subject in the test set using a fine-tuning process
with N = [15, 21, 27, 33, 39, 45] trials. Again, for N = 0, it is equivalent to testing di-
rectly in the pretained model simulating a plug and play device. For N > 0, the fine-tuning
process has 3 stages:

1. The algorithm picks N trials from each subject’s ME data.

2. We perform a 80% train / dev split with the available trials. This means that if we
are fine-tuning with 45 trials, 36 are used for training and 9 are used for validating.

3. The trained model is finetuned with the data from these trials, obtaining a subject-
specific model.

4. The fine-tuned model is tested with all the MI data for each subject.

In both of these approaches, fine-tuning is applied two times. First the entire architecture,
except for the final softmax layer, remains frozen (its parameters are not updated during train-
ing). The softmax layer is trained with a very low learning rate, 1e-4, until early stopping is
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Fig. 4.4. Cross-validation analysis performed over each subject while fine-tuning the pre-trained model with ME
data (Perez-Velasco et al., 2022).

triggered or it has reached the number of iterations predetermined. Then, the entire architecture
is unfrozen and trained with this low learning rate until early stopping is again activated or the
iterations are completed. The initial fine-tuning phase aims to preserve the knowledge gained
during pre-training by only adjusting the weights in the softmax classification layer. The subse-
quent fine-tuning phase further adapts the feature extraction process, especially when the target
dataset significantly differs from the pre-training datasets. This procedure is adapted from the
fine-tuning guidelines described in François Chollet (2021).

In chapter 4, we explored the methodology for processing EEG data, covering the signal
preprocessing techniques, feature extraction methods, and classification algorithms that form
the core of our analysis. In the next chapter, chapter 5, we will shift our focus to the results
obtained from these methods, presenting the performance metrics, analyzing the outcomes, and
discussing the implications of these findings in the context of the study’s objectives. This anal-
ysis will help us understand the effectiveness of the approaches used and guide future research
directions
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Layer (type) Output Shape Param #

Conv2d-1 [-1, 8, 384, 8] 520
BatchNorm2d-2 [-1, 8, 384, 8] 16
ELU-3 [-1, 8, 384, 8] 0
Conv2d-4 [-1, 8, 384, 8] 264
BatchNorm2d-5 [-1, 8, 384, 8] 16
ELU-6 [-1, 8, 384, 8] 0
Conv2d-7 [-1, 8, 384, 8] 136
BatchNorm2d-8 [-1, 8, 384, 8] 16
ELU-9 [-1, 8, 384, 8] 0
AvgPool2d-10 [-1, 24, 192, 8] 0
Conv2d-11 [-1, 48, 192, 1] 384
BatchNorm2d-12 [-1, 48, 192, 1] 96
ELU-13 [-1, 48, 192, 1] 0
AvgPool2d-14 [-1, 48, 96, 1] 0
Conv2d-15 [-1, 8, 96, 1] 6,144
BatchNorm2d-16 [-1, 8, 96, 1] 16
ELU-17 [-1, 8, 96, 1] 0
Conv2d-18 [-1, 8, 96, 1] 3,072
BatchNorm2d-19 [-1, 8, 96, 1] 16
ELU-20 [-1, 8, 96, 1] 0
Conv2d-21 [-1, 8, 96, 1] 1,536
BatchNorm2d-22 [-1, 8, 96, 1] 16
ELU-23 [-1, 8, 96, 1] 0
AvgPool2d-24 [-1, 24, 48, 1] 0
Conv2d-25 [-1, 12, 48, 1] 2,304
BatchNorm2d-26 [-1, 12, 48, 1] 24
ELU-27 [-1, 12, 48, 1] 0
AvgPool2d-28 [-1, 12, 24, 1] 0
Conv2d-29 [-1, 6, 24, 1] 288
BatchNorm2d-30 [-1, 6, 24, 1] 12
ELU-31 [-1, 6, 24, 1] 0
AvgPool2d-32 [-1, 6, 12, 1] 0
Flatten-33 [-1, 72] 0
Linear-34 [-1, 2] 146
Softmax-35 [-1, 2] 0

Total params: 15,022
Trainable params: 15,022
Non-trainable params: 0

Input size (MB): 0.01
Forward/backward pass size (MB): 2.30
Params size (MB): 0.06
Estimated Total Size (MB): 2.37

Table 4.3. Overview of EEGInception Architecture
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Layer (type) Output Shape Param #

Conv3d-1 [-1, 24, 2, 384, 5] 1,560
BatchNorm3d-2 [-1, 24, 2, 384, 5] 48
ELU-3 [-1, 24, 2, 384, 5] 0
Conv3d-4 [-1, 24, 2, 384, 5] 792
BatchNorm3d-5 [-1, 24, 2, 384, 5] 48
ELU-6 [-1, 24, 2, 384, 5] 0
Conv3d-7 [-1, 24, 2, 384, 5] 408
BatchNorm3d-8 [-1, 24, 2, 384, 5] 48
ELU-9 [-1, 24, 2, 384, 5] 0
AvgPool3d-10 [-1, 72, 2, 192, 5] 0
Conv3d-11 [-1, 72, 2, 192, 1] 360
BatchNorm3d-12 [-1, 72, 2, 192, 1] 144
ELU-13 [-1, 72, 2, 192, 1] 0
Conv3d-14 [-1, 24, 2, 192, 5] 27,672
BatchNorm3d-15 [-1, 24, 2, 192, 5] 48
ELU-16 [-1, 24, 2, 192, 5] 0
Conv3d-17 [-1, 24, 2, 192, 5] 13,848
BatchNorm3d-18 [-1, 24, 2, 192, 5] 48
ELU-19 [-1, 24, 2, 192, 5] 0
Conv3d-20 [-1, 24, 2, 192, 5] 6,936
BatchNorm3d-21 [-1, 24, 2, 192, 5] 48
ELU-22 [-1, 24, 2, 192, 5] 0
AvgPool3d-23 [-1, 72, 2, 96, 5] 0
Conv3d-24 [-1, 72, 2, 96, 1] 360
BatchNorm3d-25 [-1, 72, 2, 96, 1] 144
ELU-26 [-1, 72, 2, 96, 1] 0
Conv3d-27 [-1, 36, 2, 96, 5] 2,592
BatchNorm3d-28 [-1, 36, 2, 96, 5] 72
ELU-29 [-1, 36, 2, 96, 5] 0
Conv3d-30 [-1, 36, 2, 96, 5] 41,508
BatchNorm3d-31 [-1, 36, 2, 96, 5] 72
ELU-32 [-1, 36, 2, 96, 5] 0
AvgPool3d-33 [-1, 36, 2, 48, 5] 0
Conv3d-34 [-1, 36, 2, 48, 1] 6,480
BatchNorm3d-35 [-1, 36, 2, 48, 1] 72
ELU-36 [-1, 36, 2, 48, 1] 0
Conv3d-37 [-1, 36, 2, 48, 5] 1,296
BatchNorm3d-38 [-1, 36, 2, 48, 5] 72
ELU-39 [-1, 36, 2, 48, 5] 0
Conv3d-40 [-1, 36, 2, 48, 5] 10,404
BatchNorm3d-41 [-1, 36, 2, 48, 5] 72
ELU-42 [-1, 36, 2, 48, 5] 0
AvgPool3d-43 [-1, 36, 2, 24, 5] 0
Conv3d-44 [-1, 36, 2, 24, 1] 6,480
BatchNorm3d-45 [-1, 36, 2, 24, 1] 72
ELU-46 [-1, 36, 2, 24, 1] 0
Conv3d-47 [-1, 18, 2, 24, 5] 648
BatchNorm3d-48 [-1, 18, 2, 24, 5] 36
ELU-49 [-1, 18, 2, 24, 5] 0

Layer (type) Output Shape Param #
Conv3d-50 [-1, 18, 2, 24, 5] 2,610
BatchNorm3d-51 [-1, 18, 2, 24, 5] 36
ELU-52 [-1, 18, 2, 24, 5] 0
AvgPool3d-53 [-1, 18, 2, 12, 5] 0
Conv3d-54 [-1, 18, 2, 12, 1] 1,620
BatchNorm3d-55 [-1, 18, 2, 12, 1] 36
ELU-56 [-1, 18, 2, 12, 1] 0
Conv3d-57 [-1, 18, 2, 12, 5] 1,296
BatchNorm3d-58 [-1, 18, 2, 12, 5] 36
ELU-59 [-1, 18, 2, 12, 5] 0
AvgPool3d-60 [-1, 18, 2, 6, 5] 0
Conv3d-61 [-1, 18, 1, 6, 1] 3,240
BatchNorm3d-62 [-1, 18, 1, 6, 1] 36
ELU-63 [-1, 18, 1, 6, 1] 0
Conv3d-64 [-1, 18, 1, 6, 1] 3,240
BatchNorm3d-65 [-1, 18, 1, 6, 1] 36
ELU-66 [-1, 18, 1, 6, 1] 0
Conv3d-67 [-1, 18, 1, 6, 1] 360
BatchNorm3d-68 [-1, 18, 1, 6, 1] 36
ELU-69 [-1, 18, 1, 6, 1] 0
Conv3d-70 [-1, 18, 1, 1, 1] 1,944
BatchNorm3d-71 [-1, 18, 1, 1, 1] 36
ELU-72 [-1, 18, 1, 1, 1] 0
Conv3d-73 [-1, 36, 1, 1, 1] 216
BatchNorm3d-74 [-1, 36, 1, 1, 1] 72
ELU-75 [-1, 36, 1, 1, 1] 0
Conv3d-76 [-1, 36, 1, 1, 1] 1,296
BatchNorm3d-77 [-1, 36, 1, 1, 1] 72
ELU-78 [-1, 36, 1, 1, 1] 0
Conv3d-79 [-1, 36, 1, 1, 1] 1,296
BatchNorm3d-80 [-1, 36, 1, 1, 1] 72
ELU-81 [-1, 36, 1, 1, 1] 0
Conv3d-82 [-1, 36, 1, 1, 1] 1,296
BatchNorm3d-83 [-1, 36, 1, 1, 1] 72
ELU-84 [-1, 36, 1, 1, 1] 0
Conv3d-85 [-1, 36, 1, 1, 1] 1,296
BatchNorm3d-86 [-1, 36, 1, 1, 1] 72
ELU-87 [-1, 36, 1, 1, 1] 0
Flatten-88 [-1, 36] 0
Linear-89 [-1, 2] 74
Softmax-90 [-1, 2] 0

Total params: 142,784
Trainable params: 142,784
Non-trainable params: 0

Input size (MB): 0.01
Forward/backward pass size (MB): 15.01
Params size (MB): 0.54
Estimated Total Size (MB): 15.56

Table 4.4. Overview of the EEGSym Architecture for an input of 3 seconds and 8 EEG channels
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5. RESULTS

This chapter presents the findings from the experiments conducted in this study. The results
are structured into two main sections: the first section details the outcomes of the characterisa-
tion process, while the second section focuses on the binary classification results, showcasing
the performance metrics of our cross-task transfer learning model in different settings.

5.1. Results of the Characterization of Motor Execution and Motor Imagery

In this section we present the results of the characterization performed to our datasets, en-
compassing both our spectral (RP) and temporal (ERD/ERS) features. A thorough statistical
analysis is conducted to compare these features, providing insights into their distinct and shared
characteristics.

5.1.1. Relative Bandpower

We begin this section by showing the topographic plots of the computed RP for the ME
and MI datasets. For each dataset, RP was computed in our 7 bands of interest Delta (1-4Hz),
Theta (4-8Hz), Alhpa (8-12Hz), Mu (12-15Hz), Beta1 (15-20Hz), Beta2 (20-30Hz), Gamma
(30-50Hz). RP results for each respective pre-processed dataset were averaged separately for
each task, left or right, between the 109 subjects. Figure 5.1 shows the topographic plots of the
RP results of our ME dataset and Figure 5.2 shows the topographic plots of the RP results of
our MI dataset.

Fig. 5.1. Relative Power for the Execution of Movement of Left and Right Tasks
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Fig. 5.2. Relative Power for the Imagination of Movement of Left and Right Tasks

(a) Left ME (b) Left MI

(c) Right ME (d) Right MI

Fig. 5.3. Violinplots of the RP distribution in electrodes C3 and C4 between the different tasks (left and right) and
paradigms (ME and MI).

During the execution of motor tasks, neurons become less synchronized, which is associated
with increased cortical excitability and enhanced information processing capacity (Pfurtscheller,
2001). If the task to be performed is related to the right hand, the primary effect observed in
EEG is a desynchronization in the contralateral (left) sensorimotor cortex. This desyncroniza-
tion is perceived as a decrease in power in the specific frequency bands (mu and beta). The
right sensorimotor cortex (ipsilateral to the movement) is less engaged in the motor task. As a
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result, it maintains more synchronized activity, often seen as relatively higher power in the mu
and beta bands compared to the contralateral side.

With this in mind, we can observe how on both Figure 5.1 and Figure 5.2, this pattern is
clearly present particulary on Mu and Beta 1 bands. Both for ME and MI we can observe a clear
lateralization of the RP and centralization above the sensorimotor cortex, while the reduction
in RP is greater on the contralateral side of the task being performed. This lateralization can be
further observed in the violinplots represented in Figure 5.3.

In order to establish the significance of the results obtained, a comparison between ME and
MI results was performed with Wilcoxon signed rank test (Wilcoxon, 1945). We compared
each task, band and channel subject by subject across all 109 available to obtain the results.
We selected this method due to its non-parametric nature meaning it does not assume that the
data follows a normal distribution. This is particularly useful in our context because EEG data,
which is often non-normally distributed. Additionally, this test is designed for paired data,
making it ideal for our study where we are comparing ME and MI measurements from the same
subjects. It effectively handles the within-subject variability by considering the differences
between paired observations, thus providing a more accurate comparison of ME and MI.

After conducting the Wilcoxon signed-rank test, we applied Bonferroni correction to ad-
dress the issue of multiple comparisons (Bonferroni, 1936). When performing multiple statisti-
cal tests, the likelihood of obtaining false-positive results increases. The Bonferroni correction
mitigates this risk by adjusting the significance threshold based on the number of comparisons
made. Data is considered statistically significant if a p-value inferior to a 0.05 threshold is
obtained.

The results of this statistical analysis can be observed in both topographic plots in order
to obtain a better spatial visualization, but also in matrix form to better observe the relevant
channels. Figure 5.4 and Figure 5.6 show the results of the statistical analysis performed over
our bands of interest between ME and MI paradigms for the Left task. On the other hand,
Figure 5.5 and Figure 5.7 show the corresponding results for the Right task. On both Figure 5.4
and Figure 5.5, we can observe how particularly in our main bands of interest (mu and beta1),
it can be seen how over the sensorimotor region, these are no statistical significant differences
to be found, providing strong evidence that the neuron activation during the MI paradigms
behaves similarly than those in ME. Furthermore, taking a closer look through Figure 5.6 and
Figure 5.7, most EEG channels find statistical significant differences in the behaviour between
both paradigms, except for those found within the primary motor cortex and include most frontal
cortex electrodes (i.e. FC1, FC2, FCZ) and lateralized central cortex electrodes (C3 and C1 for
the left task; C2, C3 and C4 for the right task).
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Fig. 5.4. Statistical differences corrected with Bonferroni between ME and MI over Alpha, Mu, Beta1 and Beta2
bands for the left task. Not significant differences are marked in red (p-value > 0.05)

Fig. 5.5. Statistical differences corrected with Bonferroni between ME and MI over Alpha, Mu, Beta1 and Beta2
bands for the right task. Not significant differences are marked in red (p-value > 0.05)
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Fig. 5.6. Matrix containing the statistical analysis per band and per channel between ME and MI for the left task.
Not significant differences are marked in red (p-value > 0.05)

Fig. 5.7. Matrix containing the statistical analysis per band and per channel between ME and MI for the right task.
Not significant differences are marked in red (p-value > 0.05)

5.1.2. ERD/ERS

We begin this section with a topographic view of the ERD/ERS of our pre-processed datasets,
visible across 200ms temporal windows since the onset. We performed the computation of
ERD/ERS averaged with our 109 subjects across all 7 target bands, but we only display the
most relevant bands: Alpha, Mu, Beta1 and Beta2. For this feature, we expect to observe
a strong event related desyncrhonization on the contralateral hemisphere of the scalp. This
desynchronization should last the whole duration of the task, which lasts for 4000ms after the
onset.

For the statistical analysis, we performed Wilcoxon signed-rank test, correcting the False
Discovery Rate with the Bonferroni approach for all channels on each temporal window and
task.

Across all bands, it can be observed how the right task has a strong and more distinct con-
tralateral ERD. On the other hand, contralateral dominance is not prominently observed during
left hand motor imagery.

In all figures, we can observe how we obtain a gradually stronger desyncrhonization after
the onset. However, an interesting behaviour is noticed when comparing ME and MI patterns
across the temporal windows, as for the ME paradigm, the ERD is observed across the complete
duration of the task. On the contrary, the MI paradigm presents an ERD that starts to gradually
disipate at around 2500 seconds after the onset, being followed by the respective ERS.

When analysing each band individually, Beta1 and Beta2 visible in Figure 5.20, Figure 5.21,
Figure 5.22, Figure 5.23 and Figure 5.26, Figure 5.27, Figure 5.28, Figure 5.29 respectively,
show weaker ERDs that start to fade briefly after the onset, barely holding on through the task.
This ERD is followed by the characteristic ERS known as the beta rebound. Furthermore,
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Alpha patterns visible in Figure 5.8, Figure 5.9, Figure 5.10, Figure 5.11 manages to hold the
ERD for a longer period, meanwhile even though Mu patterns also fade slightly in Figure 5.14,
Figure 5.15, Figure 5.16, Figure 5.17, they are capable to hold the ERD during the whole length
of the mental task. Finally, even though all bands show the ERD pattern above the sensorimotor
region of the contralateral hemisphere, Beta1 and Mu appear to provide the more focalized
patterns, with the Mu ERD being the strongest.

These findings are corroborated by the statistical analysis: Figure 5.18, Figure 5.19 Mu
provides the least significant differences between the ERD/ERS patterns in the ME and MI
paradigm across most channels and across all temporal windows. The remaining bands found
in Figure 5.12, Figure 5.13, Figure 5.24, Figure 5.25 and Figure 5.30, Figure 5.31, provide
similar results for the most instant response after the onset, but then start showing statistically
significant differences in the patterns, specifically above the sensorimotor cortex characteristic
to the ERD.
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Fig. 5.8. ERD/ERS topoplots over 200ms temporal windows after the onset in the Alpha band for the left ME task.

Fig. 5.9. ERD/ERS topoplots over 200ms temporal windows after the onset in Alpha band for the left MI task.
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Fig. 5.10. ERD/ERS topoplots over 200ms temporal windows after the onset in Alpha band for the right ME task.

Fig. 5.11. ERD/ERS topoplots over 200ms temporal windows after the onset in Alpha band for the right MI task.
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Fig. 5.12. Statistical differences between ME and MI over the Alpha band for the left task. Not significant differ-
ences are marked in red (p-value > 0.05)

Fig. 5.13. Statistical differences between ME and MI over the Alpha band for the right task. Not significant differ-
ences are marked in red (p-value > 0.05)
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Fig. 5.14. ERD/ERS topoplots over 200ms temporal windows after the onset in the Mu band for the left ME task.

Fig. 5.15. ERD/ERS topoplots over 200ms temporal windows after the onset in the Mu band for the left MI task.
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Fig. 5.16. ERD/ERS topoplots over 200ms temporal windows after the onset in the Mu band for the right ME task.

Fig. 5.17. ERD/ERS topoplots over 200ms temporal windows after the onset in the Mu band for the right MI task.
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Fig. 5.18. Statistical differences between ME and MI over the Mu band for the left task. Not significant differences
are marked in red (p-value > 0.05)

Fig. 5.19. Statistical differences between ME and MI over the Mu band for the right task. Not significant differ-
ences are marked in red (p-value > 0.05)
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Fig. 5.20. ERD/ERS topoplots over 200ms temporal windows after the onset in the Beta1 band for the left ME
task.

Fig. 5.21. ERD/ERS topoplots over 200ms temporal windows after the onset in the Beta1 band for the left MI task.
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Fig. 5.22. ERD/ERS topoplots over 200ms temporal windows after the onset in the Beta1 band for the right ME
task.

Fig. 5.23. ERD/ERS topoplots over 200ms temporal windows after the onset in the Beta1 band for the right MI
task.
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Fig. 5.24. Statistical differences between ME and MI over the Beta1 band for the left task. Not significant differ-
ences are marked in red (p-value > 0.05)

Fig. 5.25. Statistical differences between ME and MI over the Beta1 band for the right task. Not significant differ-
ences are marked in red (p-value > 0.05)
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Fig. 5.26. ERD/ERS topoplots over 200ms temporal windows after the onset in the Beta2 band for the left ME
task.

Fig. 5.27. ERD/ERS topoplots over 200ms temporal windows after the onset in the Beta2 band for the left MI task.
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Fig. 5.28. ERD/ERS topoplots over 200ms temporal windows after the onset in the Beta2 band for the right ME
task.

Fig. 5.29. ERD/ERS topoplots over 200ms temporal windows after the onset in the Beta2 band for the right MI
task.
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Fig. 5.30. Statistical differences between ME and MI over the Beta2 band for the left task. Not significant differ-
ences are marked in red (p-value > 0.05)

Fig. 5.31. Statistical differences between ME and MI over the Beta2 band for the right task. Not significant differ-
ences are marked in red (p-value > 0.05)
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5.2. Classification experiment

In this section, we present the results of the binary classification algorithm applied to our
dataset. To assess the performance of the model, we will mainly focus on the accuracy metric,
which quantifies the proportion of correctly classified instances out of the total instances. Other
metrics include the number of subjects that proved to achieve accuracies high enough for BCI
control (>70%) or number of subjects that improved accuracy. This section provides the results
for the transfer learning model, as well as for the 2 approaches towards fine-tuning.

All models were trained on a NVIDIA GeForce RTX 2080 Ti with PyTorch 2.2.1+cu121.

5.2.1. Transfer learning

During the LOSO training with our model, we can observe on Table 5.1 how our model
presents really accuracies for the ME training and validation sets, reaching metrics of almost
90%. Furthermore, once our model is tested, we can observe highly satisfactory results for
MI classification in a complete cross-subject pipeline without any calibration performed on test
subjects. Our model can correctly predict over 80% of the MI trials, also allowing for BCI
control in over 80% of the subjects.

Additionally, as it has been observed in the previous subsection that the ERD during the
MI paradigm is shorter and does not persist throughout the entire task length as compared to
ME, we tested our model both for inputs of 2 seconds and 3 seconds. The results concluded in
similar results for both input times, but with slightly better metrics for the acquisition of signal
during 3000ms.

Input time Train Acc (ME) Dev Acc (ME) Test Acc (MI) BCI control
2000 ms 89.01 ± 0.9 82.34 ± 1.1 80.31 ± 11.2 84/109
3000 ms 89.56 ± 0.7 83.14 ± 1.1 80.85 ± 10.5 88/109

Table 5.1. A table with two rows and two columns

5.2.2. Fine-tuning

In this subsection, we dive into the results of our model after our 2 fine-tuning techniques
are applied separately on their respective pre-trained models. Test results are also provided for
each process of fine-tuning. Table 5.2 shows the results of our fine tuning applied with MI data.

The performance metrics include accuracy (Acc), BCI control index (BCI), subjects that
showed same accuracy or improved after fine-tuning (Subjs imp), and mean improvement of
said subjects (mean imp).

As explained in subsubsection 4.3.6.1, two fine tuning methods were applied, one tuned
with ME data, and another tuned with MI. In each of those methods, two fine tuning processes
were consecutively applied. The first processes freezes the entire architecture except for the
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final layer, while the second process unfreezes all layers. For both input times, the complete
fine-tuning with both processes resulted in higher accuracies compared to only the first process,
unfreezing of the softmax layer. The highest accuracy achieved was 81.94% with a 3000 ms
input time and both MI tuning processes. In contrast, the highest accuracy with a 2000 ms input
time was 80.87%, also with both MI fine-tuning processes.

The BCI control index was consistently higher when two fine-tuning processes were applied.
The maximum BCI control index observed was 94 with a 3000 ms input time and two fine-
tuning processes. For the 2000 ms input time, the highest BCI control index was 92, also with
two fine-tuning processes.

The number of subjects showing improvement and the mean improvements were generally
higher with the 3000 ms input time compared to the 2000 ms input time. Applying two fine-
tuning processes consistently yielded better results. The highest number of subjects showing
improvement was 79, observed with a 3000 ms input time and two fine-tuning processes. The
maximum mean improvement was 3.35% and 3.24%, seen in the 2000 ms and 3000 ms input
times respectively.

MI fine-tuning yielded higher results in terms of the metrics obtained compared to ME
fine-tuning, particularly with longer input times and two fine-tuning processes. This suggests
that MI fine-tuning is more effective for enhancing the performance of the classification model.
Highest results for ME fine tuning were obtained while using only 39 of the 45 available trials,
while the best results obtained for MI fine tuning are obtained while tuning with 26 of 45 trials
available.
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MI Fine
tuning

N
Input time

3000 ms 2000 ms

BCI Subjs Mean BCI Subjs Mean
Acc Control imp imp Acc Control imp imp

1st process

0 80.59±10.4 88 - - 80.11±11.0 84 - -
10 80.40±11.3 89 66 2.76 79.50±11.3 86 58 3.25
14 81.37±10.7 91 70 3.24 79.64±11.1 87 68 2.28
18 80.59±10.4 90 73 2.19 79.72±10.7 90 60 3.08
22 80.27±11.0 88 62 2.70 79.12±10.9 87 58 2.84
26 80.55±10.8 93 65 2.74 79.68±11.1 88 69 2.48
30 80.74±11.1 90 77 2.10 80.08±11.2 86 68 2.99

Both
processes

10 81.43±10.5 90 76 3.02 79.96±11.1 89 65 3.35
14 81.17±10.4 92 69 3.04 80.33±11.2 89 70 3.34
18 81.80±10.6 93 79 3.14 80.44±11.2 86 73 3.33
22 81.42±10.7 91 80 2.55 81.14±10.5 91 77 3.17
26 81.94±10.9 94 82 3.15 80.59±10.8 92 72 3.15
30 81.70±10.7 91 77 3.24 80.79±10.9 91 75 3.29

Table 5.2. Performance metrics of dataset after MI fine tuning is applied with different number of trials

ME Fine
tuning

N
Input time

3000 ms 2000 ms

BCI Subjs Mean BCI Subjs Mean
Acc Control imp imp Acc Control imp imp

1st process

0 80.59±10.4 88 - - 80.11±10.97 84 - -
15 80.70±10.9 87 69 2.59 79.93±10.6 87 68 2.23
21 80.82±10.3 91 72 2.42 79.62±10.7 86 56 2.98
27 80.30±11.4 88 62 2.89 79.66±10.9 84 66 2.76
33 79.92±10.8 85 61 2.56 79.88±10.9 90 64 2.90
39 80.86±10.8 93 76 2.92 79.18±11.6 87 62 2.53
45 80.28±10.6 88 65 2.74 79.71±10.9 90 58 3.18

Both
processes

15 80.67±10.7 88 67 2.99 80.13±10.7 90 64 3.26
21 80.87±11.1 89 69 3.02 79.99±10.7 91 68 2.81
27 80.79±10.5 92 72 2.65 80.22±10.8 87 66 3.27
33 80.63±11.1 86 63 3.23 80.30±11.6 87 70 3.24
39 80.84±11.1 93 64 3.24 80.12±11.1 87 66 3.31
45 80.62±10.6 88 66 3.18 80.27±10.7 85 64 3.35

Table 5.3. Performance metrics of dataset after ME fine tuning is applied with different number of trials
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6. DISCUSSION

6.1. Interpretation of results

6.1.1. Characterization

The RP results, depicted in Figure 5.1 and Figure 5.2, show significant lateralization patterns
during ME tasks, with decreased power in the contralateral hemisphere. During a goal-directed
hand movement, a localized reduction in mu power is observed over the primary motor cortex
of the opposite hemisphere. Concurrently, the ipsilateral hemisphere shows a broader increase
in mu power over the central areas. This increase is interpreted as active inhibition of ipsilateral
motor areas, which are associated with but not directly involved in the task, to prevent mirrored
or associated movements (Duque et al., 2007; Nam et al., 2011). Such inhibition is thought to
enhance the activity in specific cortical areas that control the precise goal-directed movement
(Klimesch et al., 2007; Suffczynski et al., 2001).

This lateralization is indicative of focused cortical activity in the regions responsible for
motor control. During MI tasks, although the RP changes are less pronounced, a similar pattern
of lateralization is observed, suggesting that motor imagery engages the same cortical areas,
albeit to a lesser degree.

Additionally, it is interesting to observe the behaviour in Beta1 RP in MI. Even though a
reduction in power can be appreciated, it is not as significant as the reduction observed in ME in
comparison with the behaviour found in Mu RP. This could be explained by the characteristic
beta rebound (Jurkiewicz et al., 2006). As seen on the ERD/ERS, beta1 ERD fades befores
the end of the task during MI, followed up with the beta rebound ERS, implying an increase in
power.

The interpretation of ERD is grounded in the understanding that a desynchronized EEG
represents an activated state of cortical neurons. Specifically, a desynchronized occipital alpha
rhythm is linked to visual information processing, while a desynchronized Rolandic mu rhythm
is associated with motor behavior and sensorimotor activation (Pfurtscheller, 2001).

The stronger contralateral ERD in the right task, and the abscence of a strong contralateral
dominance in the left hand during MI, aligns with the investigation of Pfurtscheller et al. (2006)
who analyzed four different MI tasks, and Yi et al. (2013) who aimed to explore the differences
in EEG patterns between simple limb motor imagery and compound limb motor imagery, and
to examine the distinctiveness of various mental tasks. These studies revealed a similar ERD
pattern and spatial distribution during left hand motor imagery, behaviour likely attributed to
the participants’ right-handedness.

83



The comparative analysis between ME and MI tasks reveals that while both tasks elicit
ERD/ERS patterns in alpha, mu, and beta bands, the magnitude and spatial distribution of these
patterns differ. ME consistently produces stronger and more widespread desynchronization
compared to MI. This result may be expected given the physical execution of movements in-
volves more extensive neural resources. The mu band in Figure 5.18, Figure 5.19, however,
shows remarkable similarity between the two tasks, strengthening the idea that mu rhythm is a
reliable marker for both executed and imagined movements. This similarity is critical for the
application of our model.

Additionally, as it can be seen on figures present in subsection 5.1.2, ERD patterns seem to
fade away during the MI paradigm. As sustaining attention on an imagined task can be cog-
nitively demanding, the length of the task (4000ms) could imply that subjects may experience
cognitive fatigue or attentional drift over time. The initial cognitive effort to initiate the imagery
induces ERD, but the engagement fades as the task progress. Another explanation could be the
fact that MI lacks actual sensory feedback, which means the neural circuits involved in process-
ing this feedback are not engaged. The absence of this continuous reinforcement may result
in a shorter ERD duration, as the brain does not receive the usual sensory inputs to sustain the
desynchronization.

Our study results extend the work of Pfurtscheller et al. (2005), where they examined short-
lasting beta bursts triggered after imagining hand, foot, or tongue movements in nine able-
bodied participants. Using time–frequency maps to evaluate spatiotemporal ERD/ERS patterns,
they found that after imagining foot movements, seven participants exhibited a significant short-
lasting increase in beta power in the 23–29 Hz range, peaking at the vertex. In contrast, only
two participants displayed a clear beta rebound at the vertex after imagining hand movements,
though five showed significant beta rebound contralaterally. Additionally, in Pfurtscheller and
Silva (1999), during continuous execution of movement in a few seconds, they also demon-
strated a contralateral desynchronization of the mu rhythm and a localized synchronization of
the alpha rhythm in the occipital region.

Our results reveal the presence of these patterns in our MI analysis. The induced beta
oscillations, specially beta2, and the enhanced alpha activity are present around 2 seconds after
onset, while the Rolandic mu rhythm remains in a desynchronized state with low amplitude.
Moreover, in addition to Pfurtscheller et al. (2005), our averaged results across 109 subjects
confirm the existence of a beta2 rebound starting from the vertex and spreading over time to the
rest of the scalp in.

In summary, the results of our characterisation seem to align with previous studies regarding
the behaviour of ME and MI. The inclusion of the mu band allowed us to better observe the
similarities between ME and MI, specially above the sensorimotor areas. Furthermore, our
temporal analysis with a MI task of longer duration (4000ms) compared to other studies such
as Lubbe et al. (2021), allowed us to observe how the ERD pattern dissipates before the end
of the task, while also showing the beta, mu and alpha acitivy characteristic of ME, providing
valuable knowledge regarding the cognitive effort required for the imagination of movements.
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6.1.2. Classification

ME and MI characterization results from the previous subsection, suggest that the neural
representations of imagined movements closely mirror those of actual movements. This consis-
tency is crucial as it implies that a model trained on ME data, which typically provides stronger
and more reliable signals, can be effectively tested and utilized on MI data. This hypothesis is
proved by the results from Table 5.1. Furthermore, since the ERD during MI . It was interesting
to test our model with different input times.

First, the preference for longer input times (3000 ms) should be considered in the design
of BCI protocols to maximize accuracy and reliability. However, the trade-off between longer
input times and user comfort or system responsiveness must be balanced carefully, as the results
obtained from 2000ms are also highly satisfactory. While 3000 ms input times provide better
data for classification, they might lead to increased user fatigue or slower system responses.

Additionally, the overall small improvement obtained (≈3%) through ME and MI fine tuning
techniques performed on the pre-trained model proves the network has learned robust patterns
from the ME data that are resistant to inter-subject variability, which is very positive and elim-
inates the need for calibration. The fact that the highest results for fine-tuning were achieved
with fewer trials than the total available can be attributed to the inherent randomness in data.
Even though the improvement in accuracy is relatively modest, it is possible that the selected
subsets of trials provided a more favorable or informative representation for fine-tuning. On a
more particular note, it can also be observed that the calibration has been very beneficial for cer-
tain specific subjects who previously could not achieve minimal control, possibly due to having
very characteristic signal patterns. This calibration would be of great utility in the creation of
subject specific models in certain cases.

Regarding both protocols, the superiority of MI fine-tuning over ME fine-tuning suggests
that BCI systems should prioritize MI-based calibration processes. This is particularly impor-
tant because MI tasks are less physically demanding than ME tasks, making them more suitable
for users with physical impairments. Implementing MI fine-tuning can increase user experience
by reducing the physical strain associated with prolonged ME tasks. However, due to the scarce
number of trials available, this fine tuning process could be biased by the trials selected. For
better generalization and interpretability, it would be appropriate to test both of the approaches
in a larger dataset. Furthermore, in a key context to this study for neurorehabilitation contexts,
the ME fine tuning approach cannot be performed as subjects would not be able to properly
provide effective ME signals.

In Table 6.1 we can observe the results of our model (highlighted) when compared with
current state of the art MI classification models.

Shuqfa et al. (2023) evaluated the performance of a novel Riemannian geometry decoding
algorithm. The study applies various Riemannian geometry decoding algorithms using four
adaptation strategies—baseline, rebias, supervised, and unsupervised—in both ME and MI sce-
narios with 64 electrodes to the same database used in our study, but removing 6 subjects. All

85



Architecture Database Learning Transfer
Learning

Test Acc BCI Control

ShallowConvNet Physionet 2 class MI Cross-subject 82.0 92/109
DeepConvNet Physionet 2 class MI Cross-subject 82.8 95/109

EEGNet Physionet 2 class MI Cross-subject 81.6 92/109
EEG-Inception Physionet 2 class MI Cross-subject 82.7 92/109

EEGSym Physionet 2 class MI Cross-subject 84.5 99/109
RGA a Physionet

(103subj)
4 class MI - 76.4 -

Mod
ShallowConvNet

High
Gamma

2 class ME Cross-database,
Cross-task

OpenBMI: 80.0
GIST: 72.7

-

CVNet
Dataset I 4 class ME Cross-task 83 -
Dataset I 4 class ME,

MI
Mixed task,

Cross-database
BNCI 2020: 69 -

EEG-Inception Physionet 2 class ME Cross-Subject,
Cross-task

81.94 94/109

Table 6.1. Comparison of MI classification models

aRGA: Riemannian Geometry Algorithms

remaining models using the same Physionet database as our study, made use of only 8 elec-
trodes, all 109 subjects and an input of 3000ms. Miao et al. (2023) trained the Modified Shal-
lowConvNet model with ME inputs of 4000ms from 14 subjects with 20 channels, while testing
on MI data from OpenBMI (54 subjects) for 3000ms, and on GIST (52 subjects) for 4000ms.
Furthermore, D.-Y. Lee et al. (2022) used a proprietary database for training composed of 10
subjects performing upper limb ME for 4000ms with 27 channels, which was tested in those
same subjects while performing MI, and in the public dataset BNCI Horizon 2020 containing
15 subjects. The data present in all the above studies were obtained from healthy subjects.

When observed against the other studies, it can be seen how our model presents competitive
accuracies even when compared to intra-task MI classification models. Our model presents the
most complete results, allowing for a cross task and cross subject binary classification trained
in the largest dataset present, (109 subjects compared to only 14 or 10 in other studies), while
allowing for BCI control in over 85% of subjects available. Additionally, we also tested our
model in a XAI optimized 8 channel configuration through Shaply values from Pérez-Velasco
et al. (2024), obtaining an accuracy of 79.7%. This significant reduction of channels used while
being able to maintain accuracy could be of great use for clinical practice, allowing for easier
use and quicker setup at the cost of a slight reduction in accuracy.

Our cross task transfer learning approach from ME to MI allows for a much easier calibra-
tion obtained from healthy individuals. Since this approach does not necessitate learning the
imagination task, it reduces the time and effort required for participants to become proficient,
thereby streamlining the setup phase. Additionally, this method improves robustness due to the
inherent variability in how individuals perform the imagination paradigm. Since each person
imagines movements differently, directly transferring ME patterns, which are more consistent
and less subjective, leads to more reliable and stable results across diverse subjects. More im-
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portantly, this approach presents a crucial advantage for neurorehabilitation due to the use of
real ME patterns in training. Real ME patterns are closer to the actual neural processes in-
volved in physical movement, making the training more effective and relevant for rehabilitative
purposes. This can result in better outcomes for patients undergoing neurorehabilitation, as the
system can leverage the more precise and accurate representations of motor activities. However,
a potential disadvantage could be the possible decreased accuracy when the ME and MI tasks
are not perfectly aligned, as the nuances of imagined movements may not always be fully cap-
tured by patterns derived from actual execution. This misalignment might necessitate additional
tuning and adjustment, slightly offsetting the initial ease of calibration.

As a result of our experiments, we have succesfully created a plug and play style BCI, that
requires no calibration runs, which can be further subject personalized through two different
fine tuning techniques.

6.2. Implications for stroke rehabilitation

Stroke survivors are likely to show variability in the accuracy and consistency of MI perfor-
mance. Initial attempts at MI may result in low classification accuracy in BCI systems due to
weak or inconsistent neural signals. Over time, with targeted training and rehabilitation, some
improvement in accuracy and consistency can be expected, although it may not reach the levels
of healthy individuals.

In this study, the models are initialized using recordings from healthy subjects, easier to
obtain and less expensive, while also representing the goal behaviour that the patients want to
achieve. This model, trained with ME from healthy subjects, allows people with brain damage
to retrain their activity patterns to fall within normal parameters through NFB training that
leverages residual brain plasticity mechanisms in the affected areas.

The availability of a plug and play BCI that needs no calibration runs is key to improve
user’s motivation when using MI-based BCIs for rehabilitation. Furthermore, since success is
also a key motivator factor, if subjects can’t achieve satisfactory results, the model can be fine-
tuned through a few calibration runs, improving accuracy and thereby regaining motivation. The
ability of our model to achieve subject-specific calibration opens up the possibility for highly
personalized rehabilitation programs. Each patient’s neural responses to MI can be unique,
and our system’s adaptability ensures that the rehabilitation exercises are tailored to individual
needs, maximizing their effectiveness, resulting in optimized treatment plans and increased
engagement. This fine-tuning process is required only when initially adapting the system to the
intended MI application, or whenever there is a significant increase in the number of recorded
trials beyond the initial fine-tuning dataset.

The implications of these findings extend to various domains within neurorehabilitation.
The novel MI classification can facilitate more effective rehabilitation protocols, potentially
accelerating motor recovery in stroke patients. The system’s high accuracy and low calibra-
tion requirement make it a viable option for home-based rehabilitation, reducing the need for
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frequent hospital visits.

6.3. Limitations of the study

During the development of the project, various limitations have been identified that have in-
fluenced the research process and the results obtained. Most of the limitations within the study
come from the availability of public MI datasets. While manually inspecting the dataset, we
found some inconsistencies between the information that was provided and the actual informa-
tion of the dataset. For example, sampling frequency is stated to be 160Hz for all recordings,
however it was found that a selected portion of recordings were sampled at 128Hz. Furthermore,
we were only able to extract 3400ms of the 4000ms epochs due to data acquisition inconsis-
tency.

Even though this dataset is one of the largest available, containing 109 subjects, the total
number of trials and epochs may still be insufficient to capture the interindividual variabil-
ity in brain activity. This limitation particularly restricts our ability to adequately evaluate
the fine-tuning strategy with MI data. Furthermore, the dataset description and experimen-
tal paradigm lacked detailed information regarding the BCI literacy or training levels of the
subjects, which means some participants might have performed the tasks poorly, potentially
affecting the model’s results.

Despite applying a thorough pre-processing pipeline, manual inspection revealed that some
artifacts persisted in individual trials. It could be possible that this punctual artifacts have an
effect in the characterization results. The characterization itself was based on averages across
all 109 subjects. It is possible that the results might have overlooked individual variability
and present loss of specificity. In terms of the neural network, systematic differences between
PyTorch and Tensorflow may cause the models to obtain slightly different results. The selection
of EEGInception over EEGSym was performed on a small test with the final decision being
made in favor of EEGInception in order to decrease computational costs. However, it is possible
that EEGSym network from Perez-Velasco et al. (2022) could obtain better results if used with
a larger quantity of data and applying data augmentation techniques.

Finally, although the hypothesis presented in this study may be of great use for neurore-
habilitation, it has not yet been tested on the target subjects. Additionally, the implementation
of explainable AI could have provided a more comprehensive perspective on the underlying
processes in both ME and MI tasks.
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7. CONCLUSION

In this final chapter, the main contributions of this work to the field of MI and ME character-
ization and binary classification are summarized. Furthermore, the most relevant conclusions
drawn from the obtained results are highlighted, and potential future research directions are
proposed to continue this investigation.

7.1. Contributions

• Time and spectral characterization of ME and MI paradigms:

– Findings regarding beta bursts, contralateral desynchronization, and localized syn-
chronization confirm and extend previous research.

– Similar lateralization patterns observed during MI tasks, though less pronounced
than ME, indicating engagement of the same cortical areas.

– Beta1 RP during MI shows a reduction in power, but less significant compared to
ME, possibly due to characteristic beta rebound. Presence of beta2 rebound starting
from the vertex and spreading over time.

– Temporal analysis with a longer duration MI task shows ERD patterns dissipate
before the end of the task. Sustained attention on an imagined task is cognitively
demanding, leading to cognitive fatigue or attentional drift over time resulting in a
shorter effective execution of the task.

• Novel transfer learning strategy:

– Developed a cross task and cross subject transfer learning strategy for MI classifi-
cation using ME data.

– Demonstrated the feasibility of this approach in enabling BCI control without the
need for extensive calibration runs.

• Implications for neurorehabilitation:

– Provided a robust method for MI classification, which is critical for neurorehabili-
tation applications.

– Showed potential to simplify and enhance rehabilitation protocols, making them
more accessible to stroke patients and individuals with motor impairments.
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7.2. Conclusions

• The analysis of ME and MI tasks reveals significant lateralization patterns, with increased
power in the contralateral hemisphere during goal-directed hand movements. This indi-
cates focused cortical activity in motor control regions. During MI tasks, although the
changes are less pronounced, a similar pattern of lateralization is observed, suggesting
that motor imagery engages the same cortical areas as actual movement, albeit to a lesser
degree.

• The mu rhythm shows remarkable similarity between ME and MI tasks, highlighting its
reliability as a marker for both executed and imagined movements. This finding is critical
for the application of our BCI model, as it underscores the potential for using mu rhythm
in neurorehabilitation and BCI applications.

• The comparative analysis indicates that ME tasks produce stronger and more widespread
desynchronization compared to MI tasks. The beta rebound observed in MI tasks, es-
pecially in the Beta1 range, further elucidates the neural mechanisms underlying motor
imagery and its potential application in BCI systems. The temporal analysis with a longer
MI task (4000ms) provides valuable insights into the cognitive effort required for imagin-
ing movements. The observed fading of ERD patterns before the end of the task highlights
the challenges of sustaining attention during prolonged MI tasks.

• Our cross-task and cross-subject model demonstrates competitive accuracy (81.94%) even
when compared to intra-task MI classification models. The model also proves effective
even with only 2 seconds of input, or only 8 channels. The cross-task transfer learning ap-
proach from ME to MI allows for a plug and play device with easier calibration, reducing
the time and effort required for participants to become proficient in the imagination task.
This approach enhances the robustness of the model and is particularly advantageous for
neurorehabilitation.

• The plug-and-play nature of our BCI with a large dataset, which requires no calibration
runs, is crucial for improving user motivation in MI-based rehabilitation. The ability to
achieve subject-specific calibration through a few calibration runs enhances the accuracy
and effectiveness of the system, providing highly personalized rehabilitation programs.
This adaptability ensures that the rehabilitation exercises are tailored to individual needs,
maximizing their effectiveness and resulting in optimized treatment plans and increased
patient engagement.

• The high accuracy and low calibration requirement of our system make it a viable option
for home-based rehabilitation, reducing the need for frequent hospital visits. This has
significant implications for stroke survivors, who can benefit from targeted training and
rehabilitation in the comfort of their own homes.
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7.3. Future Research

Future research should focus on several key areas to address these limitations and improve
the applicability of BCIs in neurorehabilitation:

• Dataset expansion and diversity: Exploring additional MI datasets such as the ones avail-
able in Gwon et al., 2023 and applying data augmentation techniques could improve
the model’s robustness and generalizability. Incorporating datasets from stroke patients
would provide a more comprehensive understanding of the neural mechanisms underlying
motor control and recovery.

• Explainable AI techniques: Implementing explainable AI techniques, such as Shapley
values, could enhance the interpretability of neural network models, offering deeper in-
sights into their decision-making processes and facilitating clinical adoption.

• Optimization of EEG setup: Testing how the EEG setup can be optimized by reducing
the number of channels without compromising data quality could make the system more
user-friendly and practical for clinical use.

• Advanced model training: Further optimization of fine-tuning techniques with larger
datasets and exploring alternative neural network architectures could lead to improved
performance and reliability of BCI systems.

• Target testing: Validate the model with stroke patients and test its effectiveness in com-
plementing traditional neurorehabilitation therapies.
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Annex

EEGInception

class EEGInception(nn.Module):

def __init__(self, input_time=in_time*1000, fs=128, n_cha=64,

filters_per_branch=8, scales_time=(500, 250, 125),

dropout_rate=0.25, activation='ELU',

n_classes=2, learning_rate=0.001):

"""Torch implementation of EEG Inception.

This model was initially designed for MI decodification of either

left/right hand.

Hyperparameters and architectural choices are explained in the

original article.

Parameters

----------

input_time : int

EEG epoch time in milliseconds.

fs : int

Sample rate of the EEG.

ncha :

Number of input channels.

filters_per_branch : int

Number of filters in each Inception branch. The number should be

multiplies of 8.

scales_time : list

Temporal scale of the temporal convolutions on first

Inception module. This parameter determines the kernel

sizes of the filters.

dropout_rate : float

Dropout rate

activation : str

Activation

n_classes : int

Number of output classes

learning_rate : float

Learning rate
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Returns

-------

model : nn.Model

Torch model already compiled and ready to work

"""

super(EEGInception, self).__init__()

# Parameters

self.input_time = input_time

self.fs = fs

self.n_cha = n_cha

self.filters_per_branch = filters_per_branch

self.scales_time = scales_time

self.dropout_rate = dropout_rate

self.Activation = getattr(nn, activation)()

self.n_classes = n_classes

self.learning_rate = learning_rate

# Useful variables

self.input_samples = int(input_time * fs / 1000)

self.scales_samples = [int(s * fs / 1000) for s in scales_time]

# BLOCK 1: SINGLE CHANNEL ANALYSIS

for i in range(len(self.scales_samples)):

conv_layer = nn.Conv2d(in_channels=1,

out_channels=self.filters_per_branch,

kernel_size=(self.scales_samples[i], 1),

stride=1,

padding='same')

nn.init.kaiming_normal_(conv_layer.weight)

nn.init.zeros_(conv_layer.bias)

batch = nn.BatchNorm2d(self.filters_per_branch, momentum=0.01)

setattr(self, f'Conv1_{i}', conv_layer)

setattr(self, f'Batch1_{i}', batch)

self.Batch = nn.BatchNorm2d(self.filters_per_branch, momentum=0.01)

self.Pool = nn.AvgPool2d((2, 1))

# BLOCK 2: SPATIAL FILTERING

# 2 in out channels is for Depth multiplier

self.Depth = nn.Conv2d(in_channels=len(self.scales_samples)*

self.filters_per_branch,

out_channels=2*len(self.scales_samples)*
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self.filters_per_branch,

kernel_size=(1, self.n_cha),

groups=len(self.scales_samples)*

self.filters_per_branch,

padding='valid', bias=False,

stride=(1, 1))

self.Depth.weight = nn.Parameter(torch.clamp(self.Depth.weight,

min=-1., max=1.))

self.Batch_depth=nn.BatchNorm2d(2*len(self.scales_samples)*

self.filters_per_branch,

momentum=0.01)

# BLOCK 3: MULTI CHANNEL ANALYSIS

for i in range(len(self.scales_samples)):

conv_layer = nn.Conv2d(in_channels=self.Depth.out_channels,

out_channels=self.filters_per_branch,

kernel_size=(int(self.scales_samples[i]

/ 4), 1),

stride=1,

padding='same', bias=False)

nn.init.kaiming_normal_(conv_layer.weight)

setattr(self, f'Conv3_{i}', conv_layer)

batch = nn.BatchNorm2d(conv_layer.out_channels, momentum=0.01)

setattr(self, f'Batch3_{i}', batch)

self.Batch3 = nn.BatchNorm2d(self.Conv3_0.out_channels, momentum=0.01)

# BLOCK 4 OUTPUT BLOCK

self.Conv4_1=nn.Conv2d(in_channels=len(self.scales_samples)*

self.filters_per_branch,

out_channels=int(self.filters_per_branch

*len(self.scales_samples) / 2),

kernel_size=(8, 1), stride=1,

padding='same', bias=False)

self.Conv4_1.weight = nn.init.kaiming_normal_(self.Conv4_1.weight)

self.Batch4_1 = nn.BatchNorm2d(self.Conv4_1.out_channels, momentum=0.01)

self.Conv4_2=nn.Conv2d(in_channels=int(len(self.scales_samples)*

self.filters_per_branch/2),

out_channels=int(self.filters_per_branch *

len(self.scales_samples) / 4),

kernel_size=(4, 1), stride=1,

padding='same', bias=False)

self.Conv4_2.weight = nn.init.kaiming_normal_(self.Conv4_2.weight)

self.Batch4_2 = nn.BatchNorm2d(self.Conv4_2.out_channels, momentum=0.01)

self.Flatten = nn.Flatten()
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self.Dense = nn.Linear(in_features=int(6*self.input_samples/32),

out_features=self.n_classes)

self.soft = nn.Softmax(dim=1)

def forward(self, x):

# Block 1 forward

b1_units = list()

for i in range(len(self.scales_samples)):

conv = getattr(self, f'Conv1_{i}')

batch = getattr(self, f'Batch1_{i}')

unit = F.dropout2d(self.Activation(batch(conv(x))),

self.dropout_rate)

b1_units.append(unit)

# Concatenate + Average Pooling

b1_out = torch.cat(b1_units, dim=1)

b1_out = self.Pool(b1_out)

#print('Block1: ', b1_out.shape)

# BLOCK 2 forward

b2_unit=F.dropout2d(self.Activation(self.Batch_depth(self.Depth(b1_out) ,self.dropout_rate)

b2_out = self.Pool(b2_unit)

#print('Block2: ', b2_out.shape)

# BLOCK 3 forward

b3_units = list()

for i in range(len(self.scales_samples)):

conv = getattr(self, f'Conv3_{i}')

batch = getattr(self, f'Batch3_{i}')

unit = F.dropout2d(self.Activation(batch(conv(b2_out))),

self.dropout_rate)

b3_units.append(unit)

# Concatenate + Average Pooling

b3_out = torch.cat(b3_units, dim=1)

b3_out = self.Pool(b3_out)

#print('Block3: ', b3_out.shape)

# Block 4 output block

b4_u1=F.dropout2d(self.Activation(self.Batch4_1(self.Conv4_1(b3_out))),

self.dropout_rate)

b4_u1 = self.Pool(b4_u1)

#print('Block4_1: ', b4_u1.shape)

b4_u2=F.dropout2d(self.Activation(self.Batch4_2(self.Conv4_2(b4_u1))),

self.dropout_rate)

b4_u2 = self.Pool(b4_u2)

# print('Block4_2: ', b4_u2.shape)

# output layer
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output_layer = self.Flatten(b4_u2)

#print('Flatten: ', output_layer.shape)

output_layer = self.Dense(output_layer)

#print('Dense: ', output_layer.shape)

output_layer = self.soft(output_layer)

return output_layer

EEGSym (8 channels symmetric hardcoded)

class EEGSym(nn.Module):

def __init__(self, input_time=3000, fs=128, ncha=8,

filters_per_branch=24, scales_time=(500, 250, 125),

dropout_rate=0.25, activation='ELU', n_classes=2,

learning_rate=0.001, ch_lateral=3,

spatial_resnet_repetitions=1, residual=True,

symmetric=True):

"""Torch implementation of EEG Inception.

This model was initially designed for MI decodification of either

left/right hand.

Hyperparameters and architectural choices are explained in the

original article.

Parameters

----------

input_time : int

EEG epoch time in milliseconds.

fs : int

Sample rate of the EEG.

ncha :

Number of input channels.

filters_per_branch : int

Number of filters in each Inception branch. The number should be

multiplies of 8.

scales_time : list

Temporal scale of the temporal convolutions on first

Inception module. This parameter determines the kernel

sizes of the filters.

dropout_rate : float

Dropout rate

activation : str

Activation

n_classes : int

Number of output classes
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learning_rate : float

Learning rate

ch_lateral : int

Number of channels that are attributed to one hemisphere

of the head.

spatial_resnet_repetitions: int

Number of repetitions of the operations of spatial analysis

at each step of the spatiotemporal analysis. In the original

publication this value was set to 1 and not tested its variations.

residual : Bool

If the residual operations are present in EEGSym architecture.

symmetric : Bool

If the architecture considers the parameter ch_lateral to create

two symmetric inputs of the electrodes.

Returns

-------

model : nn.Model

Torch model already compiled and ready to work

"""

super(EEGSym, self).__init__()

# Parameters

self.input_time = input_time

self.fs = fs

self.n_cha = ncha

self.filters_per_branch = filters_per_branch

self.scales_time = scales_time

self.dropout_rate = dropout_rate

self.Activation = getattr(nn, activation)()

self.n_classes = n_classes

self.learning_rate = learning_rate

self.ch_lateral= ch_lateral

self.spatial_resnet_repetitions = spatial_resnet_repetitions

self.residual = residual

self.symmetric = symmetric

# Useful variables

self.input_samples = int(input_time * fs / 1000)

self.scales_samples = [int(s * fs / 1000) for s in scales_time]

# ====================== TEMPOSPATIAL ANALYSIS ======================= #

# ========================== Inception (x2) ========================== #

# Inception block 1

unit_conv_t = nn.ModuleList()
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unit_batchconv_t = nn.ModuleList()

for i in range(len(self.scales_samples)):

conv_layer=nn.Conv3d(in_channels=1,

out_channels=self.filters_per_branch,

kernel_size=(1, self.scales_samples[i], 1),

stride=(1, 1, 1), padding='same',

bias=True)

# print(conv_layer.shape)

conv_layer.weight = nn.init.kaiming_normal_(conv_layer.weight)

conv_layer.bias = nn.init.zeros_(conv_layer.bias)

unit_conv_t.append(conv_layer)

unit_batchconv_t.append(nn.BatchNorm3d(self.filters_per_branch,

momentum=0.01))

self.Inception1_1 = unit_conv_t

self.Batch_Inception = unit_batchconv_t

self.Pool_Inception = nn.AvgPool3d((1, 2, 1))

#Grouped (Depthwise) Convolution

# TODO change kernel size based on ncha

self.Depth = nn.Conv3d(in_channels=len(self.scales_samples)*

self.filters_per_branch,

out_channels=len(self.scales_samples)*

self.filters_per_branch, kernel_size=(1, 1, 5),

groups=len(self.scales_samples)*

self.filters_per_branch, padding='valid',

bias=False)

self.batch_depth_inc = nn.BatchNorm3d(self.Depth.out_channels, momentum=0.01)

# Inception block 2

unit_conv_t_2 = nn.ModuleList()

unit_batchconv_t_2 = nn.ModuleList()

for i in range(len(self.scales_samples)):

conv_layer = nn.Conv3d(in_channels=self.Depth.out_channels,

out_channels=self.filters_per_branch,

kernel_size=(1, int(self.scales_samples[i]

/ 4), 1),

stride=(1, 1, 1),

padding='same',

bias=True)

# print(conv_layer.shape)

conv_layer.weight = nn.init.kaiming_normal_(conv_layer.weight)

conv_layer.bias = nn.init.zeros_(conv_layer.bias)

unit_conv_t_2.append(conv_layer)
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batch = nn.BatchNorm3d(filters_per_branch, momentum=0.01)

unit_batchconv_t_2.append(batch)

self.Inception1_2 = unit_conv_t_2

self.Batch_Inception_2 = unit_batchconv_t_2

self.Depth_2 = nn.Conv3d(in_channels=len(self.scales_samples)*

self.filters_per_branch,

out_channels=len(self.scales_samples)*

self.filters_per_branch, kernel_size=(1, 1, 5),

groups=len(self.scales_samples)*

self.filters_per_branch, padding='valid',

bias=False)

self.batch_depth_inc_2 = nn.BatchNorm3d(self.Depth_2.out_channels,

momentum=0.01)

# ============================== Residual (x3) =========================== #

scales_samples = [16, 8, 4]

channels_in = [int(self.Depth.out_channels / x) for x in (1, 2, 2, 4)]

res_units = nn.ModuleList()

batch_res = nn.ModuleList()

for i in range(3):

res_unit_1 = nn.Conv3d(in_channels=channels_in[i],

out_channels=int(channels_in[i+1]),

kernel_size=(1, 1, 1), stride=(1, 1, 1),

padding='valid', bias=False)

res_unit_1.weight = nn.init.kaiming_normal_(res_unit_1.weight)

batch1 = nn.BatchNorm3d(res_unit_1.out_channels, momentum=0.01)

res_unit_2 = nn.Conv3d(in_channels=channels_in[i],

out_channels=int(channels_in[i+1]),

kernel_size=(1, scales_samples[i], 1),

stride=(1, 1, 1),

padding='same', bias=True)

res_unit_2.weight = nn.init.kaiming_normal_(res_unit_2.weight)

res_unit_2.bias = nn.init.zeros_(res_unit_2.bias)

batch2 = nn.BatchNorm3d(res_unit_2.out_channels, momentum=0.01)

res_unit_3 = nn.Conv3d(in_channels=res_unit_2.out_channels,

out_channels=res_unit_2.out_channels,

kernel_size=(1, 1, 5), stride=(1, 1, 1),

padding='valid', bias=False)

# res_unit_3.weight = nn.init.kaiming_normal_(res_unit_3.weight)
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batch3 = nn.BatchNorm3d(res_unit_3.out_channels, momentum=0.01)

temp_list = nn.ModuleList()

temp_list.append(res_unit_1)

temp_list.append(res_unit_2)

temp_list.append(res_unit_3)

res_units.append(temp_list)

temp_lista_2 = nn.ModuleList()

temp_lista_2.append(batch1)

temp_lista_2.append(batch2)

temp_lista_2.append(batch3)

batch_res.append(temp_lista_2)

self.res_units = res_units

self.batch_res = batch_res

# ======================== TEMPORAL REDUCTION ======================== #

conv_unit_1 = nn.Conv3d(in_channels=res_unit_3.out_channels,

out_channels=res_unit_3.out_channels,

kernel_size=(1, int(self.scales_samples[2] / 4), 1),

stride=(1, 1, 1), padding='same', bias=False)

nn.init.kaiming_normal_(conv_unit_1.weight)

self.temp_red = conv_unit_1

self.batch_res3 = nn.BatchNorm3d(conv_unit_1.out_channels, momentum=0.01)

# ========================= CHANNEL MERGING ========================== #

ch_merg = nn.ModuleList()

batch_ch_merg = nn.ModuleList()

for i in range(2):

conv = nn.Conv3d(in_channels=res_unit_3.out_channels,

out_channels=int(len(self.scales_samples)*

self.filters_per_branch/4),

kernel_size=(2, 1, 5), stride=(1, 1, 1),

padding='valid', bias=False)

conv.weight = nn.init.kaiming_normal_(conv.weight)

batch = nn.BatchNorm3d(conv.out_channels, momentum=0.01)

ch_merg.append(conv)

batch_ch_merg.append(batch)

self.ch_merg = ch_merg

self.batch_ch_merg = batch_ch_merg
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self.Depth_CM = nn.Conv3d(in_channels=int(len(self.scales_samples)*

self.filters_per_branch/4),

out_channels=int(len(self.scales_samples)*

self.filters_per_branch/4),

kernel_size=(2, 1, 5),

groups=int(len(self.scales_samples)*

self.filters_per_branch/8),

padding='valid', bias=False)

self.batch_depth_cm = nn.BatchNorm3d(self.Depth_CM.out_channels,

momentum=0.01)

# ======================== TEMPORAL MERGING ========================== #

self.temp_merg = nn.Conv3d(in_channels=self.Depth_CM.out_channels,

out_channels=int(len(self.scales_samples)*

self.filters_per_branch/4),

kernel_size=(1, self.input_samples // 64, 1),

stride=(1, 1, 1), padding='valid', bias=False)

self.temp_merg.weight = nn.init.kaiming_normal_(self.temp_merg.weight)

self.batch_tempmerg = nn.BatchNorm3d(self.temp_merg.out_channels,

momentum=0.01)

self.depth_temp = nn.Conv3d(in_channels=self.temp_merg.out_channels,

out_channels=int(len(self.scales_samples)*

self.filters_per_branch/4)*2,

kernel_size=(1, self.input_samples // 64, 1),

groups=int(len(self.scales_samples)*

self.filters_per_branch/4),

padding='valid', bias=False)

self.batch_depthtemp = nn.BatchNorm3d(self.depth_temp.out_channels,

momentum=0.01)

# =============================== OUTPUT ================================= #

output_conv = nn.ModuleList()

batch_output_conv = nn.ModuleList()

for i in range(4):

conv = nn.Conv3d(in_channels=self.depth_temp.out_channels,

out_channels=int(self.filters_per_branch*

len(self.scales_samples)/2),

kernel_size=(1, 1, 1), stride=(1, 1, 1),

padding='valid', bias=False)

conv.weight = nn.init.kaiming_normal_(conv.weight)

batch = nn.BatchNorm3d(conv.out_channels, momentum=0.01)

output_conv.append(conv)
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batch_output_conv.append(batch)

self.out_conv = output_conv

self.batch_output_conv = batch_output_conv

self.flat = nn.Flatten()

self.dense = nn.Linear(in_features=int(self.filters_per_branch*

len(self.scales_samples)/2),

out_features=n_classes)

self.soft = nn.Softmax(dim=1)

def forward(self, x, symmetric=True):

# ============================== INPUT =============================== #

ch_lateral = self.ch_lateral

input_data = x.unsqueeze(1)

if symmetric == True:

superposition = False

if ch_lateral < self.n_cha // 2:

superposition = True

ncha = self.n_cha-ch_lateral

#idx = torch.zeros(self.n_cha)

#left_idx = (idx[:ch_lateral] == 1)

left_idx = list(range(ch_lateral))

ch_left = input_data[:, :, :, :, left_idx]

#ch_left = torch.gather(input, index=left_idx, dim=-2)

right_idx = list(np.array(left_idx)+int(ncha))

ch_right = input_data[:, :, :, :, right_idx]

#ch_right = torch.gather(input, index=right_idx, dim=-2)

if superposition:

central_idx = list(np.array(range(ncha-ch_lateral))+ch_lateral)

#ch_central = torch.gather(input, index=central_idx, dim=-2)

ch_central = input_data[:, :, :, :, central_idx]

left_init = torch.cat((ch_left, ch_central), dim=-1)

right_init = torch.cat((ch_right, ch_central), dim=-1)

else:

left_init = ch_left

right_init = ch_right

input_data = torch.cat((left_init, right_init), dim=2)

division = 2

else:

division = 1

# print(input.shape)

# ====================== TEMPOSPATIAL ANALYSIS ======================= #
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# ========================== Inception (x2) ========================== #

# INCEPTION BLOCK 1

b1 = list()

for i in range(len(self.Inception1_1)):

conv = self.Inception1_1[i]

batch = self.Batch_Inception[i]

unit = F.dropout3d(self.Activation(batch(conv(input_data))),

self.dropout_rate)

#unit = self.Activation(batch(conv(input)))

#unit = F.dropout3d(self.Activation(batch(conv(input))),

self.dropout_rate)

b1.append(unit)

# print(unit.shape)

temp_b1_out = torch.cat(b1, dim=1)

# print(temp_b1_out.shape)

temp_b1_out = temp_b1_out + input_data

temp_b1_out = self.Pool_Inception(temp_b1_out)

# print(temp_b1_out.shape)

# Grouped conv

temp_b1_out_c = F.dropout3d(self.Activation(self.batch_depth_inc(

self.Depth(temp_b1_out))), self.dropout_rate)

# print(temp_b1_out_c.shape)

b1_out = temp_b1_out_c + temp_b1_out

# print(b1_out.shape)

# INCEPTION BLOCK 2

b2 = list()

for i in range(len(self.Inception1_2)):

conv = self.Inception1_2[i]

batch = self.Batch_Inception_2[i]

unit = F.dropout3d(self.Activation(batch(conv(b1_out))),

self.dropout_rate)

b2.append(unit)

#print('Unit', unit.shape)

temp_b2_out = torch.cat(b2, dim=1)

# print(temp_b2_out.shape)

temp_b2_out = temp_b2_out + b1_out

temp_b2_out = self.Pool_Inception(temp_b2_out)

# print(temp_b2_out.shape)

# Grouped conv

temp_b2_out_c = F.dropout3d(self.Activation(self.batch_depth_inc_2(

self.Depth_2(temp_b2_out))), self.dropout_rate)

# print(temp_b2_out_c.shape)

b2_out = temp_b2_out_c + temp_b2_out
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# print('End block2: ' , b2_out.shape)

# ============================ Residual (x3) ========================= #

temp_res = b2_out

# RESIDUAL

for i in range(3):

conv1 = self.res_units[i][0]

batch1 = self.batch_res[i][0]

temp_res_1 = F.dropout3d(self.Activation(batch1(conv1(temp_res))),

self.dropout_rate)

conv2 = self.res_units[i][1]

batch2 = self.batch_res[i][1]

temp_res_2 = F.dropout3d(self.Activation(batch2(conv2(temp_res))),

self.dropout_rate)

temp_res_out = temp_res_1 + temp_res_2

temp_res_out = self.Pool_Inception(temp_res_out)

conv3 = self.res_units[i][2]

batch3 = self.batch_res[i][2]

#batch2 = self.res_units[i][1]

temp_res_3 = F.dropout3d(self.Activation(batch3(conv3(temp_res_out))),

self.dropout_rate)

res_out = temp_res_3 + temp_res_out

temp_res = res_out

#print(res_out[0].shape)

# ======================== TEMPORAL REDUCTION ======================== #

temp_rb4 = F.dropout(self.Activation(self.batch_res3(self.temp_red(res_out))),

self.dropout_rate)

rb4 = temp_rb4 + res_out

rb4_out = self.Pool_Inception(rb4)

# print(rb4_out.shape)

# ========================= CHANNEL MERGING ========================== #

ch_merg = rb4_out

for _ in range(2):

conv = self.ch_merg[_]

batch = self.batch_ch_merg[_]

temp_cm = F.dropout3d(self.Activation(batch(conv(ch_merg))),

self.dropout_rate)

temp_cm = temp_cm + ch_merg

ch_merg = temp_cm

CM3 = F.dropout3d(self.Activation(self.batch_depth_cm(self.Depth_CM(
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temp_cm))), self.dropout_rate)

# print(CM3.shape)

# ======================== TEMPORAL MERGING ========================== #

temp_TM = F.dropout3d(self.Activation(self.batch_tempmerg(

self.temp_merg(CM3))), self.dropout_rate)

TM = temp_TM + CM3

TM_out = F.dropout3d(self.Activation(self.batch_depthtemp(

self.depth_temp(TM))), self.dropout_rate)

output = TM_out

# ============================= OUTPUT =============================== #

for _ in range(4):

output_temp = output

conv = self.out_conv[_]

batch = self.batch_output_conv[_]

output_temp = F.dropout3d(self.Activation(batch(conv(output_temp))),

self.dropout_rate)

#output_temp = F.dropout3d(self.Activation(batch(self.out_conv(

output_temp))), self.dropout_rate)

output = output_temp + output

flat = self.flat(output)

output_layer = self.soft(self.dense(flat))

return output_layer
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