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Abstract: Cystic fibrosis (CF) is a monogenic disease with different types of mutations that mainly
affect the respiratory-digestive system. Calcium (Ca), phosphorus (P), and vitamin D (Vit-D) are
essential nutrients for maintaining adequate growth and development, as well as key components
in crucial metabolic pathways. Proper diagnosis, treatment, and response are decisive components
of precision medicine. Therefore, we conducted a cross-sectional study to evaluate Ca, P, and Vit-D
levels along with health and nutritional indicators, regarding their non-skeletal functions, in a series
of CF patients. Anthropometric and clinical evaluation, biochemical analysis, dietary survey, and
respiratory and pancreatic status were performed. Even though the results showed that all patients
had normal dietary and serum Ca levels, 47% of patients had deficient Vit-D intake, 53% of patients
had hypovitaminosis D, 35% had insufficient Vit-D levels, 18% had hypophosphatemia, 76% had
elevated alkaline phosphate levels, 29% had hypercalciuria, and 65% had hyperphosphaturia. There
were no significant differences between homozygous and compound heterozygous patients. Ca, P,
and Vit-D levels were associated with body mass index; body composition; physical activity; diet;
growth hormones; and the immune, liver, and kidney systems. We suggest a periodically evaluation
of Ca and P losses.

Keywords: nutritional status; calcium/phosphorus ratio; phosphatase alkaline; physical activity

1. Introduction

Cystic fibrosis (CF) is the most common autosomal recessive multisystem disease
worldwide due to the ∆F508 mutation in gene 7 encoding the CFTR (CF transmembrane
conductance regulator) chloride ion channel [1–3]. Approximately 2000 mutations in the
CFTR gene have been reported [4], affecting 1 in 3300 to 1 in 4800 neonates and 1 in
2500 White individuals [5]. The Cystic Fibrosis Foundation (CFF) Registry data showed a
predicted median reported survival of approximately 50 years and revealed that approx-
imately 40% of patients required oral nutrition supplements and 10% received enteral
nutrition [6]. Life expectancy has increased the occurrence of other more frequent chronic
complications and non-pulmonary comorbidities (non-communicable diseases), along
with the increased chance for obesity and overweight, such as CF-related hyperglycemia
(diabetes, CFRD), CF-related liver disease (CFLD), CF-related kidney disease (CFKD), and
CF-related bone disease (CFBD) [7–9].
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Cystic fibrosis is a monogenic disease that allows for the evaluation of the phenotype–
genotype association (including the response to medications), considering the wide clinical
and laboratory spectrum dependent on the interaction between genotype, environment,
and lifestyle [1]. Emerging literature suggests that heterozygous CF patients are at increased
risk of many of the same conditions as homozygotes, for example. This could cause chronic
pancreatitis, infections due to atypical mycobacteria, and bronchiectasis [10]. Whereas
personalized medicine is symptom-directed treatment tailored to the patient’s phenotype,
precision medicine views the patient as a response to the interrelationship between their
environment, lifestyle, and underlying genetics, adjusting conventional drugs according to
the individual patient’s dose, the type of the medicine, and the response to the drug [1,11].
Its main objective is to achieve a precise measurement of molecular, environmental, and
behavioral factors that contribute to health and disease, in order to obtain an accurate diag-
nosis, a rational disease prevention strategy, a selection of treatments, and the development
of new therapies [11].

Calcium (Ca), inorganic phosphorus o phosphate (P), and vitamin D (Vit-D) are essen-
tial components for normal growth and development in human beings [12]. Phosphorus
and Ca homeostasis are vital for physiological processes, such as DNA structure, cell
signaling, blood coagulation, muscle contraction, bone mineral density, and neuronal ex-
citation [13]. Calcium plays an integral role in neuronal transmission, enzyme activity,
myocardial function, coagulation, and other cellular functions [14]. Phosphorus is crucial
for the maintenance and repair of all cells and tissues [15]. Vitamin D has anti-inflammatory,
insulin-sensitizing effects and regulates Ca and P balance [16]. Hypovitaminosis D is a
global health problem leading to many other diseases, most of which are related to a chronic
inflammatory state [17]. In CF patients, Vit-D is essential for bone, immune, gastrointesti-
nal (GI) and lung health [18]. At any age, Vit-D deficiency can cause immunodeficiency
disorders, with the consequent risk of infectious, as well as the occurrence and progression
of autoimmune diseases [19,20].

Not much is known about Ca, P, and Vit-D levels in CF patients concerning their
non-skeletal actions. We believe personalized and precision medicine are helpful and
indispensable tools to improve the patient’s quality of life with this chronic and debilitating
disease. In patients with CF, prophylactic measures, such as altered Ca, P, and Vit-D level
detection and monitoring, are necessary to guarantee their adequate nutritional status,
growth, and development. In the light of these considerations, we hypothesize that patients
with CF may have abnormal levels of Ca, P, and Vit-D associated with other nutrition and
health aspects of this chronic disease. Therefore, the main aim of this study was to evaluate
Ca, P, and Vit-D levels, regarding their non-skeletal functions, as well as their association
with health and nutritional indicators in a series of CF patients.

2. Results

The results of some evaluations carried out on these CF patients have been previously
published [2,21,22]. No patients were excluded. The mean age of 17 CF patients (10 females,
59%) was 14.8 ± 8 years (seven children, five adolescents, and five adults). No patients had
obesity by body mass index (BMI), but two patients had overweight (8 and 13 years old)
and other two had obesity (2 and 25 years old) by waist-for-height index. Although 12% had
undernutrition by BMI, no patient had stunted growth. The mean basal energy expenditure
(EE) or at rest (REE) was lower than the theoretical one (p = 0.001) but was acceptable
according to the World Health Organization (WHO)’s recommendation (p = 0.074).

Table 1 summarizes the demographic and clinical characteristics of CF patients and
significant differences by mutation types. Homozygous patients had better triceps skinfold;
higher intake of polyunsaturated fats, Vit-C, Vit-D and iodine; higher blood urine nitrogen
(BUN) levels; and lower levels of transferrin, hemoglobin, leucocytes, platelets, and IgG3
than compound heterozygous ones. The types of ∆F508 compound heterozygous (65%,
11 cases) are shown in Table 2.
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Table 1. Baseline demographic and clinical characteristics of participants by type of mutation ∆F508
(n = 17) [2,21,22].

Characteristics (Mean ± SD) Total Homozygous
∆F508

Compound
Heterozygous ∆F508 p-Value

Age (years) 14. 8 ± 8 18.7 ± 10 12.7 ± 6.2 0.147
Triceps skinfold (mm) 8.5 ± 4.6 11.6 ± 5.7 6.8 ± 2.9 0.034 *

Polyunsaturated fats (%DRI) 17.1 ± 5.2 20.4 ± 5.6 15.1 ± 3.9 0.043 *
Vitamin C (%DRI) 170 ± 140 270 ± 159 110 ± 90 0.021 *

Vitamin D intake (%DRI) 623 ± 966 1259 ± 1281 243 ± 241 0.036 *
Iodine (%DRI) 53 ± 21 67 ± 16 45 ± 20 0.043 *

Transferrin (mg/dL) 258 ± 39 231 ± 26 274 ± 38 0.027 *
Blood urea nitrogen (mg/dL) 32.7 ± 11.3 41.5 ± 12.2 28.0 ± 7.8 0.013 *

Hemoglobin (g/dL) 14.3 ± 1.3 13.5 ± 1.0 14.9 ± 1.3 0.037 *
Leucocytes (cell/mm3) 7870 ± 1360 6877 ± 616 8466 ± 1349 0.017 *

Platelets (cell/mm3) 299 ± 103 224 ± 45 344 ± 103 0.018 *
IgG3 (mg/dL) 34.6 ± 22.2 18.4 ± 9.1 42.6 ± 22.6 0.043 *

Legend: DRI: %Dietary Reference Intake. * = p < 0.05

Table 2. Types of mutation in the compound heterozygous subgroup for ∆F508 (n = 11).

Age (Years) Type of Mutations

2 1898 + 1G->A
6 1341 + 1G->A
8 711 + 1G->T
8 1717-1G->A
9 2183AA->G
13 G542X and Q890X
15 1777-1G
15 L997F
16 2183 AA->G
20 1341 + 1G->A and G673X
23 S549N

All of 59% of CF patients (10 cases) had respiratory insufficiency (RI; mean score
Norman–Crispin 6.3 ± 5.5, forced vital capacity (FVC) 84 ± 38%, and forced expired
volume in 1 s (FEV1) 79 ± 26%), and 76% (13 cases) had exocrine pancreatic insufficient
(EPI; mean fat-absorption coefficient (FAC) 88 ± 9%). There was no significant difference
in weight-for-age (WA), height-for-age (HA), weight-for-height (WH), and BMI Z-score,
according to gender and pulmonary function. A lower BMI was observed in those with
exocrine pancreatic sufficiency (EPS) compared to the EPI (p = 0.020). Lung function was
not significantly worse in three patients colonized by Pseudomonas aeruginosa, Candida spp.,
and four subjects by Staphylococcus aureus, compared to those without such colonization.
Although culture-positive patients had normal Vit-D intake, this intake was significantly
lower than that of culture-negative patients. Despite their IR and EIP, they carried out daily
physical activity (PA). A total of 53% of CF patients (nine cases) played some sport. A total
of 59% (10 cases) were between very active/active, three participants did light PA, and four
patients were between sedentary/very sedentary.

The nitrogen balance (NB) was positive but lower (mean: 3.7 ± 5.3). The diet was
hyperproteic for all CF patients. A total of 47% (8 cases) had a hypercaloric diet; 82%
(14 cases) and 59% (10 cases) had a high diet in lipids and cholesterol, respectively; and
35% (6 cases) had a low carbohydrate intake. The diet was deficient in Vit-D (47%, eight
cases), Vit-C (41%, seven cases), Vit-A (29%, five cases), zinc (Zn, 23%, four cases), Vit-E
(18%, three cases), and magnesium (Mg, two cases). A high consumption of iron (Fe, 88%,
15 cases), Vit-A (53%, 9 cases), Vit-C and E (47%, 8 cases), Ca, Mg, and Vit-D (41%, 7 cases),
and Zn (18%, 3 cases) was found. In total, 82% of the subjects (15 cases) had a low Ca/Mg
intake ratio.
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Three cases had high C-reactive protein (CRP), and two patients had a high erythrocyte
sedimentation rate (ESR). Table 3 displays the age, sex, BMI, dietary Ca and Vit-D intake, the
blood and urine tests for Ca, P and Ca/P ratios, serum Vit-D levels and alkaline phosphatase
(ALP), and the Ca/Cr (creatinine) ratio, fractional tubular reabsorption of phosphate (TRP)
and tubular maximum P reabsorption per glomerular filtration rate (TmP/GFR) of each
patient by type of mutation. Four patients had Vit-C deficiency, and five subjects had Fe
deficiency. A total of 53% of participants (nine cases) had hypovitaminosis D, and 35%
(six cases) had insufficient levels. Only one adult had adequate Vit-D for bone health, and
another patient had high levels. There was no association found between Vit-C, Vit-D,
Vit-E, and Fe levels and their intake.

Table 3. Genetics, clinical evaluation, dietary intake, and blood and urine analysis of calcium,
phosphorus, and vitamin D in patients with cystic fibrosis (n = 17).

Age
(Years) Sex BMI

Dietary Intake
(%DRI)

Blood Analytical Urine Analysis

Vit-D Ca Vit-D Ca P Ca/P
ratio

ALP
Calcium Ca/Cr

Ratio

Phosphorus TRP
%

TmP/
GFR

Ca/P
Ratiomg/kg/d 24 hU mg/kg/d 24 hU

Homozygous
4 M −0.59 50 109 15.0 9.9 5.80 1.69 775 1.20 22 0.02 33.93 621 88.7 5.4 0.61
9 F −0.09 69 137 28.0 10.4 4.70 2.12 555 3.55 94 0.02 11.96 317 87.9 4.2 0.88

18 F −2.30 2293 95 15.0 8.9 3.80 2.26 128 2.86 105 0.07 29.32 1076 91.0 3.8 1.17

23 F −0.02 159 114 11.0 9.4 4.10 2.27 129 3.89 235 0.53 13.70 828 78.8 3.2 1.38
25 F 0.64 2574 147 26.0 9.4 4.10 2.27 130 1.59 92 0.08 13.41 775 90.8 4.1 1.86
31 F −1.85 2406 96 75.0 9.7 3.60 2.69 73 4.50 223 0.62 12.85 636 79.1 2.8 1.46

Heterozygous
2 M −0.79 35 147 23.0 10.0 5.30 1.88 550 3.83 41 0.02 22.71 24 90.9 5.3 0.63
6 F −1.16 3 123 14.0 9.9 4.60 2.13 442 1.24 22 0.03 17.68 313 85.5 3.9 0.75
8 M −0.15 85 267 23.0 10.2 5.50 1.80 595 3.92 127 0.07 26.57 861 91.1 5.5 0.82
8 M −0.62 39 154 22.0 9.6 4.30 2.23 948 1.64 51 0.03 22.79 709 89.4 3.9 1.32
9 F −0.12 672 85 17.0 10.1 4.70 2.12 428 6.35 169 0.05 32.39 861 89.5 4.5 0.81

13 M −0.52 19 109 24.0 9.7 5.00 1.94 1071 4.74 207 0.10 19.61 857 93.4 5.4 1.51
15 M −1.66 99 155 11.0 9.9 5.30 1.87 516 3.40 69 0.05 30.86 1293 89.7 5.1 0.91
15 F −1.72 12 103 20.7 10.6 3.70 2.97 420 1.79 72 0.06 17.54 705 80.7 2.9 0.98
16 F −3.81 1425 87 17.0 10.2 4.50 2.22 275 4.65 165 0.06 16.24 575 90.5 4.5 1.66

20 F −0.04 623 127 7.0 10.0 3.74 2.70 187 2.45 145 0.05 12.28 726 92.1 2.9 3.37
23 M −1.35 38 96 3.4 9.5 3.90 2.44 113 3.22 115 0.12 20.74 712 79.7 3.1 1.26

Legend: BMI: body mass index. DRI: %Dietary Reference Intake. Vit-D: vitamin D. Ca: Calcium. P: phosphorus.
ALP: alkaline phosphatase. Cr: Creatinine. TRP: fractional tubular reabsorption of phosphate. TmP/GFR: tubular
maximum phosphate reabsorption per glomerular filtration rate. Abnormal values are written in bold.

No association was found between serum Ca and its respective intake. Serum Ca
levels were normal. Three patients (18%) had hypophosphatemia, and thirteen cases (76%)
had high ALP. The mean serum Ca/P ratio was 2.2. No one children < 18 years of age had
an abnormal serum Ca/P ratio, but two subjects ≥ 18 years of age had a lower serum Ca/P
ratio. A total of 12% of CF patients had a Ca/Cr ratio > 0.2. Although only four subjects
(23%) had a urine Ca loss > 4 mg/kg/day, all patients had a urine Ca loss > 200 mg/L.
While 71% of CF patients (12 cases) had a TRP > 86%, 18% (3 cases) had TRP < 85% and
only one patient had TmP/GFR < 2.8 mg/dL. A total of 65% of subjects (11 cases) exhibited
loss urine P, and 23% of participants (4 cases) had a high TmP/GFR. The mean urine Ca/P
ratio was 1.3. There was a negative association between the Ca/P ratios in serum and urine
(R2 = 0.344, p = 0.013) (Figure 1). Serum P and TmP/GFR (Figure 2) decrease with age.

Significant correlations between the nutritional parameters studied and the levels of
Ca, P, and Vit-D in the diet, blood, and urine are shown in the Supplementary Material
(Table S1) (r > 0.500 **, p < 0.01)]. Table 4 shows the significant associations by simple and
multilinear regression analysis (R2 > 0.500 **, p < 0.01).
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Table 4. Regression analysis between nutritional parameters studied by calcium, phosphorus, and
vitamin D levels in the diet and in blood and urine in patients with cystic fibrosis (n = 17).

Serum
Calcium
(mg/dL)

Serum
Phosphorus

(mg/dL)
Ca/Cr Ratio Urine Ca

(mg/dL)

Urine
Phosphate

(mg/dL)

Urine Ca/P
Ratio

Calcium
Excretion

Rate
TRP (%) TmP/GFR

(mg/dL)

Linear regression analysis

FM (kg) BIA
R2 = 0.746
p = 0.006

Age (years)
R2 = 0.562
p = 0.001

Indirect
calorimetry
R2 = 0.604
p = 0.001

Serum
Ca/P ratio
R2 = 0.839
p = 0.000

Serum
Ca/P ratio
R2 = 0.838
p = 0.000

Basophiles
R2 = 0.537
p = 0.001

MCHC
R2 = 0.712
p = 0.000

Serum
phosphorus
R2 = 0.875
p = 0.000

Multilinear regression analysis

Creatinine
R2 = 0.732
p = 0.000

FFM kg A
R2 = 0.537
p = 0.009

Hip C
R2 = 0.510
p = 0.002

Creatinine
R2 = 0.722
p = 0.000

Creatinine
R2 = 0.588
p = 0.000

CER
R2 = 0.999
p = 0.000

Vitamin B12
(%DRI)

R2 = 0.555
p = 0.001

FFM kg A
R2 = 0.569
p = 0.001

CD3 T L
R2 = 0.631
p = 0.000

CD19 T L
R2 = 0.638
p = 0.000

CD3 T L
R2 = 0.621
p = 0.000

IgM
R2 = 0.616
p = 0.000

BUN and
GGT

R2 = 0.586
p = 0.002

Legend: Ca: Calcium. P: phosphate. Cr: Creatinine. TRP: fractional tubular reabsorption of phosphate. TmP/GFR:
tubular maximum phosphate reabsorption per glomerular filtration rate. %DRI: %Dietary Reference Intake.
MCHC: mean corpuscular hemoglobin concentration. FFM: fat-free mass. kg: kilograms. BIA: bioelectrical
impedance analysis. A: anthropometry. C: Circumference. CER: Calcium excretion ratio. L: lymphocytes. BUN:
blood urine nitrogen. GGT: gamma-glutamyl transferase.

3. Discussion

Interestingly, not much is known about Ca, P, and Vit-D levels in CF patients regarding
their non-skeletal actions. To the best of our knowledge, this is the first study to explore
Ca, P, and Vit-D levels associated with health and nutritional biomarkers in a series of
CF patients. The results showed that mean serum Ca level and Ca intake were normal.
Even though the diet was hyperproteic, hypercaloric, and rich in lipids and cholesterol,
it was low in carbohydrates and deficient in Zn and Mg. The diet was also deficient in
Vit-A, D, and E, despite patients receiving pancreatic enzyme replacement therapy (PERT)
and fat-soluble vitamin supplements (A, D, E, and K). Nine patients (53%) had Vit-D
deficiency, and six cases (35%) had insufficient Vit-D levels. Three participants (18%) had
hypophosphatemia, and thirteen patients (76%) had elevated ALP levels. Five patients
(29%) had hypercalciuria, and eleven subjects (65%) had hyperphosphaturia. The results
show a significant association between Ca, P, and Vit-D with different nutritional and
health indicators.

3.1. Clinical Status

In accordance with the present results, 35% of CF patients in our study were homozy-
gous. Previous studies have demonstrated that ∆F508 is the most common CF-causing
mutation, with a prevalence of 30% to 80% depending on the ethnic group [23]. In this study,
homozygous patients had better triceps skinfold; higher intake of polyunsaturated fats,
Vit-C, Vit-D, and iodine; higher BUN levels; and lower levels of transferrin, hemoglobin,
leucocytes, platelets, and IgG3 than compound heterozygous ones. This outcome is contrary
to a comparative study between compound heterozygous and homozygous ∆F508 CFTR



Int. J. Mol. Sci. 2024, 25, 1900 7 of 25

pediatric patients. It was observed that the nutritional parameters studied (fat-soluble
vitamins, fatty acid profile, weight, height, and BMI) did not differ [24]. Even though geno-
type did not predict individual nutritional phenotype, based on the molecular phenotypic
complexity of CFTR mutants and their susceptibility to pharmacotherapy, mutations may
impose combinatorial defects in CFTR channel biology that must be considered [25].

Surprisingly, no significant differences were found in WA, HA, WH, and BMI Z-score,
according to gender and pulmonary function. A total of 59% of CF patients had RI and
76% had EPI. A lower BMI was observed in those with EPS compared to the EPI (p = 0.020).
Several investigators have reported that lower fat free mass (FFM) is associated with lower
FEV1% predicted and more frequent pulmonary exacerbations in adults with CF [26,27].
In our series, the mean BMI Z-score was normal. Achieving a BMI-for-age above the
50th percentile is a critical goal associated with improved lung function for pediatric CF
patients [28]. The results showed that there was a positive association between FFM and
fat mass (FM) by anthropometry and bioelectrical impedance analysis (BIA), and both
had a positive association with BMI. There were two overweight patients and two obese
patients based on waist-to-height ratio. Over-nutrition, in patients with CF, especially those
with RI, is a relatively new, emerging phenomenon. Hanna et al. reported that 23% of
their patients with CF were overweight or obese [29]. Moreover, in our series, two patients
presented undernutrition due to low BMI. Results from a systematic review of 1839 CF
patients, including children and adults, found that these patients may be at increased risk
of sarcopenia due to their lower FFM, and FM was associated with decreased inspiratory
muscle strength [30].

Regarding PA, CF patients spent an average of 2.7 h/day in outdoor PA (2 to 5 h/day).
Time spent in sports activities had a significant positive correlation with FVC and FEV
but not with CAG. FVC and FEV had a strong correlation between each other. Although
seven patients in our series (41%) suffered from both RI and EPI, ten of them (59%) were
active/very active and played sports. Generally, children with mild CF are more physically
active. As in other chronic diseases, inactivity in CF patients may contribute to further
reduced exercise tolerance and skeletal muscle dysfunction [31]. Nevertheless, in our series,
compound heterozygous patients had more cases with RI and positive cultures, and most
of them (71%) were very active/active. In an exercise intervention program conducted
on fifty-two CF children, the experimental group had a significant improvement in their
exercise capacity, quality of life, and serum Vit-D levels [32]. The PA that our patients
developed could have been a key factor in their health status.

3.2. Vitamin D

The finding showed that obese and overweight patients (23%) had insufficient levels
of Vit-D and that two of them had low dietary Vit-D intake. There is evidence of an inverse
relationship between serum Vit-D and FM due to sequestration of Vit-D in fat and volumet-
ric dilution in obese individuals [33,34]. However, in 150 obese children and adolescents,
BMI, WH, waist circumference (WC), and FM were significantly inversely correlated with
Vit-D levels [35]. In our series, it was the dietary Vit-D intake and urine Ca/P ratio that
had a positive and significant correlation with subscapular skinfold thickness. Similarly,
in a NHANES 2005–2008 study in 3821 participants (8 to 18 years), subscapular skinfold
thickness was the only biomarker of obesity or adiposity that showed significant inverse
association with Ca and Vit-D intake. This suggest that this indicator might be useful for
cross-sectional and intervention studies [36], as it was in our study.

This study also found that two patients were malnourished and that despite having
a higher dietary intake of vitamin D, they had hypovitaminosis D. CF patients may store
less Vit-D due to malabsorption [37]. Decreased body fat, reduced levels of vitamin D-
binding protein, and even increased Vit-D catabolism are due in part to CF treatment, e.g.,
glucocorticoids, antibiotic treatment, among other factors [18]. Compared to 90% of CF
individuals with EPI reported in other studies, in our series, thirteen patients (76%) had
EPI [37]. Furthermore, in our study, dietary Vit-D intake had a positive correlation with FFM.
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This result is in line with the current literature, pointing out the possible positive causal
effect of serum Vit-D on total appendicular, trunk, and upper body FFM [38]. Moreover,
in 116 healthy volunteers (20–74 years), Vit-D had a positive correlation with total lean
mass [39]. Studies indicates that Vit-D supplementation increases Ca entry into muscle
cells, possibly by regulating the synthesis of cytoskeletal proteins in muscle cells [40].

Even though the diet was rich in lipids (82%), cholesterol (59%), and vitamin D (41%),
the diet was deficient in Vit-D in 47% of patients in our series. Curiously, homozygous
patients had a higher intake of polyunsaturated fats, as well as Vit-D, than compound
heterozygous ones. Vitamin D intake had no significant association with other dietary
components or with their serum levels. Data from the 2003–2004 and 2005–2006 National
Health and Nutrition Examination Survey (NHANES) on 4404 children aged 2 to ≤19 years
showed that serum Vit-D was associated with the Prudent Dietary pattern (all vegetable
groups, fruits, other fats, mixed dishes, fish and other shellfish, tomatoes, and meats)
but not with the High-Fat–Low-Vegetable Dietary pattern [41]. Nevertheless, in a follow-
up study (4 years) developed in 190 Dutch CF children and adolescents, not only was
there a significant relationship between total Vit-D intake (dietary and supplementary
intake) and serum levels but also between serum Vit-D and pulmonary function. Moreover,
while intake remained constant across age/years, serum Vit-D decreased significantly with
age [42]. In contrast, in our series, serum Vit-D did not change by age.

Several reports have shown that it is worrying that in CF patients, Vit-D intake and
supplementation do not ensure normal serum levels [43], as seen in our series. In CF
patients, Vit-D levels <30 ng/mL were reported between 40% and 90% and <15 ng/mL
between 15 and 20% [44]. In our series, median serum Vit-D was in the deficient range,
and only one adult had adequate Vit-D levels for bone health. In addition, 35% had
insufficient Vit-D levels. Vit-D insufficiency is still a problem in CF patients, even in those
receiving supplementations [45]. More than half of our series (53%) had hypovitaminosis
D. These results are not surprising because Gupta et al., in 2017, reported that 71% of 52 CF
patients (6–18 years) had serum Vit-D levels <15 ng/mL [46]. Timmers et al. noted that
40% of the children had deficient levels and 38% insufficient levels [42]. Furthermore, in
our series, two heterozygous adults had severe hypovitaminosis D. Severe deficiency can
cause bone malformations in children (rickets) and adults (osteomalacia) [19,47], and it can
dramatically increase the risk of mortality, infections, and many other diseases [48].

As mentioned in the literature review, the CFF and the ESPEN-ESPGHAN-ECFS
guideline has issued instructions for the treatment of Vit-D deficiency, targeting serum
levels of at least 30 ng/mL [18,45]. In our series, no patient had serum vitamin levels of
30 ng/mL. Instead of that, four children, two adolescents, and one adult had vitamin D
levels between 20.7 and 28 ng/mL. While a concentration of at least 30 ng/mL is adequate
for most people to ensure maximum bone health and prevent osteomalacia, a concentration
of 40–60 ng/mL is associated with a reduced risk of infectious diseases, cardiovascular
disease, neurocognitive dysfunction, and various types of cancer [49,50]. Furthermore,
when the Vit-D level is ≥30 ng/mL, the risk of many common cancers is reduced [51].
In our series, an adult had elevated levels of Vit-D (75 ng/mL). Levels >50 ng/mL are
too high and can cause health problems [47]. However, Vit-D toxicity requires serum
levels ≥150 ng/mL [52].

Another significant aspect of Vit-D is a growing body of evidence suggesting that
Vit-D plays a role in erythropoiesis and its deficiency may be a factor in the pathogenesis of
anemia [53,54]. In our series, homozygous patients had significantly lower hemoglobin,
leucocytes, platelets, transferrin, and IgG3 levels than compound heterozygote ones. Serum
Vit-D had a positive and significant correlation with mean corpuscular hemoglobin concen-
tration (MCHC), and dietary Vit-D intake had a positive correlation with mean corpuscular
hemoglobin (MCH). This result was in line with a NHANES II 2001–2006 study, where in
US children and adolescents, hemoglobin levels increased significantly with higher Vit-D
quartiles [54]. Similarly, in periodontitis patients, there was a positively correlated between
Vit-D and red blood count (RBC) index MCHC [55]. Nevertheless, this outcome is contrary
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to the KiGGS (Kinder German Health Interview and Examination Survey for Children and
Adolescents) study (11 to 17 years), where hemoglobin, MCHC, and RBC were inversely
correlated and mean corpuscular volume was positively with serum Vit-D levels [56]. More
studies are required to elucidate these facts.

It is key to consider that CF is associated with a hyperinflammatory state [57]. In
our series, five patients (29%) had abnormal acute-phase protein activity. Dietary Vit-
D intake had a negative correlation with CRP and basophils. Intracellular bacteria are
thought to influence cytokine production, and cytokine activation suppresses transcription
of the gene 1,25-dihydroxyvitamin-D (1,25(OH) 2D)/Vit-D receptor in monocytes and
macrophages [55]. Vitamin D can reduce the proinflammatory cytokine in macrophages
and consequently inflammation in the airways, as well as act in the induction of reactive
nitrogen and oxygen intermediates or in the induction of autophagy against infections [58].
In addition, CF patients may be at high risk of bacterial infections and worsening of
lung function due to Vit-D deficiency because Vit-D can have antimicrobial and anti-
inflammatory properties and act as a potent immunomodulator [37]. One patient had a high
(copper) Cu/Zn ratio, indicating a possible severe bacterial infection [21,59,60]. Although
patients with a positive culture had regular Vit-D intake, this consumption was significantly
lower than those with a negative culture. Furthermore, compound heterozygous patients
had more cases with positive cultures compared to homozygous ones. Heterozygous
carriers of a CFTR variant may be at raised risk of developing bronchiectasis, asthma,
allergic bronchopulmonary aspergillosis, and chronic rhinosinusitis [10].

Vitamin D may play a crucial role in preserving lung function in CF patients [18,58,61].
In our series, four patients (23%) with IR had low Vit-D intake. Curiously, although 59% of
patients had RI, lung function was not significantly worse in patients colonized compared
to those without such colonization. CF patients with Vit-D insufficiency are at risk of pul-
monary infection by pathogens (Pseudomonas aeruginosa), which can accelerate the decline
in lung function. Likewise, in children, hypovitaminosis D is associated with higher rates
of pulmonary exacerbation, bacterial colonization, and reduced lung function [18,61,62].
Specifically in CF, locally produced Vit-D can increase LL-37 concentrations to decrease
colonization by respiratory tract pathogens [58]. Vit-D produced locally in monocytes or
macrophages can act on activated T lymphocytes and activated B lymphocytes, regulating
cytokine and Ig synthesis, respectively [51]. What is more, Vit-D deficiency would coincide
with a shift from a Th2 to a Th1 immune response [63].

The evidence presented in this section suggests that most of our series (88%) presented
a high risk of persistent hypovitaminosis D, despite the contribution of PERT and the
high intake of Vit-D in some of them, along with their supplementation. This is without
forgetting the risk of inflammation and infection secondary to this state of Vit-D deficiency.

3.3. Calcium

Prior studies have noted the importance that throughout the world, both developed
and less developed countries show insufficient Ca intake [64]. Contrary to expectations,
this study did not find any patient with serum Ca deficiency or deficient dietary Ca intake.
In contrast, a series of 68 children and adolescents with CF had lower levels of serum
Ca [65]. Similarly, in a group of 24 CF adults during a pulmonary exacerbation had a
higher prevalence of Ca deficiency [66]. Conversely, in our series, there was no association
between serum Ca and its intake. Seven patients (41%) had a high Ca intake, and it was
higher in patients with higher Vit-D intake. In contrast, in a study carried on CF patients
in Australia, 9.8% of patients did not meet the diet Ca recommendations, and Ca intake
was significantly reduced with increasing age groups [67]. This inconsistency may be
because Vit-D deficiency would affect the intestinal absorption of Ca [68]. The ESPGHAN
recommends a periodic annual assessment of Ca intake, as well as encouraging greater
consumption of foods rich in Ca in patients with a suboptimal intake [7,45]. Moreover, the
European and French guidelines recommend annual monitoring of calciuria [69].
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Several reports have shown that a 24 h urine Ca level of 250 mg is an initial threshold
for determining hypercalciuria [70]. Even if, in our study, no patients had 24 h urine
Ca > 250 mg/L, five cases (29%) had hypercalciuria with regular dietary Ca intake. Two
compound heterozygous patients had urine Ca loss > 125 mg/L with high dietary Ca
intake The enlarged Ca intake may have been the reason for the increased Ca loss in these
two patients. The results showed that in our series, although the mean Ca/Cr ratio was
adequate (0.12) [71] and in children and adolescents ranged between 0.02 and 0.10, two
homozygous women who had urine Ca loss > 200 mg/L had a high Ca/Cr ratio (0.53 and
0.62) [69], which corroborates hypercalciuria.

It is essential to keep in mind that malabsorption not sufficiently corrected by PERT,
increased intestinal permeability, high-salt diet, or increased endogenous fecal Ca loss
and/or high urinary Ca excretion contributes to the negative Ca imbalance [7,69,72]. The
findings showed that Ca excretion rate, the most relevant indicator for systematic Ca
balance [73], had a positive strong correlation with Ca/Cr ratio, and both decreased with
age. In addition, urine Ca had a positive correlation with urine Ca/P ratio and Ca/Cr
ratio. Reports demonstrate that due to increased urine Ca loss compared to the general
population, CF patients are at higher risk of developing stones at a younger age and require
more interventional treatment [74]. Even though in our series patients had hypercalciuria,
the normal–high Ca dietary intake may have had a positive contribution to normal serum
Ca levels despite the high percentage of patients with EPI and Vit-D deficiency. Although
low Ca intake is a risk factor, which our series of patients did not present, Ca may be
deficient in people with CF due to Vit-D deficiency [7,69,72], which our series of patients
suffer from.

The results show that NB was positive but minor, even though all patients had a
high-protein, high-calorie diet. Negative energy balance resulting from reduced appetite
and increased energy requirements contributes to the risk of deteriorating nutritional status
in CF patients [30]. Furthermore, the mean basal EE (mean 1077 ± 303 kcal) was lower
than theoretical (p = 0.001) but was acceptable according to the WHO’s recommendation
(p = 0.074). The indirect calorimetry (IC) had a positive association with urine P. The
mechanisms that explain the increase in REE could be associated with the severity of
RI and lung inflammation [30]. A catabolic state induced by low energy intake, insulin
deficiency, and chronic inflammation can affect FFM and lead to reduced skeletal muscle
mass, inspiratory muscle atrophy, and loss of strength [26].

Additionally, in our series, urine nitrogen had an inverse correlation with serum Ca.
Higher nitrogen intakes were associated with proportionately higher levels of urinary Ca.
Protein intake is a determinant of urinary Ca excretion. Animal protein (which is rich in
sulfur-containing amino acids) contributes to an acidic environment, leading to higher
excretion of Ca in urine [75]. Furthermore, urine Ca had a positive correlation with Vit-B12
intake, BUN, and gamma-glutamyl transferase (GGT), showing that BUN and GGT together
can explain 59% of variability of urine Ca. In menopausal women, 24 h urine Ca levels
were correlated with gold standards for assessing Ca absorption, fractional Ca absorption,
and net Ca absorption, demonstrating that a urinary Ca level of 24 h < 150 mg/d excluded
Ca malabsorption [76].

Another interesting finding in our study was that urine Ca had a negative correlation
with basophiles, and that urine Ca/P ratio had a negative correlation with MCHC. RBCs
rely on Ca-dependent signaling during precursor cell differentiation. Intracellular Ca
levels in circulating RBC participate in the control of biophysical properties (membrane
composition, volume, and rheological properties) and physiological parameters (metabolic
activity, redox status, and cell clearance) [77]. Basophils are inflammatory cells that originate
in the bone marrow from hematopoietic pluripotent stem cells and play an essential role
in Staphylococcus aureus infection [78]. Furthermore, CF patients exhibit inflammatory
overactivation, including increased Ca signaling [79]. Interestingly, CD19 T cells had a
negative correlation with urine Ca, and CD3 T lymphocytes had a positive correlation
with Ca/Cr ratio and Ca excretion rate. Calcium signaling is crucial for the immune
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response. In lymphocytes, regulated increases in cytosolic and organellar Ca concentrations
control metabolism, proliferation, differentiation, secretion of antibodies and cytokines,
and cytotoxicity [80]. In several experimental systems, a hyperinflammatory adaptive
immune response dependent on the CFTR genotype of CD3+ CD4+ lymphocytes was
demonstrated [81].

As far as body composition is concerned, Ca showed an interesting relationship with
several assessments. While serum Ca levels had a negative correlation with FM, FFM
had a positive correlation with urine Ca and urine Ca/P ratio. Hip perimeter had a
positive correlation with urine Ca/P ratio and negative correlation with FFM. Moreover,
dietary Ca intake had a positive correlation with suprailiac Z-score. In 355 Spanish college
students, dietary Ca intake and muscle strength had an inverse significant association
with the FM, suggesting that muscle strength mediates the link between dietary Ca intake
and FM percentage [82]. Likewise, Ca may be a key factor for FM regulation, mainly by
increasing thermogenesis, reducing lipogenesis, or inhibiting fat absorption [83]. Some
studies propose that dietary Ca intake is inverse to adiposity in adults, adolescents, and
children [82,84], suggesting that increasing Ca intake could improve body weight/fat
loss in children and adolescents, in adults and premenopausal women, or adults over
60 years [85].

Two important themes emerge from the results discussed so far. In our series, all the
results analyzed suggest an imbalance in Ca metabolism, due to an increase in urinary
and fecal losses despite adequate/high intake and normal serum levels. Furthermore,
we should not rule out an imbalance in body composition and the risk of an inadequate
immune system response.

3.4. Phosphorus

Phosphorus is one of the most important elements in cellular energy metabolism
and acts as a buffer in the blood and urine, contributing to the acid–base balance [86].
Consistent with the literature, this research found that phosphatemia had a negative
correlation with age (Figure 2) [87–89]. In contrast, serum Ca/P ratio had a positive
correlation with age. No CF patient presented hyperphosphatemia, but three patients
(18%) had hypophosphatemia. This fact may be due to intestinal malabsorption despite
PERT, internal redistribution, and increased urine P losses [68]. Since Vit-D stimulates
P absorption by decreasing the parathyroid hormone (PTH) levels and Vit-D deficiency
leads to decreased intestinal P absorption, this produces hyperparathyroidism (HPT) and
increased PTH-mediated renal P excretion [86]. Chronic diarrhea increases P losses through
the intestines and hypovitaminosis D [68]. Furthermore, hypophosphatemia may impair
chemotaxis, phagocytosis, and bactericidal activity of macrophages, causing ATP depletion;
organ dysfunction; and, especially, muscle weakness. Hypophosphatemic patients with
pneumonia had a longer hospital stay with a higher mortality rate [90].

Under physiological conditions, P balance is maintained by fine adjustments of its
urinary excretion to equal net GI absorption [91]. The results showed that serum P had
a positive correlation with urine P. Eleven participants (65%) had high urinary P losses,
indicating risk of hyperphosphaturia [92]. Nevertheless, based on the reference of urine
P excretion [93], seven patients in our series (42%) would have hyperphosphaturia. Un-
expectedly, the median fractional tubular reabsorption of phosphate (TRP) in our series
was normal (78–91%), and no patient had TRP > 95%, which is a marker of P supplement
insufficiency [94]. TRP had a negative correlation with IgM. Although twelve subjects (71%)
had a TRP > 86% (low P excretion), four patients (23%) had TRP < 85% and had a fractional
excretion of P (FEP) > 20%, suggesting kidney damage [95]. There were two homozygous
women with high FEP and had low GFR (64 and 61 mL/min/1.73 m2). It is important to
bear in mind that patients in stages 1–2 of kidney disease, generally asymptomatic, have
GFR levels between 60 and <90 mL/min per 1.73 m2 [95].

It should be noted that serum Cr may be an unreliable indicator of renal function
in CF patients with reduced muscle mass. Kidney damage is often not detected until a
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significant number of nephrons are affected [96]. An adequate evaluation of GFR can be an
important predictive and control factor for kidney damage [97]. In our study, GRF had a
positive correlation with serum P, urine P, and TmP/GFR and was negatively correlated
with serum Cr and serum Ca/P ratio. Creatinine had a positive correlation with Ca/Cr
ratio and Ca excretion rate. When the serum P level increases, the filtered P load increases,
and the ability to reabsorb P increases. There is a direct correlation between TmP values
and GFR, even when GFR varies over a wide range [98]. Importantly, increased P excretion
per Cr clearance may be associated with kidney damage [99].

Additionally, the threshold P concentration in the kidney or TmP/GFR is the main
determinant of serum P levels [100]. In addition, Cr had a negative association with
TmP/GFR. Phosphorus homeostasis also relies on TRP, ideally assessed by TmP/GFR [101].
In our study, serum P and TmP/GFR had a strong association, and both decrease with
age (Figure 2). There was one homozygous 31-year-old woman with a TmP/GFR of
2.8 mg/dL, indicating tubular P leakage. Four patients (23%) had a high TmP/GFR, which
indicates renal P wasting. As seen in our series, when TmP/GFR, which also depends on
age, decreases in the presence of hypophosphatemia, it indicates renal leakage of P [102].
Chronic hypophosphatemia associated with elevated TmP/GFR can occur in children and
is due to impaired intestinal intake or absorption, as in CF [103].

Another finding is that, although mean Cr levels were normal, mean BUN levels were
high. Homozygous patients had higher BUN levels than heterozygous ones. Two women
had high BUN levels, low GFR, and high serum Cr levels with adequate urine Cr. Serum
P had a negative correlation with Cr. The Cr-based GFR is a measure of kidney function.
The circulating level of Cr is a direct and stable indicator of skeletal muscle mass since
its generation is proportional to FFM [104]. In our series, however, the mean BUN/Cr
ratio was 27. There were two teenage women and two women with abnormal BUN/Cr
ratio (range >60 in children ≤ 10 years and >30 in children > 10 year, adults 10–20) [105].
This ratio may reflect muscle and protein metabolism and the risk of damage to kidney
function [106].

These results support the notion that this state of hypophosphatemia and hyperphos-
phaturia may indicate at high risk of P-imbalance metabolism. This likewise highlights the
risk of developing kidney damage.

3.5. Calcium/Phosphorus Ratios

Calcium and P exert essential roles in many biological processes and may play a
positive regulatory role in cell growth and proliferation [107]. In the pediatric stage, they
play an indispensable role in their growth and development [12]. Vitamin D regulates Ca
and P homeostasis [17], and its deficiency leads to secondary PTH [18,108]. In our series,
there were no patients with stunted growth [109], despite 12% having undernutrition based
on BMI. While serum P had a negative correlation with HA, serum and urine Ca/P ratio
had a positive correlation with HA. It seems possible that these results are due to serum P
levels being higher in children than in adults, probably due to the greater requirement to
incorporate P into the growing skeleton and soft tissues [107]. We would like to highlight
that urine Ca had a low positive association with insulin-like growth factor 1 (IGF-1) and
insulin-like growth factor binding protein 3 (IGFBP3), as well as between IGFBP3 with
serum Ca and serum P. These findings are consistent with the cross-sectional data from
NHANES III, which reported an overall positive correlation between serum Ca and IGF-1
and IGFBP3 levels [110].

Concerning Ca and P homeostasis, these nutrients are directly interconnected since
serum Ca interacts with serum P by modulating various hormones, so their serum concen-
tration is approximately inversely related [111,112]. In this study, serum and urine Ca/P
ratios had a negative correlation between each other (Figure 1). Serum P had an inverse
correlation with serum and urine Ca/P ratios. Also, urine P had an inverse correlation
with serum and urine Ca/P ratio. Furthermore, serum Ca/P ratio had a negative and
significant correlation with TmP/GFR. The mean serum Ca/P ratio was 2.2. Not one child
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under 18 years of age had an abnormal serum Ca/P ratio, but 40% of subjects ≥ 18 years of
age had a lower serum Ca/P ratio, which could be associated with hypoparathyroidism
(HypoPT) [113]. In our study, the mean urine Ca/P ratio was 1.3. Very little was found in
the literature on the urine Ca/P ratio in human beings. In an animal study (sows), the best
cut-off point for urine Ca/P ratio was 1.5 (94% sensitivity and 68% specificity) to identify
fed diets deficient in P and 0.5 for diets with an excess of P (sensitivity of 82% and specificity
of 82%). If we were based on these values, in our study, five patients (29%) would have
diets deficient in P [114].

The results of this study show that serum P had a negative correlation with hip circum-
ference, FFM in kg by anthropometry. Similarly, serum Ca/P ratio had a positive correlation
WH, hip circumference, FMM in kg by anthropometry, and FM by BIA. Nevertheless, it
was the urine Ca/P ratio that had more significant correlations with anthropometric and
body composition assessments. It had a positive correlation with WA, wrist, waist and
hip circumference, subscapular skinfold, FM and FFM by anthropometry, FFM by BIA,
mid upper-arm circumference (MUAC), arm area, arm muscle area, and mid arm muscle
circumference (MAMC). These findings are quite surprising given the facts shown by other
researchers. In 9202 adults (45 to 100 years), an inverse association was found between
serum P and BMI, especially in women, and with the percentage of FM but not FFM,
suggesting a causal effect of BMI on serum P [115]. Contrarywise, inverse associations
between serum P and BMI, waist-to-hip ratio, WC, and FM were observed in populations
with nonmorbid obesity, hypertension, and metabolic syndrome [116,117]. Furthermore, a
population-based study included 46,798 South Korean adults without previous comorbidity,
finding a negative correlation between serum P with WC and BMI. After adjustment for
age, sex, and Ca levels, the association of serum P with WC remained strong, but with BMI
it did not remain significant [118].

One unexpected finding was that serum P had a positive and significant correlation
with alanine aminotransferase (ALT). Both aspartate amino transferase (AST) and ALT
require pyridoxal phosphate as a coenzyme. Two compound heterozygous patients had
high levels of AST, ALT, and GGT. AST had a positive and significant correlation with
ALT (r = 0.835 **, p = 0.000). The mean AST/ALT ratio was 1.0 ± 0.2, and eight patients
(47%) had an AST/ALT ratio > 1.00. One heterozygous girl (6 years) with normal levels of
AST and ALT had an AST/ALT ratio of 1.53, over the upper limit (0.8–1.5) [119]. This may
provide some tentative initial evidence that this patient may be at high risk for secondary
liver disease.

Interestingly, serum P had a positive correlation with ALP. ALP had a positive cor-
relation with TmP/GFR and negative correlation with the Ca/Cr ratio, related to losses
urinary P and Ca, respectively. The mean ALP was 431 U/L, and thirteen participants
(76%) had high ALP levels [120,121]. Two were homozygous women (23 and 25 years) and
another was a heterozygous woman (20 years). In general, ALP is 1.5–2.5 times higher
in children than in adults [122]. While PA activity in women is highest between 10 and
12 years (ALP of 240 and 400 IU/L), male activity peaks between 13 and 15 years (ALP
of 250 and 450 IU/L) [123]. In our series, ALP levels were significantly higher in males
(1071 IU/L) than females (555 IU/L, p = 0.006). In 341 CF adults, Banjar et al. report that
49% of patients had elevated ALP, 36% had high AST, 56% had elevated ALT, and 23% had
high GGT [124]. In 873 cases (1–18 years), the reference range for ALP was 474 to 517 U/L
for children 1 to 4 years, 273 to 871 U/L for children 5 to 8 years, 215 to 894 U/L for children
9 to 13 years, and 229 to 739 U/L for teenagers 14 to 18 years [125]. If these cut-off points
are considered, patients <18 years old had high ALP and were at risk of developing liver
disease. It is important to consider that in CF patients, severe liver disease can appear in
mid-childhood (around 10 years old) more so in boys [124].

Unexpectedly, in our study, ALP levels had an inverse correlation with age, HA, and kg
FMM by anthropometry and by BIA. Bahnemiri et al. found a significant positive correlation
between ALP with length (r = 0.134), weight (r = 0.073), serum P (r = 0.122), and ALT
(r = 0.142). ALP reflects the growth rate in height [125]. Although ALP is elevated due to
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rickets, it may also be increased in HPT, leukemia, Hodgkin’s lymphoma, congestive heart
failure, ulcerative colitis, viral hepatitis, Paget’s disease, fibrous dysplasia, hepatobiliary
disease, and during pregnancy [122]. In preterm infants, a serum ALP > 500 IU/L, observed
in seven patients (41%) in our series, might indicate osteoporosis (100% sensitivity and
80.77% specificity), being recommended as a reliable biomarker to predict the development
of poor bone mineralization [126]. In addition, in our study, Vit-D intake had a negative
association with ALP. It is important to consider that the initial stage of osteomalacia related
to Vit-D deficiency is characterized by normal serum levels of Ca and P and elevated levels
of ALP [127], which occurred in our series.

Another significant aspect of this series was that mean cholesterol intake was slightly
elevated, and 59% had high cholesterol intake. Although there was no significant difference
in the cholesterol intake by type of mutation, one compound heterozygous female with
EPS had cardiovascular risk due to high serum total cholesterol and LDL-cholesterol [128].
Cholesterol intake had a negative correlation with serum P and a positive correlation
with serum Ca/P ratio. Although in our series there was no significant difference in total
cholesterol, HDL-cholesterol, and triglyceride levels by pancreatic function, EPS patients
had significant high LDL levels than PI ones. Cholesterol levels in CF patients are lower than
in the general population. Pancreatic endocrine function is what determines cholesterol
levels [129]. In a study of 451 CF patients, only 5% had hypercholesterolemia. Patients with
PS had between 21 and 36 mg/dL more total cholesterol than PI. This is because patients
with PI, even with PERT, have fat malabsorption and chronic inflammation [130].

The results reviewed and analyzed here seem to suggest a pertinent role of Ca/P ratios
in serum and urine as biomarkers, since both are related to body composition and may
suggest an imbalance in Ca and P levels, a state of HypoPT, P-deficient diets, and risk of
developing liver disease.

At this point, it is crucial to consider several aspects to highlight. First and foremost,
most CF patients (88%) had an increased risk of persistent hypovitaminosis D despite
their dietary intake, supplementation, and PERT treatment, showing an alteration in their
metabolism. This deficiency state can lead to secondary hyperparathyroidism and changes
in the immune system. Secondly, there was an imbalance in the metabolism of Ca and
P due to increasing urinary and fecal losses despite their dietary intake. Elevated ALP
levels were related to urinary Ca and P losses. We should consider the possibility of an
imbalance in body composition and the risk of an inadequate immune system response.
Thirdly, the serum Ca/P ratio was associated with the urinary Ca/P ratio, and both may be
biomarkers to evaluate Ca and P metabolism. The urinary Ca/P ratio showed associations
primarily with anthropometric and body composition assessments. Finally, PA in most of
these patients may have contributed to their health and nutritional status. These results
should alert us to an increased risk of developing liver and kidney damage, overweight,
and obesity, conditions that we can prevent.

Cystic fibrosis is a chronic disease diagnosed at birth with a longer life expectancy
due to improvements in its control and treatment. However, it is a long-term debilitating
disease with economy-wide repercussions. We firmly believe that precision medicine
and personalized medicine are crucial tools to evaluate all aspects of CF patients’ health
status and quality of life. The results respond to the main objective of this study; show
their association with health and nutrition biomarkers; and indicate the need to continue
studying the relationship between the nutritional status of patients with CF and abnormal
levels of Ca, P, and Vit-D, in relation to their non-skeletal functions, to better understand the
essential balance between their states. We believe the contribution of our results is valuable,
since we show the levels of Ca, P, and Vit-D in each patient and the relationships of these
nutrients with other nutritional and health status indicators from a different perspective.

A limitation of this study is the small number of participants and the absence of
a healthy control group. Furthermore, an issue we could not address to complete the
assessment of these nutrients was the assessment of dietary P intake and Vit-D levels
in urine. Nevertheless, notwithstanding the relatively limited sample, this work offers
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valuable and detailed information on the levels of Ca, P, and Vit-D in this series of CF
patients. The strengths of this study lie in the determination of the levels of Ca; P; Vit-D;
the Ca/P ratios; and their relationship with anthropometric, biochemical, and dietary
indicators, in addition to the evaluation of the health and nutrition status in these patients.

The findings of this study have many practical implications in clinical practice and
support the need to evaluate dietary, serum, and urinary Ca, P, and Vit-D levels at least an-
nually. It is important to perform blood and urine studies to confirm that the levels of these
nutrients are adequate to make the adequate changes in their diet or to add supplements.
Further studies, which take these variables into account, will need to be undertaken. A
natural progression of this work is to implement multicenter trials to improve knowledge
of Ca, P, and Vi-D to determine the necessary and appropriate amount of supplementation
for effective prevention with personalized nutritional recommendations.

4. Materials and Methods
4.1. Study Site, Design, and Participants

Calcium, P, and Vit-D levels were studied in a series of child, adolescent, and adult CF
patients. The design of this cross-sectional and observational study has been previously
described (Figure 3) [2,21,22]. This study was carried out for 18 months in the entire
population diagnosed with CF that was treated in the Nutrition Unit of the Pediatric Service
of the University Clinical Hospital of Valladolid, a reference center in the Community of
Castilla y León, Spain. In patients over 15 years of age (adults) who were recruited, the
Nutrition Unit continued to monitor the nutritional status and control the treatment in
these patients. Patients with a proven diagnosis of CF were included. Patients with acute
infection, hospitalization, and refusal to participate were excluded.
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After consulting the project with the clinical research ethics committee of the center,
researchers considered that it was not necessary to have a control group and perform
unnecessary blood extractions in healthy children. All the biochemical determinations
performed are routine studies in clinical practice with previously validated reference values
for this population in the clinical analysis laboratory of the hospital, but for the previously
published determinations of serum Zn [21] and Cu [22] carried out in the Department of
Chemistry of the University of Valladolid.

4.2. Ethical Consideration

The ethics committee of the University Clinical Hospital in Valladolid approved the
study protocol (INSALUD-Valladolid, 14 February 2002). It was carried out in accordance
with the recommendations of the Declaration of Helsinki. Written informed consent was
obtained from all patients prior to their participation in the study.

4.3. Clinical Evaluation

Demographic data were collected from a questionnaire that included the type of
mutations ∆F508. We divided the series into two groups according to genotype: the
homozygous genotype for two identical CFTR pathogenic variants and the compound
heterozygous genotype for two different CFTR pathogenic variants. The Norman–Crispin
score (>5), FVC% (<80%), and FEV1 (<80%) predicted value by spirometry to estimate
RI or RS and the FAC (>93%) [131] by 72 h quantitative fecal fat collection to value EPI
or EPS were realized. Daily PA was assessed using a questionnaire adapted to the age
groups (children, adolescents, adults) studied, based on the Global Physical Activity
Questionnaire (GPAQ) [132]. We gathered data on PA during the week prior to blood and
urine sampling, covering type and time spent in occupational PA (school/work), PA at
home, and recreational PA (sports/other extracurricular activities). PA was divided into
three categories: very active/active, light, and sedentary/very sedentary.

4.4. Assessment of Phenotypical Characteristics

Anthropometrics were assessed using standard weight, height, wrist, hip, waist, and
mid-arm circumference techniques. Using Frisancho [133] and Orbegozo tables [134], the
Z-score of WA, HA, age-for-50◦height, WH, BMI-for age, BMI-height-age, the MUAC and
MAMC, FFM, and FM were calculated. Using a Holtain Skinfold Caliper, triceps, biceps,
subscapular, and suprailiac skinfolds thickness were measured. The BMI-for-age Z-score
was used to categorize patients as underweight (<−2 standard deviations (SD)), normal
BMI (−2 to +2 SD), or obese (>+2 SD). Body composition assessed three compartments,
namely, FM, bone mineral content, and FFM, using anthropometric measurements and
bioelectrical impedance analysis (BIA) (RJL BIA-101 (RJL System, Detroit, MI, USA)). Basal
EE or at REE was measured with IC in fasting, using a canopy system under standardized
conditions (Deltarac II (Datex-Ohmeda. Helsinki, Finland)).

4.5. Dietary Assessment

Patients/parents/guardians recorded food consumption (all foods consumed) and
their quantities as measured by household in a 72 h prospective dietary survey (including
one of the weekend days) on the week prior to the blood test. Daily energy intake; fiber;
carbohydrates; protein; lipids; monounsaturated, polyunsaturated, and saturated fats;
Vit-A, Vit-B1, Vit-B2, Vit-B6, Vit-B12, Vit-C, Vit-D, Vit-E, niacin, and folic acid; and Ca, Mg,
Fe, Zn, and iodine were calculated as the percentage of %DRI or adequate intake using the
Mataix Food and Health software, which provided the percentage of actual nutrient intake
relative to the Spanish recommendations [135,136]. The normal range of dietary intake was
80% to 120% DRI. For their underlying disease, patients received PERT and fat-soluble
vitamins (A, D, E, and K) supplements. NB was evaluated as follows: NB (g/24 h) = N
supplied (diet) − (total urinary N in 24 h + extrarenal N losses).
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4.6. Laboratory Exploration

Fasting venous blood samples were collected. Complete blood count, biochemical pro-
file, and acute-phase protein activity, including CRP > 4 U/L and ESR in women >20 mm/h
and men >15 mm/h, were measured using standardized methods. Serum prealbumin
≤18 mg/dL, albumin ≤3.5 g/dL as visceral protein reserve, transferrin ≤200 mg/dL,
lymphocytes <2000 cell/mm3, total cholesterol >200 (mild-moderate risk) and >225 mg/dL
(high risk), and low-density-lipoprotein cholesterol >115 (mild-moderate risk) and
>135 mg/dL (high risk) were used as cutoffs to evaluate abnormal values. Total im-
munoglobulin (Ig) G levels of IgG1-4, IgA, IgM, and IgE; complement C3 and C4, CD3,
CD4, CD8, CD16+56, CD19 T lymphocytes, and CD4/CD8 ratio; IGF-1 and IGFBP3; folic
acid; beta-carotene; vitamins B12, C, D, and E; and Ca, P, Fe, and Mg [2] were measured
using standardized methods. Serum Zn [21] and Cu [22] levels were measured by atomic
absorption spectrophotometry.

For serum evaluations, the following cut-off points were used: Vit-D in children:
severe deficiency <5 ng/mL, deficiency < 20 ng/mL, insufficiency 20–30 mg/mL, suffi-
ciency >30 ng/mL [137,138]; in adults: adequate for bone health >20 ng/mL, inadequate
<20 ng/mL, <12 ng/mL insufficient, >50 ng/mL high levels [47]. Serum Ca in children:
8.8–10.8 mg/dL; in adults: 8.4–10.6 mg/dL [139]; and hypercalcemia >11 mg/dL [140].
Serum Ca was corrected when the serum albumin level was <4.0 g/dL, using the formula:
Corrected Ca (mg/dL) = Measured Ca (mg/dL) + [4 − albumin (g/dL) [141]. Serum
P in children was 4.5–6.5 mg/dL, in adults was 3.0–4.5 mg/dL [139]. The serum Ca/P
ratio < 18 y 2.2 ± 0.5 and >18–34 y 2.7 ± 0.5. Male 1.6–4.4 and female 1.8–3.9 [142];
>3.5 for primary hyperparathyroidism (PHPT) [112], and <2.3 (normal range from 2.3 to
3.3 for HypoPT) [113]. ALP in children from 1 to <10 y 156–369 U/L, from 10 to <13 y
141–160 U/L, from 13 to <15 y, female: 62–280 U/L, male: 127–57 U/L; from 15 to <17 y,
female: 54–128 U/L, male: 89–365 U/L; from 17 to <19 y, female: 48–95 U/L, male:
59–164 [120]; and in adults: 30–120 U/L [121].

In 24 h urine, urine Ca, P, and Cr were evaluated by standardized methods, using the
following cut-off points: hypercalciuria in children > 4 mg/kg/d [143] and >200 mg/L
(20 mg/dL), in adults >350 mg/24 h [71]. Hypercalciuria by Ca/Cr ratio from 2 to 4 y: >0.28,
children ≥ 4 y > 0.20 (<0.20 is normal while less than 0.18 mg Ca/Cr is optimal) [70]. Urine
P: 12.4 ± 4.6 mg/kg/d [92]. The TRP {1− [(urinary P× serum Cr)/(urinary Cr× serum
P)]} × 100 [144]: 78–91% [92]. TmP/GFR: If TRP ≤0.86 then TmP/GFR = TRP × serum P.
If TRP >0.86, then TmP/GFR = α × serum P, where α = 0.3 × TRP/{1 − (0.8 × TRP)} [88].
TmP/GFR: from 1 to 5 y 3.25–5.51 mg/dL, from 6 to 12 y 3.00–5.08 mg/dL, from 13 to 15 y
2.82–5.20 mg/dL, and ≥16 y and adults 2.60–3.80 mg/dL [145]. TmP/GFR <2.8 mg/dL
indicated the renal tubular phosphate loss [88].

4.7. Statistical Analysis

All data were recorded in a database. The main variables studied were serum levels of
Ca, P, and Vit-D; urinary levels of Ca and P; and dietary intake of Ca and Vit-D. Secondary
variables were clinical and anthropometric evaluations, complete blood count, blood
and urinary biochemistry, diet, body composition, and baseline EE. The distribution of
anthropometric results (quantitative and Z-scores) and biochemical data were described
as mean, median, quartiles, standard deviation, and ranges. Disease duration was shown
in months. The deficient state of the biomarkers was studied, and the comorbidities
were expressed as percentages. Patients were categorized into ∆F508 homozygous and
compound heterozygous. A comparison between groups for continuous and categorical
variables was performed using the Mann–Whitney U and McNemar’s tests, respectively.
Spearman’s correlation was performed to test the associations. The analysis of variance
(Kruskal–Wallis test) was used to search for interactions. To determine if two qualitative
variables were independent, we used Fisher’s exact test (FET). To estimate the magnitude
of the association between exposure and disease, we calculated odds ratios (ORs). Simple
and multiple linear regression analyses was calculated to study the relationships between



Int. J. Mol. Sci. 2024, 25, 1900 18 of 25

two or more correlations. The effects were analyzed using the forward method, including
only variables with a p-value <0.05. Only correlations/associations with a significant
association >0.500, p < 0.01 ** are be shown. Analyses were carried out using IBM SPSS
version 26.0 (IBM Corp., Armonk, NY, USA). p-values < 0.05 * and < 0.01 ** were considered
statistically significant.

5. Conclusions

In this series of CF patients, although dietary intake and serum calcium were normal
and no patient had hypo- or hypercalcemia, there were patients with hypercalciuria (29%).
Even though some patients had hypophosphatemia (18%), most participants had elevated
alkaline phosphatase levels (76%) and hyperphosphaturia (65%). Our patients were at
increased risk of vitamin D deficiency (88%) despite high dietary vitamin D intake,
supplementation, and PERT treatment. Our results support that there was an imbalance
in Ca, P, and Vit-D metabolism in these patients. In addition, there were significant
associations between calcium, phosphorus, and vitamin D with several health and
nutritional biomarkers.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ijms25031900/s1, Table S1: Significant correlations in the entire
series between the nutritional parameters studied with the levels of calcium, phosphorus and vitamin
D in the diet, blood and urine.
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CF Cystic fibrosis
Ca Calcium
P Phosphorus or phosphate
Vit Vitamin
PA Physical Activity
RI Respiratory insufficiency
RS Respiratory sufficiency
PI Pancreatic insufficiency
PS Pancreatic sufficiency
BMI Body mass index
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%DRI % Dietary Reference Intake
ALP Alkaline phosphatase
Cr Creatinine
TRP Fractional tubular reabsorption of phosphate
TmP/GFR Tubular maximum phosphate reabsorption per glomerular filtration rate
EE Energy expenditure
ECFS European Cystic Fibrosis Society
ESPEN European Society for Clinical Nutrition and Metabolism
ESPGHAN European Society for Paediatric Gastroenterology Hepatology and Nutrition
WHO World Health Organization
NB Nitrogen balance
CRP C-reactive protein
ESR Erythrocyte sedimentation rate
NHANES National Health and Nutrition Examination Survey
PERT Pancreatic enzyme replacement therapy
FAC Fat absorption coefficient
FFM Fat free mass
FM Fat mass
BIA Bioelectrical impedance analysis
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