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Abstract

As the interest in FPGA-based accelerators for HPC applications
increases, new challenges also arise, especially concerning different pro-
gramming and portability issues. This paper aims to provide a snap-
shot of the current state of the FPGA tooling and its problems. To
do so, we evaluate the performance portability of two frameworks for
developing FPGA solutions for HPC (SYCL and OpenCL) when us-
ing them to port a highly-parallel application to FPGAs, using both
ND-range and single-task type of kernels.

The developer’s general recommendation when using FPGAs is to
develop single-task kernels for them, as they are commonly regarded
as more suited for such hardware. However, we discovered that, when
using high-level approaches such as OpenCL and SYCL to program a
highly-parallel application with no FPGA-tailored optimizations, ND-
range kernels significantly outperform single-task codes. Specifically,
while SYCL struggles to produce efficient FPGA implementations of
applications described as single-task codes, its performance excels with
ND-range kernels, a result that was unexpectedly favorable.
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1 Introduction

In recent years, Field Programmable Gate Arrays (FPGAs) have gained pop-
ularity in High-Performance Computing (HPC) environments, as the slow-
down in the increase of CPU performance incentivized research into hardware
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accelerators. In addition, with the end of Dennard scaling and Moore’s law,
power consumption has emerged as a major constraint of current-day high-
performance systems. FPGAs present a special interest in this context, as
they have proven to possess high power efficiency while being able to accel-
erate computationally costly tasks [4]. Among others, FPGA accelerators
have demonstrated their usefulness in many fields, such as Deep Learning,
Finance, Signal and Multimedia Processing, and Fluid Dynamics.

FPGAs differ considerably from traditional load-store processor archi-
tectures (CPUs and GPUs) and these differences are responsible for making
FPGAs competitive accelerators in certain fields [12]. On the other hand,
they also pose additional challenges and limitations for developing FPGA-
targeting applications. Namely, efficient FPGA programming requires a deep
knowledge of hardware concepts with which software developers are usually
unfamiliar. Hardware Description Languages (HDLs), such as VHDL and
Verilog, have historically been used by electronic engineers to design and
deploy custom hardware architectures on FPGAs. These languages differ
significantly from the programming languages widespread among software
developers, even in HPC contexts. High-Level Synthesis (HLS) frameworks,
such as Vivado HLS [13], have been developed to ease these programming
complexities by allowing programmers to use dialects of high-level program-
ming languages to target FPGAs. In general, even when using any of these
HLS frameworks, efficient programming of FPGAs requires considerable ad-
ditional development effort, which translates into longer development cycles
when compared to programming other accelerators, such as multicore CPUs
with OpenMP, or GPUs with CUDA.

To ease the development process of HPC applications for different accel-
erators, two frameworks were proposed with portability in mind: OpenCL
and SYCL. OpenCL [11] is a programming framework for heterogeneous en-
vironments that can be used as an HLS development tool for both Intel and
Xilinx FPGAs. Before integrating the FPGA support, OpenCL had already
been widely adopted in HPC environments to program heterogeneous sys-
tems, and thus has a special interest for the HPC community as an HLS
language. It is compatible with any C program, and seeks to provide code
portability among many different computing units. OpenCL is mainly used
in HPC environments to program data-parallel, Single Instruction Multiple
Data (SIMD) accelerators, such as multicore CPUs and GPUs. Although
the SIMD-optimized codes could be compiled and run on an FPGA without
any major change, additional development is most likely required to effi-
ciently exploit the FPGA’s resources and achieve a performance-competent
implementation.

Similarly, SYCL [10] is a C++ library and abstraction layer for heteroge-
neous computing that can target FPGA accelerators (using Intel’s DPC++
SYCL implementation). SYCL is built on top of OpenCL to provide a generic
and portable programming framework for heterogeneous systems, leverag-
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ing C++ specific features, such as templates and generic lambda functions,
to provide a higher level of abstraction. Regarding its usage for program-
ming FPGAs, SYCL presents issues similar to those of OpenCL: SYCL is
an abstraction layer that mainly focuses on data-parallel approaches, and
efficiently programming FPGAs usually requires additional code transfor-
mations and efforts.

In this work, we evaluate and compare SYCL and OpenCL, two commonly-
used HPC heterogeneous programming tools for developing applications on
Intel FPGAs. To that end, we have chosen to use these frameworks to port
UVaFTLE [3], a highly-parallel fluid dynamics calculus to extract the Finite
Time Lyapunov (FTLE) exponent for fluid dynamic applications. UVaFTLE
is a set of modern, open-source multicore and multi-GPU implementations
of the FTLE computation using OpenMP and CUDA. The FTLE compu-
tation is an embarrassingly parallel task, as it involves performing multiple
computations over each of the flowmap’s particles independently.

The migration of FPGA codes to SYCL has not been explored in the
literature. Instead, some works focus on the design of FPGA hardware ac-
celerators from the ground up using SYCL, such as in [9]. To the best
of our knowledge, no previous works explore the performance differences
between ND-range and single-task FPGA kernels when using SYCL. More
works study the use of OpenCL to develop HPC solutions for Intel FPGAs.
Some study the optimization of well-known HPC kernels to FPGAs [16, 15],
with some of them exploring the performance differences between ND-range
and single-task kernel versions of the same algorithms [6, 14]. While some
of these works provide performance comparisons against GPU implementa-
tions, none of them explore the performance comparison against other FPGA
implementations using different frameworks.

Our results show that the use of ND-range kernels to deploy our applica-
tion in a FPGA offers much better performance than the use of single-task
kernels. This suggests that single-task kernel performance cannot be im-
proved without applying optimizations specifically tailored for FPGAs, thus
requiring some knowledge that is usually outside the expertise of HPC pro-
grammers. All the codes and performance analysis carried out in this work
are publicly available at https://github.com/uva-trasgo/uvaftle/tree/fpga.

2 The problem: FTLE

The field of fluid dynamics has been widely explored from the computational
perspective because of its importance in a wide variety of engineering ap-
plications. One of the topics that are of great interest in this field is the
determination of the fluid particle trajectories in phase space, also known
as Lagrangian particle dynamics, and the calculation of the corresponding
Lagrangian Coherent Structures (LCS) [5]. LCS are recognized as influential

3



surfaces within a dynamic system, guiding the paths of nearby trajectories
throughout a specific period of interest. They play a pivotal role in directing
the movement and formation of various physical occurrences such as oceanic
entities like floating debris or oil slicks, as well as atmospheric phenomena
including volcanic ash clouds and spore dispersals. The main interest in
computing the LCS is because they provide a better understanding of the
flow phenomena, since they can be broadly interpreted as transport barriers
that influence the transport within the flow.

LCS are not directly observable but can be inferred through the calcula-
tion of FTLE (Finite Time Lyapunov Exponents) fields. The fluid particle
trajectories are defined as solutions of ~̇x = ~v (~x, t), where the right-hand
side is the velocity field of the fluid, in the absence of molecular diffusion.
Solving this system of equations allows the LCS to be calculated. From the
computational point of view, the extraction of LCS is achieved by complet-
ing two main steps: The flowmap computation and the FTLE extraction. In
this paper, we take the second step as our target calculation: See [1] for the
mathematical details.

In our previous work, we presented UVaFTLE [3], an optimized HPC ap-
plication for computing the FTLE, given the description of a fluid’s flowmap,
using multi-core CPUs (using OpenMP), GPUs (using CUDA), or a combi-
nation of both. The UVaFTLE application includes two kernels to compute
the FTLE of a 2D or 3D flowmap, respectively. These kernels are executed
by the accelerators to achieve high performance, and both are used in the
present work. UVaFTLE also includes an additional computationally-costly
kernel that preprocesses the provided input set before the FTLE computa-
tion step. Nevertheless, the acceleration of this latter kernel on FPGAs is
beyond the scope of this work.

It is worth mentioning that we have also explored in [2] the portability of
the code by using SYCL to target heterogeneous GPU environments, whose
basic SYCL kernels served as the starting point for this work.

3 Development tools and algorithmic strategies

We evaluate FPGA implementations of UVaFTLE in OpenCL (using Intel
FPGA SDK for OpenCL) and SYCL (using Intel DPC++). Both frame-
works are high-level abstractions for heterogeneous computing widely used
in HPC environments. The main difference between them is that SYCL is
C++-based and frequently uses C++ features, such as templates and generic
lambda functions, to achieve a higher level of abstraction, whereas OpenCL
is compatible with any C environment and provides lower-level control to
the user, but it is consequently more verbose. Internally, SYCL can target
multiple, different backends to compile a single generic source code, automat-
ically optimizing the code for that backend in the process, thus maximizing
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the achievable performance in highly-heterogeneous systems. To optimize
and transform the generic codes for the different backends, and to allow for
single-source host-and-device codes, SYCL requires the use of a special com-
piler. OpenCL, on the other hand, can be used as a standalone C runtime
library: It achieves genericity by compiling the codes at execution time for
the specific accelerators present in the target machine. However, in the case
of FPGA kernels, a special compiler is also needed to compile the device
codes of the OpenCL implementations; and it is necessary to keep the host
code and device code in separate files. Both frameworks internally leverage
Intel’s FPGA compiler to synthesize the high-level designs into hardware
architectures.

Both SYCL and OpenCL allow two different ways of writing computa-
tional kernels to be deployed to accelerators. One is known as ND-range
kernels; which is the most common way of writing SYCL and OpenCL ker-
nels. The other is known as single-task kernels.

ND-range kernels use a data-parallel approach. Conceptually, the work-
load is divided into multiple threads, thus each performs a fraction of the
work. The kernel code is written at the single-thread level; that is, the
code describes the operations that each of the ND-range threads should per-
form individually. All threads are assigned a global identifier by the runtime
system, which can be used to describe divergences among different threads
in the code. In SYCL and OpenCL terminology, the threads that execute
the kernel are called work-items, which are at the same time grouped into
work-groups. An ND-range is an N-dimensional indexed space, where N can
be one, two, or three. The identifier of each work-item is based on its n-
dimensional coordinates within the index space. The core idea behind this
design philosophy is that work-items may be executed in parallel, with up
to one work-group of work-items being executed at the same time. Never-
theless, that is just a conceptual model that is not guaranteed to describe
the actual underlying kernel execution process: The runtime abstracts the
low-level details of the real execution model.

Regarding single-task kernels, they are also known as single work-item
kernels in SYCL and OpenCL terminology. That is because they are written
to be executed using just one work-item (thread). They are semantically
equivalent to ND-range kernels that are executed with just one work group
of one work-item. Thus, single-task kernels are written at a global-problem
level, and require explicit management of any possible parallelism (thread or
otherwise).

SIMD-like data-parallel accelerators, such as multicore CPUs and GPUs,
benefit greatly from ND-range kernels, since these kernels efficiently map to
their massively parallel architectures. ND-range kernels on these accelerators
enable high-performance gains with relatively low development costs. Single-
task kernels are rarely ever used together with SIMD-like accelerators, since
their achievable performance is rather poor in comparison. In these con-
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texts, single-task kernels are usually relegated to corner cases; namely when
a single-threaded task of low computational complexity is to be executed
in-device, instead of in the host side of the system.

FPGA accelerators, however, do not share the characteristics of SIMD-
like accelerators. Instead, they attempt to accelerate computational tasks by
building tailored solutions (hardware architectures) out of available resources
(low-level electronic components), laid out and interconnected in an abstract,
limited space (the FPGA fabric or “area”). As FPGA vendors point out [7],
FPGAs can exploit multiple types of parallelism (including SIMD paral-
lelism and task parallelism); nevertheless, the highest performance gains are
usually achieved through pipeline parallelism. FPGAs can instantiate deep
pipelines, which, when fully occupied, achieve a high performance. FPGA
pipelines can be significantly deeper and more specialized than those of fixed,
general-purpose computing units (CPUs and GPUs). Performance can also
be further optimized by combining other kinds of parallelism, e.g. by design-
ing the pipeline in a SIMD fashion, where multiple data are processed at the
same time on every pipeline stage, or by instantiating multiple pipelines at
the same time to achieve task parallelism.

With all this in mind, both the Intel FPGA SDK for OpenCL, and the
DPC++ programming frameworks point out in their guides that kernels that
perform favorably on FPGAs are often expressed as single-task kernels [7].
In both environments, the general recommendation is to write the comput-
ing kernels as single-task kernels whenever possible, unless the kernel maps
naturally and exceptionally well to an ND-range structure [8]. However, as
we will see in the following sections, we have found that ND-range kernels
perform consistently better than single-task approaches for our application.

4 Naïve implementation approach

In the original UVaFTLE paper [3], we provided open-source implemen-
tations of the application targeting multicore CPUs (using OpenMP) and
GPUs (using CUDA). As stated previously, the FTLE computation is an
embarrassingly parallel problem. Therefore, these original implementations
were able to achieve high performance, as shown in [3]. Moreover, the
OpenMP and CUDA implementations can be used to make naïve ports of
the application to FPGA execution frameworks.

We used the CUDA version shown in [3] as a baseline for the naïve
ND-range FPGA kernels, since CUDA programming follows the ND-range
model of SYCL and OpenCL. The OpenMP version was used as a baseline
for the naïve single-task kernels, as it more closely resembles a sequential
version of the application and, consequently, can be more easily used to
develop a single-task-type kernel. The naïve kernels developed represent low
development-effort ports of the application to FPGAs; although, as noted in
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Implementation
2D version (# points) 3D version (# points)

200K 400K 600K 200K 400K 600K
S-NR naïve 11.1 22.3 33.7 371.7 803.1 1 364.9
O-NR naïve 10.7 21.5 32.5 359.4 777.6 1275.7
S-ST naïve 6 635.5 13 316.5 6 281.4 26 892.7 54 207.4 34 863.8
O-ST naïve 2 085.7 4 116.1 20 034.4 9 194.2 18 455.6 92 703.2

CPU 1 thread 30.1 51.1 75.5 71.5 172.6 240.1
CPU 4 threads 20.7 32.5 39.0 41.3 64.0 90.1
CPU 8 threads 17.2 23.1 31.6 33.0 51.3 70.6

Table 1: Execution times, in milliseconds, for the naïve implementations of
the 2D and 3D FTLE kernels for FPGA, and a reference CPU implemen-
tation parallelized using OpenMP. Legend is as follows: S- and O- are for
SYCL and OpenCL, respectively; NR and ST are for ND-range and single-
task, respectively.

many works such as [6], the performance achieved by these ports may not
be competitive.

Regarding the host side of the code, naïve SYCL implementations were
derived from the GPU SYCL implementations developed for [2]. Being SYCL
a high-level programming model designed with heterogeneous portability in
mind, the changes required to port the GPU implementations to FPGAs
are minimal. It is worth noting that the SYCL implementation used in
that work, AdaptativeCpp (formerly OpenSYCL / HipSYCL), cannot target
Intel FPGAs; thus, DPC++ is used as the SYCL implementation of choice.
This entails additional modifications of the code (namely namespaces and
headers), yet the code modifications are still minimal.

The host code for the OpenCL implementations can be easily derived
from the CUDA host code by changing the CUDA API calls to the equivalent
OpenCL API calls, since the two programming models are very similar.

5 Analysis of the results obtained

Based on those results described in the last sections, we can now make a
series of observations.

1. Across all experiments, ND-range kernels consistently surpassed the
performance of single-task kernels, albeit by a marginal difference in
scenarios involving optimized kernels. Notably, the naïve implemen-
tations of single-task versions, especially those using SYCL, exhibited
exceptionally poor performance.

2. The naïve ND-range implementations deliver robust performance right
out of the gate. While not reaching the heights of optimized gradient
kernels, their performance closely aligns with the total execution times
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observed in the optimized hardware-software approach for FTLE com-
putations, which includes both CPU and FPGA components. Conse-
quently, we conclude that ND-range kernels exhibit remarkable porta-
bility across both SYCL and OpenCL platforms, particularly for em-
barrassingly parallel tasks.

3. The optimized FPGA kernels approach the theoretical peak perfor-
mance for gradient computation, processing nearly one point per FPGA
clock cycle. This performance suggests that SYCL and OpenCL com-
pilers are capable of inferring architectures that are nearly optimal,
given a well-constructed kernel.

4. In comparisons between SYCL and OpenCL, OpenCL consistently out-
performed SYCL across all tests, highlighting a performance trade-off
associated with SYCL’s higher abstraction levels. This gap is par-
ticularly pronounced in single-task kernels, where SYCL lags signifi-
cantly behind OpenCL. Despite Intel discontinuing the FPGA SDK
for OpenCL in August 2023 and recommending SYCL for FPGA de-
velopment, the superior performance of OpenCL may still make it a
preferred choice for developers, especially for single-task kernels — In-
tel’s recommended kernel type. While OpenCL also edges out SYCL
in ND-range kernel performance, the difference is marginal.

6 Conclusions

In conclusion, our findings reveal that naïve ND-range codes exhibit re-
markable portability for highly parallel applications, in stark contrast to the
significantly lower portability of single-task codes. Moreover, we observed
that SYCL faces challenges in generating efficient hardware architectures
for applications characterized as single-task codes, resulting in performance
that is up to three orders of magnitude inferior compared to other imple-
mentations. Intriguingly, SYCL’s performance dramatically improves when
employing the ND-range approach, a result that surpasses expectations.

Future work includes to explore whether the use of more FPGA-specific
optimizations in single-task kernels may alleviate the lack of performance of
this approach. We also plan to perform experimental evaluations of equiv-
alent Vivado HLS codes on Xilinx FPGAs, identifying the reasons behind
the much lower working frequencies than the ones reported by Vivado for an
equivalent implementation, and studying the optimal approach to accelerate
the determination of the list of neighbors for each point.
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