
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/382914469

Finite-Time Lyapunov Exponent Calculation on FPGA using High-Level

Synthesis Tools

Preprint · August 2024

DOI: 10.48550/arXiv.2408.02758

CITATIONS

0
READS

13

6 authors, including:

Manuel de Castro

Universidad de Valladolid

6 PUBLICATIONS   4 CITATIONS   

SEE PROFILE

Francisco J. Andujar

Universidad de Valladolid

39 PUBLICATIONS   148 CITATIONS   

SEE PROFILE

Rocío Carratalá-Sáez

Universitat Jaume I

21 PUBLICATIONS   59 CITATIONS   

SEE PROFILE

Yuri Torres

Universidad de Valladolid

37 PUBLICATIONS   248 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Diego R. Llanos on 07 August 2024.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/382914469_Finite-Time_Lyapunov_Exponent_Calculation_on_FPGA_using_High-Level_Synthesis_Tools?enrichId=rgreq-f8694eab56807df646ba13757161e91d-XXX&enrichSource=Y292ZXJQYWdlOzM4MjkxNDQ2OTtBUzoxMTQzMTI4MTI3MDQwNTcyOUAxNzIzMDQ2Nzc0MTA0&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/382914469_Finite-Time_Lyapunov_Exponent_Calculation_on_FPGA_using_High-Level_Synthesis_Tools?enrichId=rgreq-f8694eab56807df646ba13757161e91d-XXX&enrichSource=Y292ZXJQYWdlOzM4MjkxNDQ2OTtBUzoxMTQzMTI4MTI3MDQwNTcyOUAxNzIzMDQ2Nzc0MTA0&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-f8694eab56807df646ba13757161e91d-XXX&enrichSource=Y292ZXJQYWdlOzM4MjkxNDQ2OTtBUzoxMTQzMTI4MTI3MDQwNTcyOUAxNzIzMDQ2Nzc0MTA0&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Manuel-De-Castro-3?enrichId=rgreq-f8694eab56807df646ba13757161e91d-XXX&enrichSource=Y292ZXJQYWdlOzM4MjkxNDQ2OTtBUzoxMTQzMTI4MTI3MDQwNTcyOUAxNzIzMDQ2Nzc0MTA0&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Manuel-De-Castro-3?enrichId=rgreq-f8694eab56807df646ba13757161e91d-XXX&enrichSource=Y292ZXJQYWdlOzM4MjkxNDQ2OTtBUzoxMTQzMTI4MTI3MDQwNTcyOUAxNzIzMDQ2Nzc0MTA0&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_de_Valladolid?enrichId=rgreq-f8694eab56807df646ba13757161e91d-XXX&enrichSource=Y292ZXJQYWdlOzM4MjkxNDQ2OTtBUzoxMTQzMTI4MTI3MDQwNTcyOUAxNzIzMDQ2Nzc0MTA0&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Manuel-De-Castro-3?enrichId=rgreq-f8694eab56807df646ba13757161e91d-XXX&enrichSource=Y292ZXJQYWdlOzM4MjkxNDQ2OTtBUzoxMTQzMTI4MTI3MDQwNTcyOUAxNzIzMDQ2Nzc0MTA0&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Francisco-J-Andujar?enrichId=rgreq-f8694eab56807df646ba13757161e91d-XXX&enrichSource=Y292ZXJQYWdlOzM4MjkxNDQ2OTtBUzoxMTQzMTI4MTI3MDQwNTcyOUAxNzIzMDQ2Nzc0MTA0&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Francisco-J-Andujar?enrichId=rgreq-f8694eab56807df646ba13757161e91d-XXX&enrichSource=Y292ZXJQYWdlOzM4MjkxNDQ2OTtBUzoxMTQzMTI4MTI3MDQwNTcyOUAxNzIzMDQ2Nzc0MTA0&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_de_Valladolid?enrichId=rgreq-f8694eab56807df646ba13757161e91d-XXX&enrichSource=Y292ZXJQYWdlOzM4MjkxNDQ2OTtBUzoxMTQzMTI4MTI3MDQwNTcyOUAxNzIzMDQ2Nzc0MTA0&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Francisco-J-Andujar?enrichId=rgreq-f8694eab56807df646ba13757161e91d-XXX&enrichSource=Y292ZXJQYWdlOzM4MjkxNDQ2OTtBUzoxMTQzMTI4MTI3MDQwNTcyOUAxNzIzMDQ2Nzc0MTA0&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rocio-Carratala-Saez?enrichId=rgreq-f8694eab56807df646ba13757161e91d-XXX&enrichSource=Y292ZXJQYWdlOzM4MjkxNDQ2OTtBUzoxMTQzMTI4MTI3MDQwNTcyOUAxNzIzMDQ2Nzc0MTA0&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rocio-Carratala-Saez?enrichId=rgreq-f8694eab56807df646ba13757161e91d-XXX&enrichSource=Y292ZXJQYWdlOzM4MjkxNDQ2OTtBUzoxMTQzMTI4MTI3MDQwNTcyOUAxNzIzMDQ2Nzc0MTA0&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universitat-Jaume-I?enrichId=rgreq-f8694eab56807df646ba13757161e91d-XXX&enrichSource=Y292ZXJQYWdlOzM4MjkxNDQ2OTtBUzoxMTQzMTI4MTI3MDQwNTcyOUAxNzIzMDQ2Nzc0MTA0&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rocio-Carratala-Saez?enrichId=rgreq-f8694eab56807df646ba13757161e91d-XXX&enrichSource=Y292ZXJQYWdlOzM4MjkxNDQ2OTtBUzoxMTQzMTI4MTI3MDQwNTcyOUAxNzIzMDQ2Nzc0MTA0&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yuri-Torres-3?enrichId=rgreq-f8694eab56807df646ba13757161e91d-XXX&enrichSource=Y292ZXJQYWdlOzM4MjkxNDQ2OTtBUzoxMTQzMTI4MTI3MDQwNTcyOUAxNzIzMDQ2Nzc0MTA0&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yuri-Torres-3?enrichId=rgreq-f8694eab56807df646ba13757161e91d-XXX&enrichSource=Y292ZXJQYWdlOzM4MjkxNDQ2OTtBUzoxMTQzMTI4MTI3MDQwNTcyOUAxNzIzMDQ2Nzc0MTA0&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_de_Valladolid?enrichId=rgreq-f8694eab56807df646ba13757161e91d-XXX&enrichSource=Y292ZXJQYWdlOzM4MjkxNDQ2OTtBUzoxMTQzMTI4MTI3MDQwNTcyOUAxNzIzMDQ2Nzc0MTA0&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yuri-Torres-3?enrichId=rgreq-f8694eab56807df646ba13757161e91d-XXX&enrichSource=Y292ZXJQYWdlOzM4MjkxNDQ2OTtBUzoxMTQzMTI4MTI3MDQwNTcyOUAxNzIzMDQ2Nzc0MTA0&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Diego-Llanos-3?enrichId=rgreq-f8694eab56807df646ba13757161e91d-XXX&enrichSource=Y292ZXJQYWdlOzM4MjkxNDQ2OTtBUzoxMTQzMTI4MTI3MDQwNTcyOUAxNzIzMDQ2Nzc0MTA0&el=1_x_10&_esc=publicationCoverPdf


Finite-Time Lyapunov Exponent Calculation on
FPGA using High-Level Synthesis Tools

Manuel de Castro1[0000−0003−3080−5136],
Roberto R. Osorio2[0000−0001−8768−2240],

Francisco J. Andújar1[0000−0001−8884−7334],
Rocío Carratalá-Sáez3[0000−0001−8409−2421],

Yuri Torres1[0000−0002−3037−3567], and
Diego R. Llanos1[0000−0001−6240−9109]

1 Department of Computer Science, Universidad de Valladolid, Spain
{manuel,fandujarm,yuri.torres,diego}@infor.uva.es

2 CITIC, Computer Architecture Group, Universidade da Coruña, Spain
roberto.osorio@udc.es

3 Dpto. Ingeniería y Ciencia de los Computadores, Universitat Jaume I, Spain
rcarrata@uji.es

Abstract. As Field Programmable Gate Arrays (FPGAs) computing
capabilities continue to grow, also does the interest on building scientific
accelerators around them. Tools like Xilinx’s High-Level Synthesis (HLS)
help to bridge the gap between traditional high-level languages such as C
and C++, and low-level hardware description languages such as VHDL
and Verilog. In this report, we study the implementation of a fluid dy-
namics application, the Finite-Time Lyapunov Exponent (FTLE) calcu-
lation, on FPGA using HLS. We provide speed and resource-consumption
results for 2- and 3-dimensional cases.

Keywords: Data Parallelism · FPGA · HLS · Fluid Dynamics

1 Introduction to HLS tools

For AMD/Xilinx FPGAs, a high-level synthesis language based on C++ is of-
fered, called Vitis HLS (as part of the Vivado design tools). This high-level
language allows the designer to focus on the most important aspects of hard-
ware design, such as structure, parallelism, reuse, and pipelining. Other aspects
such as arithmetic implementation, or retiming, are managed automatically by
HLS. In this way, the best implementation for both fixed point and floating
point arithmetic functions is selected by the framework, even for transcendental
functions, to meet the desired cycle length. With retiming, changing the target
clock frequency is possible, and hardware will be pipelined accordingly. HLS
will match the delays of different paths, inserting flip-flops for short delays, or
RAM-based FIFOs if long delays are needed. All these tasks are complex and
error-prone when carried out manually in VHDL or Verilog.



2 De Castro, Osorio, Andújar, Carratalá-Sáez, Torres and Llanos

One key feature of Vitis HLS is that it retains a certain low-level control of
what is happening internally to the FPGA. Thus, not only it is possible for the
designer to guide the synthesis process, but the compilation reports and analysis
tools included in Vitis HLS can provide certain useful feed-back information.

In the typical Vitis HLS workflow, designers are expected to distribute the
code in functions and loops, specifying by means of pragmas whether they must
be pipelined or not. Additional pragmas on input/output parameters allow the
specification of how data are transmitted, while HLS will implement dataflow,
FIFO, or random-access interfaces, inserting the right code and IP. In this way,
and as an example, the function float product(float a, float b){return
a*b;} would implement a floating point product every L cycles, L being the la-
tency of the multiplier. However, adding #pragma HLS pipeline II = 1, would
fully pipeline the multiplier and offer 1 result per cycle; while #pragma HLS
INTERFACE m_axi port = a would specify that port a is connected to RAM
memory, and HLS would calculate the latency of all accesses based on the char-
acteristics of a particular device and board. While SYCL, and specially OpenCL,
provide features similar to these described for programming FPGAs, they are
fewer in quantity and higher in level, working on more abstract constructs.

In summary, HLS allows much of the flexibility of encoding with VHDL or
Verilog, without the burden of instantiating, connecting, and pipelining compo-
nents. This reduces design time and coding errors. Furthermore, many device
specific components, such as memory interfaces, are dealt with automatically,
improving code portability. Vitis HLS is the right tool for optimizing a specific
algorithm for Xilinx FPGAs, losing little expressiveness compared to VHDL or
Verilog.

If higher level programming is required, targeting a broader choice of plat-
forms, then Xilinx also offers the Vitis Unified Software Platform (USP) soft-
ware environment. Vitis USP enables the development of embedded software and
accelerated applications on heterogeneous Xilinx platforms, including FPGAs,
SoCs, and Versal ACAPs. It provides a unified programming model for accel-
erating Edge, Cloud, and Hybrid computing applications. In addition, OpenCL
is supported in Vitis USP, providing code portability. The price to pay is less
control on the implementation when compared to Vitis HLS and, even more so,
to VHDL and Verilog.

1.1 Performance degradation vs portability in HLS frameworks

HLS tools are known to introduce some overheads in resource consumption,
specially those of higher abstraction, but they bring significant advantages when
compared to VHDL or Verilog. In the case of lower-level frameworks particularly,
such as Vitis HLS, it is important to note that little to none time savings are
possible by writing the equivalent HDL code by hand, as an engineer would
basically create the circuit instantiating the same IP blocks used by Vitis HLS.

Although some improvements can be achieved using custom implementations,
engineers must assess if those gains in area or speed are significant in the context



FTLE Calculation on FPGA using High-Level Synthesis Tools 3

of each application. In this line, the best known effort in the community is
probably FloPoCo [1,4].

It is also necessary to consider that additional performance improvements
can be obtained by HLS tools if a slight precision degradation is allowed. These
improvements would be larger than those obtained by redesigning the whole
algorithm in an HDL language. As an example, Goldschmidt division and square
root algorithms [7] might have shorter latency than the SRT algorithms [5], which
are widely used in many microprocessor implementations; but differences may
appear in the bit in the last position. Fusing operations may also allow for some
area and latency reductions, with Vitis HLS being able to efficiently exploit
fused multiply-add (FMA) operations. Finally, it is possible to write custom
arithmetic operations in C++ and Vitis HLS will produce efficient HDL code,
as shown in [6], where the cube function is optimized using Vitis HLS to use less
resources and reduce latency.

2 Developing an implementation with Vitis HLS

Vitis HLS allows FPGA solutions to be developed with an approach close to
the low-level details of FPGAs. This approach allows the developer to evaluate
designs from information gathered at compile time and presented in the compila-
tion reports, with a higher level of depth and detail than other frameworks such
as SYCL and OpenCL. Therefore, Vitis HLS was used to develop a naïve im-
plementation of the FTLE (finite-time Lyapunov exponent) 2D and 3D kernels
from the UVaFTLE application [3], used in Fluid Dynamics, to identify issues
which hinder performance, such as bottlenecks.

2.1 Baseline approach

First, a naïve porting of the original FTLE kernels was considered. However,
Vitis HLS failed to provide performance estimates (working clock frequency,
initiation interval, and latency) for this naïve code without any transformation.
This suggests that the unmodified kernel is too complex to efficiently synthesize
into FPGA devices. After some work, targeting a 4-bank memory architecture
(which is common in modern boards), HLS is able to schedule one memory
read operation per cycle. In the case of the 2D algorithm, this would mean a
maximum throughput of 0.25 points per clock cycle, or 125 million points per
second. For the 3D algorithm, 0.166 points per cycle, or 59.5 million points
per second. This implementation clearly underutilizes the bandwidth of double-
data-rate memory. A different approach is needed to synthesize an efficient FTLE
hardware architecture.

Therefore, an implementation comprising only the core of the FTLE compu-
tations was tested. C code was written assuming that all input data are avail-
able every cycle, and pragma directives were set for fully pipelined architectures.
The targeted FPGA was a Virtex Ultrascale+ (model xcvu11p-fsgd2104-3-e), a
high-end FPGA. The resulting circuits were analyzed using the schedule viewer



4 De Castro, Osorio, Andújar, Carratalá-Sáez, Torres and Llanos

included in Vitis HLS to confirm that throughput had been maximized, and min-
imal latency was achieved. Maximum frequency, latency, required input band-
width, and resource consumption are shown in Table 1. Required input band-
width is expressed for both the maximum operating frequency reported by the
compiler and for 300 MHz. The reason for including results for 300 MHz is to
provide a comparison point for a modest frequency that many other devices can
reach, not only high-end ones. Resource usage actually quite modest: just 2% of
the available resources in the targeted device. Only in the 3D case the amount
of DSP blocks is higher, taking 10% of the total.

2D 3D
Max Freq (MHz) 500 357
Latency / cycles 264 421

Input bandwidth (bits/cycle) 768+128 1152+192
Input bandwidth for max freq (GB/s) 48+8 51.4+8.6
Input bandwidth for 300 MHz (GB/s) 28.8+4.8 43.2+7.2

LUT 29323 134519
LUTRAM 1797 5679

FF 49677 139912
DSP 250 1012

BRAM 0 1
Power consumption 8.1 W 21.17 W

Table 1. Reported synthesis data for the Vitis HLS implementation of the FTLE ker-
nels. Input bandwidth shows the desired figures expressed as floating-point data band-
width + neighbor indexes bandwidth.

As it can be seen, such large bandwidth requirements suggest that the through-
put will be limited in most platforms by the real available bandwidth. With-
out bandwidth limitations, the fully-pipelined 2D architecture achieves 24.6
GFLOPS, and the 3D one 61.8 GFLOPS. We will assume that the circuit re-
ceives four indexes at each iteration, or six for the 3D case, pointing to the
neighboring points of the current one. Those values are always read in the same
order, so either a FIFO or an actual RAM could be used to store them. Using
32-bit integers as indexes, 128 or 192 bits are read every iteration. Next, it is
necessary to read from memory some coordinate and flowmap values for those
neighboring points. In the 2D case, 12 values must be read. In the 3D case, 18
values must be read. Considering double-precision arithmetic, 728 and 1152 bits
should be read from random addresses per cycle.

The implemented pipeline for the FTLE core has an initiation interval of
1, which implies that, if the memory bandwidth requirements are satisfied, the
application would be able to process one point per clock cycle. For example,
with a frequency of 500 MHz, achievable by the targeted FPGA board for the 2D
design, the throughput would be 500 million points per second. With a frequency



FTLE Calculation on FPGA using High-Level Synthesis Tools 5

of 357 MHz, achievable by the targeted FPGA board for the 3D design, the
throughput would be 357 million points per second. What follows is an analysis
of how close it is possible to get to this maximum performance when synthesizing
the whole FTLE computation to the FPGA, which must include the logic to read
these data from global memory.

The first approximation is considering that all the data are in DDR memory.
The peak bandwidth for one module of DDR4-2400 is 19.2 GB/s, and 21.3
GB/s for DDR4-2666. Adding more modules in parallel multiplies the bandwidth
accordingly. Historically, Xilinx has advised against going beyond dual memory
because of the increase in power consumption; although they now have some
device models with four modules, as the DDR4 memory power consumption is
lower than that of DDR2 and DDR3. Thus, the particular case of four DDR4-
2400 modules is also considered. Therefore, we could expect up to 38.4 GB/s or
42.6 GB/s for 2 channels of DDR4-2400 and DDR4-2666, respectively; and 76.8
GB/s for 4 channels of DDR4-2400, but only if a predictable access pattern is
used. For random access, the bandwidth will be lower.

In a second approximation, the data are first loaded into HBM (high-bandwidth
memory) [2]. HBM provides a high bandwidth and low power consumption, as
it is implemented inside the FPGA packaging, although in a different die. Xilinx
advertises 230 GB/s for one stack, and 460 GB/s using two stacks. These fig-
ures are possible if concurrent accesses do not incur in bus conflicts; however, as
two stacks provide almost 8 times the highest desired bandwidth for our target
application, this should not be an issue.

HBM is being used in many high-performance computing applications [8], and
helps to overcome memory bandwidth hurdles that limit the implementation of
many applications on FPGAs. Unfortunately, we were not able to infer HBM
memory within HLS using pragmas. At the current point, more knowledge is
needed to instantiate HBM at high level or, as a last resource, to manually
instantiate and configure it using VHDL. Table 2 compares the peak bandwidth
of the application if executed on a system with the discussed different memory
technologies.

Absolute BW 2D max freq 3D max freq 2D 300 MHz 3D 300 MHz
Desired bandwidth 56 (100%) 60 (100%) 33.6 (100%) 50.4 (100%)

1 channel DDR4-2400 19.2 34% 32% 57% 38%
1 channel DDR4-2666 21.3 38% 36% 63% 59%
2 channel DDR4-2400 38.4 69% 64% 114% 76%
2 channel DDR4-2666 42.6 76% 71% 127% 85%
4 channel DDR4-2400 76.8 137% 128% 229% 152%

1 stack HBM 230 410% 383% 685% 456%
2 stack HBM 460 820% 767% 1369% 912%

Table 2. Peak achievable bandwidth using different memory technologies, both in
absolute terms and relative to the desired bandwidth. Absolute bandwidth is expressed
in GB/s.



6 De Castro, Osorio, Andújar, Carratalá-Sáez, Torres and Llanos

The rows of table 2 presenting data for the DDR4-2400 memory provide in-
sight into the theoretical bandwidths achievable by many common data-center
FPGAs , under different scenarios. In an ideal scenario, all four banks would be
efficiently used, and the achieved bandwidth would be enough to efficiently com-
pute the FTLE without stalls. Nevertheless, that scenario could only be achieved
with optimal access patterns. Any introduction of irregularity or unbalance in
the access to global memory can significantly reduce the effective bandwidth,
as explored in [9]. If two banks are efficiently used, an FPGA would be able
to compute the FTLE of 2D inputs without stalls at 300 MHz, but not for 3D
inputs.

2.2 Decoupling the problem

In the previous section, we identified the original FTLE algorithm as a memory-
bound code. The core computation of the algorithm can be efficiently imple-
mented as a hardware pipeline, which any modern FPGA should be able to
implement with an initiation interval of 1 (i.e. able to produce one FTLE result
per clock cycle). Nevertheless, to perform this core computation, the neighbors
of each of the points must be located beforehand, which constitutes the memory-
intensive section of the algorithm. The neighbor determination presents a highly
irregular memory access pattern, with very low data reutilization, which makes
leveraging FPGA caching techniques unfeasible in any meaningful way. Thus,
all data accesses must be issued to global memory. Given the relatively low
global memory bandwidth of DDR-based FPGAs, which is specially low when
the program is only able to leverage one DDR4 bank, this neighbor determi-
nation section constitutes the bottleneck of the algorithm on FPGAs. To make
efficient FPGA FTLE architectures, this pressure on the global memory band-
width should be alleviated.

We propose an FPGA-optimized algorithm for the FTLE in which the neigh-
bors for each point are pre-computed and stored in a regular list of point indexes,
i.e. integers. This list is then fed into the core FTLE computation. For each point
of the computation, there are exactly 4 or 6 indexes in the neighbors list, corre-
sponding to the neighbors in 2D or 3D space, respectively. For irregular meshes,
where not all points have the maximum number of neighbors, the absence of one
of the neighbors is encoded with the value -1, thus being easily handled in the
code while still preserving the regularity of the list and its corresponding access
pattern. By precomputing the neighbors list, we allow the new FTLE kernel
both to reduce memory accesses, and to present a regular access pattern.

Certain algorithmic simplifications are also performed to the gradient com-
putations, to help the compiler produce more efficient hardware. Some of these
are minor optimizations that could be automatically detected by the compiler
(e.g., removal of branches never taken, or merging of similar branch cases), but
we want to make sure that they are performed.

We propose the neighbors list should be precomputed on the CPU, instead of
on the FPGA. The main reason being that we know the determination of neigh-
bors achieves a poor performance on FPGAs, due to the memory issues discussed



FTLE Calculation on FPGA using High-Level Synthesis Tools 7

earlier. From a hardware-software codesign point of view, this approach is not
only reasonable, but even desired, as the software and hardware components of
the system perform the tasks that are optimal for them.

Furthermore, it is not unreasonable to think of a scenario in which the neigh-
bors list can be provided as input to the application together with the points’
data. This would completely remove the need for any extra computation on the
CPU side of the application. Nevertheless, that scenario is not considered in this
work, and we consider only cases where the inputs to the application are the
ones used by the original implementation of UVaFTLE.

This new optimized algorithm is considerably simpler than the naïve one, so
other synthesis tools (e.g. OpenCL and SYCL) should not encounter problems
when attempting to synthesize a pipeline for it either. Additionally, the much
simpler memory access pattern should alleviate the memory constraints of the
naïve kernels, achieving a higher effective bandwidth. The performance of these
new kernels will still be limited by the memory bandwidth of the device, with
an inefficient memory data management resulting in pipeline stalls. In this ver-
sion of the kernels, the memory data management is still implicitly relegated to
the compiler, which can perform automatic optimizations by allocating different
buffers to different memory banks.

3 Conclusions

In this work, we have presented implementation results for the UVaFTLE appli-
cation on AMD/Xilinx FPGAs, and we have achieved a number of conclusions.
First, non-floating point calculations are better off-loaded to the host proces-
sor, as those are highly irregular, and a microprocessor is better suited to carry
them out thanks to its higher clock frequency. Second, the implementation per-
formance is limited by memory bandwidth, and maximum performance is only
possible by using architectures such as HBM. Third, the core of the application,
consisting of floating point calculations, can be efficiently implemented as a deep
pipeline with a performance of several GFLOPS: Approximately 24.6 GFLOPS
for 2D computations, and 61.8 GFLOPS for 3D computations.

Future work includes performing experimental evaluations of the Vitis HLS
codes on Xilinx FPGAs, studying the optimal approach to accelerate the deter-
mination of the list of neighbors for each point, and developing solutions which
leverage HBM memory.

4 Acknowledgments

This work was supported in part by: The Spanish Ministerio de Ciencia e
Innovación and by the European Regional Development Fund (ERDF) pro-
gram of the European Union, under Grant PID2022-142292NB-I00 (NATASHA
Project); and in part by the Junta de Castilla y León - FEDER Grants, un-
der Grant VA226P20 (PROPHET-2 Project), Junta de Castilla y León, Spain.
This work was also supported in part by grant TED2021–130367B–I00, funded



8 De Castro, Osorio, Andújar, Carratalá-Sáez, Torres and Llanos

by MCIN/AEI/10.13039/ 501100011033 and by “European Union NextGenera-
tionEU/PRTR”, and by grant PID2022-136435NB-I00, funded by MCIN/AEI/
10.13039/501100011033 and by “ERDF A way of making Europe”, EU. Manuel
de Castro has been supported by Spanish Ministerio de Ciencia, Innovación y
Universidades, through “Ayudas para la Formación de Profesorado Universitario
FPU 2022”.

Disclosure of Interests

The authors have no competing interests that might be perceived to influence
the results and/or discussion reported in this paper.

Availability of data and materials

The source codes and compilation reports generated during the development of
this work are freely available on the following repository: https://github.com/
uva-trasgo/uvaftle/tree/fpga

References

1. FloPoCo project website. http://www.flopoco.org (October 2022)
2. Asifuzzaman, K., et al.: Demystifying the characteristics of high bandwidth memory

for real-time systems. In: 2021 IEEE/ACM International Conference On Computer
Aided Design (ICCAD). pp. 1–9 (2021). https://doi.org/10.1109/ICCAD51958.
2021.9643473

3. Carratalá-Sáez, R., et al.: UVaFTLE: Lagrangian finite time Lyapunov exponent
extraction for fluid dynamic application. The Journal of Supercomputing 79, 9635–
9665 (2023). https://doi.org/10.1007/s11227-022-05017-x

4. de Dinechin, F., Pasca, B.: Designing custom arithmetic data paths with FloPoCo.
IEEE Design & Test of Computers 28(4), 18–27 (Jul 2011)

5. Harris, D., Oberman, S., Horowitz, M.: Srt division architectures and implementa-
tions. In: Proceedings 13th IEEE Sympsoium on Computer Arithmetic. pp. 18–25
(1997). https://doi.org/10.1109/ARITH.1997.614875

6. Osorio, R.R.: Floating point calculation of the cube function on fpgas. IEEE
Transactions on Parallel and Distributed Systems 34(1), 372–382 (2023). https:
//doi.org/10.1109/TPDS.2022.3220039

7. Piñeiro, J.A., Bruguera, J.D.: High-speed double-precision computation of recip-
rocal, division, square root and inverse square root. IEEE Trans. Computers 51,
1377–1388 (2002)

8. Song, L., Chi, Y., Guo, L., Cong, J.: Serpens: A high bandwidth memory based
accelerator for general-purpose sparse matrix-vector multiplication. In: Proceedings
of the 59th ACM/IEEE Design Automation Conference. p. 211–216. Association for
Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/
3489517.3530420

9. Zohouri, H.R., Matsuoka, S.: The memory controller wall: Benchmarking the intel
fpga sdk for opencl memory interface. In: 2019 H2RC. pp. 11–18. https://doi.org/
10.1109/H2RC49586.2019.00007

View publication stats

https://github.com/uva-trasgo/uvaftle/tree/fpga
https://github.com/uva-trasgo/uvaftle/tree/fpga
http://www.flopoco.org
https://doi.org/10.1109/ICCAD51958.2021.9643473
https://doi.org/10.1109/ICCAD51958.2021.9643473
https://doi.org/10.1109/ICCAD51958.2021.9643473
https://doi.org/10.1109/ICCAD51958.2021.9643473
https://doi.org/10.1007/s11227-022-05017-x
https://doi.org/10.1007/s11227-022-05017-x
https://doi.org/10.1109/ARITH.1997.614875
https://doi.org/10.1109/ARITH.1997.614875
https://doi.org/10.1109/TPDS.2022.3220039
https://doi.org/10.1109/TPDS.2022.3220039
https://doi.org/10.1109/TPDS.2022.3220039
https://doi.org/10.1109/TPDS.2022.3220039
https://doi.org/10.1145/3489517.3530420
https://doi.org/10.1145/3489517.3530420
https://doi.org/10.1145/3489517.3530420
https://doi.org/10.1145/3489517.3530420
https://doi.org/10.1109/H2RC49586.2019.00007
https://doi.org/10.1109/H2RC49586.2019.00007
https://doi.org/10.1109/H2RC49586.2019.00007
https://doi.org/10.1109/H2RC49586.2019.00007
https://www.researchgate.net/publication/382914469

	Finite-Time Lyapunov Exponent Calculation on FPGA using High-Level Synthesis Tools

