
Vol:.(1234567890)

The Journal of Supercomputing (2024) 80:16630–16653
https://doi.org/10.1007/s11227-024-06097-7

1 3

Performance improvement of the triangular matrix product 
in commodity clusters

Inmaculada Santamaria‑Valenzuela1 · Rocío Carratalá‑Sáez1 · Yuri Torres1 · 
Diego R. Llanos1 · Arturo Gonzalez‑Escribano1

Accepted: 21 March 2024 / Published online: 15 April 2024 
© The Author(s) 2024

Abstract
There are many works devoted to improving the matrix product computation, as it 
is used in a wide variety of scientific applications arising from many different fields. 
In this work, we propose alternative data distribution policies and communication 
patterns to reduce the elapsed time when computing triangular matrix products 
in distributed memory environments. In particular, we focus on commodity clus-
ters, where the number of nodes is limited, proposing alternatives to traditional 
approaches in order to improve this operation’s performance. Our proposal over-
comes the performance results associated with the state-of-the-art libraries, such as 
ScaLAPACK and SLATE, offering execution times that are up to 30% faster.
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1  Introduction

The matrix-matrix product (MM) is an essential linear algebra operation at the 
core of multiple areas of scientific applications, such as deep learning, fluid 
dynamics, or image processing. This mathematical operation is usually highly 
time-consuming; therefore, much effort has been devoted from the high-perfor-
mance computing (HPC) community to solve it efficiently to reduce its comput-
ing time as much as possible.

Compared with single-node systems, distributed HPC environments increase 
the number of computing resources available for the execution of an MM opera-
tion. Distributing the workload among the computational nodes introduces the 
potential to execute faster MM, or to execute multiplications of bigger matrices. 
However, developing an efficient implementation in distributed systems for all 
kinds of matrices and platforms remains a challenge, since it is difficult to find a 
good balance between the calculations and the communications derived from the 
data distribution across the involved nodes.

The rise of modern commodity clusters has been driven by the opportunities 
they provide, such as easy scalable performance, reduced cost, mass storage, the 
flexibility of configurations, and programming model commonality [1]. Many 
companies or academic institutions build their own commodity clusters, equipped 
with a small number of nodes, dedicated to research or production tasks. There 
is also a significant number of research centers where small commodity clusters 
are maintained as the main execution platform for experimentation. Even small 
supercomputing centers have limited shared facilities where users can only launch 
their jobs in small partitions with no more than, for example, 36 nodes. Moreover, 
the queue systems in these shared facilities do not prioritize jobs that require a 
high number of nodes. Therefore, it is important to continue to make progress 
in improving the efficiency of the distributed MM product for this kind of small 
commodity clusters.

There are currently libraries that offer efficient implementations of general 
and triangular MM, called GEMM (General MM) and TRMM (Triangular MM), 
respectively. In particular, in the case of distributed environments, there are 
well-known library options to execute efficient MM that have been intensively 
optimized. For example, the classic ScaLAPACK [2] library and its recent evo-
lution SLATE  [3], whose main goal is to replace ScaLAPACK. They are  cur-
rently the widely accepted standard for performing complex linear algebra oper-
ations in distributed memory systems. These libraries are focused on keeping 
their scalability rate even when using a high number of nodes, like those availa-
ble in top-end supercomputers. To attain this objective, they provide implemen-
tations using tiling and block-cyclic distributions with classic, highly scalable 
distributed algorithms as the foundation of their execution strategy in distributed 
systems, such as Summa [4]. However, these tools do not consider different data 
partitions, communication patterns, or buffer shapes that have the potential to 
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squeeze the parallelism opportunities even more when using commodity clus-
ters for specialized MM cases, such as the TRMM. This routine is used in many 
scientific operations (see e.g.  [5] that presents a novel implementation of Can-
non’s algorithm for triangular MM, or [6] that uses triangular linear system solv-
ers in leading machine learning frameworks). TRMM operates with a triangular 
matrix, and because half of its elements are zero, it presents different opportuni-
ties and requires different approaches than GEMM or other full matrix opera-
tions to distribute data, create load balance, and communicate the matrix parts.

In this work, we propose and evaluate an alternative combination of classic and 
revised techniques related to the data distribution, communication patterns, and the 
communication buffer shape, with the objective of reducing the overall cost of TRMM 
in distributed memory environments of low/mid scale, such as commodity clusters. 
Our solution provides a good balance between computation and communication by 
using non-blocking communications adapted to the number of nonzero elements in the 
triangular matrices, and better overlapping computations and communications.

In this work, we present the following contributions: 

1.	 We propose different combinations of classic and revised techniques for com-
puting the distributed TRMM. These proposals are an alternative to the ones 
currently adopted in state-of-the-art libraries and are related to data distribution, 
communication patterns, and the shape of data buffers.

2.	 We conduct an experimental evaluation of the execution time associated with 
each of our proposed alternative TRMM implementations in a commodity cluster, 
using up to 36 nodes.

3.	 We compare our elapsed execution times with the equivalent ones by the two 
main primary state-of-the-art libraries that implement the distributed TRMM: 
ScaLAPACK and SLATE.

4.	 We derive recommendations that can be applied by the users and developers of 
the standard libraries, such as ScaLAPACK and SLATE, in order to improve their 
performance for commodity clusters.

5.	 We have made our implementations fully Open Source and available, so anyone 
in the community can access them.

The rest of the paper is structured as follows: In Sect. 2, we describe the state of the 
art, mentioning the main existing libraries that offer distributed TRMM; in Sect. 3, we 
describe our proposal, explaining the main axes covered by it (band partitioning, elud-
ing zeros in the communications, balancing the data distribution, and testing a custom-
ized and more sophisticated version of a broadcast-based communication pattern); in 
Sect. 4, we demonstrate our proposal’s performance, comparing it to that offered by the 
state of the art libraries SLATE and ScaLAPACK; and in Sect. 5, we summarize the 
main conclusions derived from this work.
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2 � State of the art

There are many libraries available that offer efficient tools for performing com-
plex mathematical calculations involving dense linear algebra operations. 
These libraries typically contain an MM, as it is a critical operation in many 
applications.

GotoBLAS  [7] was a pioneer library introducing a framework for highly 
optimized implementations of the MM, specialized for each target platform or 
architecture. Most of the modern libraries with implementations of the MM 
are inspired by the concepts and ideas proposed in GotoBLAS, including both 
Open Source libraries (like BLIS  [8] or OpenBLAS  [9]) and vendor provided 
ones (such as Intel MLK [10], ARMPL [11] or AMD AOCL-BLAS [12]). These 
libraries offer an implementation of one of the most widely used library inter-
faces that include the MM: LAPACK [13]. LAPACK has been around for nearly 
30 years and is considered a standard choice for performing dense linear algebra 
computations on a single computer. The programs using LAPACK are more port-
able and can easily access the desired linear algebra library with the best opti-
mized implementation for the chosen target platform. Most LAPACK implemen-
tations also support shared-memory parallelism, which allows the exploitation of 
multiple processor cores for faster calculations. Thus, they are typically used as 
the foundation of higher-level MM algorithms for distributed memory systems.

ScaLAPACK  [2] extends the capabilities of LAPACK by making it suitable 
for distributed computing environments, like HPC clusters. It achieves this by 
exploiting highly scalable distributed algorithms for MM, such as Summa  [14], 
implemented using both Parallel BLAS (PBLAS)  [15] and explicit distributed-
memory communications with, for example, a message-passing library such 
as MPI  [16]. Among the libraries implementing ScaLAPACK, there is Intel 
MKL [17], which is used in this work as one of our references for performance 
comparisons. With ScaLAPACK, the user can tune the routines by varying the 
parameters that specify the data layout, in order to improve the performance on 
the specific target system. On shared-memory machines, this is controlled by 
a block size parameter, while on distributed-memory systems it is controlled 
by both the block size and the configuration of the logical processes grid. Sca-
LAPACK promotes the use of block-partitioned algorithms with block-cyclic dis-
tributions. However, ScaLAPACK does not allow alternative data distributions 
and it is not capable of avoiding sending blocks with zero values between nodes 
when using triangular matrices.

There are other libraries that feature similar to ScaLAPACK [18, 19]. How-
ever, none of them have become widely accepted or adopted as a suitable replace-
ment for ScaLAPACK. Nevertheless, the SLATE  [3] library has recently been 
released to offer essential tools for performing complex linear algebra calcula-
tions on modern high-performance computing systems. It is offered as a replace-
ment for LAPACK and ScaLAPACK, aiming to provide the same functionality 
with a better performance on modern machines. It supports multicore CPUs and 
accelerators such as GPUs. For CPUs, it achieves a portable high performance by 
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exploiting the OpenMP [20] technology. Using the OpenMP runtime puts less of 
a burden on applications to integrate SLATE than adopting a proprietary runt-
ime would. Furthermore, it improves performance and scalability by employing 
proven techniques in dense linear algebra, such as 2D block-cyclic data distri-
bution and communication-avoiding algorithms, as well as modern parallel pro-
gramming approaches, such as dynamic scheduling and communication overlap-
ping. SLATE also offers a new feature, the possibility to use data distributions 
tailored by the user for specific purposes. Nevertheless, the current implementa-
tion only provides the usual 2D block-cyclic data distribution.

Many works study how to adapt the data layout to improve performance when 
using different linear algebra operations in specific contexts. For example, in  [21] 
the authors outline a methodology for the automatic generation and optimization 
of numerical software tailored to processors featuring deep memory hierarchies 
and exclusively pipelined functional units;  [22] uses it in the context of computa-
tions performed by a matrix engine conceptualized as an accumulation of multiple 
outer products; in [23], the authors investigate a range of algorithmic and program-
ming optimizations for BLAS-3 and LAPACK-level routines leveraging task-based 
parallelism.

In this work, we study the use of different data distributions for the case of the 
TRMM in the context of commodity clusters. We use SLATE (together with Intel 
MKL ScaLAPACK) as a second reference for performance comparisons.

3 � Our proposal

With the objective of improving the efficiency of the distributed triangular matrix 
product in commodity clusters, as compared to that offered by state-of-the-art librar-
ies, our proposal explores four main ideas: 

1.	 Using band partitioning instead of tiling, which is the usual choice of well-estab-
lished library implementations.

2.	 Using specific buffering strategies to avoid sending zeros when communicating 
the matrix data between the different processors.

3.	 Customizing the partition of the data to balance the number of elements that are 
processed at each stage on each node.

4.	 Evaluating a custom version of the broadcast communication strategy to move 
the data across the nodes in the distributed system faster, thanks to the increase 
of the degree of the communications overlap.

In this section, we describe each of these ideas in depth, and we also provide some 
details on how to access our implementation, which is fully available and Open 
Source.

Regarding the notation, we consider the triangular matrix product C = A × B 
where A ∈ ℝ

m×m , B ∈ ℝ
n×n , C ∈ ℝ

m×n , with A being a triangular matrix, and 
m, n ∈ ℕ . Moreover, we also use i ∈ {0… �_����� − 1} ∈ ℕ , with n_procs being 
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the total number of computing nodes that participate in the computation, among 
which the matrix portions need to be distributed. In addition, we will use n_rows 
to refer to the number of rows of the A matrix. For simplicity, we discuss the case 
where A is lower-triangular. The discussion and algorithms for the case where A is 
upper-triangular are equivalent, and adapting the implementation is straightforward.

3.1 � Band partitioning

The matrix product implementations typically use 2D tiles and 2D process grids to 
partition and distribute the data among the processors. Although using tiles can be 
the best strategy when scaling up the number of nodes intervening in the computa-
tion, our hypothesis is that using panels or bands can offer better results in com-
modity clusters. When using the term “panel” or “band”, we refer to portions of the 
matrix formed by a contiguous set of full rows (horizontal panel), or a contiguous 
set of full columns (vertical panel). Even though, in the long term, panel-based par-
titions lead to a higher number of communication stages per node, there are commu-
nication algorithms for band partitions that move the data of only one matrix with 
bulk movements of contiguous data, thus simplifying the marshalling and buffer 
management.

In our proposal, at the start of the triangular matrix product algorithm execution, 
each node receives its Ai and Bi submatrix. In our implementation, we opt for dis-
tributing A by horizontal panels of dimension m�

i
× m , with m′

i
≤ m , and B and C 

by vertical panels of dimension n × n�
i
 , with n′

i
≤ n . Note that here, the subindex i 

serves as a reference to the i-th partition of A and B, that is, the one provided to the 
computing node i. Figure  1 graphically illustrates this panel-based distribution of 
the A, B, and C matrices when four nodes are involved in the computation.

With this proposed partition, along the TRMM algorithm execution, the differ-
ent nodes send their Ai submatrix to the others, always keeping the same Bi and Ci 
submatrix. The way Ai is moved across the algorithm stages depends on the commu-
nication strategy chosen, as explained in detail in Sect. 3.4. At each stage, each node 
computes a portion of the result of its Ci matrix; in particular, a vertical panel of 
dimension m�

k
× n�

i
 , where k ∈ {0… �_����� − 1} is different at each stage, and m′

k
 

is equal to the m′
i
 dimension of the particular Ai that is being multiplied. At the end 

of the algorithm, the whole Ci panel has been computed by each i process. State-of-
the-art libraries, such as SLATE, communicate and multiply blocks of a fixed size. 
To improve utilization they do the local multiplication operations using batch rou-
tines, where multiple independent small MM operations are grouped and then mul-
tiple threads work on different MM instances within the group. In our case, whole 

Fig. 1   Sample of a proposed 
panel-based distribution of A, B 
and C matrices among four 
processes
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panels are communicated and the local computation on each stage is a single big 
panel matrix multiplication. Thus, we choose to do these operations by calling clas-
sical MKL routines that are designed to internally exploit multiple-thread parallel-
ism in a very optimized and efficient way.

3.2 � Eluding zeros in the communications

Data communication usually represents a considerable portion of the total execu-
tion time of any distributed memory application. In the case of the TRMM con-
sidered in this work, where A is triangular, almost half of the A matrix is known 
to be filled with zeros, as shown in Eq. (1).

It is unnecessary to invest time and resources on sending the matrix portions that 
only contain zeros, as those values are not considered when computing the triangu-
lar matrix product. For this reason, we have designed two marshalling strategies that 
can be implemented by MPI derived datatypes, to reduce or even completely avoid 
the zero values that are communicated across the computing nodes: Boxes and trap-
ezoids. We propose using these strategies in contrast to communicating the whole 
matrix panel Ai . We refer to this last option as the “full panel” strategy; see Fig. 2a.

The “box” strategy wraps the elements of the rows in an A panel, up to the 
column that contains the matrix diagonal element of the last row of the panel. 
The result is a rectangular region. The elements in the rest of the columns, on the 
right of the box, are skipped because they contain zeros. In this case, if the panel 
has more than one row, the last columns of the upper rows of the box still contain 
some zeros. Figure 2b illustrates this graphically. Analyzing in depth the number 
of zeros that this data structure contains, we see that:

(1)

number_of_elements_of_A = m2

number_of_nonzero_elements_of_A =
m(m + 1)

2

number_of_nonzero_elements_of_A

number_of_elements_of_A
=

m(m−1)

2

m2
=

m + 1

2m

lim
m→inf

number_of_nonzero_elements_of_A

number_of_elements_of_A
= lim

m→inf

m + 1

2m
=

1

2

Fig. 2   Full panel (a), box (b), 
and trapezoid (c) shapes for 
distributing the data among the 
processes. Observe that, from 
left to right, the area of elements 
forming each matrix portion ( � , 
� , � , and � ) decreases
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When we have a small number of nodes:

And, when we have a large number of nodes:

From Eqs. (3)–(5), we can derive the fact that, in big clusters, the impact of includ-
ing some of the zeros in the communication is almost negligible. Nevertheless, 
when the number of nodes is small, these zeros can be representative. For this rea-
son, in the context of commodity clusters, we refine the “box” strategy by creating 
the “trapezoid” one to skip the extra zeros.

The “trapezoid” strategy wraps the elements of the rows in an A panel, choosing 
for each row the columns up to the diagonal element contained in that particular 
row. If the A panel has several rows, this strategy can be seen as a combination of 
two strategies: A first one that selects a rectangle, and a second one that selects a tri-
angle. The rectangular part contains the elements on the columns before the diago-
nal element in the first row. The triangular part contains the nonzero elements on the 
region defined by the range of rows in the panel and the range of columns that con-
tain a diagonal element of any of those rows. Figure 2c illustrates this graphically.

Although these box/trapezoid marshalling strategies involve copying non-contig-
uous data sets, and consume some extra time in marshalling logic as compared to 
buffering the full panel, they involve much fewer data movements, and communicat-
ing them is faster. As has been previously commented, this is especially important 
when the number of nodes intervening in the operation is small. Moreover, these 
strategies operate in bulk communications for whole panels. We hypothesize that, in 
commodity clusters, the overall execution time using the bulk “box” or “trapezoid” 
marshalling strategies will be reduced as compared to that observed when using 
“full panels”, or even classical 2D tiling approaches that require continuous mar-
shalling of small pieces of non-contiguous data.

3.3 � Balancing the data distribution at run‑time

Regardless of employing marshalling strategies such as those described in the previ-
ous section, it is also important to pay attention to the number of rows on each A panel, 
which directly impacts the number of elements involved in the computations executed 

(2)number_of_zeros_per_box =

n_rows

n_procs
⋅

(

n_rows

n_procs
− 1

)

2

(3)lim
n_procs→1

number_of_zeros_per_box =
n_rows(n_rows − 1)

2

(4)lim
n_procs→0

number_of_zeros_per_box = ∞

(5)lim
n_procs→∞

number_of_zeros_per_box = 0
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by each node at each stage. The proposal we describe in this section is related to the 
number of rows and nonzero elements on each Ai panel, and thus, on the balance of the 
computations at each stage.

When slicing a regular matrix by panels to distribute it among different nodes, the 
basic approach consists of dividing the number of rows of the matrix (n_rows) by the 
number of nodes (n_procs) to create a regular distribution. We refer to this approach 
as “regular partition”. If the integer division has a remainder, some node(s) could have 
slightly more rows than others, but this becomes negligible when the size of the matrix 
grows. For simplicity, for the rest of the discussion, we assume square matrices where 
n_rows = n_columns, with no remainder in the division n_rows/n_procs.

In the case of triangular matrices, it is known in advance that a non-despicable 
amount of their elements are zero, and thus, they do not take part in the computation. If 
a regular partition is performed on the A matrix, each processor receives an Ai panel 
with ����_����� =

�_����

�_�����
 rows of the original matrix, starting at row 

i ⋅ ����_����� . Considering that A is lower triangular (the result is equivalent when it 
is upper triangular), each node i receives the following number of nonzero values 
(n_nonzero_elements_Ai):

where n_elem_rect_Ai refers to the number of elements of the “rectangular” portion 
of the Ai nonzero data (see the dark gray region in Fig. 3):

and n_elem_tri_Ai refers to the number of elements of the “triangular” portion of the 
Ai nonzero data (see the light gray region in Fig. 3):

Thus, the total number of nonzero values of the panel Ai (n_nonzero_elements_Ai ) 
can be expressed with respect to the rows_count as:

The total number of elements of the panel Ai ( n_elements_Ai ) can be expressed with 
respect to the rows_count as:

(6)n_nonzero_elements_Ai = n_elem_rect_Ai + n_elem_tri_Ai,

(7)n_elem_rect_Ai = i ⋅ rows_count2,

(8)n_elem_tri_Ai =
rows_count ⋅ (rows_count + 1)

2

(9)n_nonzero_elements_Ai = i ⋅ rows_count2 +
rows_count ⋅ (rows_count + 1)

2

Fig. 3   Graphical representation 
of the rectangular part (dark 
gray), triangular part (light 
gray), and the part filled with 
zeros (dashed light gray) of 
a horizontal panel in a lower 
triangular matrix
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If the portion of nonzero values associated with each node is evaluated with respect 
to the total number of elements of each Ai submatrix, we see that:

When the number of nodes intervening in the computation increases, the rows_count 
gets smaller. In particular, the larger the number of nodes in the computation, the 
greater the difference between the number of nonzero elements to compute on each 
node in a given stage. Let us see this in detail.

The first node ( i = 0 ) obtains the following quantity of nonzero elements:

The last node ( i = n_procs − 1 ) obtains the following quantity of nonzero elements:

The relationship between the number of nonzero elements received by both nodes is 
given by:

Thus, the number of nonzero elements provided to the first node is insignificant 
compared to that of the last node:

As a consequence, our hypothesis is that it is worth balancing the number of 
nonzero elements of each Ai in such a way that each node operates over approx-
imately the same number of elements. To attain this, we propose to change 
the way of calculating the rows_count. Instead of a global rows_count 
that is used to determine how many rows form each Ai , we propose to define 
a collection of row counts, such that rows_counti expresses the number 

(10)n_elements_Ai = rows_count ⋅ n_rows

(11)

n_nonzero_elements_Ai

n_elements_Ai

=
i ⋅ rows_count2 + rows_count ⋅ (rows_count + 1)∕2

rows_count ⋅ n_rows

=
(2i + 1) ⋅ rows_count + 1

2 ⋅ n_rows

(12)n_nonzero_elements_A0 = rows_count ⋅ (rows_count + 1)∕2

(13)

n_nonzero_elements_An_procs−1

= (n_procs − 1) ⋅ rows_count2 +
rows_count ⋅ (rows_count + 1)

2

=
2(n_procs − 1) ⋅ rows_count2 + rows_count ⋅ (rows_count + 1)

2

(14)

n_nonzero_elements_A0

n_nonzero_elements_An_procs−1

=

rows_count(rows_count+1)

2

2(n_procs−1)⋅rows_count2+rows_count(rows_count+1)

2

=
rows_count + 1

2 ⋅ rows_count(n_procs − 1) + rows_count + 1

(15)lim
n_procs→inf

rows_count + 1

2 ⋅ rows_count(n_procs − 1) + rows_count + 1
= 0
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of rows mapped to Ai . This lets us balance the number of nonzero elements 
assigned to each node by supplying a descendant number of rows to each Ai ; 
in other words, max(rows_count0 … rows_countn_procs−1) = rows_count0 , and 
min(rows_count0 … rows_offsetn_procs−1) = rows_countn_procs−1.

The ideal situation in which the balanced partition is perfect is that in which the 
number of nonzero elements of the matrix A is divisible by n_procs and the quo-
tient of the division is such that the different rows_counti can exactly match it. 
For example, this applies when we have a matrix of dimension 3 × 3 and distribute 
it between two processors. In total, that small matrix has nine elements, of which 
3(3+1)

2
= 6 are zero values, and the remaining three are zeros. Each processor should 

get (following a balanced strategy) a total of 6
2
= 3 elements. It turns out that by giv-

ing the first two rows to the first processor and the last row to the second one, each 
has exactly three elements.

Nevertheless, this ideal situation is not frequent. In our proposal, we use Algo-
rithm 1, which in turn relies on Algorithm 2, to determine which rows are assigned 
to each process to balance as much as possible the number of nonzero elements of 
each one in the distribution.

Algorithm 1   Calculate_row_count_array

Algorithm 2   Calculate_row_count_i
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Algorithm  2 arises from solving the following equation, where ideal refers to 
ideal_n_nonzero_elements_Ai =

n_nonzero_elements_A

n_procs
:

with assigned_rows referring to the number of rows that have already been assigned 
to other processes. Thus,

This regular partitioning (using just one global rows_count) versus a balanced 
partitioning (using a collection of rows_counti ) is graphically illustrated in 
Fig. 4.

3.4 � Data communication

A simple serial triangular matrix product algorithm (serial TRMM) is described 
in Algorithm 3. When computing this product in a distributed environment, the 
data need to be properly spread across nodes, and the results adequately col-
lected. A generic distributed TRMM algorithm has three main parts: (1) initial 

n_nonzero_elements_Ai = ideal →

n_elem_rect_Ai + n_elem_tri_Ai − ideal = 0 →

rows_counti ⋅ assigned_rows +
rows_counti ⋅ (rows_counti + 1)

2
− ideal = 0 →

rows_count2
i
+ rows_counti(2 ⋅ assigned_rows + 1) − 2 ⋅ ideal = 0 →

rows_counti

=
−2 ⋅ assigned_rows − 1 +

√

4 ⋅ assigned_rows2 + 4 ⋅ assigned_rows + 1 + 8 ⋅ ideal

2

Fig. 4   Sample of a regular (left) and balanced (right) partition of the matrix data among four processes
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distribution of the submatrices of A, B and C; (2) a loop to perform as many 
times as needed the product of the local submatrices Ai and Bi at each node and 
to interchange the local A submatrices among the nodes for the next loop itera-
tion; and (3) collect the resulting matrix portions Ci calculated by each node to 
form the result matrix. 

Algorithm 3   TRMM (Serial triangular matrix product)

State-of-the-art libraries, such as SLATE, use OpenMP tasks to manage MPI 
communications and improve computation and communication overlap of matrix 
blocks, which are in general of much lower granularity than panels. For whole 
matrix panels, we can obtain better results by carefully planning the overlapping 
of computation and communication explicit choosing MPI the proper places of 
the communication algorithm where MPI communications are issued. After also 
testing classical pipeline and broadcast approaches, in our proposal we choose 

Fig. 5   Sample of our custom broadcast-based communication pattern when seven nodes intervene in the 
computation. The matrix initial distribution is shown at the top of the figure
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a custom version of a broadcast-based communication strategy for the commu-
nication and exchange of the local Ai parts across nodes in the main loop. The 
choice of the communication strategy is orthogonal to the choice of the data 
distribution.

Algorithm  4 describes our custom broadcast-based communication strategy 
to communicate the Ai submatrices among the different processes during the dis-
tributed TRMM computation. The process is graphically illustrated on Fig.  5. 
If a classical broadcast strategy were employed, at each iteration, the root node 
(whose identifier is the same as the iterator) would broadcast its Alocal matrix to 
the rest of the nodes, and then all the nodes (including the sender) compute the 
TRMM with that Ai submatrix and their particular Blocal matrix. Our approach 
works in two stages on each iteration, explicitly unrolling the first step of a clas-
sical tree-based broadcast algorithm. In the first step, the root node communi-
cates the Alocal matrix to the process with the next rank. Then, in the second 
stage, the two processes that have a copy of the data issue a broadcast. Each one 
broadcasts the data to one half of the rest of nodes. In particular, the sender that 
has an even rank broadcasts the data to the rest of the even nodes, and the sender 
with an odd rank does the same for the rest of the odd nodes. For example, if 
nine nodes are taking part in the process, at the first iteration, the node zero 
(root node), which is the first sender, will send its Alocal matrix to the node one 
(second sender), and then the node zero broadcasts its Alocal matrix to nodes two, 
four, six, and eight, while, at the same time, the node one sends the Alocal matrix 
received from node zero to nodes three, five, and seven. Due to the big amount 
of data involved in a whole panel communication, this customized broadcast 
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strategy increases the communications overlap and improves the performance of 
a single MPI broadcast call. 

Algorithm 4   Customized broadcast-based distributed TRMM

4 � Experimental results

In this section, we present the experimental study to evaluate the performance 
results of the different combinations of the techniques proposed in the previous sec-
tion. We first describe the platform used for the performance evaluation. Then, we 
enumerate the different software versions and provide information about the source 
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code availability. Finally, we present the experimental results associated with our 
proposal, including a comparison with the equivalent performance associated with 
the ScaLAPACK and SLATE libraries.

4.1 � Platform, software versions, and code availability

The tests presented in this section have been conducted in the FinisTerrae III super-
computer at CESGA (Centro de Supercomputación de Galicia) supercomputing 
center in Spain. It is equipped with 118 TB of memory and 354 computing nodes, 
each composed of two Intel Xeon Ice Lake 8352Y processors, of 32 cores each, at 
2.2  GHz. The nodes are interconnected through a Mellanox Infiniband HDR 100 
network. The peak performance of the machine is 4.36 PFLOPS.

As this cluster is a shared resource, the execution of different user jobs is con-
trolled by a queue system. The queue system policies prioritize the shared usage of 
the whole system. There are usually many jobs in the queues requiring a small num-
ber of nodes (from two to eight). Thus, a small number of nodes often become idle 
when a small job finishes, and other small jobs are eager to occupy them. The higher 
the number of nodes required in a job, the exponentially longer it waits in the queues 
to achieve enough privilege to force the system to wait with idle nodes until there 
are enough free nodes to accommodate it. In our experience, experimenting with 
more than 36 nodes is a daunting task. We have experienced similar problems when 
conducting executions with a high number of nodes in other similar supercomputing 
centers. Thus, we consider this platform a valid example of a generic commodity 
cluster with up to 36 nodes.

The operating system is Rocky Linux 8.4 (Green Obsidian) for all the nodes. All 
the codes are compiled using the GCC 11.2.1 compiler. Moreover, we use Intel’s 
oneAPI 2023.2.1 and its Intel(R) MPI Library for Linux OS and MKL Library. For 
the comparisons, we use the ScaLAPACK version in Intel’s oneAPI 2023.2.1 and 
SLATE v2022.07.00.

All our source codes are publicly available at https://​github.​com/​uva-​trasgo/​
UVaTR​MM/.

4.2 � Evaluation

To evaluate the performance of our proposal, we have measured the elapsed time 
when executing the TRMM over two different matrix sets: a small one of dimen-
sion 10,000 × 10,000 and a larger one of dimension 30,000 × 30,000 . For each case, 
we have tested four different configurations that are associated with all the possi-
ble combinations arising from the different data partitioning (regular or balanced) 
and buffer shapes (boxes or trapezoid), using in all cases our custom broadcast-
based communication pattern. Moreover, as we have already anticipated, we have 
also measured the elapsed time when executing the TRMM from SLATE and Sca-
LAPACK over the same two matrices, using different block sizes for they block-
cyclic distribution; as 256 and 512 were the block sizes offering the best results, 
those are the ones reflected in this section. Tables 1 and 2 show the results observed 
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Fig. 6   Efficiency observed when scaling up the number of MPI processes employed to compute the 
TRMM of the small matrix (left) and the large one (right) with our proposed approaches

Table 1   Elapsed time (in seconds) when executing the TRMM from SLATE, ScaLAPACK, and our pro-
posal over a matrix of dimension 10, 000 × 10, 000 using up to 36 processes

Matrix of dimension 10,000 × 10,000 Number of processes

1 9 16 25 36

ScaLAPACK Block cyclic with nb = 256 14.335 1.969 1.243 0.895 0.679
Block cyclic with nb = 512 14.368 2.035 1.25 0.900 0.756

SLATE Block cyclic with nb = 256 15.693 1.948 1.176 0.792 0.603
Block cyclic with nb = 512 14.862 2.041 1.212 0.852 0.741

Our proposal reg, boxes 13.231 1.798 1.068 0.641 0.677
reg, trapezoid 13.243 1.838 0.948 0.631 0.512
bal, boxes 13.204 1.793 1.162 0.643 0.698
bal, trapezoid 13.245 1.760 0.959 0.643 0.536

Table 2   Elapsed time (in seconds) when executing the TRMM from SLATE, ScaLAPACK, and our pro-
posal over a matrix of dimension 30,000 × 30,000 using up to 36 processes

Matrix of dimension 30,000 × 30,000 Number of processes

1 9 16 25 36

ScaLAPACK Block cyclic with nb = 256 366.059 44.009 25.903 17.756 12.731
Block cyclic with nb = 512 366.158 45.095 25.878 17.445 12.505

SLATE Block cyclic with nb=256 421.644 48.739 28.429 18.556 13.097
Block cyclic with nb = 512 395.306 47.177 27.607 18.480 13.152

Our proposal reg, boxes 347.098 39.823 22.860 14.522 10.721
reg, trapezoid 345.230 40.027 22.705 14.552 10.704
bal, boxes 345.760 39.943 22.881 14.759 10.897
bal, trapezoid 345.608 39.952 22.730 14.761 10.882
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for computing the TRMM over the 10,  000 and the 30,  000 dimension matrices, 
respectively. It is important to remark that our proposal and the code that uses Sca-
LAPACK rely on Intel’s oneAPI MKL library to execute the GEMM and TRMM 
kernels in the process of computing the local parts at each stage. We have tested 
these implementations using Intel threads. Nevertheless, this is beyond our control 
when using SLATE.

Evaluating our proposal’s scalability, we have observed that all of our combina-
tions scale fairly well when increasing the number of processes. Taking as a refer-
ence the execution time observed when using one process (with each evaluated con-
figuration), we have computed the ideal efficiency and compared it with the actual 
one. The results are illustrated in Fig. 6. As can be observed, with the small matrix 
set, the efficiency is between 80 and 90% with up to 25 processes, and decreases to 
70% when using 36 processes, while, with the large matrix, it is between 90 and 
95% in any case. The difference observed with the smaller matrix is that, with such 
a small size ( 10,000 × 10,000 ), there is not enough work to compensate for the com-
munication costs when it is distributed among 36 nodes, and it is not worthwhile to 
use so many processes. Nevertheless, a good efficiency is observed with the larger 
matrix, which means that any of our proposed approaches present a good efficiency 
when increasing the number of processes employed if the matrix is big enough, and 
thus, there is a considerable workload at each node.

In the next sections, we evaluate in detail each of our proposed approaches, deter-
mining whether they are beneficial or not, as well as in which cases there are ben-
efits. Finally, we analyze the results of our proposal by comparing them with those 
obtained with SLATE and ScaLAPACK.

4.2.1 � Alternatives to full panels: boxes and trapezoids

An aspect we explore with our proposal is using custom shapes that avoid sending 
(all or part of) the triangular matrix zeros: Boxes and trapezoids. For comparing our 
boxes-based against trapezoid-based results, we conducted the following calculation:

(16)% of difference =
t_trapezoid − t_boxes

t_boxes
⋅ 100

Fig. 7   Comparison between trapezoid and boxes data shapes for the 10K dimension (left) and 30K 
dimension (right) matrices. Note that the vertical axis range is different at each plot
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Figure 7 reflects the results obtained based on Eq. (16). Note that, in each case, we 
fix regular/balanced to ensure fair comparisons; in other words, we only modify one 
of the evaluation axes.

In this case, using trapezoid shapes generally reduces the execution time when 
operating over small matrices (up to 25% improvement, although the execution 
times are very small and in practice this difference does not represent a large gain). 
However, the differences observed with the large matrix are negligible (between 
−  0.67 and 0.51%), so it is not worth the effort of using trapezoid shapes instead 
of boxes when the matrices are large enough. The reason that justifies this is the 
fact that, with large matrices, as we are using asynchronous communications, the 
data transfer overlap with the computation process, and thus the additional effort 
of creating a trapezoidal data structure instead of simply a rectangular one (box) 
is not leveraged, as the impact of avoiding sending a small triangle full of zeros is 
almost non-representative compared to the computations with large matrices and the 
marshaling of the rest of the big rectangular parts of the panel. In fact, with large 
matrices, the computation is much more representative than the asynchronous com-
munication, regardless of the data structures that are sent.

4.2.2 � Does it pay off to balance the partitioning?

Another aspect that we have also explored with our proposal is the possibility of 
balancing the number of rows assigned to each process based on the number of ele-
ments over which the computations are later performed. To compare our balance-
based against regular-based results, we conducted the following calculation:

Figure 8 shows the results obtained based on Eq. (17). Note that, in each case, we fix 
boxes/trapezoids to ensure fair comparisons; in other words, we only modify one of 
the evaluation axes.

The global idea extracted from the evaluation is that, with small matrices, it can 
be beneficial to balance the partitioning when there is a small number of processes. 

(17)% of difference =
t_balanced − t_regular

t_regular
⋅ 100

Fig. 8   Comparison between balancing and regular partitioning for the 10K dimension (left) and 30K 
dimension (right) matrices
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Nevertheless, with large matrices, the impact of balancing the partition is negligible, 
or even negative, so balancing the partition is not worthwhile.

Let us now analyze the small matrix results in more detail. In this case, we see 
a maximum improvement of 4% due to balancing the partition. When using box 
shapes instead of trapezoids and up to 9 processes, the impact is greater, as more 
elements are included in the data structures that are sent. Thus, the imbalance in the 
regular partitioning is more noticeable. On the contrary, when using more processes, 
it is not worth balancing the partition, as the differences observed in terms of the 
number of elements assigned to each process are reduced when using a regular par-
tition (because fewer elements are assigned to each one).

4.3 � Comparison with ScaLAPACK and SLATE

In this section, we present a comparison between our results and those observed 
when executing the TRMM from ScaLAPACK and SLATE, respectively, in Figs. 9 
and 10. The metric we use for the comparison against both libraries is calculated as:

When comparing our proposal results against ScaLAPACK, we observe that we 
generally offer better results, regardless of the approach from our proposal that we 

% of improvement (library) =
t_library − t_our_proposal

t_library
⋅ 100

Fig. 9   Comparison between ScaLAPACK and our proposal TRMM for the 10K dimension (top) and 
30K dimension (bottom) matrices. Note that, with ScaLAPACK, we have used two different block sizes 
for the block cyclic distributions; the left plots correspond to nb = 256, the right ones to nb = 512
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consider. There are only two cases in which ScaLAPACK (with nb = 256) beats our 
proposal (by less than 5%). These cases appear when we use balanced + boxes with 
9 or 36 processes to compute TRMM of the small matrix. These cases appear when 
the execution times are around 1 s or less. Thus, it turns out to be almost negligible 
in terms of execution time difference.

Analyzing in depth the results of the comparison with the small matrix, we 
observe that our proposal follows a clear trend: With 9 processes there is a 10–15% 
gain, and with more processes it is between 20 and 30%, considering our best times, 
which are either using regular or balanced partitioning and trapezoid shapes. In the 
case of the large matrix, our proposal improvement varies less, offering between 10 
and 18% better execution times.

When comparing our proposal results against SLATE, we again observe that we 
generally offer better results, although the difference with the small matrix is less 
homogeneous than that observed with respect to ScaLAPACK. In this case, there 
are three occasions when SLATE (using nb = 256) is faster than our approach with 
the small matrix. They appear when using 9 and 36 processes with our balanced + 
boxes approach, and when using 36 processes with our regular + boxes approach. 
Nevertheless, it is important to highlight again that this happens only with the small 
matrix, when the execution times are around 1 s or less. Thus, it turns out again to 
be almost negligible in terms of execution time difference.

A further study of the results with the small matrix reveals that our proposal 
offers improvements between 10 and 20%, considering our best times, which are 
either using regular or balanced partitioning and trapezoid shapes. In the case of the 

Fig. 10   Comparison between SLATE and our proposal TRMM for the 10K dimension (top) and 30K 
dimension (bottom) matrices. Note that, with SLATE, we have used two different block sizes for the 
block-cyclic distributions; the left plots correspond to nb = 256, and the right ones to nb = 512

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



16651

1 3

Performance improvement of the triangular matrix product…

large matrix, our proposal improvement varies less, offering between 15 and 22% 
better execution times.

It is important to highlight that the reason why we observe worse improvement 
rates when evaluating some of our TRMM with small matrices is that we do not per-
form any improvement on the linear algebra TRMM and GEMM kernels on which 
we rely, while the state of the art libraries (specially SLATE) incorporate computa-
tional kernel optimizations that are more noticeable in the small matrix case, when 
the data distribution and communication patterns (the problem that we tackle in this 
work) have less impact.

5 � Conclusion

In this work, we present a proposal that explores four different axes in order to offer 
new distributed TRMM computation approaches that improve the state-of-the-
art performance for the SLATE and ScaLAPACK libraries in commodity clusters 
equipped with up to 36 nodes.

From the experiments conducted, we extract the following main conclusions:

•	 Using panel partitions instead of tiling can offer good results in commodity clus-
ters.

•	 Regarding the communication pattern selection, performance is significantly 
improved by using a custom broadcast-based communication pattern..

•	 With respect to the special data shapes to be distributed, we have observed that it 
is not worth using trapezoid shapes instead of boxes when the matrices are large 
enough. Nevertheless, with small matrices communicating trapezoids is benefi-
cial.

•	 The consideration of balancing the partition, so that each process sends/receives 
and calculates a similar number of elements, is worthwhile only with small 
matrices.

•	 Our proposal is capable of computing the distributed TRMM faster than imple-
mentations of the current state-of-the-art SLATE and ScaLAPACK libraries. 
Thus, SLATE and ScaLAPACK users and developers could use the outcomes of 
this work to enhance their implementations.

We also wish to highlight the fact that, as we have mentioned before, all our imple-
mentations are fully available and Open Source.

Future work may include the study of the effect of using partition and commu-
nication techniques similar to the ones proposed in this work for GEMM or other 
routines; introduce the use of GPUs or other accelerator devices to do the coarse-
grain local matrix-panel computations; or explore the usage of the proposed par-
tition techniques inside flexible libraries, such as SLATE, that allow the usage of 
partitions tailored by the user.
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