
Vol:.(1234567890)

The Journal of Supercomputing (2024) 80:16630–16653
https://doi.org/10.1007/s11227-024-06097-7

1 3

Performance improvement of the triangular matrix product
in commodity clusters

Inmaculada Santamaria‑Valenzuela1 · Rocío Carratalá‑Sáez1 · Yuri Torres1 ·
Diego R. Llanos1 · Arturo Gonzalez‑Escribano1

Accepted: 21 March 2024 / Published online: 15 April 2024
© The Author(s) 2024

Abstract
There are many works devoted to improving the matrix product computation, as it
is used in a wide variety of scientific applications arising from many different fields.
In this work, we propose alternative data distribution policies and communication
patterns to reduce the elapsed time when computing triangular matrix products
in distributed memory environments. In particular, we focus on commodity clus-
ters, where the number of nodes is limited, proposing alternatives to traditional
approaches in order to improve this operation’s performance. Our proposal over-
comes the performance results associated with the state-of-the-art libraries, such as
ScaLAPACK and SLATE, offering execution times that are up to 30% faster.

Keywords  Commodity clusters · Triangular matrix product · TRMM · SLATE ·
ScaLAPACK

Inmaculada Santamaria-Valenzuela and Rocío Carratalá-Sáez contributed equally to this work.

 *	 Rocío Carratalá‑Sáez
	 rocio@infor.uva.es

	 Inmaculada Santamaria‑Valenzuela
	 msantamaria@infor.uva.es

	 Yuri Torres
	 yuri.torres@infor.uva.es

	 Diego R. Llanos
	 diego.llanos@uva.es

	 Arturo Gonzalez‑Escribano
	 arturo@infor.uva.es

1	 Dpto. Informática, Universidad de Valladolid, Paseo de Belén 15, 47011 Valladolid,
Castilla y León, Spain

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

16631

1 3

Performance improvement of the triangular matrix product…

1  Introduction

The matrix-matrix product (MM) is an essential linear algebra operation at the
core of multiple areas of scientific applications, such as deep learning, fluid
dynamics, or image processing. This mathematical operation is usually highly
time-consuming; therefore, much effort has been devoted from the high-perfor-
mance computing (HPC) community to solve it efficiently to reduce its comput-
ing time as much as possible.

Compared with single-node systems, distributed HPC environments increase
the number of computing resources available for the execution of an MM opera-
tion. Distributing the workload among the computational nodes introduces the
potential to execute faster MM, or to execute multiplications of bigger matrices.
However, developing an efficient implementation in distributed systems for all
kinds of matrices and platforms remains a challenge, since it is difficult to find a
good balance between the calculations and the communications derived from the
data distribution across the involved nodes.

The rise of modern commodity clusters has been driven by the opportunities
they provide, such as easy scalable performance, reduced cost, mass storage, the
flexibility of configurations, and programming model commonality [1]. Many
companies or academic institutions build their own commodity clusters, equipped
with a small number of nodes, dedicated to research or production tasks. There
is also a significant number of research centers where small commodity clusters
are maintained as the main execution platform for experimentation. Even small
supercomputing centers have limited shared facilities where users can only launch
their jobs in small partitions with no more than, for example, 36 nodes. Moreover,
the queue systems in these shared facilities do not prioritize jobs that require a
high number of nodes. Therefore, it is important to continue to make progress
in improving the efficiency of the distributed MM product for this kind of small
commodity clusters.

There are currently libraries that offer efficient implementations of general
and triangular MM, called GEMM (General MM) and TRMM (Triangular MM),
respectively. In particular, in the case of distributed environments, there are
well-known library options to execute efficient MM that have been intensively
optimized. For example, the classic ScaLAPACK [2] library and its recent evo-
lution SLATE [3], whose main goal is to replace ScaLAPACK. They are cur-
rently the widely accepted standard for performing complex linear algebra oper-
ations in distributed memory systems. These libraries are focused on keeping
their scalability rate even when using a high number of nodes, like those availa-
ble in top-end supercomputers. To attain this objective, they provide implemen-
tations using tiling and block-cyclic distributions with classic, highly scalable
distributed algorithms as the foundation of their execution strategy in distributed
systems, such as Summa [4]. However, these tools do not consider different data
partitions, communication patterns, or buffer shapes that have the potential to

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

16632	 I. Santamaria‑Valenzuela et al.

1 3

squeeze the parallelism opportunities even more when using commodity clus-
ters for specialized MM cases, such as the TRMM. This routine is used in many
scientific operations (see e.g. [5] that presents a novel implementation of Can-
non’s algorithm for triangular MM, or [6] that uses triangular linear system solv-
ers in leading machine learning frameworks). TRMM operates with a triangular
matrix, and because half of its elements are zero, it presents different opportuni-
ties and requires different approaches than GEMM or other full matrix opera-
tions to distribute data, create load balance, and communicate the matrix parts.

In this work, we propose and evaluate an alternative combination of classic and
revised techniques related to the data distribution, communication patterns, and the
communication buffer shape, with the objective of reducing the overall cost of TRMM
in distributed memory environments of low/mid scale, such as commodity clusters.
Our solution provides a good balance between computation and communication by
using non-blocking communications adapted to the number of nonzero elements in the
triangular matrices, and better overlapping computations and communications.

In this work, we present the following contributions:

1.	 We propose different combinations of classic and revised techniques for com-
puting the distributed TRMM. These proposals are an alternative to the ones
currently adopted in state-of-the-art libraries and are related to data distribution,
communication patterns, and the shape of data buffers.

2.	 We conduct an experimental evaluation of the execution time associated with
each of our proposed alternative TRMM implementations in a commodity cluster,
using up to 36 nodes.

3.	 We compare our elapsed execution times with the equivalent ones by the two
main primary state-of-the-art libraries that implement the distributed TRMM:
ScaLAPACK and SLATE.

4.	 We derive recommendations that can be applied by the users and developers of
the standard libraries, such as ScaLAPACK and SLATE, in order to improve their
performance for commodity clusters.

5.	 We have made our implementations fully Open Source and available, so anyone
in the community can access them.

The rest of the paper is structured as follows: In Sect. 2, we describe the state of the
art, mentioning the main existing libraries that offer distributed TRMM; in Sect. 3, we
describe our proposal, explaining the main axes covered by it (band partitioning, elud-
ing zeros in the communications, balancing the data distribution, and testing a custom-
ized and more sophisticated version of a broadcast-based communication pattern); in
Sect. 4, we demonstrate our proposal’s performance, comparing it to that offered by the
state of the art libraries SLATE and ScaLAPACK; and in Sect. 5, we summarize the
main conclusions derived from this work.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

16633

1 3

Performance improvement of the triangular matrix product…

2 � State of the art

There are many libraries available that offer efficient tools for performing com-
plex mathematical calculations involving dense linear algebra operations.
These libraries typically contain an MM, as it is a critical operation in many
applications.

GotoBLAS [7] was a pioneer library introducing a framework for highly
optimized implementations of the MM, specialized for each target platform or
architecture. Most of the modern libraries with implementations of the MM
are inspired by the concepts and ideas proposed in GotoBLAS, including both
Open Source libraries (like BLIS [8] or OpenBLAS [9]) and vendor provided
ones (such as Intel MLK [10], ARMPL [11] or AMD AOCL-BLAS [12]). These
libraries offer an implementation of one of the most widely used library inter-
faces that include the MM: LAPACK [13]. LAPACK has been around for nearly
30 years and is considered a standard choice for performing dense linear algebra
computations on a single computer. The programs using LAPACK are more port-
able and can easily access the desired linear algebra library with the best opti-
mized implementation for the chosen target platform. Most LAPACK implemen-
tations also support shared-memory parallelism, which allows the exploitation of
multiple processor cores for faster calculations. Thus, they are typically used as
the foundation of higher-level MM algorithms for distributed memory systems.

ScaLAPACK [2] extends the capabilities of LAPACK by making it suitable
for distributed computing environments, like HPC clusters. It achieves this by
exploiting highly scalable distributed algorithms for MM, such as Summa [14],
implemented using both Parallel BLAS (PBLAS) [15] and explicit distributed-
memory communications with, for example, a message-passing library such
as MPI [16]. Among the libraries implementing ScaLAPACK, there is Intel
MKL [17], which is used in this work as one of our references for performance
comparisons. With ScaLAPACK, the user can tune the routines by varying the
parameters that specify the data layout, in order to improve the performance on
the specific target system. On shared-memory machines, this is controlled by
a block size parameter, while on distributed-memory systems it is controlled
by both the block size and the configuration of the logical processes grid. Sca-
LAPACK promotes the use of block-partitioned algorithms with block-cyclic dis-
tributions. However, ScaLAPACK does not allow alternative data distributions
and it is not capable of avoiding sending blocks with zero values between nodes
when using triangular matrices.

There are other libraries that feature similar to ScaLAPACK [18, 19]. How-
ever, none of them have become widely accepted or adopted as a suitable replace-
ment for ScaLAPACK. Nevertheless, the SLATE [3] library has recently been
released to offer essential tools for performing complex linear algebra calcula-
tions on modern high-performance computing systems. It is offered as a replace-
ment for LAPACK and ScaLAPACK, aiming to provide the same functionality
with a better performance on modern machines. It supports multicore CPUs and
accelerators such as GPUs. For CPUs, it achieves a portable high performance by

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

16634	 I. Santamaria‑Valenzuela et al.

1 3

exploiting the OpenMP [20] technology. Using the OpenMP runtime puts less of
a burden on applications to integrate SLATE than adopting a proprietary runt-
ime would. Furthermore, it improves performance and scalability by employing
proven techniques in dense linear algebra, such as 2D block-cyclic data distri-
bution and communication-avoiding algorithms, as well as modern parallel pro-
gramming approaches, such as dynamic scheduling and communication overlap-
ping. SLATE also offers a new feature, the possibility to use data distributions
tailored by the user for specific purposes. Nevertheless, the current implementa-
tion only provides the usual 2D block-cyclic data distribution.

Many works study how to adapt the data layout to improve performance when
using different linear algebra operations in specific contexts. For example, in [21]
the authors outline a methodology for the automatic generation and optimization
of numerical software tailored to processors featuring deep memory hierarchies
and exclusively pipelined functional units; [22] uses it in the context of computa-
tions performed by a matrix engine conceptualized as an accumulation of multiple
outer products; in [23], the authors investigate a range of algorithmic and program-
ming optimizations for BLAS-3 and LAPACK-level routines leveraging task-based
parallelism.

In this work, we study the use of different data distributions for the case of the
TRMM in the context of commodity clusters. We use SLATE (together with Intel
MKL ScaLAPACK) as a second reference for performance comparisons.

3 � Our proposal

With the objective of improving the efficiency of the distributed triangular matrix
product in commodity clusters, as compared to that offered by state-of-the-art librar-
ies, our proposal explores four main ideas:

1.	 Using band partitioning instead of tiling, which is the usual choice of well-estab-
lished library implementations.

2.	 Using specific buffering strategies to avoid sending zeros when communicating
the matrix data between the different processors.

3.	 Customizing the partition of the data to balance the number of elements that are
processed at each stage on each node.

4.	 Evaluating a custom version of the broadcast communication strategy to move
the data across the nodes in the distributed system faster, thanks to the increase
of the degree of the communications overlap.

In this section, we describe each of these ideas in depth, and we also provide some
details on how to access our implementation, which is fully available and Open
Source.

Regarding the notation, we consider the triangular matrix product C = A × B
where A ∈ ℝ

m×m , B ∈ ℝ
n×n , C ∈ ℝ

m×n , with A being a triangular matrix, and
m, n ∈ ℕ . Moreover, we also use i ∈ {0… �_����� − 1} ∈ ℕ , with n_procs being

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

16635

1 3

Performance improvement of the triangular matrix product…

the total number of computing nodes that participate in the computation, among
which the matrix portions need to be distributed. In addition, we will use n_rows
to refer to the number of rows of the A matrix. For simplicity, we discuss the case
where A is lower-triangular. The discussion and algorithms for the case where A is
upper-triangular are equivalent, and adapting the implementation is straightforward.

3.1 � Band partitioning

The matrix product implementations typically use 2D tiles and 2D process grids to
partition and distribute the data among the processors. Although using tiles can be
the best strategy when scaling up the number of nodes intervening in the computa-
tion, our hypothesis is that using panels or bands can offer better results in com-
modity clusters. When using the term “panel” or “band”, we refer to portions of the
matrix formed by a contiguous set of full rows (horizontal panel), or a contiguous
set of full columns (vertical panel). Even though, in the long term, panel-based par-
titions lead to a higher number of communication stages per node, there are commu-
nication algorithms for band partitions that move the data of only one matrix with
bulk movements of contiguous data, thus simplifying the marshalling and buffer
management.

In our proposal, at the start of the triangular matrix product algorithm execution,
each node receives its Ai and Bi submatrix. In our implementation, we opt for dis-
tributing A by horizontal panels of dimension m�

i
× m , with m′

i
≤ m , and B and C

by vertical panels of dimension n × n�
i
 , with n′

i
≤ n . Note that here, the subindex i

serves as a reference to the i-th partition of A and B, that is, the one provided to the
computing node i. Figure 1 graphically illustrates this panel-based distribution of
the A, B, and C matrices when four nodes are involved in the computation.

With this proposed partition, along the TRMM algorithm execution, the differ-
ent nodes send their Ai submatrix to the others, always keeping the same Bi and Ci
submatrix. The way Ai is moved across the algorithm stages depends on the commu-
nication strategy chosen, as explained in detail in Sect. 3.4. At each stage, each node
computes a portion of the result of its Ci matrix; in particular, a vertical panel of
dimension m�

k
× n�

i
 , where k ∈ {0… �_����� − 1} is different at each stage, and m′

k

is equal to the m′
i
 dimension of the particular Ai that is being multiplied. At the end

of the algorithm, the whole Ci panel has been computed by each i process. State-of-
the-art libraries, such as SLATE, communicate and multiply blocks of a fixed size.
To improve utilization they do the local multiplication operations using batch rou-
tines, where multiple independent small MM operations are grouped and then mul-
tiple threads work on different MM instances within the group. In our case, whole

Fig. 1   Sample of a proposed
panel-based distribution of A, B
and C matrices among four
processes

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

16636	 I. Santamaria‑Valenzuela et al.

1 3

panels are communicated and the local computation on each stage is a single big
panel matrix multiplication. Thus, we choose to do these operations by calling clas-
sical MKL routines that are designed to internally exploit multiple-thread parallel-
ism in a very optimized and efficient way.

3.2 � Eluding zeros in the communications

Data communication usually represents a considerable portion of the total execu-
tion time of any distributed memory application. In the case of the TRMM con-
sidered in this work, where A is triangular, almost half of the A matrix is known
to be filled with zeros, as shown in Eq. (1).

It is unnecessary to invest time and resources on sending the matrix portions that
only contain zeros, as those values are not considered when computing the triangu-
lar matrix product. For this reason, we have designed two marshalling strategies that
can be implemented by MPI derived datatypes, to reduce or even completely avoid
the zero values that are communicated across the computing nodes: Boxes and trap-
ezoids. We propose using these strategies in contrast to communicating the whole
matrix panel Ai . We refer to this last option as the “full panel” strategy; see Fig. 2a.

The “box” strategy wraps the elements of the rows in an A panel, up to the
column that contains the matrix diagonal element of the last row of the panel.
The result is a rectangular region. The elements in the rest of the columns, on the
right of the box, are skipped because they contain zeros. In this case, if the panel
has more than one row, the last columns of the upper rows of the box still contain
some zeros. Figure 2b illustrates this graphically. Analyzing in depth the number
of zeros that this data structure contains, we see that:

(1)

number_of_elements_of_A = m2

number_of_nonzero_elements_of_A =
m(m + 1)

2

number_of_nonzero_elements_of_A

number_of_elements_of_A
=

m(m−1)

2

m2
=

m + 1

2m

lim
m→inf

number_of_nonzero_elements_of_A

number_of_elements_of_A
= lim

m→inf

m + 1

2m
=

1

2

Fig. 2   Full panel (a), box (b),
and trapezoid (c) shapes for
distributing the data among the
processes. Observe that, from
left to right, the area of elements
forming each matrix portion ( � ,
� , � , and � ) decreases

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

16637

1 3

Performance improvement of the triangular matrix product…

When we have a small number of nodes:

And, when we have a large number of nodes:

From Eqs. (3)–(5), we can derive the fact that, in big clusters, the impact of includ-
ing some of the zeros in the communication is almost negligible. Nevertheless,
when the number of nodes is small, these zeros can be representative. For this rea-
son, in the context of commodity clusters, we refine the “box” strategy by creating
the “trapezoid” one to skip the extra zeros.

The “trapezoid” strategy wraps the elements of the rows in an A panel, choosing
for each row the columns up to the diagonal element contained in that particular
row. If the A panel has several rows, this strategy can be seen as a combination of
two strategies: A first one that selects a rectangle, and a second one that selects a tri-
angle. The rectangular part contains the elements on the columns before the diago-
nal element in the first row. The triangular part contains the nonzero elements on the
region defined by the range of rows in the panel and the range of columns that con-
tain a diagonal element of any of those rows. Figure 2c illustrates this graphically.

Although these box/trapezoid marshalling strategies involve copying non-contig-
uous data sets, and consume some extra time in marshalling logic as compared to
buffering the full panel, they involve much fewer data movements, and communicat-
ing them is faster. As has been previously commented, this is especially important
when the number of nodes intervening in the operation is small. Moreover, these
strategies operate in bulk communications for whole panels. We hypothesize that, in
commodity clusters, the overall execution time using the bulk “box” or “trapezoid”
marshalling strategies will be reduced as compared to that observed when using
“full panels”, or even classical 2D tiling approaches that require continuous mar-
shalling of small pieces of non-contiguous data.

3.3 � Balancing the data distribution at run‑time

Regardless of employing marshalling strategies such as those described in the previ-
ous section, it is also important to pay attention to the number of rows on each A panel,
which directly impacts the number of elements involved in the computations executed

(2)number_of_zeros_per_box =

n_rows

n_procs
⋅

(

n_rows

n_procs
− 1

)

2

(3)lim
n_procs→1

number_of_zeros_per_box =
n_rows(n_rows − 1)

2

(4)lim
n_procs→0

number_of_zeros_per_box = ∞

(5)lim
n_procs→∞

number_of_zeros_per_box = 0

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

16638	 I. Santamaria‑Valenzuela et al.

1 3

by each node at each stage. The proposal we describe in this section is related to the
number of rows and nonzero elements on each Ai panel, and thus, on the balance of the
computations at each stage.

When slicing a regular matrix by panels to distribute it among different nodes, the
basic approach consists of dividing the number of rows of the matrix (n_rows) by the
number of nodes (n_procs) to create a regular distribution. We refer to this approach
as “regular partition”. If the integer division has a remainder, some node(s) could have
slightly more rows than others, but this becomes negligible when the size of the matrix
grows. For simplicity, for the rest of the discussion, we assume square matrices where
n_rows = n_columns, with no remainder in the division n_rows/n_procs.

In the case of triangular matrices, it is known in advance that a non-despicable
amount of their elements are zero, and thus, they do not take part in the computation. If
a regular partition is performed on the A matrix, each processor receives an Ai panel
with ����_����� =

�_����

�_�����
 rows of the original matrix, starting at row

i ⋅ ����_����� . Considering that A is lower triangular (the result is equivalent when it
is upper triangular), each node i receives the following number of nonzero values
(n_nonzero_elements_Ai):

where n_elem_rect_Ai refers to the number of elements of the “rectangular” portion
of the Ai nonzero data (see the dark gray region in Fig. 3):

and n_elem_tri_Ai refers to the number of elements of the “triangular” portion of the
Ai nonzero data (see the light gray region in Fig. 3):

Thus, the total number of nonzero values of the panel Ai (n_nonzero_elements_Ai )
can be expressed with respect to the rows_count as:

The total number of elements of the panel Ai ( n_elements_Ai ) can be expressed with
respect to the rows_count as:

(6)n_nonzero_elements_Ai = n_elem_rect_Ai + n_elem_tri_Ai,

(7)n_elem_rect_Ai = i ⋅ rows_count2,

(8)n_elem_tri_Ai =
rows_count ⋅ (rows_count + 1)

2

(9)n_nonzero_elements_Ai = i ⋅ rows_count2 +
rows_count ⋅ (rows_count + 1)

2

Fig. 3   Graphical representation
of the rectangular part (dark
gray), triangular part (light
gray), and the part filled with
zeros (dashed light gray) of
a horizontal panel in a lower
triangular matrix

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

16639

1 3

Performance improvement of the triangular matrix product…

If the portion of nonzero values associated with each node is evaluated with respect
to the total number of elements of each Ai submatrix, we see that:

When the number of nodes intervening in the computation increases, the rows_count
gets smaller. In particular, the larger the number of nodes in the computation, the
greater the difference between the number of nonzero elements to compute on each
node in a given stage. Let us see this in detail.

The first node ( i = 0 ) obtains the following quantity of nonzero elements:

The last node ( i = n_procs − 1 ) obtains the following quantity of nonzero elements:

The relationship between the number of nonzero elements received by both nodes is
given by:

Thus, the number of nonzero elements provided to the first node is insignificant
compared to that of the last node:

As a consequence, our hypothesis is that it is worth balancing the number of
nonzero elements of each Ai in such a way that each node operates over approx-
imately the same number of elements. To attain this, we propose to change
the way of calculating the rows_count. Instead of a global rows_count
that is used to determine how many rows form each Ai , we propose to define
a collection of row counts, such that rows_counti expresses the number

(10)n_elements_Ai = rows_count ⋅ n_rows

(11)

n_nonzero_elements_Ai

n_elements_Ai

=
i ⋅ rows_count2 + rows_count ⋅ (rows_count + 1)∕2

rows_count ⋅ n_rows

=
(2i + 1) ⋅ rows_count + 1

2 ⋅ n_rows

(12)n_nonzero_elements_A0 = rows_count ⋅ (rows_count + 1)∕2

(13)

n_nonzero_elements_An_procs−1

= (n_procs − 1) ⋅ rows_count2 +
rows_count ⋅ (rows_count + 1)

2

=
2(n_procs − 1) ⋅ rows_count2 + rows_count ⋅ (rows_count + 1)

2

(14)

n_nonzero_elements_A0

n_nonzero_elements_An_procs−1

=

rows_count(rows_count+1)

2

2(n_procs−1)⋅rows_count2+rows_count(rows_count+1)

2

=
rows_count + 1

2 ⋅ rows_count(n_procs − 1) + rows_count + 1

(15)lim
n_procs→inf

rows_count + 1

2 ⋅ rows_count(n_procs − 1) + rows_count + 1
= 0

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

16640	 I. Santamaria‑Valenzuela et al.

1 3

of rows mapped to Ai . This lets us balance the number of nonzero elements
assigned to each node by supplying a descendant number of rows to each Ai ;
in other words, max(rows_count0 … rows_countn_procs−1) = rows_count0 , and
min(rows_count0 … rows_offsetn_procs−1) = rows_countn_procs−1.

The ideal situation in which the balanced partition is perfect is that in which the
number of nonzero elements of the matrix A is divisible by n_procs and the quo-
tient of the division is such that the different rows_counti can exactly match it.
For example, this applies when we have a matrix of dimension 3 × 3 and distribute
it between two processors. In total, that small matrix has nine elements, of which
3(3+1)

2
= 6 are zero values, and the remaining three are zeros. Each processor should

get (following a balanced strategy) a total of 6
2
= 3 elements. It turns out that by giv-

ing the first two rows to the first processor and the last row to the second one, each
has exactly three elements.

Nevertheless, this ideal situation is not frequent. In our proposal, we use Algo-
rithm 1, which in turn relies on Algorithm 2, to determine which rows are assigned
to each process to balance as much as possible the number of nonzero elements of
each one in the distribution.

Algorithm 1   Calculate_row_count_array

Algorithm 2   Calculate_row_count_i

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

16641

1 3

Performance improvement of the triangular matrix product…

Algorithm 2 arises from solving the following equation, where ideal refers to
ideal_n_nonzero_elements_Ai =

n_nonzero_elements_A

n_procs
:

with assigned_rows referring to the number of rows that have already been assigned
to other processes. Thus,

This regular partitioning (using just one global rows_count) versus a balanced
partitioning (using a collection of rows_counti ) is graphically illustrated in
Fig. 4.

3.4 � Data communication

A simple serial triangular matrix product algorithm (serial TRMM) is described
in Algorithm 3. When computing this product in a distributed environment, the
data need to be properly spread across nodes, and the results adequately col-
lected. A generic distributed TRMM algorithm has three main parts: (1) initial

n_nonzero_elements_Ai = ideal →

n_elem_rect_Ai + n_elem_tri_Ai − ideal = 0 →

rows_counti ⋅ assigned_rows +
rows_counti ⋅ (rows_counti + 1)

2
− ideal = 0 →

rows_count2
i
+ rows_counti(2 ⋅ assigned_rows + 1) − 2 ⋅ ideal = 0 →

rows_counti

=
−2 ⋅ assigned_rows − 1 +

√

4 ⋅ assigned_rows2 + 4 ⋅ assigned_rows + 1 + 8 ⋅ ideal

2

Fig. 4   Sample of a regular (left) and balanced (right) partition of the matrix data among four processes

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

16642	 I. Santamaria‑Valenzuela et al.

1 3

distribution of the submatrices of A, B and C; (2) a loop to perform as many
times as needed the product of the local submatrices Ai and Bi at each node and
to interchange the local A submatrices among the nodes for the next loop itera-
tion; and (3) collect the resulting matrix portions Ci calculated by each node to
form the result matrix.

Algorithm 3   TRMM (Serial triangular matrix product)

State-of-the-art libraries, such as SLATE, use OpenMP tasks to manage MPI
communications and improve computation and communication overlap of matrix
blocks, which are in general of much lower granularity than panels. For whole
matrix panels, we can obtain better results by carefully planning the overlapping
of computation and communication explicit choosing MPI the proper places of
the communication algorithm where MPI communications are issued. After also
testing classical pipeline and broadcast approaches, in our proposal we choose

Fig. 5   Sample of our custom broadcast-based communication pattern when seven nodes intervene in the
computation. The matrix initial distribution is shown at the top of the figure

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

16643

1 3

Performance improvement of the triangular matrix product…

a custom version of a broadcast-based communication strategy for the commu-
nication and exchange of the local Ai parts across nodes in the main loop. The
choice of the communication strategy is orthogonal to the choice of the data
distribution.

Algorithm 4 describes our custom broadcast-based communication strategy
to communicate the Ai submatrices among the different processes during the dis-
tributed TRMM computation. The process is graphically illustrated on Fig. 5.
If a classical broadcast strategy were employed, at each iteration, the root node
(whose identifier is the same as the iterator) would broadcast its Alocal matrix to
the rest of the nodes, and then all the nodes (including the sender) compute the
TRMM with that Ai submatrix and their particular Blocal matrix. Our approach
works in two stages on each iteration, explicitly unrolling the first step of a clas-
sical tree-based broadcast algorithm. In the first step, the root node communi-
cates the Alocal matrix to the process with the next rank. Then, in the second
stage, the two processes that have a copy of the data issue a broadcast. Each one
broadcasts the data to one half of the rest of nodes. In particular, the sender that
has an even rank broadcasts the data to the rest of the even nodes, and the sender
with an odd rank does the same for the rest of the odd nodes. For example, if
nine nodes are taking part in the process, at the first iteration, the node zero
(root node), which is the first sender, will send its Alocal matrix to the node one
(second sender), and then the node zero broadcasts its Alocal matrix to nodes two,
four, six, and eight, while, at the same time, the node one sends the Alocal matrix
received from node zero to nodes three, five, and seven. Due to the big amount
of data involved in a whole panel communication, this customized broadcast

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

16644	 I. Santamaria‑Valenzuela et al.

1 3

strategy increases the communications overlap and improves the performance of
a single MPI broadcast call.

Algorithm 4   Customized broadcast-based distributed TRMM

4 � Experimental results

In this section, we present the experimental study to evaluate the performance
results of the different combinations of the techniques proposed in the previous sec-
tion. We first describe the platform used for the performance evaluation. Then, we
enumerate the different software versions and provide information about the source

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

16645

1 3

Performance improvement of the triangular matrix product…

code availability. Finally, we present the experimental results associated with our
proposal, including a comparison with the equivalent performance associated with
the ScaLAPACK and SLATE libraries.

4.1 � Platform, software versions, and code availability

The tests presented in this section have been conducted in the FinisTerrae III super-
computer at CESGA (Centro de Supercomputación de Galicia) supercomputing
center in Spain. It is equipped with 118 TB of memory and 354 computing nodes,
each composed of two Intel Xeon Ice Lake 8352Y processors, of 32 cores each, at
2.2 GHz. The nodes are interconnected through a Mellanox Infiniband HDR 100
network. The peak performance of the machine is 4.36 PFLOPS.

As this cluster is a shared resource, the execution of different user jobs is con-
trolled by a queue system. The queue system policies prioritize the shared usage of
the whole system. There are usually many jobs in the queues requiring a small num-
ber of nodes (from two to eight). Thus, a small number of nodes often become idle
when a small job finishes, and other small jobs are eager to occupy them. The higher
the number of nodes required in a job, the exponentially longer it waits in the queues
to achieve enough privilege to force the system to wait with idle nodes until there
are enough free nodes to accommodate it. In our experience, experimenting with
more than 36 nodes is a daunting task. We have experienced similar problems when
conducting executions with a high number of nodes in other similar supercomputing
centers. Thus, we consider this platform a valid example of a generic commodity
cluster with up to 36 nodes.

The operating system is Rocky Linux 8.4 (Green Obsidian) for all the nodes. All
the codes are compiled using the GCC 11.2.1 compiler. Moreover, we use Intel’s
oneAPI 2023.2.1 and its Intel(R) MPI Library for Linux OS and MKL Library. For
the comparisons, we use the ScaLAPACK version in Intel’s oneAPI 2023.2.1 and
SLATE v2022.07.00.

All our source codes are publicly available at https://​github.​com/​uva-​trasgo/​
UVaTR​MM/.

4.2 � Evaluation

To evaluate the performance of our proposal, we have measured the elapsed time
when executing the TRMM over two different matrix sets: a small one of dimen-
sion 10,000 × 10,000 and a larger one of dimension 30,000 × 30,000 . For each case,
we have tested four different configurations that are associated with all the possi-
ble combinations arising from the different data partitioning (regular or balanced)
and buffer shapes (boxes or trapezoid), using in all cases our custom broadcast-
based communication pattern. Moreover, as we have already anticipated, we have
also measured the elapsed time when executing the TRMM from SLATE and Sca-
LAPACK over the same two matrices, using different block sizes for they block-
cyclic distribution; as 256 and 512 were the block sizes offering the best results,
those are the ones reflected in this section. Tables 1 and 2 show the results observed

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

16646	 I. Santamaria‑Valenzuela et al.

1 3

Fig. 6   Efficiency observed when scaling up the number of MPI processes employed to compute the
TRMM of the small matrix (left) and the large one (right) with our proposed approaches

Table 1   Elapsed time (in seconds) when executing the TRMM from SLATE, ScaLAPACK, and our pro-
posal over a matrix of dimension 10, 000 × 10, 000 using up to 36 processes

Matrix of dimension 10,000 × 10,000 Number of processes

1 9 16 25 36

ScaLAPACK Block cyclic with nb = 256 14.335 1.969 1.243 0.895 0.679
Block cyclic with nb = 512 14.368 2.035 1.25 0.900 0.756

SLATE Block cyclic with nb = 256 15.693 1.948 1.176 0.792 0.603
Block cyclic with nb = 512 14.862 2.041 1.212 0.852 0.741

Our proposal reg, boxes 13.231 1.798 1.068 0.641 0.677
reg, trapezoid 13.243 1.838 0.948 0.631 0.512
bal, boxes 13.204 1.793 1.162 0.643 0.698
bal, trapezoid 13.245 1.760 0.959 0.643 0.536

Table 2   Elapsed time (in seconds) when executing the TRMM from SLATE, ScaLAPACK, and our pro-
posal over a matrix of dimension 30,000 × 30,000 using up to 36 processes

Matrix of dimension 30,000 × 30,000 Number of processes

1 9 16 25 36

ScaLAPACK Block cyclic with nb = 256 366.059 44.009 25.903 17.756 12.731
Block cyclic with nb = 512 366.158 45.095 25.878 17.445 12.505

SLATE Block cyclic with nb=256 421.644 48.739 28.429 18.556 13.097
Block cyclic with nb = 512 395.306 47.177 27.607 18.480 13.152

Our proposal reg, boxes 347.098 39.823 22.860 14.522 10.721
reg, trapezoid 345.230 40.027 22.705 14.552 10.704
bal, boxes 345.760 39.943 22.881 14.759 10.897
bal, trapezoid 345.608 39.952 22.730 14.761 10.882

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

16647

1 3

Performance improvement of the triangular matrix product…

for computing the TRMM over the 10, 000 and the 30, 000 dimension matrices,
respectively. It is important to remark that our proposal and the code that uses Sca-
LAPACK rely on Intel’s oneAPI MKL library to execute the GEMM and TRMM
kernels in the process of computing the local parts at each stage. We have tested
these implementations using Intel threads. Nevertheless, this is beyond our control
when using SLATE.

Evaluating our proposal’s scalability, we have observed that all of our combina-
tions scale fairly well when increasing the number of processes. Taking as a refer-
ence the execution time observed when using one process (with each evaluated con-
figuration), we have computed the ideal efficiency and compared it with the actual
one. The results are illustrated in Fig. 6. As can be observed, with the small matrix
set, the efficiency is between 80 and 90% with up to 25 processes, and decreases to
70% when using 36 processes, while, with the large matrix, it is between 90 and
95% in any case. The difference observed with the smaller matrix is that, with such
a small size ( 10,000 × 10,000 ), there is not enough work to compensate for the com-
munication costs when it is distributed among 36 nodes, and it is not worthwhile to
use so many processes. Nevertheless, a good efficiency is observed with the larger
matrix, which means that any of our proposed approaches present a good efficiency
when increasing the number of processes employed if the matrix is big enough, and
thus, there is a considerable workload at each node.

In the next sections, we evaluate in detail each of our proposed approaches, deter-
mining whether they are beneficial or not, as well as in which cases there are ben-
efits. Finally, we analyze the results of our proposal by comparing them with those
obtained with SLATE and ScaLAPACK.

4.2.1 � Alternatives to full panels: boxes and trapezoids

An aspect we explore with our proposal is using custom shapes that avoid sending
(all or part of) the triangular matrix zeros: Boxes and trapezoids. For comparing our
boxes-based against trapezoid-based results, we conducted the following calculation:

(16)% of difference =
t_trapezoid − t_boxes

t_boxes
⋅ 100

Fig. 7   Comparison between trapezoid and boxes data shapes for the 10K dimension (left) and 30K
dimension (right) matrices. Note that the vertical axis range is different at each plot

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

16648	 I. Santamaria‑Valenzuela et al.

1 3

Figure 7 reflects the results obtained based on Eq. (16). Note that, in each case, we
fix regular/balanced to ensure fair comparisons; in other words, we only modify one
of the evaluation axes.

In this case, using trapezoid shapes generally reduces the execution time when
operating over small matrices (up to 25% improvement, although the execution
times are very small and in practice this difference does not represent a large gain).
However, the differences observed with the large matrix are negligible (between
− 0.67 and 0.51%), so it is not worth the effort of using trapezoid shapes instead
of boxes when the matrices are large enough. The reason that justifies this is the
fact that, with large matrices, as we are using asynchronous communications, the
data transfer overlap with the computation process, and thus the additional effort
of creating a trapezoidal data structure instead of simply a rectangular one (box)
is not leveraged, as the impact of avoiding sending a small triangle full of zeros is
almost non-representative compared to the computations with large matrices and the
marshaling of the rest of the big rectangular parts of the panel. In fact, with large
matrices, the computation is much more representative than the asynchronous com-
munication, regardless of the data structures that are sent.

4.2.2 � Does it pay off to balance the partitioning?

Another aspect that we have also explored with our proposal is the possibility of
balancing the number of rows assigned to each process based on the number of ele-
ments over which the computations are later performed. To compare our balance-
based against regular-based results, we conducted the following calculation:

Figure 8 shows the results obtained based on Eq. (17). Note that, in each case, we fix
boxes/trapezoids to ensure fair comparisons; in other words, we only modify one of
the evaluation axes.

The global idea extracted from the evaluation is that, with small matrices, it can
be beneficial to balance the partitioning when there is a small number of processes.

(17)% of difference =
t_balanced − t_regular

t_regular
⋅ 100

Fig. 8   Comparison between balancing and regular partitioning for the 10K dimension (left) and 30K
dimension (right) matrices

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

16649

1 3

Performance improvement of the triangular matrix product…

Nevertheless, with large matrices, the impact of balancing the partition is negligible,
or even negative, so balancing the partition is not worthwhile.

Let us now analyze the small matrix results in more detail. In this case, we see
a maximum improvement of 4% due to balancing the partition. When using box
shapes instead of trapezoids and up to 9 processes, the impact is greater, as more
elements are included in the data structures that are sent. Thus, the imbalance in the
regular partitioning is more noticeable. On the contrary, when using more processes,
it is not worth balancing the partition, as the differences observed in terms of the
number of elements assigned to each process are reduced when using a regular par-
tition (because fewer elements are assigned to each one).

4.3 � Comparison with ScaLAPACK and SLATE

In this section, we present a comparison between our results and those observed
when executing the TRMM from ScaLAPACK and SLATE, respectively, in Figs. 9
and 10. The metric we use for the comparison against both libraries is calculated as:

When comparing our proposal results against ScaLAPACK, we observe that we
generally offer better results, regardless of the approach from our proposal that we

% of improvement (library) =
t_library − t_our_proposal

t_library
⋅ 100

Fig. 9   Comparison between ScaLAPACK and our proposal TRMM for the 10K dimension (top) and
30K dimension (bottom) matrices. Note that, with ScaLAPACK, we have used two different block sizes
for the block cyclic distributions; the left plots correspond to nb = 256, the right ones to nb = 512

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

16650	 I. Santamaria‑Valenzuela et al.

1 3

consider. There are only two cases in which ScaLAPACK (with nb = 256) beats our
proposal (by less than 5%). These cases appear when we use balanced + boxes with
9 or 36 processes to compute TRMM of the small matrix. These cases appear when
the execution times are around 1 s or less. Thus, it turns out to be almost negligible
in terms of execution time difference.

Analyzing in depth the results of the comparison with the small matrix, we
observe that our proposal follows a clear trend: With 9 processes there is a 10–15%
gain, and with more processes it is between 20 and 30%, considering our best times,
which are either using regular or balanced partitioning and trapezoid shapes. In the
case of the large matrix, our proposal improvement varies less, offering between 10
and 18% better execution times.

When comparing our proposal results against SLATE, we again observe that we
generally offer better results, although the difference with the small matrix is less
homogeneous than that observed with respect to ScaLAPACK. In this case, there
are three occasions when SLATE (using nb = 256) is faster than our approach with
the small matrix. They appear when using 9 and 36 processes with our balanced +
boxes approach, and when using 36 processes with our regular + boxes approach.
Nevertheless, it is important to highlight again that this happens only with the small
matrix, when the execution times are around 1 s or less. Thus, it turns out again to
be almost negligible in terms of execution time difference.

A further study of the results with the small matrix reveals that our proposal
offers improvements between 10 and 20%, considering our best times, which are
either using regular or balanced partitioning and trapezoid shapes. In the case of the

Fig. 10   Comparison between SLATE and our proposal TRMM for the 10K dimension (top) and 30K
dimension (bottom) matrices. Note that, with SLATE, we have used two different block sizes for the
block-cyclic distributions; the left plots correspond to nb = 256, and the right ones to nb = 512

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

16651

1 3

Performance improvement of the triangular matrix product…

large matrix, our proposal improvement varies less, offering between 15 and 22%
better execution times.

It is important to highlight that the reason why we observe worse improvement
rates when evaluating some of our TRMM with small matrices is that we do not per-
form any improvement on the linear algebra TRMM and GEMM kernels on which
we rely, while the state of the art libraries (specially SLATE) incorporate computa-
tional kernel optimizations that are more noticeable in the small matrix case, when
the data distribution and communication patterns (the problem that we tackle in this
work) have less impact.

5 � Conclusion

In this work, we present a proposal that explores four different axes in order to offer
new distributed TRMM computation approaches that improve the state-of-the-
art performance for the SLATE and ScaLAPACK libraries in commodity clusters
equipped with up to 36 nodes.

From the experiments conducted, we extract the following main conclusions:

•	 Using panel partitions instead of tiling can offer good results in commodity clus-
ters.

•	 Regarding the communication pattern selection, performance is significantly
improved by using a custom broadcast-based communication pattern..

•	 With respect to the special data shapes to be distributed, we have observed that it
is not worth using trapezoid shapes instead of boxes when the matrices are large
enough. Nevertheless, with small matrices communicating trapezoids is benefi-
cial.

•	 The consideration of balancing the partition, so that each process sends/receives
and calculates a similar number of elements, is worthwhile only with small
matrices.

•	 Our proposal is capable of computing the distributed TRMM faster than imple-
mentations of the current state-of-the-art SLATE and ScaLAPACK libraries.
Thus, SLATE and ScaLAPACK users and developers could use the outcomes of
this work to enhance their implementations.

We also wish to highlight the fact that, as we have mentioned before, all our imple-
mentations are fully available and Open Source.

Future work may include the study of the effect of using partition and commu-
nication techniques similar to the ones proposed in this work for GEMM or other
routines; introduce the use of GPUs or other accelerator devices to do the coarse-
grain local matrix-panel computations; or explore the usage of the proposed par-
tition techniques inside flexible libraries, such as SLATE, that allow the usage of
partitions tailored by the user.

Acknowledgements  This work was supported in part by the Spanish Ministerio de Ciencia e Innovación
and by the European Regional Development Fund (ERDF) program of the European Union, under Grant

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

16652	 I. Santamaria‑Valenzuela et al.

1 3

PID2022-142292NB-I00 (NATASHA Project); and in part by the Junta de Castilla y León - FEDER
Grants, under Grant VA226P20 (PROPHET-2 Project), Junta de Castilla y León, Spain. This work was
also supported in part by grant TED2021-130367B-I00, funded by MCIN/AEI/10.13039/501100011033
and by “European Union NextGenerationEU/PRTR“. The CESGA - Finisterrae III supercomputing
resources were accessed thanks to the project IM-2023-3-0020 from the Red Española de Supercom-
putación (RES).

Author contributions  Inmaculada Santamaria-Valenzuela, Rocío Carratalá-Sáez, Yuri Torres, and Arturo
Gonzalez-Escribano designed, implemented, and validated the code. Rocío Carratalá-Sáez and Yuri Tor-
res carried out the experimentation and generated the figures. All authors wrote and reviewed the main
manuscript text.

Funding  Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. Pro-
ject PROPHET-2 VA226P20 funded by Consejería de Educación of Junta de Castilla y León, Ministerio
de Economía, Industria y Competitividad of Spain, European Regional Development Fund (ERDF) pro-
gram of the European Union. Project PID2022-142292NB-I00 (NATASHA Project) funded by the Span-
ish Ministerio de Ciencia e Innovación and the European Regional Development Fund (ERDF) program
of the European Union. Project TED2021-130367B-I00, funded by MCIN/AEI/10.13039/501100011033
and by “European Union NextGenerationEU/PRTR“. Project IM-2023-3-0020 granted by Red Española
de Supercomputación (RES).

Availability of data and materials  The source code is available at https://​github.​com/​uva-​trasgo/​UVaTR​
MM/.

Declarations 

 Conflict of interest  The authors have no Conflict of interest as defined by Springer, or other interests that
might be perceived to influence the results and/or discussion reported in this paper.

 Ethical approval  Not applicable.

 Consent to participate  Not applicable.

 Consent for publication  Not applicable.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

	 1.	 Sterling TL (2011). In: Padua D (ed) Clusters. Springer, Boston, pp 289–297. https://​doi.​org/​10.​
1007/​978-0-​387-​09766-4_​18

	 2.	 Blackford LS, Choi J, Cleary A, D’Azevedo E, Demmel J, Dhillon I, Dongarra J, Hammarling S,
Henry G, Petitet A, Stanley K, Walker D, Whaley RC (1997) ScaLAPACK Users’ Guide. Soc Ind
Appl Math. doi 10(1137/1):9780898719642

	 3.	 Gates M, Kurzak J, Charara A, YarKhan A, Dongarra J (2019) Slate: design of a modern distrib-
uted and accelerated linear algebra library. In: Proceedings of the International Conference for High

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

16653

1 3

Performance improvement of the triangular matrix product…

Performance Computing, Networking, Storage and Analysis. SC’19. Association for Computing
Machinery, New York. https://​doi.​org/​10.​1145/​32955​00.​33562​23

	 4.	 Geijn RA, Watts J (1997) SUMMA: scalable universal matrix multiplication algorithm. Concurr
Pract Exp 9(4):255–274

	 5.	 Manin V, Lang B (2020) Cannon-type triangular matrix multiplication for the reduction of general-
ized HPD eigenproblems to standard form. Parallel Comput 91:102597. https://​doi.​org/​10.​1016/j.​
parco.​2019.​102597

	 6.	 Sankaran A, Alashti NA, Psarras C, Bientinesi P (2022) Benchmarking the linear algebra awareness
of tensorflow and pytorch. In: 2022 IEEE International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW), pp 924–933. https://​doi.​org/​10.​1109/​IPDPS​W55747.​2022.​00150

	 7.	 Goto K, Geijn RA (2008) Anatomy of high-performance matrix multiplication. ACM Trans Math
Softw 34(3):1–25. https://​doi.​org/​10.​1145/​13560​52.​13560​53

	 8.	 Zee FG, Geijn RA (2015) BLIS: A framework for rapidly instantiating BLAS functionality. ACM
Trans Math Softw 41(3):14–11433

	 9.	 Wang Q, Zhang X, Zhang Y, Yi Q (2013) Augem: automatically generate high performance dense
linear algebra kernels on x86 CPUs. In: SC ’13: Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, pp 1–12. https://​doi.​org/​10.​1145/​
25032​10.​25032​19

	10.	 Kalinkin A, Anders A, Anders R (2015) Intel Math Kernel Library PARDISO for Intel Xeon PhiTM
Manycore Coprocessor. Appl Math 6:1276–1281. https://​doi.​org/​10.​4236/​am.​2015.​68121

	11.	 Limited A. ARM Performance Libraries Reference Guide. https://​devel​oper.​arm.​com/​docum​entat​
ion/​101004/​2030/

	12.	 (AMD) AMD. AMD Optimizing CPU Libraries (AOCL). https://​www.​amd.​com/​en/​devel​oper/​aocl.​
html#​docum​entat​ion

	13.	 Anderson E, Bai Z, Bischof C, Blackford LS, Demmel J, Dongarra J, Du Croz J, Greenbaum A,
Hammarling S, McKenney A, Sorensen D (1999) LAPACK Users’ Guide, 3rd edn. Society for
Industrial and Applied Mathematics. https://​doi.​org/​10.​1137/1.​97808​98719​604

	14.	 Geijn RA, Watts J (1995) Summa: Scalable universal matrix multiplication algorithm. Technical
report, USA

	15.	 Dongarra JJ, Du Croz J, Hammarling S, Duff IS (1990) A set of level 3 basic linear algebra subpro-
grams. ACM Trans Math Softw 16(1):1–17. https://​doi.​org/​10.​1145/​77626.​79170

	16.	 Forum MP (1994) MPI: a message-passing interface standard. Technical report, USA
	17.	 Corp I (2023) Intel math kernel library. https://​softw​are.​intel.​com/​en-​us/​mkl
	18.	 Du P, Tomov S, Dongarra J (2012) Providing GPU capability to LU and QR within the scalapack

framework. Technical Report UT-CS-12-699 (2012)
	19.	 D’Azevedo E, Hill JC (2012) Parallel LU factorization on GPU cluster. Proc Comput Sci 9:67–75.

https://​doi.​org/​10.​1016/j.​procs.​2012.​04.​008
	20.	 Chandra R, Dagum L, Kohr D, Menon R, Maydan D, McDonald J (2001) Parallel programming in

OpenMP. Morgan kaufmann
	21.	 Whaley RC, Dongarra JJ (1999) Automatically tuned linear algebra software. In: Proceedings of the

Ninth SIAM Conference on Parallel Processing for Scientific Computing, PPSC 1999, San Antonio,
Texas, USA, March 22–24, 1999. SIAM

	22.	 Tukanov N, Srinivasaraghavan R, Moreira JE, Low TM (2022) Modeling matrix engines for porta-
bility and performance. In: 2022 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pp 1173–1183

	23.	 Valero-Lara P, Catalán S, Martorell X, Usui T, Labarta J (2020) sLASs: A fully automatic auto-
tuned linear algebra library based on OpenMP extensions implemented in OmpSs (LASs library). J
Parallel Distrib Comput 138:153–171. https://​doi.​org/​10.​1016/J.​JPDC.​2019.​12.​002

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1.

2.

3.

4.

5.

6.

Terms and Conditions

Springer Nature journal content, brought to you courtesy of Springer Nature Customer Service Center
GmbH (“Springer Nature”).
Springer Nature supports a reasonable amount of sharing of research papers by authors, subscribers
and authorised users (“Users”), for small-scale personal, non-commercial use provided that all
copyright, trade and service marks and other proprietary notices are maintained. By accessing,
sharing, receiving or otherwise using the Springer Nature journal content you agree to these terms of
use (“Terms”). For these purposes, Springer Nature considers academic use (by researchers and
students) to be non-commercial.
These Terms are supplementary and will apply in addition to any applicable website terms and
conditions, a relevant site licence or a personal subscription. These Terms will prevail over any
conflict or ambiguity with regards to the relevant terms, a site licence or a personal subscription (to
the extent of the conflict or ambiguity only). For Creative Commons-licensed articles, the terms of
the Creative Commons license used will apply.
We collect and use personal data to provide access to the Springer Nature journal content. We may
also use these personal data internally within ResearchGate and Springer Nature and as agreed share
it, in an anonymised way, for purposes of tracking, analysis and reporting. We will not otherwise
disclose your personal data outside the ResearchGate or the Springer Nature group of companies
unless we have your permission as detailed in the Privacy Policy.
While Users may use the Springer Nature journal content for small scale, personal non-commercial
use, it is important to note that Users may not:

use such content for the purpose of providing other users with access on a regular or large scale

basis or as a means to circumvent access control;

use such content where to do so would be considered a criminal or statutory offence in any

jurisdiction, or gives rise to civil liability, or is otherwise unlawful;

falsely or misleadingly imply or suggest endorsement, approval , sponsorship, or association

unless explicitly agreed to by Springer Nature in writing;

use bots or other automated methods to access the content or redirect messages

override any security feature or exclusionary protocol; or

share the content in order to create substitute for Springer Nature products or services or a

systematic database of Springer Nature journal content.

In line with the restriction against commercial use, Springer Nature does not permit the creation of a
product or service that creates revenue, royalties, rent or income from our content or its inclusion as
part of a paid for service or for other commercial gain. Springer Nature journal content cannot be
used for inter-library loans and librarians may not upload Springer Nature journal content on a large
scale into their, or any other, institutional repository.
These terms of use are reviewed regularly and may be amended at any time. Springer Nature is not
obligated to publish any information or content on this website and may remove it or features or
functionality at our sole discretion, at any time with or without notice. Springer Nature may revoke
this licence to you at any time and remove access to any copies of the Springer Nature journal content
which have been saved.
To the fullest extent permitted by law, Springer Nature makes no warranties, representations or
guarantees to Users, either express or implied with respect to the Springer nature journal content and
all parties disclaim and waive any implied warranties or warranties imposed by law, including
merchantability or fitness for any particular purpose.
Please note that these rights do not automatically extend to content, data or other material published
by Springer Nature that may be licensed from third parties.
If you would like to use or distribute our Springer Nature journal content to a wider audience or on a
regular basis or in any other manner not expressly permitted by these Terms, please contact Springer
Nature at

onlineservice@springernature.com

mailto:onlineservice@springernature.com

