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Abstract: Stroke is the third leading cause of disability in the world, and effective rehabilitation is
needed to improve lost functionality post-stroke. In this regard, robot-assisted therapy (RAT) and
transcranial direct current stimulation (tDCS) are promising rehabilitative approaches that have
been shown to be effective in motor recovery. In the past decade, they have been combined to
study whether their combination produces adjuvant and greater effects on stroke recovery. The
aim of this study was to estimate the effectiveness of the combined use of RATs and tDCS in the
motor recovery of the upper extremities after stroke. After reviewing 227 studies, we included nine
randomised clinical trials (RCTs) in this study. We analysed the methodological quality of all nine
RCTs in the meta-analysis. The analysed outcomes were deficit severity, hand dexterity, spasticity,
and activity. The addition of tDCS to RAT produced a negligible additional benefit on the effects of
upper limb function (SMD −0.09, 95% CI −0.31 to 0.12), hand dexterity (SMD 0.12, 95% CI −0.22
to 0.46), spasticity (SMD 0.04, 95% CI −0.24 to 0.32), and activity (SMD 0.66, 95% CI −1.82 to 3.14).
There is no evidence of an additional effect when adding tDCS to RAT for upper limb recovery after
stroke. Combining tDCS with RAT does not improve upper limb motor function, spasticity, and/or
hand dexterity. Future research should focus on the use of RAT protocols in which the patient is
given an active role, focusing on the intensity and dosage, and determining how certain variables
influence the success of RAT.

Keywords: robot-assisted therapy (RAT); transcranial direct current stimulation (tDCS); stroke; upper
limb recovery; hand dexterity; spasticity

1. Introduction

Stroke is the third leading cause of disability in the world due to brain tissue damage
following ischemic or haemorrhagic lesions [1]. Survivors present problems carrying
out basic activities of daily living (BADLs) and instrumental activities of daily living
(IADLs) [2], and their perception of their quality of life decreases. Hemiplegia and upper
limb weakness are common sequelae after stroke and are among the most important causes
of -limitations in the independence and quality of life of stroke survivors [3]. Spasticity is
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another symptom that has a major impact on BADLs and quality of life in patients who
underwent stroke [4].

Although physical therapies improve some motor impairments [5], sequelae are still
present. Among the techniques with the greatest scientific support, robot-assisted therapy
(RAT) [6,7] and non-invasive brain stimulation (NIBS) [8,9] are the predominant ones.
Both, when used together, provide relevant improvements in postinjury recovery; RAT
is a good tool to incorporate important concepts, such as intensity and repetition, in
rehabilitation [10,11], while NIBS is a great strategy to address the interhemispheric rivalry
that occurs after stroke [12].

As far as motor disorders are concerned, hand problems cause part of this disability,
generating a high cost, both at the personal and social levels. Moreover, conventional
rehabilitation is a time-consuming process, making RAT particularly interesting [13,14]. A
Cochrane systematic review based on 45 trials with a total of 1619 patients found benefits in
the development of activities of daily living and in the recovery of motor function in stroke
survivors who received RAT. However, the results should be interpreted with caution, since
there is a high degree of variability in the trials in terms of intensity, dose, or characteristics
of the participants [15], which reflects the necessity for further research. The intensity and
dose, i.e., the amount of training or the number of repetitions performed, are very relevant
since they are critical for the activation of the motor learning process, having a decisive
influence on its effectiveness. Although the number of repetitions necessary to facilitate
plasticity has not been defined, it has been shown that the amount of movement provided
in rehabilitation is not sufficient [15]. In this sense, robotic devices are one of the best tools
for physical and occupational therapists since they allow a greater amount of movement
to be generated. This increase in the number of repetitions is crucial for plasticity and,
therefore, for motor recovery after a stroke.

Another of the most common processes after a stroke is the interhemispheric competi-
tion, which indicates that the suppression of the excitability of the unaffected hemisphere
reduces the interhemispheric inhibition of the affected hemisphere, thus improving alter-
ations after the stroke [16,17]. NIBS is an excellent strategy to develop this model and
improve symptoms after stroke. NIBS includes different techniques, such as transcranial
magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). tDCS mod-
ulates cortical excitability through a galvanic electric current and can induce brain plasticity,
with possible improvement being associated with this process [18]. tDCS has been com-
bined with different techniques for recovery after stroke [9,19,20] and has been used in
other pathologies [21,22]. One of the most widely explored combinations is RAT with tDCS.
This combination seems to offer promising results for motor recovery, but nevertheless, the
results of the studies did not show a clear difference compared to conventional treatment.

In the past decade, the combination of tDCS and RAT has been highly developed by
several researchers who consider that the combination of both techniques generates an
adjuvant effect and provides better results in motor recovery after stroke. Four systematic
reviews have been performed to analyse the combination of tDCS with RAT for motor
recovery of the upper limb after stroke [23–26]. Two of the reviews did not perform a meta-
analysis [23,26]. Another study analysed the effects on the upper and lower limbs [24].
Reis (2021) performed a meta-analysis on activity limitations in a limited way and did not
consider the type of activity performed in RAT or the number of repetitions and included
other NIBS techniques [25].

None of the previous reviews analysed parameters such as the number of repetitions
or the intensity of the RAT, which are fundamental aspects for defining the gold standard
in the combined treatment of RAT with tDCS. Hence, we consider that there is a necessity
for a review that addresses more variables to shed light on this critical field.

The main objective of this review is to determine the effectiveness of the combined
use of RAT and tDCS in upper limb function motor recovery after stroke. The secondary
objectives are to analyse how the combination of the techniques can improve motor function,
manual dexterity, spasticity, and the performance of activities of daily living. In addition,
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the variables that may influence the application of these techniques are observed in order
to describe the characteristics of the patients who may benefit the most.

2. Materials and Methods

The first step in conducting this systematic review was to ask the question according
to the PICO format. The question raised was as follows: in patients who underwent stroke
(P), what is the effect of combining robot-assisted therapy with transcranial direct current
stimulation (I) compared to robot-assisted therapy alone (C) on the motor recovery of the
upper limb (O)? The second step was to design the protocol. At this time, the task force,
the inclusion and exclusion criteria, the target databases, and the search strategy were
established. In this step, the protocol was registered at PROSPERO with the following
code: CRD42022304888. The next step was to implement the search strategy in the selected
databases. With the first results, a screening of the studies was carried out in two phases.
In the first phase, the studies were screened based on titles and abstracts. In the second
phase, the full text was screened. Once the final studies were selected, we moved on to
a data extraction phase, which was carried out with an ad hoc archive. We assessed the
methodological quality of the studies and analysed data from those studies. Figure 1 shows
this process. This review was performed and reported according to the Preferred Reporting
Items for Systematic Reviews and Meta-Analysis (PRISMA) statement [27].
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2.1. Selection Criteria, Identification, and Selection of Studies

Studies with adults diagnosed with stroke were included. Patients suffering from
more than one lesion were excluded from the study. Regarding the characteristics of the
participants, sex, type of stroke, time of evolution, location of the lesion, mean age, and
damaged hemisphere were noted.

The inclusion criterion for intervention was to combine tDCS with RAT on the upper
limb. tDCS could be applied before, during, or after the RAT session. The electrodes had
to be placed according to the 10/20 system. The RAT had to be repetitive, planned, and
structured with the aim of improving upper limb functionality.

The frequency of sessions, duration of each session, duration of the program, tDCS
parameters (timing, setup, intensity, and type of stimulation), and RAT parameters (e.g.,
type of device—end-effector or exoskeleton—and number of repetitions) were recorded to
compare the similarity between studies. The experimental group had to receive RAT and
real tDCS, and the control group had to receive the same type of RAT as the experimental
group combined with sham tDCS, thus allowing for the assessment of the effect of tDCS
combined with RAT.
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A comprehensive literature search was performed to find relevant articles in four
databases: PubMed, Web of Science (WOS), SCOPUS, and the Cochrane Library. The
search string was adapted to each database. The search was performed from database
inception to 1 January 2023. The search string included words related to stroke, upper
limb robotic treatment, and transcranial direct current stimulation (search strategy is
presented in Supplementary Table S1). This search string was set up by two independent
investigators (LMM and JBJ) using the inclusion criteria shown in Supplementary Table S2.
Both reviewers were blinded to the authors, journals, and study results. A third reviewer
(BPL) resolved ambiguities and disagreements between the first two reviewers.

2.2. Quality Evaluation of Involved Studies

The methodological quality of the included studies was assessed following the criteria
and scores of the PEDro Scale (Physiotherapy Evidence Database). The PEDro scale is an
11-item scale designed to rate the methodological quality (internal validity and statistical
information) of randomised trials. Each item, except for Item 1, contributes 1 point to the
total score (range of 0 to 10 points). The GRADE system was used to assess the quality of
the evidence. The GRADE system takes into account eight factors to reduce or increase the
level of evidence, namely, five for downgrading and three for upgrading.

The I2 statistic was calculated, which was interpreted as absent (0), low (25), mod-
erate (50), or high (75 or higher). The chi-square test was used to assess whether the
differences observed in the results were compatible with chance. If the total number of
patients included in a systematic review is less than the number of patients generated by a
conventional sample size calculation for a single adequately powered trial, consider the
rating down for imprecision. Imprecision was assessed by the calculation of the optimal
information size (OIS). The OIS is calculated using a conventional determination of the
sample size needed to detect an SMD equal to the minimum clinically important difference
using the post-intervention standard deviation of the control.

It was assessed using the funnel plot created with RevMan and complemented with
the DOI plot created with METAXL. Egger’s method and Begg’s test with Epidat 3.1 and
the Luis Furuyama-Kanamori index (LFK) were used. Begg’s and Egger’s tests contrast
the null hypothesis of the absence of publication bias. Begg’s test uses rank correlation
between the effect of the standardised intervention and its standard error. Egger’s test uses
linear regression of the estimate of the effect of the intervention against its standard error,
weighted by the inverse of the variance of the estimate of the effect of the intervention. An
LFK index of <1 was considered non asymmetric; between 1 and 2 was considered minor
asymmetry; and >2 was considered major asymmetry.

2.3. Outcome Measures

The first outcome measure was the severity of the deficit, measured with the Fugl-
Meyer Assessment for Upper Extremity (FMA-UE). The second outcome measure was hand
dexterity, measured with the Box and Block Test (BBT); followed by spasticity, measured
using the Modified Ashworth Scale (MAS); and finally, activity, measured using the Barthel
Index (BI).

The timing of the measurements and the procedure used were recorded to assess the
appropriateness of combining the studies in a meta-analysis.

2.4. Data Extraction and Analysis

Data regarding sample size, participant characteristics, characteristics of the robotic
intervention, characteristics of the tDCS intervention, outcomes, and conclusions were
extracted from each selected article. These data were recorded by two independent inves-
tigators (LMM and JBJ) and verified by a third party (BPL). Data were recorded in tables
designed for this purpose, according to the Cochrane Handbook for Systematic Reviews of
Interventions. Full details of the data extraction can be found in Supplementary Table S3.
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Outcome measures were collected at baseline and at the first follow-up. Post-intervention
differences were calculated for the experimental and control groups. The deviations (SD) of
these differences were calculated by imputing a correlation coefficient that was calculated in
studies with sufficient information using the pre- and post-SD and the SD of the difference.
The mean of these coefficients (r = 0.85) was calculated and applied to the other studies.

The effect size was measured using Hedges’ G (adjusted standardised mean difference
(SMD)) with a 95% confidence interval (95% CI). The overall effect size of the set of studies,
weighted by the sample size of each study, was calculated using the inverse variance
method and a random-effects model. Its 95% CI and statistical significance were calculated
using the Z test. The overall effect size was interpreted using Cohen’s criteria for pooled
estimates [28]; SMD > 0.20, small effect; SMD > 0.50, medium effect; and SMD > 0.8,
large effect.

3. Results
3.1. Flow of Studies through the Review

The COVIDENCE program was used to analyse the articles [29]. A total of 227 related
articles were found. After eliminating duplicate studies (n = 97), a first screening was
performed by reading the titles, abstracts, and keywords to determine relevant studies
(n = 130). A second screening was performed by reading the full text. Thirty-four full-text
articles were studied. Finally, nine articles were selected for review and meta-analysis. The
flow diagram is shown in Figure 2.
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3.2. Characteristics of Included Studies

The nine studies involved 386 patients and investigated the effects of combining tDCS
with RAT to improve the severity of upper limb deficits (n = 8), hand dexterity (n = 5),
spasticity (n = 5), and activity (n= 2) in patients diagnosed with stroke. Table 1 shows the
detailed information of each study.
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Table 1. Summary of included studies. Characteristics and designs of the included studies.

Study Study Design Time Poststroke No. of
Sessions/Week Groups Number of

Patients

Diagnosis
(Hemisphere

Affected)
Age (Mean ± SD) Outcomes

(Morone et al.,
2022) [30] RCT Chronic 10 s/2 weeks Group Ex: d-tDCS

Group C: sham 66 36 RH
30 LH

Group Ex: 59.7 ± 12.5
Group C: 60.2 ± 16.1 FMA-UE; MAS; BBT; BI

(Triccas et al.,
2015) [31] RCT Subacute and

chronic 18 s/8 weeks Group Ex: a-tDCS
Group C: sham 23 11 LH

12 RH Total Group: 63.4 ± 12 FMA

(Edwards et al.,
2019) [32] RCT Chronic 36 s/12 weeks Group Ex: a-tDCS

Group C: sham 82 82 RH See footnote * FMA-UE

(Straudi et al.,
2016) [33] RCT Subacute and

chronic 10 s/2 weeks Group Ex: d-tDCS
Group C: sham 23 15 LH

8 RH
Group Ex: 52.7 ± 16
Group C: 64.3 ± 9.7 FMA; BBT

(Hesse et al.,
2011) [34] RCT Subacute 30 s/6 weeks

Group Ex1: a-tDCS
Group Ex2: c-tDCS

Group C: sham
96 45 LH

51 RH

Group Ex1: 63.9 ± 10.5
Group Ex2: 65.4 ± 8.6
Group C: 65.6 ± 10.3

FMA-UE; MAS; BBT; BI

(Dehem et al.,
2018) [35] RCT; crossover Chronic 2 s/1 weeks

Group Ex1:
d-tDCS + ses sham

Group Ex2:
ses sham + d-tDCS

21 11 LH
10 RH

Group Ex: 62.73 ± 8
Group C: 58.1 ± 10.8 BBT

(Mazzoleni et al.,
2015) [36] RCT Subacute 30 s/6 weeks Group Ex: a-tDCS

Group C: sham 12 4 RH
8 LH Total Group: 75.9 ± 7 FMA-UE; MAS; BBT

(Mazzoleni et al.,
2017) [37] RCT Subacute 30 s/6 weeks Group Ex: a-tDCS

Group C: sham 24 12 RH
12 LH

Group Ex: 70.0 ± 12.8
Group C: 75.25 ± 8.01 FMA-UE; MAS; BBT

(Mazzoleni et al.,
2019) [38] RCT Subacute 30 s/6 weeks Group Ex: a-tDCS

Group C: sham 39 17 RH
22 LH

Group Ex: 67.5 ± 16.3
Group C: 68.74 ± 15.83 FMA-UE; MAS; BBT

RCT = randomised clinical trials; s = session; a-tDCS = anodal transcranial direct current stimulation; c-tDCS = cathodal transcranial direct current stimulation; d-tDCS = dual transcranial
direct current stimulation; SD = standard deviation; Ex = experimental; Ex1 = experimental 1; Ex2 = experimental 2; C = control; LH = left hemispheric; RH = right hemispheric;
FMA-UE = Fugl-Meyer Assessment for Upper Extremity; MAS = Modified Ashworth Scale; BBT: Box and Blocks Test; BI = Barthel Index. * Edward et al. (2019) [32] provided the median
[interquartile range] of continuous variables: age, 70.0 [64.0, 77.0].
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In the included trials, the mean age of the participants was 65.80 years, and 178
(46.1%) of them were women. Most participants were subacute and chronic. Of all trials,
154 participants sustained the lesion in the left hemisphere, and 150 sustained it in the right
hemisphere. Only one trial did not report the affected hemisphere or the type of stroke
suffered by the participants. Of the 386 participants, 221 received a real tDCS, which could
be anodic, cathodic, or dual tDCS, and 186 received a sham tDCS.

In all studies, the experimental intervention was robotic training for upper limb
recovery combined with tDCS. Regarding tDCS, all studies stimulated motor area 1 (M1),
corresponding to areas C3/C4 of systems 10–20. All trials used anodal stimulation (a-
tDCS), except for one that additionally used cathodal stimulation (c-tDCS) in another
experimental group [30]. All studies applied tDCS online, i.e., simultaneously with RAT,
apart from Triccas (2015) [31], who worked with three groups, including one online, one
offline pre-intervention (stimulation was applied prior to the robotic intervention), and one
offline post-intervention (stimulation was applied after the robotic intervention). Edwars
(2019) [32] applied offline pre-stimulation. Six of the articles included in the meta-analysis
applied the intervention for 20 min, and Straudi (2016) [33] applied it for 30 min. Three
studies performed the stimulation at an intensity of 1 mA [31,33,34]. The remaining studies
carried out the stimulation at an intensity of 2 mA. All studies used saline and 35 cm2

electrodes. The data concerning the application of tDCS can be found in Table 2.

Table 2. tDCS characteristics of the included studies.

Study Stimulated Area Timing tDCS Time Characteristics Intensity

(Morone et al.,
2022) [30] D-tDCS M1 Online 20 min Electrodes 35 cm2.

Saline
2 mA

(Triccas et al.,
2015) [31]

A-tDCS C3/C4
(M1) affected
hemispheric

Online 20 min Electrodes 35 cm2.
Saline

1 mA

(Edwards et al.,
2019) [32] A-tDCS M1 Offline pre 20 min Electrodes 35 cm2.

Saline
2 mA

(Straudi et al.,
2016) [33] D-tDCS M1 Online 30 min Electrodes 35 cm2.

Saline
1 mA

(Hesse et al.,
2011) [34]

A-tDCS: C3
C-tDCS: C3 Online 20 min Electrodes 35 cm2.

Saline
2 mA

(Dehem et al.,
2018) [35] D-tDCS Online 20 min Electrodes 35 cm2.

Saline
1 mA

(Mazzoleni et al.,
2015) [36] A-tDCS M1 Online 20 min Electrodes 35 cm2.

Saline
2 mA

(Mazzoleni et al.,
2017) [37] A-tDCS M1 Online 20 min Electrodes 35 cm2.

Saline
2 mA

(Mazzoleni et al.,
2019) [38] A-tDCS M1 Online 20 min Electrodes 35 cm2.

Saline
2 mA

A-tDCS = anodal transcranial direct current stimulation; C-tDCS = cathodal transcranial direct current stimulation;
D-tDCS = dual transcranial direct current stimulation.

Regarding robotic intervention, it should be noted that only two studies used an
exoskeleton [31,33], and the rest used an end-effector. Bimanual (n = 1) [35] and unimanual
(n = 8) devices were used. All devices were distal, except one, which was proximal. The
degrees of freedom (DoFs) of movement ranged from 2 to 3, but all were in relation to
wrist motion. The DoFs used were abduction–adduction and flexion and pronosupination.
The rest of the upper extremity was immobilised. Four studies did not report DoF-related
information [32–34,36]. Three studies mobilised the entire limb through wrist movement in
any of its three degrees of freedom [30,33,35]. Four studies fixed the upper limb and only
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allowed movements of the wrist [34,36–38]. Edwards (2019) [32] alternated movements of
all of the upper limbs with wrist-only movements per day.

Only four studies provided data on the duration of the robotic treatment. The maxi-
mum time was 75 min [33], and the minimum time was 20 min [35]. Four studies did not
provide information on the number of repetitions [31,32,34,35]. The maximum number of
repetitions described was 1024 repetitions in one session [36–38], and the minimum was
400 repetitions [35]. All studies offered passive movements, i.e., movements that were
performed by the robotic device. One studio performed self-passive movements. This was
possible because the robotic device was bimanual; therefore, the patient himself was able
to guide the movement of the affected upper limb thanks to the movement of the healthy
upper limb [34]. Most studies (n = 4) used robotic-assisted movement, i.e., the patient
initiated the movement, but it was the robot that completed the range of motion according
to the DoF. Only three performed active movements; that is, the patient independently
executed the entire process, but only if the participant wanted to perform it, i.e., it was not
mandatory within the treatment. No studies reported problems with the use of robotic
devices. All studies used visual feedback. One study did not report the type of task that
was performed in the RAT [34]. Three studies used exergames [30,31,35], and five studies
used visuomotor tasks [32,33,36–38]. The exergames had a more cognitive and playful
component than the visuomotor tasks. Both exergames and visuomotor tasks were exe-
cuted with the DoF offered by the robotic devices. Robotic devices had sensors and motors
that defined the direction of movement and balanced the amount of force to complete
the movement.

Information regarding RAT can be found in Table 3.

3.3. Quality

The quality of deficit severity, hand dexterity, spasticity, and activity was analysed in
all of the studies. The heterogeneity was low. No study showed undirected evidence or
imprecision. The publication bias was not clear in the deficit severity and hand dexterity,
and there was no publication bias in spasticity nor activity. The DOI plot and funnel plot
are available in Supplementary Figure S1. The level of GRADE evidence is high. The data
are available in Supplementary Table S4.

All studies were randomised clinical trials. The groups presented similar baseline
characteristics and measurements, and the dropout rate was nonexistent or minimal. Allo-
cation was concealed in all studies, and all studies blinded the participants and assessors.
The intervener was not blinded in any of the studies. The mean score on the PEDro scale
was 8 to 9, as presented in Supplementary Table S5.

Outcome Measures

The deficit severity measure was obtained from the FMA-UE scores (n = 8), includ-
ing a general assessment of the upper limb and some shoulder, elbow, wrist, and hand
measurements. The hand dexterity measures were obtained from the BBT scores (n = 5).
The measures of spasticity were obtained using the MAS scale (n = 5), and the measures of
activity were obtained using the BI (n = 2). The baseline results for the scores of the studies
included are shown in Table 4.
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Table 3. RAT characteristics of the included studies.

Study Robot Device
Robot Device

(End-Effector vs.
Exoskeleton)

Robot Device
(Bimanual vs.
Unimanual)

Robot Device
(Distal vs.
Proximal)

DOFs (Degrees of
Freedom)

Robot-Assisted
Training Time Type of Task No. of Repetitions

(Morone et al.,
2022) [30] Armeo Power II Exoskeleton Unimanual Distal

6: elbow F;
forearm S; wrist F;

shoulder
40 min Exergames No data

(Triccas et al.,
2015) [31] Armeo Spring Exoskeleton Unimanual Proximal No data 75 min Exergames No data

(Edwards et al.,
2019) [32] MIT-Manus End-effector Unimanual Distal No data 60 min Visuomotor task 1024 passives and assisted

(Straudi et al.,
2016) [33]

REO Therapy
System End-effector Unimanual Distal No data 30 min Visuomotor task No data

(Hesse et al.,
2011) [34] Bi-Manu Track End-effector Bimanual Distal 2 F/E; P/S 20 min No data

200 passives +
200 auto passives

800 total

(Dehem et al.,
2018) [35] REAplan robot End-effector Unimanual Distal No data 20 min Exergames No data

(Mazzoleni et al.,
2015) [36] InMotion End-effector Unimanual Distal 3: F/E; P/S;

ABD/ADD No data Visuomotor task 960 assisted + 16 passives
976 total

(Mazzoleni et al.,
2017) [37] InMotion End-effector Unimanual Distal 3: F/E; P/S;

ABD/ADD No data Visuomotor task 960 assisted + 16 passives
976 total

(Mazzoleni et al.,
2019) [38] InMotion End-effector Unimanual Distal 3: F/E; P/S;

ABD/ADD No data Visuomotor task 960 assisted + 16 passives
976 total

ABD/ADD = abduction/adduction; F/E = flexion/extension; P/S = pronation/supination.
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Table 4. Baseline outcomes of the included studies.

Study FMA-UE
(Mean ± SD)

BBT
(Mean ± SD)

MAS
(Mean ± SD)

BI
(Mean ± SD)

(Morone et al.,
2022) [30]

Group Ex: 25.8 ± 15.2
Group C: 30.7 ± 15.0 No data Group Ex: 4.4 ± 2.3

Group C: 4.1 ± 1.7
Group Ex: 85.1 ± 11.0
Group C: 79.9 ± 14.0

(Triccas et al.,
2015) [31]

Group Ex: 24.91 ± 16.01
Group C: 37.09 ± 13.57 No data No data No data

(Edwards et al.,
2019) [32]

Group Ex: 25.7 ± 16.3
Group C: 25.3 ± 16.3 No data No data No data

(Straudi et al.,
2016) [33]

Group Ex: 24.08 ± 16.6
Group C: 21.45 ± 13.23

Group Ex: 10.42 ± 15.47
Group C: 6.55 ± 11.67 No data No data

(Hesse et al.,
2011) [34]

Group Ex1: 7.8 ± 3.8
Group Ex2: 7.9 ± 3.4
Group C: 8.2 ± 4.4

Group Ex1: 0
Group Ex2: 0
Group C: 0

Group Ex1: 1.6 ± 2.9
Group Ex2: 1.0 ± 1.8
Group C: 1.4 ± 2.7

Group Ex1: 34.1 ± 6.4
Group Ex2: 34.2 ± 7.6
Group C: 35.0 ± 7.8

(Dehem et al.,
2018) [35] No data Group R-S: 18.73 ± 13.3

Group S-R: 13.6 ± 14.3 No data No data

(Mazzoleni
et al., 2015) [36]

Group Ex: 28.00 ± 20.91
Group C: 41.83 ± 14.48

Group Ex: 11.33 ± 12.74
Group C: 20.5 ± 8.41

Group Ex: 0.67 ± 1.21
Group C: 0.33 ± 0.81 No data

(Mazzoleni
et al., 2017) [37]

Group Ex: 37.33 ± 17.53
Group C: 37.83 ± 15.62

Group Ex: 15.00 ± 9.99
Group C: 15.42 ± 9.78

Group Ex: 0.75 ± 1.36
Group C: 0.50 ± 0.80 No data

(Mazzoleni
et al., 2019) [38]

Group Ex: 34.20 ± 18.35
Group C: 34.11 ± 15.48

Group Ex: 15.95 ± 12.10
Group C: 12.32 ± 10.41

Group Ex: 1.1 ± 1.86
Group C: 1.58 ± 2.34 No data

BBT = Box and Block Test; C = Control; Ex = Experimental; Ex1 = Experimental a-tDCS; Ex2 = Experimental c-tDCS;
FMA-UE = Fugl-Meyer Assessment for Upper Extremity; MAS = Modified Ashworth Scale; R-S = real tDCS and
sham tDCS (crossover study); SD = standard deviation; S-R = sham tDCS and real tDCS (crossover study).

3.4. Intervention Effects

A meta-analysis considering the intervention effect with its 95% confidence intervals
was performed with the selected studies. The results did not show that the RAT intervention
combined with tDCS for upper limb recovery after stroke is more beneficial than when
RAT is combined with sham tDCS. The effect on deficit severity measured with the FMA-
UE was examined in eight studies [31,33–38] involving a total of 354 patients. It was
assessed with post-intervention measures. The global effect was −0.09 with a CI of (−0.31,
0.12). The results indicated that robotic training combined with tDCS did not improve the
severity of the deficit compared to sham tDCS, as shown in Figure 3. The effect of RAT
combined with tDCS compared with RAT alone on hand dexterity was examined in five
studies [32,34,36–38] involving a total of 133 patients. The global effect was 0.12 with
a CI of (−0.22, 0.46). The results indicated that the addition of tDCS to RAT does not
improve hand dexterity, as shown in Figure 4. The effect of RAT combined with tDCS on
spasticity was examined in the upper limb. Five studies evaluated spasticity but examined
different structures [31,35–38]. The global effect was 0.04 with a CI of (−0.24, 0.32). No
improvement in spasticity was found when combining RAT and tDCS, as shown in Figure 5.
The effect of RAT combined with tDCS on activity was examined in two studies [31,35]. No
improvement in activity was found when combining RAT and tDCS. The global effect was
0.66 with a CI of (−1.82, 3.14). The results are shown in Figure 6.
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Figure 6. Meta-analysis of comparison between experimental group and control group results on the
effect of activity on stroke population [30,34]. The yellow circle (? sign) means some concerns, and
the green circle (+ sign) means low risk of bias.

4. Discussion

The main objective of this review was to shed light on the effect of combining robot-
assisted therapy (RAT) with transcranial direct current stimulation (tDCS) on the motor
recovery of the upper limbs after a stroke. Additionally, the impact of this combined
approach on spasticity, manual dexterity, and the performance of activities of daily living
(ADLs) was investigated. However, no additive effect of tDCS and RAT was found in the
recovery of upper limb motor function post-stroke, and there was no observed additive
effect on spasticity, manual dexterity, or ADLs.

These results align with those of previous reviews [24–26,39] indicating that the
effect of robot-assisted therapy (RAT) and transcranial direct current stimulation (tDCS)
may differ in the lower limbs [24,39]. This difference could be attributed to the fact that
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the recovery of the upper limbs relies more on the integrity of the corticospinal pathway,
whereas the recovery of the lower limbs depends on both this integrity and spinal structures
that allow for the application of other techniques, such as transcutaneous spinal direct
current stimulation [39,40]

RAT and tDCS have been combined with other modalities to achieve an additive effect
in motor recovery after a stroke. Specifically, tDCS has been combined with mirror therapy
and rehabilitative treatment, physiotherapy, and occupational therapy, showing positive
effects on the motor recovery of the upper limbs and motor dexterity [41–43]. However,
our results differ from those of these studies, which may be due to variability in tDCS
protocols and patient characteristics. Various studies combining tDCS with rehabilitative
treatment have yielded disparate results [44,45], underscoring the importance of variability
in protocols and patient characteristics. Both studies address the combination of tDCS with
rehabilitative treatment, but in one case, it is a c-tDCS protocol in chronic patients [45],
and in the other case, it is an a-tDCS protocol in subacute patients [44]. On the other
hand, the combination of tDCS and RAT may not adhere to certain recommendations
for this combination to be more effective, specifically regarding the time between tDCS
application and task execution, as well as the repetition of the same task [46]. Other authors
have investigated ways to enhance the effects of RAT by combining it with techniques
such as botulinum toxin or electrical stimulation [47,48], showing better results with the
combination of these techniques. In contrast to the combination of RAT and tDCS, these
techniques have positive effects on motor function and spasticity. This difference might be
attributed to the plastic effects induced by RAT, i.e., the plastic effects produced by RAT
may mask the effects of tDCS [39].

Furthermore, in RAT, the device used is important, as the variability of robotic de-
vices can yield different outcomes [49]. At a mechanical level, a crucial distinction exists
between exoskeletons and end-effectors [50]. Notably, the studies by Mazzoleni and Ed-
ward demonstrated substantial advantages in deficit severity [32,36–38], and both studies
used end-effectors. Additional research underscores the advantages of end-effectors over
exoskeletons [51]. End-effectors operate on a bottom-up model, focusing on simple move-
ments to enhance functionality, which proves particularly effective after a stroke, especially
in cases of severe deficits [52]. Moreover, end-effectors typically have a lower degree of
freedom (DoF) compared to exoskeletons, aligning with the paradox of diminishing DoFs,
suggesting that devices with fewer DoFs are more effective in severe motor impairment
scenarios [53,54].

The dosage of movement is a critical factor in the recovery of patients diagnosed with
stroke, with variables such as the extent of movement and the number of repetitions playing
significant roles [55]. Although the optimal dose remains undetermined, emerging evidence
suggests that a higher volume of movement is associated with better outcomes [56,57].
The results from the meta-analysis indicate a lack of adjuvant effects in robot-assisted
therapy (RAT) and transcranial direct current stimulation (tDCS); however, studies with a
higher number of replications and doses consistently achieve superior results [32,36–38].
The generalised lack of results may be attributed to factors such as completely passive
movement, where the robotic device entirely dictates the movement. Interestingly, only
three studies allowed patients to engage in voluntary active movements, emphasising
the importance of active engagement, which increases cortical excitability and enhances
plasticity [58,59]. The active role of the patient is a significant factor contributing to the
success of RAT in motor function recovery [60,61]. Additionally, the frequency and total
duration of the protocol are influential factors in determining the dose in RAT [62].

One way to enhance the effect of RAT would be to adapt the robotic device to the
special characteristics of the pathology. Specifically, robotic devices have been designed
for other pathologies, such as tendon disease, showing positive effects on recovery [14].
Another factor that improves the efficacy of RAT is the use of electrical impedance tomog-
raphy to RAT, as this would help monitor the progress of patients and allow the treatment
to be adapted to the specific needs of each person [63].
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Following a stroke, the nervous system undergoes various changes, initiating a process
of functional alterations known as brain plasticity [64]. Non-invasive Brain Stimulation
(NIBS), particularly transcranial direct current stimulation (tDCS), could positively con-
tribute to this plasticity [65]. The nervous system adopts different behaviours to cope with
recovery after injury, with models such as the Vicariation Model and the interhemispheric
competition model explaining the recovery process. While the Vicariation Model suggests
that the unaffected hemisphere assumes the functions of the affected hemisphere, the
interhemispheric competition model posits an inhibitory balance between hemispheres,
with the unaffected hemisphere enhancing the inhibition of the affected hemisphere [66,67].
Techniques such as fractional anisotropy can aid in determining the appropriate type of
NIBS, considering factors like cathodic or inhibitory stimulation in smaller lesions [68,69].
Despite the promising potential of NIBS in stroke recovery, the combination of tDCS with
RAT presents controversy and a lack of conclusive results in this review. The variability in
tDCS protocols, irrespective of the location, etiology, and lesion evolution, along with the
presence or absence of Motor Evoked Potentials (MEPs), may contribute to the absence of
consistent findings [67]. It is imperative for clinical evidence to guide healthcare profes-
sionals in applying the most appropriate techniques for individual patients, considering
factors such as the time of evolution, predictive factors, and other relevant variables [70].

As previously mentioned, the effectiveness of RAT and tDCS may vary based on
patient characteristics. Subsequent studies should explore device suitability tailored to
specific patient profiles, including severity and potential for improvement. Notably, the
studies included in this review did not select patients based on criteria predicting interven-
tion efficacy. Limiting factors, such as advanced age, neglect, aphasia, or complete anterior
circulation lesion (TACI), hinder the possibility of achieving favourable outcomes [50]. On
the other hand, there are also predictive algorithms for the evolution of patients based
on clinical scores and physiological data, for example, the specific use of scores, such as
FMA-UE [71]. Despite classifications based on FMA-UE scores in studies such as that by
Mazzoleni (2019) and the acknowledgment of the importance of presenting MEP in the
study by Edwards et al. (2019), these criteria were not consistently utilised for treatment
application or dose determination [32,38].

Overall, this review has shown that the combination of tDCS and RAT can have
positive effects in certain groups, such as patients with subcortical lesions, but globally, no
additional effects were found when combining RAT with tDCS. With the information from
the studies, we can focus on the application of techniques based on the patients’ specific
factors. We found that there are three variables that help generate profiles of the patients
who can benefit the most from the combination of RAT and tDCS. These variables are
as follows:

• The presence of MEP: Most studies suggest that patients with the presence of MEP,
those who preserve the corticospinal pathway, benefit more from the effects of tDCS
and RAT [32–34,40,58], although there are other studies that point in the opposite
direction [30]. It is not clear which patients benefit the most from NIBS, and this may
be an important variable in establishing this criterion, so further research is required.

• The severity of deficits: Most studies indicate that subjects with moderate deficits,
measured with FMA-EU, benefit most from the combination of both techniques [31,34,38].
Baseline scores are predictors of the evolution of the subjects, so this information can
help us decide whether or not a patient will benefit from the intervention [71].

• The time of evolution since stroke: The evidence in this regard is unclear, but it seems
that patients in a subacute stage may benefit more [31,38]. However, there are studies
indicating that chronic patients may also benefit [30,32–34].

Future research should take these variables into account and design more homoge-
neous studies that allow us to know more confidently which patients would benefit from
the combination of RAT and tDCS.

In conclusion, based on the results of the meta-analysis and the analysis of the studies,
the patients who can benefit the most from the techniques are those with a preserved, intact,
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or partially affected corticospinal pathway, with moderate deficits measured using the
Fugl-Meyer Assessment, and those in a subacute stage.

The systematic review and meta-analysis presented in this study have limitations that
may influence the results obtained. The data may be incomplete because most studies did
not include a post-intervention follow-up; the high variability of tDCS and RAT protocols
makes it difficult to compare results. In addition, the results of the meta-analysis may be
influenced by the difference in the sample sizes of the studies. Finally, the study population
was very heterogeneous, making it difficult to generalise the results.

5. Conclusions

The use of RAT combined with tDCS for the motor recovery of the upper limb after
stroke is a promising rehabilitative technique, but there is some controversy about its
effectiveness. Different studies yielded contradictory data about its usefulness, although
there is some agreement that the patients who may benefit the most from its use are those
with a preserved, intact, or partially affected corticospinal pathway with moderate motor
deficits and those in a subacute stage.

However, further research is needed to more precisely define an optimal patient profile
that can benefit from this technique to improve upper limb function and ADL performance
and to establish more clear protocols for its application.
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