
Citation: de la Cruz, J.;

Martínez-Moro, E.; Muñoz-Ruiz, S.;

Villanueva-Polanco, R. Public Key

Protocols from Twisted-Skew Group

Rings. Cryptography 2024, 8, 29.

https://doi.org/10.3390/

cryptography8030029

Academic Editor: Josef Pieprzyk

Received: 3 April 2024

Revised: 10 June 2024

Accepted: 13 June 2024

Published: 5 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cryptography

Article

Public Key Protocols from Twisted-Skew Group Rings
Javier de la Cruz 1,* , Edgar Martínez-Moro 2 , Steven Muñoz-Ruiz 3 and Ricardo Villanueva-Polanco 4

1 Department of Mathematics and Statistics, Universidad del Norte, Barranquilla 081007, Colombia
2 Institute of Mathematics, Universidad de Valladolid, 47011 Valladolid, Spain; edgar.martinez@uva.es
3 Department of Mathematics, University of Miami, Coral Gables, FL 33146, USA; sxm2927@miami.edu
4 Cryptography Research Center, Technology Innovation Institute, Abu Dhabi P.O. Box 9639,

United Arab Emirates; ricardo.polanco@tii.ae
* Correspondence: jdelacruz@uninorte.edu.co

Abstract: This article studies some algebraic structures known as twisted-skew group rings in the
context of public key cryptography. We first present some background related to these structures to
then specifically introduce particular twisted-skew group rings and show how to utilize them as the
underlying algebraic structure to build cryptographic protocols. We closely follow an incremental-
like methodology to construct these protocols by putting parts together. As as result, we first
introduce a key-agreement protocol and then generalize it to a group key-agreement protocol. We
then proceed to construct a probabilistic public key encryption from our two-party key agreement and,
finally, introduce a key-encapsulation mechanism from a well-known generic construction applied
to probabilistic public encryption. Furthermore, we provide an in-depth security analysis for each
cryptographic construction under new related algebraic assumptions and supply a proof-of-concept
implementation for various candidate chosen groups.

Keywords: twisted-skew group ring; key agreements protocol; key-encapsulation mechanism;
public key scheme

1. Introduction

While the increasingly close possibility of bringing about quantum technology for
massive use in the coming years approaches, which will render current public key schemes
insecure, the cryptographic community has devoted efforts to design, implement, and
deploy quantum-safe public key primitives that replace current public key algorithms.
Thus far, many candidates have been proposed via standardization calls for proposals
and independent and individual efforts [1–3]. Those candidates may roughly be classified
into several categories or groups, namely lattice-based schemes, code-based schemes,
isogeny schemes, MPC-in-the-Head schemes, multivariate schemes, and symmetric-based
schemes [1–3].

Nevertheless, recent papers [4–7] propose different, promising cryptographic schemes
based on group ring generalizations, which seem to be quantum-secure [8]. The research
articles [5–7] introduce cryptographic protocols whose security hinges on algebraic prob-
lems defined on the structure of a twisted dihedral group algebra, while [4] presents con-
structions that are supported on a skew dihedral group ring structure. Specifically, Ref. [7]
proposes a two-cocycle αλ to form the twisted algebra Fαλ

q D2n for a non-square λ in the field
Fq, where D2n = ⟨x, y : xn = y2 = 1, yxy−1 = x−1⟩ is the dihedral group of order 2n. More
precisely, the two-cocycle αλ : D2n × D2n −→ F∗q is defined by αλ(g, h) = λ for g = xiy,
h = xjy with i, j ∈ {0, . . . , n− 1} and αλ(g, h) = 1 otherwise. Furthermore, following an
incremental-like methodology as employed by us in this paper, the authors of [7] intro-
duce a key exchange protocol, a probabilistic public key scheme, and a key-encapsulation
mechanism over the twisted algebra Fαλ

q D2n. Furthermore, their constructions and their
proof-of-concept implementation are enhanced by exploiting the properties of the twisted
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algebra. On the other hand, Ref. [4] proposes cryptographic protocols supported on an
algebraic structure that is called the skew dihedral group ring. This algebraic platform,
denoted by Fθσ

q2 D2n, is formed of the dihedral group D2n and the group homomorphism

described by θσ(g) = σ, where σ(a) = aq for all a ∈ Fq2 , for g = xiy, i ∈ {0, . . . , n− 1}, and
θσ(g) = 1 otherwise. Furthermore, using an incremental-like methodology, the authors
of [4] similarly propose a key-exchange protocol, a probabilistic public key scheme, and
a key-encapsulation mechanism over the skew dihedral group ring Fθσ

q2 D2n.
Concerning other related works, the research articles [9,10] investigate ideals as codes

in twisted-skew group rings. In particular, they characterize all linear codes that are
twisted-skew group codes in terms of their automorphism group.

Our main contribution is generalizing previous approaches [4–7] in the sense that we
present a novel algebraic structure, which is a twisted-skew group ring and generalizes
those in [4–7], and exhibit various cryptographic protocols supported on this structure.
This structure features a two-cocycle αλ and a group homomorphism θσ. We particularly
consider G to be a finite group of even order and N ≤ G such that |N| = |G|/2 = n, i.e.,
[G : N] = 2, and hence, G = N ∪Ny with y ∈ G \ N. For λ ∈ F∗q , the map αλ : G×G → F∗q
as α(g, h) = λ if g /∈ N and h /∈ N and αλ(g, h) = 1 otherwise is a two-cocycle of the
group G over Fq. Also, the map θσ : G → Gal(Fq2 ,Fq) defined by θσ(g) = σ if g /∈ N and
θσ(g) = 1 otherwise is a group homomorphism. We then define the twisted-skew group
ring Fθσ ,αλ

q2 G, over which we build cryptographic constructions. By closely following an
incremental-like methodology as previously used in [4,7], we construct a key-agreement
protocol and then generalize it to a group key-agreement protocol. We then proceed to
build a probabilistic public key encryption from our two-party key agreement and, finally,
introduce a key-encapsulation mechanism from a well-known generic construction applied
to the probabilistic public encryption. Furthermore, we provide an in-depth security
analysis for each cryptographic construction under new related algebraic assumptions and
supply a proof-of-concept implementation for various candidate chosen groups.

The outline of the paper is as follows. In Section 2, we will present background
material and formally introduce the twisted-skew group ring over which we will build our
cryptographic protocols. Section 3 will formally introduce our intractability assumptions.
In particular, we will formally define attack games for the algebraic problems on which the
security of our cryptographic constructions rely. Section 4 first gives a detailed account of
our two-party key-agreement protocol together with its corresponding security analysis and
then focuses on its generalization along with the corresponding security analysis. Section 5
will delineate a probabilistic public key-encryption scheme derived from our two-party
key-agreement protocol and the corresponding security analysis. Section 6 will portray our
key-encapsulation mechanism derived from the probabilistic public key-encryption scheme
from Section 5. In Section 7, we will describe the pseudo-code of our proof-of-concept
Python implementation for our cryptographic constructions and conclude this section by
hinting at potential applications of our protocols. Finally, Section 8 will conclude our work
and outline future research directions.

2. A Twisted-Skew Group Ring

Let G be a finite group and Fq be the finite field of order q = pm and characteristic
p. We denote the automorphism group of Fq by Aut(Fq), and Gal(Fqk ,Fq) ≤ Aut(Fq)
always denotes the group of all automorphisms of Fqk that fix Fq, which is called the Galois
group of Fqk over Fq. A well-known result is that the Galois group Gal(Fqk ,Fq) is a cyclic
group of order k and that the Frobenius automorphism σ of Fqk over Fq is a generator,
which is defined as σ(a) = aq for all a ∈ Fqk . Moreover, by Hom(G, Aut(Fqk )) and
Hom(G, Gal(Fqk ,Fq)), we denote the set of group homomorphisms from G to Aut(Fqk )



Cryptography 2024, 8, 29 3 of 23

and Gal(Fqk ,Fq), respectively. Additionally, the map α : G × G → Fq \ {0} is called
a two-cocycle of G if α(1, 1) = 1 and

α(g, hk)α(h, k) = α(gh, k)α(g, h)

for all g, h, k ∈ G. Let Z2(G,Fq) denote the set of all two-cocycles of G.
We say that the cocycle α is stabilized by the group θ(G) ≤ Aut(Fq), if

θ(g)α(x, y) = α(x, y) (1)

for all g, x, y ∈ G.
For α, β ∈ Z2(G,F∗q), we define αβ ∈ Z2(G,F∗q) as αβ(g, h) = α(g, h)β(g, h) for all

g, h ∈ G. With this operation, Z2(G,F∗q) becomes a multiplicative Abelian group. If
β : G −→ F∗q is a map such that β(1) = 1, the coboundary ∂β defined by ∂β(g, h) =

β(g)−1β(h)−1β(gh) for all g, h ∈ G is in Z2(G,F∗q). We denote the set of all cobound-
aries of G by B2(G,F∗q), which forms a subgroup of the group Z2(G,F∗q). Given a two-
cocycle α ∈ Z2(G,F∗q), its coset is denoted by [α] := αB2(G,F∗q). Additionally, we call the
quotient group

H2(G,F∗q) = Z2(G,F∗q)/B2(G,F∗q)

the second cohomology group of G with values in F∗q .

Definition 1 (See [10]). Let G be a finite multiplicative group; let α ∈ Z2(G,Fq) be a two-cocycle
of G; let θ ∈ Hom(G, Aut(Fq)) be a group homomorphism. The twisted-skew group ring Fθ,α

q G is
the set of all formal sums ∑g∈G agg, where ag ∈ Fq, with the following twisted-skew multiplication:

agg · bhh = ag(θ(g)(bh))α(g, h)gh.

In [10], it is proven that, if the cocycle α is stabilized by θ(G), then Fθ,α
q G is an associa-

tive ring with identity 1.
Note that F1,1

q G is nothing else than the group algebra FqG, while F1,α
q G is the twisted

group algebra Fα
q G, and Fθ,1

q G is the skew group ring Fθ
qG (see [4,9,10]). Moreover, by [10],

Lemma 1.5, for θ ∈ Hom(G, Aut(Fq)), we have that Fθ,α
q G and Fθ,1

q G = Fθ
qG are isomorphic,

if α is a coboundary. In particular, Fα
q G = F1,α

q G ∼= F1,1
q G = FqG as Fq-algebras, if α is

a coboundary.

Definition 2 (See [10]). For an element a = ∑g∈G agg ∈ Fθ,α
q G, we define its adjunct as

â := φ(a) = ∑
g∈G

θ(g−1)(ag)α(g, g−1)g−1.

In the sequel, we will always consider that G is a finite group of even order and N ≤ G
such that |N| = |G|/2 = n, i.e., [G : N] = 2, and hence, G = N ∪ Ny with y ∈ G \ N.
Also, we assume the elements of G are ordered according to some fixed order. In particular,
N = {n0, n1, . . . , nn−1} and G = {niyj | i ∈ {0, 1, . . . , n− 1}, j ∈ {0, 1}}. Some possible
groups G satisfying the previous conditions are as follows:

1. Dihedral group: A presentation of the dihedral group D of order 2n is given by

D = ⟨x, y : xn = y2 = 1, yxy−1 = x−1⟩,

where N = ⟨xi⟩ and |N| = n.
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2. Quasidihedral group: A presentation of the quasidihedral group G of order 2n is
given by

G = ⟨x, y : x2n−1
= y2 = 1, yxy = x2n−2−1⟩,

where N = ⟨xi⟩ and |N| = n = 2n−1.
3. Modular maximal-cyclic group: A presentation of the modular maximal-cyclic group

M of order 2n is given by

M = ⟨x, y : x2n−1
= y2 = 1, yxy = x2n−2+1⟩,

where N = ⟨xi⟩ and |N| = n = 2n−1.
4. Generalized quaternion group: A presentation of the generalized quaternion group Q

of order 2n is given by

Q = ⟨x, y : x2n−1
= y4 = 1, x2n−2

= y2, yxy−1 = x−1⟩,

where N = ⟨xi⟩ and |N| = n = 2n−1.

Lemma 1. Let y ∈ G \ N. Then, we have the following:

1. Fθ,α
q G is a free Fθ,α

q N-module with basis {1, y}. Therefore, Fθ,α
q G = Fθ,α

q N ⊕ Fθ,α
q Ny as the

direct sum of Fq-vector spaces.
2. Fθ,α

q N ∼= Fθ,α
q Ny as Fθ,α

q N-modules.
3. For a ∈ Fθ,α

q Ny, ab ∈ Fθ,α
q N if b ∈ Fθ,α

q Ny or ab ∈ Fθ,α
q Ny if b ∈ Fθ,α

q N.
4. If a ∈ Fθ,α

q N, then â ∈ Fθ,α
q N.

5. If a ∈ Fθ,α
q Ny, then â ∈ Fθ,α

q Ny.

Proof. Let y ∈ G \ N:

1. Since {1, y} is a transversal of N, the assertion follows.
2. Consider the map σ : Fθ,α

q N → Fθ,α
q Ny given by σ(g) = gy for all g ∈ N, then σ is an

Fθ,α
q N-module isomorphism.

3. Since [G : N] = 2, then gh ∈ N if and only if g, h ∈ N or g, h ∈ Ny. Therefore, the
assertion follows.

4. If g ∈ N, then g−1 ∈ N since N is a subgroup. Hence, the assertion follows.
5. If g ∈ Ny, then g−1 ∈ Ny since [G : N] = 2. Hence, the assertion follows.

Definition 3. We define the (θ, α)-reversible subspace of Fθ,α
q Ny as the vector subspace Γθ,α =

{a = ∑n−1
i=0 ainiy ∈ Fθ,α

q Ny : ai = a[−i]n for all i = 1, 2, . . . , n− 1}.

The following lemma introduces the two-cocycle αλ on the group G, for a given
element λ in F∗q .

Lemma 2. Let λ ∈ F∗q . Then, the map αλ : G× G → F∗q defined by α(g, h) = λ if g /∈ N and
h /∈ N and αλ(g, h) = 1 otherwise is a two-cocycle of the group G over Fq.

Proof. By definition, αλ(g, h)(1, 1) = 1. Therefore, αλ is a two-cocycle if αλ(g, h)αλ(gh, k) =
αλ(g, hk)αλ(h, k) for all g, h, k ∈ G. Let us first assume g ∈ N and h, k ∈ G, then a straight-
forward calculation shows that αλ(g, h)αλ(gh, k) = αλ(g, hk)αλ(h, k) holds. On the other
hand, if g ∈ Ny, then a straightforward calculation also shows that αλ(g, h)αλ(gh, k) =
αλ(g, hk)αλ(h, k) holds.

Lemma 3. Let αλ be the two-cocycle defined in Lemma 2:

1. If λ is a square in F∗q , then αλ is a coboundary.
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2. If λ is a non-square in F∗q and there exists g ∈ Ny such that g2 = 1, then αλ cannot be
a coboundary.

3. If λ1, λ2 are non-squares in F∗q , then αλ1 and αλ2 are congruent.

Proof.

1. Suppose λ is a square in F∗q , then there exists t ∈ Fq such that t2 = λ. Let us define
β(g) = 1 if g ∈ N, or else β(g) = t−1. We have αλ(g, h) = β(g)−1β(h)−1β(gh) for all
g, h ∈ G, since gh ∈ N if and only if g, h ∈ N or g, h ∈ Ny.

2. Suppose there exists a function β such that β(1) = 1 and αλ(g, h) = β(g)−1β(h)−1β(gh).
Therefore, αλ(g, g) = λ = β(g)−1β(g)−1β(g2) = [β(g)−1]2, a contradiction.

3. Let ξ be a primitive element of F∗q . Since λ1, λ2 are non-squares in F∗q , then λ1 = ξk
1

and λ2 = ξk
2 with k1 and k2 being odd. Therefore, λ1 = ξk

1 = λ2ξk3 , where k3 is
even, i.e., ξk3 is a square in Fq. Let us define β(g) = 1 if g ∈ N and β(g) = ξk3/2

otherwise. We, therefore, have αλ1(g, h) = αλ2(g, h)β(g)β(h)β(gh)−1 for all g, h ∈ G,
since gh ∈ N if and only if g, h ∈ N or g, h ∈ Ny.

Remark 1. Note that, since (λ2m−1
)2 = λ, for all λ ∈ F2m and m ∈ N, then F2m G and Fθ,αλ

q G
are isomorphic. By this, we will assume that char Fq ̸= 2.

Let Fq2 be a quadratic extension of Fq. From now on, we only will take into con-
sideration a quadratic extension of Fq since the ambient space over which we define
our cryptographic constructions is the twisted-skew group ring Fθσ ,αλ

q2 G, where θσ ∈
Hom(G, Aut(Fq2)) is a group homomorphism. We next introduce θσ.

Lemma 4. Let σ ∈ Gal(Fq2 ,Fq)) be the Frobenius automorphism of Fq2 over Fq. Then, the map
θσ : G → Gal(Fq2 ,Fq) defined by θσ(g) = σ if g /∈ N and θσ(g) = 1 otherwise is a group
homomorphism.

Proof. Let g, h ∈ G and γ ∈ Fq2 . There are four cases to check:

1. g, h ∈ N is easy to check.
2. g ∈ N y h /∈ N, θ(gh)(γ) = σ(γ) = Id(σ(γ)) = θ(g)θ(h)(γ).
3. h ∈ N y g /∈ N, θ(gh)(γ) = σ(γ) = σ(Id(γ)) = θ(g)θ(h)(γ).
4. g, h /∈ N, θ(gh)(γ) = γ = σ(σ(γ)) = θ(g)θ(h)(γ).

Remark 2. θσ relies on the Frobenius automorphism σ. Moreover, since Gal(Fq2 ,Fq) ≤ Aut(Fq2),

then θσ ∈ Hom(G, Gal(Fq2 ,Fq)). Furthermore, if λ ∈ Fq ⊂ Fq2 , then
(
λ

q+1
2 )(q−1) = λ

q2−1
2 = 1,

i.e., it is a square, and also, αλ is stabilized by the group θσ(G); therefore, the twisted-skew group
ring Fθσ ,αλ

q2 G is isomorphic to the skew group ring Fθσ

q2 G introduced in [4]. However, if λ ∈ Fq2 \Fq,
then the cocycle αλ is not stabilized by the group θσ(G), and so, the twisted-skew multiplication
is not necessarily associative. In fact, for none of the possible four groups G we consider the
twisted-skew multiplication is associative.

Lemma 5. Let αλ be the two-cocycle defined in Lemma 2 and θσ ∈ Hom(G, Gal(Fq2 ,Fq)) the
group homomorphism defined in Lemma 4. Then, we have the following:

1. ab = ba for a, b ∈ Fθσ ,αλ

q2 N.

2. ab̂ = bâ for a, b ∈ Γθσ ,αλ
.

3. âb = b̂a for a, b ∈ Γθσ ,αλ
.

4. ((ah)γ) = (a(hγ)) for a ∈ Fθσ ,αλ

q2 N, h ∈ Fθσ ,αλ

q2 G, γ ∈ Γθσ ,αλ
.
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Proof.

1. Let a = ∑n−1
i=0 aini ∈ Fθσ ,αλ

q N and b = ∑n−1
i=0 bini ∈ Fθσ ,αλ

q N.

ab =
n−1

∑
i=0

aini

n−1

∑
j=0

bjnj = ∑
k∈N

 ∑
ninj=k

aibj

k (2)

ba =
n−1

∑
i=0

bini

n−1

∑
j=0

ajnj = ∑
k∈N

 ∑
ninj=k

biaj

k (3)

Note that the second sum of Equations (2) and (3) follows from the definitions of θσ

and αλ. Therefore, ab = ba.
2. Let a = ∑n−1

i=0 ainiy ∈ Γθσ ,αλ
and b = ∑n−1

i=0 biniy ∈ Γθσ ,αλ
. Then, ab̂ can be expressed as

n−1

∑
i=0

ainiy
n−1

∑
j=0

θ((njy)−1)(bj)αλ(njy, (njy)−1)(njy)−1

= ∑
k∈N

 ∑
(niy)(njy)=k

aibjλ
q+1

k (4)

and bâ as

n−1

∑
i=0

biniy
n−1

∑
j=0

θ((njy)−1)(aj)αλ(njy, (njy)−1)(njy)−1

= ∑
k∈N

 ∑
(niy)(njy)=k

biajλ
q+1

k (5)

The first sum of Equations (4) and (5) follows from the definitions and that, for all
ω ∈ Ny, α(ω, ω−1) = λ. The second sum of Equations (4) and (5) follows from θσ

being a homomorphism, and thus, θσ(g)(θσ(h)(a)) = θσ(gh)(a) = a for a ∈ Fq2 and
θσ(g)(λ) = σ(λ) = λq.
Since a, b ∈ Γθσ ,αλ

, then ai = a[−i]n and bj = b[−j]n for i, j ∈ {0, 1, . . . , n − 1}.
Therefore, the (i, j)-th term aibjλ

q+1 of ∑(niy)(njy)=k aibjλ
q+1 in (4) coincides with

the ([−j]n, [−i]n)-th term b[−j]n a[−i]n λq+1 of ∑(niy)(njy)=k biajλ
q+1 in (5), which implies

the equality.
3. Let a = ∑n−1

i=0 ainiy ∈ Γθσ ,αλ
and b = ∑n−1

i=0 biniy ∈ Γθσ ,αλ
. Then, we can write âb as

n−1

∑
i=0

θ((niy)−1)(ai)αλ(niy, (niy)−1)(niy)−1
n−1

∑
j=0

bjnjy

=
n−1

∑
i=0

aq
i λ(niy)−1

n−1

∑
j=0

bjnjy

= ∑
k∈N

 ∑
(niy)−1(njy)=k

aq
i bq

j λ2

k (6)
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and b̂a is

n−1

∑
i=0

θ((niy)−1)(bi)αλ(niy, (niy)−1)(niy)−1
n−1

∑
j=0

ajnjy

=
n−1

∑
i=0

bq
i λ(niy)−1

n−1

∑
j=0

ajnjy

= ∑
k∈N

 ∑
(niy)−1(njy)=k

bq
i aq

j λ2

k (7)

The last sum of Equations (6) and (7) follows from the definitions, α(ω, ω−1) = λ and
θσ(ω)(a) = aq for ω ∈ Ny, a ∈ F2

q.
Since a, b ∈ Γθσ ,αλ

, then ai = a[−i]n and bj = b[−j]n for i, j ∈ {0, 1, . . . , n− 1}. Therefore,
the (i, j)-th term aq

i bq
j λ2 of ∑(niy)(njy)=k aq

i bq
j λ2 in (4) coincides with the ([−j]n, [−i]n)-

th term bq
[−j]n

aq
[−i]n

λ2 of ∑(niy)(njy)=k bq
i aq

j λ2 in (5), which implies the equality.

3. Intractability Assumptions

This section will describe some attack games concerning the algebraic problems
on which the security of our cryptographic constructions lies [4,7,11,12]. Before giving
a detailed account of them, we will introduce some notation that we will use for the
remaining part of this paper:

1. Let G be a finite group of even order and N ≤ G such that |N| = |G|/2 = n.
2. Let p be a prime number and q = pm for some m ∈ N. Let Fq2 be the quadratic

extension of Fq.
3. The two-cocycle αλ is instantiated by selecting λ such that it is a non-square in Fq2 .

Additionally, θσ is chosen as specified by Lemma 4.
4. We set h = h1 + h2 as a public element, where h1 ∈ Fθσ ,αλ

q2 N and h2 ∈ Fθσ ,αλ

q2 Ny are
random non-zero elements.

5. We denote the secret key space by SK = Fθσ ,αλ

q2 N × Γθσ ,αλ
. Given a secret key sk =

(a, γ) ∈ SK, we denote (a, γ̂) by ŝk. Besides, we define ψ : SK×Fθσ ,αλ

q2 G −→ Fθσ ,αλ

q2 G
as ψ(sk, h) = ahγ.

Game 1 (Twisted-Skew Product Decomposition). Let A be an efficient adversary. We define
the Twisted-Skew Product Decomposition (TSPD) Attack Game as shown by Algorithm 1.

Algorithm 1 defines the Twisted-Skew Product Decomposition (TSPD) Attack Game

The challenger C executes

1: (a, γ)
R←− SK;

2: pk← ψ((a, γ), h);
3: (ã, γ̃)← A(pk) ;
4: return [[ãhγ̃ = ahγ]];

In the TSPD attack game, [[ãhγ̃ = ahγ]] denotes a Boolean value, which is 1 when
ãhγ̃ = ahγ, or 0 otherwise. We define E1 as the event that the TSPD attack game outputs
1 after A plays it for Fθσ ,αλ

q2 G. Furthermore, we define A’s advantage in solving the TSPD

problem for Fθσ ,αλ

q2 G as the probability of E1 and denote it by TSPDadv[A,Fθσ ,αλ

q2 G].
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Definition 4 (Twisted-Skew Product Decomposition Assumption). We say that the TSPD
assumption holds for Fθσ ,αλ

q2 G if, for all efficient adversaries A, the quantity TSPDadv[A,Fθσ ,αλ

q2 G]

is negligible.

Game 2 (Computational Twisted-Skew Product). Let A be an efficient adversary. We define
the Computational Twisted-Skew Product (CTSP) Attack Game as shown by Algorithm 2.

Algorithm 2 defines the Computational Twisted-Skew Product Attack Game

The challenger C executes

1: (a1, γ1)
R←− SK;

2: (a2, γ2)
R←− SK;

3: pk1 ← ψ((a1, γ1), h);
4: pk2 ← ψ((a2, γ2), h);
5: k← ψ((a2, γ̂2), pk1);
6: k̃← A(pk1, pk2);
7: return [[k̃ = k]];

We define E2 as the event that the CTSP attack game outputs 1 after A plays it for
Fθσ ,αλ

q2 G. Moreover, we define A’s advantage in solving the CTSP problem for Fθσ ,αλ

q2 G as

the probability of E2 and denote it by CTSPadv[A,Fθσ ,αλ

q2 G].

Definition 5 (Computational Twisted-Skew Product Assumption). We say that the CTSP
assumption holds for Fθσ ,αλ

q2 G if, for all efficient adversaries A, the quantity CTSPadv[A,Fθσ ,αλ

q2 G]

is negligible.

Lemma 6. If the TSPD assumption does not hold for Fθσ ,αλ

q2 G, then the CTSP assumption does not

hold for Fθσ ,αλ

q2 G.

Proof. Since the TSPD assumption does not hold for Fθσ ,αλ

q2 G, then there exists an efficient
adversary B that can win the TSPD attack game with non-negligible probability ρ, i.e., B
can output (ã, γ̃) ∈ SK such that ãhγ̃ = ahγ = pk with non-negligible probability ρ.

We now construct an efficient adversary A that plays and wins the CTSP attack game
with non-negligible probability ρ. A simply uses B as the subroutine. Upon receiving pk1
and pk2 from its challenger, A calls B upon the input either pk1 or pk2. In either case, if B
succeeds in returning a (ã, γ̃) ∈ SK such that p̃k = ãhγ̃ = abhγb = pkb (b ∈ {1, 2}), then
A will calculate k̃ = ãpkb̄

̂̃γ, with b̄ = 3− b, and return k̃ to its challenger. Because of the
choice of θσ and αλ and Lemma 5, then

k̃ = ãpkb̄
̂̃γ = ãab̄hγb̄

̂̃γ = ab̄ãhγ̃γ̂b̄ = ab̄p̃kγ̂b̄ = ab̄pkbγ̂b̄ = k

In conclusion, A is an efficient adversary and may succeed in computing the correct k
in the CTSP attack game with non-negligible probability ρ.

Game 3 (Decisional Twisted-Skew Product). Let A be an efficient adversary. We define the
Decisional Twisted-Skew Product (DTSP) Attack Game by two experiments indexed by a bit b as
shown by Algorithm 3.
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Algorithm 3 defines the Decisional Twisted-Skew Product Attack Game

For Experiment b, the challenger C executes

1: (a1, γ1)
R←− SK;

2: (a2, γ2)
R←− SK;

3: (a3, γ3)
R←− SK;

4: pk1 ← ψ((a1, γ1), h);pk2 ← ψ((a2, γ2), h);
5: k0 ← ψ((a2, γ̂2), pk1); k1 ← ψ((a3, γ3), h);
6: b̃← A(pk1, pk2, kb)
7: return [[b = b̃]];

Remark 3. Game 3 defines two experiments indexed by a random bit b chosen by the challenger.
Therefore, the challenger returns either (pk1, pk2, k0) or (pk1, pk2, k1) to the adversary A, depend-
ing on the experiment the challenger is playing, i.e., the challenger gives (pk1, pk2, kb) to A. We
denote the experiment b by DTSP(b).

We define Wb as the event that A outputs the bit 1 after playing the experiment b in
the DTSP attack game for Fθσ ,αλ

q2 G. Furthermore, we define A’s advantage in solving the

DTSP problem for Fθσ ,αλ

q2 G as |Pr[W0]− Pr[W1]| and denote it by DTSPadv[A,Fθσ ,αλ

q2 G].

Definition 6 (Decisional Twisted-Skew Product Assumption). We say that the DTSP as-
sumption holds for Fθσ ,αλ

q2 G if, for all efficient adversaries A, the quantity DTSPadv[A,Fθσ ,αλ

q2 G]

is negligible.

Lemma 7. If the CTSP assumption does not hold for Fθσ ,αλ

q2 G, then the DTSP assumption does not

hold for Fθσ ,αλ

q2 G.

Proof. Since the CTSP assumption does not hold for Fθσ ,αλ

q2 G, then there exists an efficient

adversary B that outputs k̃ ∈ Fθσ ,αλ

q2 G such that k̃ = k after being given public keys pk1 and
pk2 with non-negligible probability.

We now construct an efficient adversary A that plays and wins the DTSP attack game
with non-negligible probability. This adversary A uses B as the subroutine. In particular,
upon receiving (pk1, pk2, kb) from its challenger, A calls B upon the input (pk1, pk2). If B
solves this instance of the CTSP problem for given pk1 and pk2 and returns k̃ to A, then A
compares k̃ and kb to see whether they are equal. If so, then A returns 0, or 1 otherwise.

In summary, A is an efficient adversary and may succeed in winning the DTSP attack
game with non-negligible probability.

The Hardness of the TSPD Problem

The TSPD problem is similar to both the Dihedral Product Decomposition (DPD) and
Skew Dihedral Product Decomposition (SDPD) problems. The former was introduced
in [5], then formalized in [7] and extended in [6], while the latter was introduced in [4] as
an extension of the former. The key difference between both is that the latter is defined over
the Dihedral Skew Group Ring Fθσ

q2 D2n, which is structurally different from the algebra

Fαλ
q D2n over which the former is defined.

We remark that the algorithmic analysis presented for the DPD problem over Fαλ
q D2n

in [7] can be adjusted easily to both the SDPD and TSPD problems. Furthermore, note
that, if λ is non-square, then the twisted-skew multiplication defined over Fθσ ,αλ

q2 G is not
associative, which motives the claim that the TSPD problem is defined over a less-structured
algebraic structure.
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4. Key-Agreement Protocols from Twisted-Skew Group Rings

This section introduces key-agreement protocols using two-sided multiplications over
a twisted-skew group ring Fθσ ,αλ

q2 G.
We note that previous research papers have introduced similar key-exchange proto-

cols using two-sided semi-group actions or matrices over groups [13–17]. However, our
approach may be seen as an alternative proposal, since it follows in design and generalizes
the works presented in [4,6,7], which propose key-agreement protocols using two-sided
multiplications over dihedral twisted (skewed) group rings.

4.1. Choice of Parameters

Here, we will outline our choice of parameters. We remark that Section 7.7 will provide
more details regarding specific values assigned to some of them:

1. Let G be a finite group of even order and N ≤ G such that |N| = |G|/2 = n. In
particular, we may select a group from the set {D,G,M,Q}.

2. Let p be a prime number and q = pm for some m ∈ N. Let Fq2 be the quadratic
extension of Fq.

3. The two-cocycle αλ is instantiated by selecting λ such that it is a non-square in Fq2 .
Additionally, θσ is chosen as specified by Lemma 4.

4. We set h = h1 + h2 as a public element, where h1 ∈ Fθσ ,αλ

q2 N and h2 ∈ Fθσ ,αλ

q2 Ny are
random non-zero elements.

5. We denote the secret key space by SK = Fθσ ,αλ

q2 N × Γθσ ,αλ
. Given a secret key

sk = (a, γ) ∈ SK, we denote (a, γ̂) by ŝk. Besides, we define ψ : SK × Fθσ ,αλ

q2 G −→

Fθσ ,αλ

q2 G as ψ(sk, h) = ahγ.

4.2. Two-Party Key-Agreement Protocol

We begin by introducing some notation. A set of identifiers is denoted by ID =
{0, 1}+. The identifier for the principal Pi is denoted by IDi ∈ ID. A session id is denoted
by a bit string s. The two-party key-agreement protocol between Pi and Pj runs as shown
in Algorithm 4.

Algorithm 4 Describes our two-party key-exchange protocol

1: Upon the input (IDi, IDj, s), the principal Pi randomly selects a secret pair ski =

(ai, γi)
R←− SK, then generates the corresponding public key by invoking pki =

ψ(ski, h), and finally, transmits (IDi, s, pki) to Pj;
2: After receiving (IDi, s, pki) from Pi, the principal Pj randomly selects a secret pair

skj = (aj, γj)
R←− SK, then generates the corresponding public key by executing pkj =

ψ(skj, h), and transmits (IDj, s, pkj) to Pi. Additionally, Pj computes kj = ψ(ŝkj, pki),
securely erases (aj, γj), and outputs the key kj under the session id s;

3: After receiving (IDj, s, pkj) from Pj, the principal Pi calls ki = ψ(ŝki, pkj) to obtain the
shared key ki under the session id s, then securely erases (ai, γi), and outputs the key
ki under the session id s.

Security Analysis of Our Two-Party Key-Exchange Protocol

This section is devoted to providing an analysis of our two-party key-exchange proto-
col in the authenticated links adversarial model [18–20]. We will present a description of
this security model for completeness:

1. Let us denote by P = {P1, P2, . . . , Pn} a finite set of principals.
2. Let A be an adversary controlling all messages between two principals; however, we

have the following:
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• A is not permitted to insert or alter messages, except for those messages trans-
mitted by corrupted principals or sessions.

• Amay opt for not forwarding a message at all. However, in case A decides to
forward a message m, then A should transmit it to its right destination, only on
one occasion and refraining from making partial or minor changes to it.

• Principals freely transfer the possession of their egress messages to A, who
has the power to influence their transmission by means of the Send query. A
may make a principal Pi operative by Send queries, i.e., the adversary holds the
power or ability to create protocol sessions, which occur within each principal.
Two sessions, with ids s1 and s0, respectively, are said to be matching when
egress messages from one side are the ingress messages from the other side, and
vice versa.
Additionally, A is given the ability to make queries to the following oracles:

– SessionStateReveal oracle.
Whenever A queries it for a clearly identified session id s within some
principal Pi, then A will acquire the contents of the specified session id s
within Pi, including any secret information. This event will be registered
and produce no further output.

– SessionKeyReveal oracle.
Whenever A queries it for a clearly identified session id s, then A will
acquire the session key for the specified session id s, as long as s has an
associated session.

– Corrupt oracle.
Whenever A queries it for a clearly identified principal Pi, then A will
assume control of the principal Pi, i.e., A will have the opportunity to
obtain all information in Pi’s memory, which includes long-lived keys and
any session-specific, remaining data. A corrupted principal will yield no
further output.

• Amay query the test oracle on one occasion and at any point for a completed,
fresh, unexpired session id s. When queried on input s, the test oracle randomly

picks a bit, b R←− {0, 1}, then it will return the session key associated with the
specified session id s if b = 0. Otherwise, it will return a random value in the
key space. Additionally, A can issue subsequent queries to the other oracles as
desired, but it cannot expose the test session. At any further point, the adversary
will try to guess b.

• We denote the probability of the event thatA correctly guesses b by Guess[A,Fθσ ,αλ

q2 G],
and define the advantage as

SKAdv[A,Fθσ ,αλ

q2 G] = |Guess[A,Fθσ ,αλ

q2 G]− 1/2|.

Theorem 1. Let A be an efficient adversary in the authenticated links adversarial model (AM). If
the DTSP assumption holds for Fθσ ,αλ

q2 G, then our key exchange protocol is session key-secure in
this setting, i.e., the two-party key-agreement protocol satisfies the following:

1. If two principals engage in a protocol session s, are not corrupted during the execution of it,
and complete it successfully, then each principal will compute matching keys.

2. SKAdv[A,Fθσ ,αλ

q2 G] is negligible.

Proof. The following proof is essentially an adaptation of the proofs given for each key-
exchange protocol presented, respectively, in [4,7]:

1. Let us assume that two principals Pi and Pj engage in a protocol session s, are not
corrupted during the execution of it, and complete it successfully. We claim that each
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principal will compute matching keys. By Lemma 5 and the choice of θσ and αλ, the
claim follows. Indeed,

ki = aipkjγ̂i = aiajhγjγ̂i = ajaihγiγ̂j = ajpkiγ̂j = kj.

2. We will prove this statement by way of contradiction. Let us supposeA is an adversary

against our protocol such that SKAdv[A,Fθσ ,αλ

q2 G] is non-negligible. Let B be an upper
bound on the number of session calls by A in any interaction.
We now present a distinguisher D for the DTSP problem, depicted by Algorithm 5.

Algorithm 5 depicts distinguisher D for the DTSP problem

1: function D(h,Fθσ ,αλ

q2 G, pk1, pk2, k)

2: s
R←− {1, . . . ,B};

3: Let A interact with principals P1, . . . , Pn with identifiers ID1, . . . , IDn, except for the s-th
session. For the s-th session, let Pi, Pj interact with each other, and run Algorithm 4. In particular,
Pi will transmit (IDi, s, pki = aihγi) to Pj, while Pj will send (IDj, s, pkj = ajhγj) to Pi;

4: if A has chosen the s-th session as its test session then
5: Return k to A as the response to its test oracle query;
6: b← A(k);
7: else
8: b R←− {0, 1};
9: end if

10: return b
11: end function

We now analyze the distinguisher D in two cases:

(a) Let us assume that A randomly chooses the s-th one as its test session. This
implies that A will receive either k0 or k1. This is a result of the DTSP chal-
lenger, because upon request, it always picks a random bit b and then returns
(pk1, pk2, kb) to D. Therefore, the probability of correctly distinguishing them
byA is 1/2+ ϵ with non-negligible ϵ, since, by assumption, SKAdv[A,Fθσ ,αλ

q2 G]

is non-negligible.
(b) If A does not pick the s-th one as its test session, then, by design, D returns

a random bit, and therefore, the distinguishing probability is 1/2.

Let Er be the event of A selecting the test session as the s-th session. Hence, the
probabilities of Es and Ēs are 1/B and 1− 1/B, respectively. Consequently, the
overall probability for D to win the DTSP game is

1/(2B) + ϵ/B+ 1/2− 1/(2B) = 1/2 + ϵ/B,

which is non-negligible.

4.3. Generalizing Our Two-Party Key-Agreement Protocol

Throughout this section, we will focus on generalizing our two-party key-exchange
protocol to a group key-exchange protocol [21–23].

Let us assume there are η > 0 principals whose respective identifiers are ID1, . . . , IDη .
Thus, the generalized protocol runs as follows:

1. The principal ID1 randomly generates a secret pair sk1 = (a1, γ1)
R←− SK and then

transmits the list:
M1 = [m1

1 = h, m2
1 = ψ(sk1, h) = a1hγ1]

to the principal ID2.
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2. For i ∈ {2, . . . , η − 1}, the principal IDi randomly generates its secret pair

ski = (ai, γi)
R←− SK and sets ai = ski and bi = ŝki if i is even, or else, it sets

ai = ŝki and bi = ski. This principal constructs a list Mi and transmits it to the
principal IDi+1, whereMi contains i + 1 messages enumerated as mj

i = ψ(ai, mj
i−1)

for j ∈ {1, . . . , i− 1}, mi
i = mi

i−1 and mi+1
i = ψ(bi, mi

i−1).

3. The principal IDη randomly generates its secret pair skη = (aη , γη)
R←− SK, then sets

aη = skη and bη = ŝkη if η is even. Otherwise, it sets aη = ŝkη and bη = skη .
This principal then constructs a list Mη containing η messages enumerated as

mj
η = ψ(aη, mj

η−1) for j ∈ {1 . . . , η− 1} and mη
η = mη

η−1 and then broadcastsMη to all

other principals. Finally, this principal computes the shared key k = ψ(bη, mη
η = mη

η−1).

4. For i ∈ {1, . . . , η − 1}, each principal with identifier IDi finally computes the shared
key k by calculating either k = ψ(ski, mi

η) if η is odd or k = ψ(ŝki, mi
η) otherwise.

Theorem 2. Our group key exchange protocol satisfies the following:

1. If η uncorrupted principals having identifiers ID1, . . . , IDη , respectively, complete a run
of the group key-agreement protocol successfully, then each principal will output the same
shared key.

2. If the DTSP assumption holds for Fθσ ,αλ

q2 G, then an efficient adversary A will not be able to

distinguish the shared group key from an arbitrary element in Fθσ ,αλ

q2 G.

Proof.

1. This first statement will be proven by induction on the number of principals η.
Base case:
Let us set η to 2. For this case, the principal ID1 computes M1 = {h, a1hγ1} and
transmits it to the principal ID2. Upon receivingM1, the principal ID2 computes
M2 = [a2hγ2] and k = a2a1hγ1γ̂2. Finally, it transmitsM2 back to the principal ID1,
which computes k = a2a1hγ1γ̂2.
Inductive case:
By induction hypothesis, we assume that, if η uncorrupted principals run the protocol,
each will successfully obtain the corresponding shared key kη .
We will prove that if η + 1 uncorrupted principals run the protocol, each will success-
fully obtain the corresponding shared key kη+1.
Assume now that there are η + 1 principals running the protocol. By the induction
hypothesis, the principal IDη receives the correctMη−1 from the principal IDη−1 and,
hence, correctly computesMη and forwards it to the principal IDη+1. This principal
constructs the list Mη+1 by calculating the following:

(a) Mη+1 = {mi
η+1 = ψ(skη+1, mi

η) for i ∈ {1, 2, . . . , η}} if η + 1 is even. This
principal then transmitsMη+1 to the other principals.
Upon receivingMη+1 from the principal IDη+1, each principal IDi computes

kη+1 = ψ(ŝki, mi
η+1) = aimi

η+1γ̂i

= aiψ(skη+1, mi
η)γ̂i = aiaη+1mi

ηγη+1γ̂i

= aη+1kη γ̂η+1,

for i ∈ {1, . . . , η}, while the principal IDη+1 computes

kη+1 = ψ(ŝkη+1, mη+1
η ) = aη+1mη+1

η γ̂η+1

= aη+1ψ(skη , mη
η−1)γ̂η+1 = aη+1kη γ̂η+1.
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(b) Mη+1 = {mi
η+1 = ψ(ŝkη+1, mi

η) for i ∈ {1, 2, . . . , η}} if η + 1 is odd. This
principal then transmitsMη+1 to the other principals.
Upon receivingMη+1 from the principal IDη+1, each principal IDi computes

kη+1 = ψ(ski, mi
η+1) = aimi

η+1γi

= aiψ(ŝkη+1, mi
η)γi = aiaη+1mi

η γ̂η+1γi

= aη+1kηγη+1,

for i ∈ {1, . . . , η}, while the principal IDη+1 computes

kη+1 = ψ(skη+1, mη+1
η ) = aη+1mη+1

η γη+1

= aη+1ψ(ŝkη , mη
η−1)γη+1 = aη+1kηγη+1.

This concludes the proof of this first statement.
2. To prove this second statement, we can easily adapt the proof of Theorem 1 in [6] to

this setting.

5. An Encryption Scheme from Twisted-Skew Group Rings

This section focuses on presenting a public key-encryption scheme that is procured
from the two-party key-agreement protocol analyzed in Section 4.2. Our derivation ap-
proach mimics a well-known generic approach previously employed to obtain a proba-
bilistic encryption scheme from instances of a key-exchange protocol [4,5,7,12,24] as, for
instance, ElGamal encryption [25] being obtained from instances of the Diffie–Hellman
protocol [26].

Before presenting our probabilistic public key encryption, we first establish some
notation. The public key space is denoted by PK = Fθσ ,αλ

q2 G; the message space is denoted

byM = Fθσ ,αλ

q2 G; finally, the ciphertext space is denoted by C = Fθσ ,αλ

q2 G.

We now introduce the public key-encryption scheme E = (Gen, Enc, Dec). Algorithm 6
describes the function Gen; Algorithm 7 depicts the function Enc; finally, Algorithm 8
presents the function Dec.

Algorithm 6 generates a key pair

1: function Gen(h ∈ Fθσ ,αλ

q2 G)

2: (a1, γ1)
R←− SK;

3: sk← (a1, γ1);
4: pk← ψ(sk, h);
5: return sk, pk;
6: end function

Algorithm 7 encrypts a message and returns a ciphertext

1: function Enc(m ∈ M, pk ∈ PK, r2 ∈ SK, h ∈ Fθσ ,αλ

q2 G)

2: (a2, γ2)← r2;
3: c1 ← ψ((a2, γ2), h);
4: c2 ← m+ ψ((a2, γ̂2), pk);
5: c← (c1, c2);
6: return c;
7: end function
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Algorithm 8 decrypts a ciphertext and returns a message

1: function Dec(c ∈ C, sk ∈ SK)
2: (c1, c2)← c;
3: k← ψ(ŝk, c1);
4: m← c2 − k;
5: return m;
6: end function

Theorem 3. Let h be a public element in Fθσ ,αλ

q2 G, and let E be the public key-encryption scheme:

1. For any message m ∈ M, r2
R←− SK and (pk, sk)← Gen(h), it holds that

m← Dec(Enc(m, pk, r2, h), sk)

2. If the DTSP assumption holds for Fθσ ,αλ

q2 G, then E is semantically secure.

Proof. The proofs of these two items are an adaptation of the proofs of Lemma 5.1 and
Theorem 5.2, respectively, from [7]:

1. Given m ∈ M, r2 ∈ SK uniformly chosen at random and (pk, sk) ← Gen(h), then
we have

(c1 = a2hγ2, c2 = m+ a2pkγ̂2)← Enc(m, pk, r2, h).

By calling Dec((c1, c2), sk), then

k = a1c1γ̂1 = a1a2hγ2γ̂1 = a2a1hγ1γ̂2 = a2pkγ̂2,

and therefore,
c2 − k = m+ a2pkγ̂2 − a2pkγ̂2 = m.

2. For this statement, we consider an efficient adversary A and define Game0 as the
semantic security (SS) attack game against A. Algorithm 9 depicts Game0.

Algorithm 9 depicts attack games defined for the proof of Theorem 3

1: function Game0

2: ((a1, γ1), pk1)
R←− Gen(h);

3: (m0, m1)← A(pk1);

4: b R←− {0, 1};
5: (a2, γ2)

R←− SK; pk2 ← a2hγ2;
6: k← a2pk1γ̂2;
7: c← mb + k;
8: b̃← A(pk1, pk2, c);
9: return [[b = b̃]];

10: end function

1: function Game1

2: ((a1, γ1), pk1)
R←− Gen(h);

3: (m0, m1)← A(pk1);

4: b R←− {0, 1};
5: (a2, γ2)

R←− SK; pk2 ← a2hγ2;

6: (a3, γ3)
R←− SK; k← a3hγ3;

7: c← mb + k;
8: b̃← A(pk1, pk2, c);
9: return [[b = b̃]];

10: end function

Recall [[b = b̃]] denotes a Boolean value. In particular, [[b = b̃]] is 0 if both b and b̃
differ, or 1 otherwise. In Game0, A sends the challenger two messages m0, m1 ∈ M of
the same length in bits.
Let us define S0 as the event of Game0 returning 1, then A’s SS-advantage is given
by |Pr[S0]− 1/2|. The proof essentially will show that |Pr[S0]− 1/2| is negligible if
the DTSP assumption holds. Let us define Game1 by modifying Game0 as shown in
Algorithm 9.
Let us define S1 as the event of Game1 outputting 1. From Game1, it is clear that b, pk1,
pk2, and c are mutually independent; so are b and b̃ ← A(pk1, pk2, c), and hence,
Pr[S1] = 1/2.
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We now demonstrate an adversary B that performs the DTSP attack game 3 defined
in Section 3. In particular, the adversary B will assume the role of challenger for
A, and its part is as follows. B will first communicate with its own challenger from
which it will receive the three-tuple (pk1, pk2, k). It then forwards pk1 to A. When
it obtains (m0, m1) from A, then B chooses a bit b at random, computes c ← mb + k,
and transmits (pk1, pk2, c) to A. Once B finally procures a final response bit b̃ by A, it
returns [[b = b̃]] in the DTSP attack game. Clearly, B is an efficient adversary, since A
is also an efficient adversary.
Recall that Wb̄ is the event that B outputs 1 in game DTSP(b̄); thus, B’s advantage for
solving the DTSP problem for Fθσ ,αλ

q2 G is given by

DTSPadv[A,Fθσ ,αλ

q2 G] = |Pr[W0]− Pr[W1]|.

A key observation here is the following.
On the one hand, whenever B’s challenger is playing game DTSP(0), A is in turn
playing Game0, since B obtains from its challenger

(pk1 = a1hγ1, pk2 = a2hγ2, k = a2pk1γ̂2).

Therefore, Pr[W0] = Pr[S0].
On the other hand, whenever B’s challenger is playing Game DTSP(1), A is in turn
playing Game1, because B obtains from its challenger

(pk1 = a1hγ1, pk2 = a2hγ2, k = a3hγ3).

Therefore, Pr[W1] = Pr[S1].
By hypothesis, |Pr[W0]− Pr[W1]| is negligible; therefore, |Pr[S0]− 1/2| is negligible,
and the assertion follows.

6. A Key-Encapsulation Mechanism from Twisted-Skew Group Rings

In this section, we will focus on deriving a CCA-secure key-encapsulation mechanism
from our probabilistic public key encryption E . To accomplish this task, we will apply
a generic transformation from [27] to E . We will next describe this generic transformation
a bit more.

Let PKE = (Gen, Enc, Dec) be a public key-encryption scheme with message spaceM,
ciphertext space C, and randomness spaceR. Let KeyLength ∈ N and G :M→R andH :
{0, 1}∗ → {0, 1}KeyLength be hash functions. This transformation is a variant of the Fujisaki–
Okamoto transformation with “implicit rejection” of inconsistent ciphertexts. Formally, it
is defined as KEM ̸⊥ = FO ̸⊥(PKE,G,H) := U ̸⊥[T[PKE,G],H] = (Gen, Encaps, Decaps) (see [27]
for more details). Algorithm 10 summarizes functions (Gen, Encaps, Decaps) after applying
the transformation to PKE, converting it into a CCA-secure key-encapsulation mechanism.
We remark that the proof that this generic transformation converts a public key encryption
scheme into a CCA-secure key-encapsulation mechanism may be found in [27].
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Algorithm 10 depicts the CCA-secure key-encapsulation mechanism (Gen, Encaps, Decaps)
from PKE

1: function Gen()
2: (pk, sk)← PKE.Gen;

3: s R←−M;
4: sk′ ← (sk, s);
5: return (sk′, pk);
6: end function
1: function Encaps(pk)

2: m R←−M;
3: c← PKE.Enc(pk, m,G(m));
4: k← H(m, c);
5: return (k, c);
6: end function

1: function Decaps(sk′ = (sk, s), c)
2: m′ ← PKE.Dec(sk, c);
3: if c = PKE.Enc(pk, m′,G(m′)) then
4: returnH(m′, c);
5: else
6: returnH(s, c);
7: end if
8: end function

To apply this transformation to our scheme E , we proceed by establishing the following.
Let K = {0, 1}KeyLength be the key space and BinaryRep(x) be a function that returns
the binary representation of x. Furthermore, recall that the randomness space is SK =

Fθσ ,αλ

q2 N × Γθσ ,αλ
, the public key space is PK = Fθσ ,αλ

q2 G, the message space isM = Fθσ ,αλ

q2 G,

and the ciphertext space is C = Fθσ ,αλ

q2 G. Finally, we will define the hash functionH1 and
H2 as follows:

• H1 : {0, 1}∗ −→ SK is a hash function, which, upon the input of a variable-length
bit string x, returns (a, γ) ∈ SK. Using the notation of [28], this function may be
defined as H1(x) = SHAKE256(x, ζ), where ζ = 2⌈log2(q)⌉(n + ⌈ n

2 ⌉) is the bit length
of the output and |N| = |G|/2 = n. The bit string bitstring returned by SHAKE256
can be converted into a element in SK by carefully dividing the bit string into two
parts, the first of length 2⌈log2(q)⌉n bits and the second of length 2⌈log2(q)⌉⌈

n
2 ⌉ bits,

each being employed to derive a, γ, respectively.
Let m1, m2 ∈ M, and we define G(m1, m2) := H1

(
BinaryRep(m1)||BinaryRep(m2)

)
.

• H2 : {0, 1}∗ −→ K is a hash function that, upon the input of a variable-length bit string
x, returns k ∈ K. This function may be defined asH2(x) = SHAKE256(p1||x, KeyLength),
where KeyLength is the bit length of the output and p1 is a prepended fixed bit string
to make it different fromH1.
Let m, c ∈ M. We defineH(m, c) := H2

(
BinaryRep(m)||BinaryRep(c)

)
.

After applying the generic transformation to E , i.e., U ̸⊥[T[E ,G],H], we obtain
KEM = (KeyGen, Encaps, Decaps). Algorithm 11 describes the functions KeyGen, Encaps
and Decaps.

Algorithm 11 depicts the CCA-secure key-encapsulation mechanism (KeyGen,Encaps,Decaps)
from E

1: function KeyGen(h)
2: (pk, sk)← E .Gen(h);

3: s R←−M;
4: return (sk, s, pk);
5: end function
1: function Encaps(pk, h)

2: m R←−M;
3: r← G(m, pk);
4: c← E .Enc(m, pk, r, h);
5: K← H(m, c);
6: return (K, c);
7: end function

1: function Decaps((sk, s, pk), c, h)
2: m′ ← E .Dec(c, sk);
3: r′ ← G(m′, pk);
4: if c = E .Enc(m′, pk, r′, h) then
5: returnH(m′, c);
6: else
7: returnH(s, c);
8: end if
9: end function
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7. Implementation of Our Cryptographic Constructions

The proof-of-concept implementation of our cryptographic constructions was coded
in Python. The interested reader can see it on Google Colaboratory [29].

7.1. Group Representation

Recall that G = N ∪ Ny, where |N| = |G|/2 = n. For our protocols, we only
considered G ∈ {D,G,M,Q}. For any choice, N = ⟨xi⟩ is a cyclic group, and thus, a group
element g ∈ G is of the form g = xiyj, which may be represented as an integer g = j · n + i,
where i ∈ {0, . . . , n− 1} and j ∈ {0, 1}.

The computation of the integer representation of either g1 · g2 or g−1
1 , g1, g2 ∈ G, will

hinge on the form of the group elements and the specific presentation of G. Note that,
by exploiting each group presentation, explicit formulae can be derived to compute both
g1 · g2 and g−1

1 efficiently. The interested reader can see the implementation [29].

7.2. Two-Cocycle αλ

The function 2cocycle(k1, k2) takes two group element representations, k1 and k2,
as the input, then the function returns λ if n ≤ k1 < 2n and n ≤ k2 < 2n. Otherwise, it
returns 1.

7.3. Homomorphism θσ

The function homomorphism(k1) takes a group element representation, k1, as the input,
then this function returns a pointer to the function σ if n ≤ k1 < 2n. Otherwise, it returns
a pointer to the identity function I. Algorithm 12 shows both functions.

Algorithm 12 presents functions involved in computing the homomorphism θσ

1: function σ(a ∈ Fq2 )
2: [bs, bs−1, . . . , b0]← BinaryRep(q);
3: r ← getOneFromQuadraticField();
4: for i← s to 0 do
5: r ← r · r;
6: if bi = 1 then
7: r ← r · a;
8: end if
9: end for

10: return r;
11: end function

1: function I(a ∈ Fq2 )
2: return a
3: end function

7.4. The Twisted-Skew Group Ring Fθσ ,αλ

q2 G

To represent an element a = ∑n−1
i=0 aixi + ∑n−1

i=0 an+ixiy in the group ring Fθσ ,αλ

q2 G,

we make use of an array of 2n field elements a = [a0, a1, a2, . . . , a2n−1], where ai is the
representation of the field element ai ∈ Fq2 . Algorithms 13 and 14 describe the addition
and product operations, respectively.

Algorithm 13 computes the addition of two ring elements

1: function addition(a, b)
2: c← [0, · · · , 0];
3: for (i← 0; i < 2n; i← i + 1) do
4: c[i]← a[i] + b[i];
5: end for
6: return c;
7: end function
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Algorithm 14 computes the product of two ring elements

1: function product(a, b)
2: c← [0, · · · , 0];
3: for (i← 0; i < 2n; i← i + 1) do
4: for (j← 0; j < 2n; j← j + 1) do
5: k← G.eval(i, j);
6: outH← homomorphism(i)(b[j]);
7: out2c← 2cocylce(i, j);
8: fe← a[i] · outH · out2c;
9: c[k]← c[k] + fe;

10: end for
11: end for
12: return c;
13: end function

Addition and Product Costs

We now quantify the cost of Algorithms 13 and 14. Let us denote

• FA and FM as the costs of a field addition and a field multiplication respectively.
• GE and HC as bounds on the cost of calling G.eval(i, j) and the number of field multi-

plications to compute homomorphism(i)(b[j]) respectively.
• Cαλ

as the constant cost of executing 2cocylce(i, j).

On the one hand, Algorithm 13 has a cost of 2nFA when computing a ring element c.
On the other hand, Algorithm 14 has a cost of 4n2(FA+ (2 + HC)FM+ GE+ Cαλ

).

7.5. Auxiliary Functions

As auxiliary functions, we implemented the following functions:

1. Algorithm 15 computes the adjunct of a ring element, and its cost is 2n(GI+ (HC+
1)FM+ Cαλ

), where GI is a bound on the cost of calling G.inverse(i).
2. Functions for computing random elements in different sets are implemented. They

are described in Algorithm 16.

Algorithm 15 computes the adjunct of a ring element

1: function adjunct(a)
2: c← [0, · · · , 0];
3: for (i← 0; i < 2n; i← i + 1) do
4: j← inverse(i);
5: f1 ← homomorphism(j)(a[i]);
6: f2 ← 2cocylce(i, j);
7: c[j]← f1 · f2;
8: end for
9: return c

10: end function
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Algorithm 16 presents functions for computing a random element in different sets

1: function getPublicElement()
2: sw1 ← False;
3: while not sw1 do
4: a← getRandomFG();
5: i← 0;
6: sw2 ← False;
7: while i < n and not sw2 do
8: if a[i] ̸= 0 then
9: sw2 ← True;

10: end if
11: i← i + 1;
12: end while
13: i← n;
14: sw3 ← False;
15: while i < 2n and not sw3 do
16: if a[i] ̸= 0 then
17: sw3 ← True;
18: end if
19: i← i + 1;
20: end while
21: sw1 ← sw2 and sw3;
22: end while
23: return a;
24: end function

1: function getRandomfromT()
2: c← [0, · · · , 0];
3: c[n]← getRandomFieldElement();
4: n1 ← n/2;
5: for (i← 1; i ≤ n1; i← i + 1) do
6: c[i+n]← getRandomFieldElement();
7: c[n + (n− i) mod n]← c[i + n];
8: end for
9: return c;

10: end function

1: function getRandomFG()
2: c← [0, · · · , 0];
3: for (i← 0; i < 2n; i← i + 1) do
4: c[i]← getRandomFieldElement();
5: end for
6: return c;
7: end function
1: function getRandomFH()
2: c← [0, · · · , 0];
3: for (i← 0; i < n; i← i + 1) do
4: c[i]← getRandomFieldElement();
5: end for
6: return c;
7: end function
1: function getRandomFHy()
2: c← [0, · · · , 0];
3: for (i← n; i < 2n; i← i + 1) do
4: c[i]← getRandomFieldElement();
5: end for
6: return c;
7: end function

7.6. Key Sizes

We next provide estimates for the memory sizes in bits required to store both a public
key and a private key.

A field element requires NFE = 2⌈log2(q)⌉ bits. On the one hand, a public key pk ∈ PK
is a ring element, which can be stored as an array of |G| field elements. Therefore, storing a
public key requires |G| · NFE bits.

On the other hand, a private key (a, γ) ∈ SK is a pair of two ring elements. Therefore,
storing a full private key requires 2 · |G| · NFE bits. This number of bits can be decreased
further if the form of the private key is exploited. Note that, since (a, γ) ∈ Fθσ ,αλ

q2 N × Γθσ ,αλ
,

only n + ⌈ n
2 ⌉ field elements need storing, and hence, a compressed private key requires

(n + ⌈ n
2 ⌉) · NFE bits. For completeness, Algorithms 17 and 18 describe the process of

compressing and decompressing a private key, respectively.
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Algorithm 17 compresses a private key

1: function compressPrivateKey(sk ∈ SK)
2: l← n + ⌈n/2⌉;
3: c← [00, · · · , 0l−1];
4: for (i← 0; i < n; i← i + 1) do
5: c[i]← a[i];
6: end for
7: for (i← n; i < l; i← i + 1) do
8: c[i]← γ[n + i];
9: end for

10: return c;
11: end function

Algorithm 18 decompresses a private key

1: function decompressPrivateKey(sk)
2: l← ⌈n/2⌉;
3: a← [00, · · · , 02n−1];
4: γ← [00, · · · , 02n−1];
5: for (i← 0; i < n; i← i + 1) do
6: a[i]← sk[i];
7: end for
8: γ[n]← sk[n];
9: for (i← 1; i < l; i← i + 1) do

10: γ[n + i]← sk[n + i];
11: γ[2n− i]← sk[n + i];
12: end for
13: return (a, γ);
14: end function

7.7. Parameter Choices

In reference to our key-encapsulation mechanism, we suggest using the parameters
displayed by Table 1, which supplies varying and increasing security levels. Table 1
displays four sets of parameters, where KeyLength ∈ {128, 192, 256} denotes the output
key length. The values displayed in the column labeled as “Level of Security in Bits” have
been computed as proposed in [7]. The interested reader may see our implementation
here [29].

Table 1. Proposed parameters.

p m n Group KeyLength (bits) Level of Security in Bits

19 1 20 Dihedral {128, 192, 256} 130

19 1 23 Dihedral {128, 192, 256} 149

19 1 32 Any of the four candidate groups {128, 192, 256} 207

19 1 64 Any of the four candidate groups {128, 192, 256} 410

7.8. Potential Applications

We believe that our protocols might find applications in environments like the Internet
of Things (IoT) for various reasons. One first reason is that they may potentially be
implemented in constrained devices and the overhead of running them in those devices
might be small. This viewpoint stems from observing that the algorithms involved in
computing encryptions (or shared keys) are relatively simple, as evinced in this section.
Secondly, the key sizes are relatively small compared to other schemes [3], which offers an
advantage for storing purposes. Furthermore, we remark that the study on the deployability
of post-quantum cryptographic algorithms on constrained devices is of current interest,
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as evidenced in [30]. On the other hand, we also believe that it might be possible to
derive password authentication key exchange (PAKE) protocols from our protocols. If so,
these PAKE protocols are versatile and may be used in many scenarios, such as credential
recovery, device paring, and end-to-end (E2E)-secure channels, as shown in [31]. However,
our protocols per se might be adapted and used in some of those potential scenarios,
particularly E2E-secure channels.

8. Conclusions

This paper introduced the twisted-skew group ring Fθσ ,αλ

q2 G, where αλ is a two-cocycle,
θσ a group homomorphism, and G a finite group of even order with N ≤ G such that
|N| = |G|/2 = n, i.e., [G : N] = 2, and hence, G = N ∪ Ny with y ∈ G \ N. Over this
algebraic platform, we built several cryptographic constructions following a incremental-
like methodology. In particular, we first introduced a two-party key-agreement protocol
and its generalization. Additionally, we derived a probabilistic public key encryption
from the two-party key-agreement protocol and key-encapsulation mechanism from the
probabilistic public key encryption.

As a future research direction, it would be interesting to explore the possibility of
constructing other key-exchange protocols from twisted-skew group rings, namely a pass-
word authentication key exchange protocol, which might be suitable in environments like
the IoT.
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