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Abstract

Loops are a rich source of parallelism. Unfortunately, many loops cannot be safely paralle-

lized at compile time because the compiler is not able to guarantee that there will be no

dependence violations. Thread-Level Speculation (TLS) techniques, either hardware or

software-based, allow the parallel execution of non-analyzable loops, issuing the execution

of blocks of consecutive iterations (called chunks) while a hardware or software monitor

ensures that no dependence violations arise. If such a dependence violation occurs, the

chunk that was fed with incorrect values is discarded and re-started, in order to consume the

correct information. In the speculative execution of non-analyzable loops, it is very important

to correctly choose the chunk size, because this choice dramatically affects the performance

of the parallel execution. Bigger chunks imply less scheduling overheads, but smaller

chunks allow fewer calculations to be discarded in the event of a dependence violation. To

find a good chunk size is not a simple task, because loops may present dependencies that

cannot be detected at compile time. In this paper, we present a comprehensive evaluation

of different scheduling methods to estimate the optimal chunk size in the speculative execu-

tion of non-analyzable loops. This evaluation ranges from the simple, classical methods

originally devised to achieve load balancing in loops with no dependencies, to methods that

make some assumptions on the distribution pattern of dependencies, such as MESETA and

Just-in-Time scheduling. We also propose and evaluate a general, more complex method

called Moody Scheduling, that does not require a-priori assumptions to achieve the highest

performance.

1 Introduction

The nature of loops, composed of a fragment of code that is executed several times, makes

them natural candidates for automatic parallelization. Ideally, a loop composed of ten itera-

tions could be executed in parallel by ten threads, by assigning each thread a loop chunk com-

posed of a single iteration. If we only have two threads, several options arise: From assigning

chunks of five consecutive iterations to each thread, to assign chunks of one iteration (or two

or three consecutive iterations) to each thread. In the latter case, each thread would ask for a
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new chunk after processing the one assigned to it. It is important to highlight that, for effi-

ciency reasons, each individual chunk should be composed of consecutive iterations, that will

be executed sequentially by the same thread.

When aiming to automatically extract parallelism of irregular loops, Thread-Level Specula-

tion (TLS) [1–3] is considered the most cost-effective technique. TLS techniques aim to exe-

cute in parallel the loops whose analysis at compile time is not possible. To do so, TLS relies on

a mechanism, which can be hardware or software, in order to ensure that the shared data are

accessed by all threads without violating the semantics imposed by the original program, that

we can call sequential semantics.
When we execute concurrently two portions of a code that was originally intended to run

sequentially, we always have a thread that executes a portion that was intended to be executed

first in terms of sequential semantics, and a thread that executes the code that should be exe-

cuted later. When both threads works concurrently, we call the former the predecessor thread,

while the latter is the successor thread. If both threads access to independent data, there is no

possibility of violating sequential semantics. The problem arises when both threads access the

same datum in parallel. Four situations may arise. The first one is when both threads read the

same datum. This situation is harmless: The value returned by these two particular reads will

be the same, regardless of the read order. The second one arises when both threads write on

the same datum. This is called a Write-after-Write (WAW) dependence. The parallelization

mechanism should ensure that the write operation carried out by the successor overwrites the

previous one. To ensure the correct order in write operations, each thread keeps a local copy

of the data modified during the execution of its chunk. When the threads finish their work, the

commit operation is carried out in order, from the non-speculative thread to the most-specula-

tive one, thus preserving the most up-to-date copy of each datum [4].

The third type of a dependence arises when a sucessor thread overwrites a datum that has

not been read yet by a predecessor. This is called a Write-after-Read (WAR), anti, or backward
dependence [3]. Our speculative framework solves this situation as follows. When a thread

needs to read a datum for the first time, it searches for the most recent copy of this datum,

from the most-speculative of its predecessors to the non-speculative one. Once found, the

datum is forwarded to its own local copy. If none of its predecessors have used this datum so

far, then the thread retrieves the reference copy of the datum. For example, suppose that we

have four threads, being Thread 1 the non-speculative and Thread 4 the most-speculative. If

Thread 3 needs a particular datum for the first time, it searches for this datum in the local data

of Thread 2 (the most speculative one of Thread 3’s predecessors). If the datum is found, then

Thread 3 forwards a copy in its local data. Otherwise, it searches for the datum in the local data

of Thread 1. If none of its predecessors has a copy of this datum, then the reference value is

retrieved. The main advantage of our speculative framework is that it handles WAR and RAW

dependencies without the need of critical sections, still avoiding race conditions [4].

The fourth type of a dependence is the Read-After-Write (RAW) dependence, also known

as true dependence [3]. Whenever some thread accesses a datum that was not generated by a

predecessor yet, a RAW dependence violation arises. RAW dependences are detected by our

framework as follows. When a thread generates a new version of a speculative datum, the

thread checks whether any thread more speculative than it has consumed a now-outdated

value of this datum. If such an offending thread appears, the speculative framework should dis-

card its calculations. Different ideas have been proposed to deal with this issue. The first soft-

ware-only speculative solutions like [1, 2] opted for interrupting the speculative execution and

serially re-executing the affected loop. Later approaches, e.g., [4–6] suggested to squash just

the offending thread and its successors, and then re-start them using the correct values for the

data. A finer idea appeared in works like [7–9], which also squash only the offending thread as

PLOS ONE On the choice of the best chunk size for the speculative execution of loops

PLOS ONE | https://doi.org/10.1371/journal.pone.0267602 May 17, 2022 2 / 27

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0267602


in the previous ones, but in addition squash only the subsequent threads that indeed consumed

any value from that offending thread.

One can plausibly realize that TLS is badly affected by frequent squashes. A possibility for

mitigating the cost of a squash can be reducing the size of the subsets of iterations (chunks)

which are assigned to the threads. On one hand, this reduces the amount of work which would

get discarded when performing a squash. On the other hand, this also reduces the probability

of appearance of dependence violations. Nonetheless, using smaller chunks also has draw-

backs, implying that commit operations would have to be used more frequently and that the

scheduling overhead would be higher. Although our framework mitigates the cost of the com-

mit operation by overlapping the commit of the data generated by threads that have already

finished with the speculative execution of later chunks [4], choosing an appropriate size of the

chunk critically affects the speculation performance.

Several methods have been proposed in previous literature to deal with loops that present

dependencies among iterations. These methods not only aim to achieve load balance, but also

try to avoid the cost of squashing and re-executing chunks of iterations. These methods range

from purely static methods devised to schedule loops with a certain pattern of dependencies,

to dynamic methods that monitorize the execution to adjust the size of the following chunk to

be issued.

In this work we perform a comprehensive comparison of different methods presented so

far, from such simple, classical approaches as Fixed-Size Chunking, to our Moody Scheduling,

a sophisticated method that takes into account at runtime both the number of dependence vio-

lations and their tendency, so as to adjust the chunk size accordingly.

The organization of the rest of the paper is the following: Section 2 offers a brief overview of

software-based, Thread-Level Speculation. Section 3 reviews the classical scheduling alterna-

tives, designed to improve load balancing in the parallelization of loops with no dependencies.

Section 4 discusses the peculiarities of scheduling iterations under TLS. Section 5 briefly

describes MESETA, a TLS scheduling mechanism focused on extracting the performance from

Randomized Incremental algorithms, where the general dependencies pattern is known in

advance. Section 6 shows how the re-execution information available at runtime can be used

to issue chunks of iterations with a more appropriate size in the general case, and describes

Just-in-Time scheduling, the first method that followed this path. Section 7 describes our

Moody Scheduling approach, an advanced method that does not only takes into account the

number of dependence violations but also their tendency, allowing even more informed sched-

uling decisions to be taken. Section 8 gives some experimental results, comparing all the evalu-

ated approaches, while Sect. 9 concludes this paper.

2 Thread-level speculation in a nutshell

Thread-Level Speculation (TLS) [3], also called Speculative parallelization or Optimistic Paral-

lelization [10], assumes that sequential code can be optimistically executed in parallel, and

relies on a runtime monitor to ensure that no dependence violations are produced. A depen-

dence violation arises if a given thread generates a datum that has already been consumed by a

successor in the original sequential order. In this case, the results calculated so far by the suc-

cessor (called the offending thread) are not valid and should be discarded. Early proposals

[1, 2] stop the parallel execution and restart the loop serially. Other proposals stop the offend-

ing thread and all its successors, re-executing them in parallel (see [5, 11–13]). A third option

(see [7–9]) is to restart only the offending thread as well as its successor threads that may have

consumed values from it. This approach leads to a noticeable performance improvement in

some cases.
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Under speculative execution, each thread maintains a version copy of the data structure

that is accessed speculatively. At compile time, the original code is augmented to perform spec-

ulative stores, speculative loads, and in-order commits. In addition, the loop structure is rear-

ranged to allow the re-execution of squashed iterations. The following paragraphs describe

these operations in more detail.

Speculative stores

All writes to shared data structures should be replaced at compile time with a speculative store
function. This function is responsible of writing the value to the local copy of the shared vari-

able maintained by the current thread. After that, this function should check the correspond-

ing local versions of threads that are executing subsequent chunks of iterations, in order to

detect potential uses of the now-outdated value. If such a situation (called “dependence viola-

tion”) is detected, the offending thread and its successors should be restarted, in order to let

them consume the updated value.

Speculative loads

All reads to shared data structures should be replaced at compile time with a speculative load
function. This function is responsible of obtaining the most updated value available for the ele-

ment being accessed. To do so, this function first scans the local copies of data maintained by

threads that are concurrently executing previous chunks of iterations. If a version of this

datum is found, then its value is forwarded to the current chunk. If the value has not been used

in the previous chunks of iterations, then the value from the reference copy is retrieved.

Commit-or-discard operation

When the thread finishes the execution of the current chunk, if it has not incurred in a depen-

dence violation due to the use of polluted data, its local changes to the shared variables should

be committed to their main copies. Note that all threads that have finished should perform this

commit operation according to sequential semantics. If the thread discovers that it has been

squashed due to the use of a datum that was later changed by a predecessor thread, it simply

discards all its calculations, in a so-called squash operation. In both cases, after finishing, the

thread receives a new chunk of iterations to proceed with the parallel execution of the loop.

3 Classical scheduling alternatives for fully parallel loops

The problem of scheduling iterations of irregular loops in order to assign them to different

processors has been extensively studied in the literature. An irregular loop is a loop whose

RAW or WAR dependencies among iterations are not known at compile time, and therefore

the loop can not be safely parallelized by the compiler. An irregular loop may or may not pres-

ent dependencies. As we will see, all classical proposals assume that there are no dependencies

among iterations, and therefore all the iterations can be executed in parallel in any order. In

this section we review some of the main solutions that have been proposed to this problem. A

more detailed description of these solutions can be found in [14].

We first describe the three best known techniques to distribute iterations among proces-

sors. Let us call N the total number of iterations, and let P be the total number of threads

(equal to the number of processors in the system). The first, called static scheduling, divides the

iteration space statically into N/P chunks of equal size. This system does nothing to balance the

workload during the execution of the loops. Hence, the processors may finish at very different

times, leading in this case to a poor load balance. However, static scheduling can be a good
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choice in cases when the target loop exhibits a regular behavior, with all iterations consuming

roughly the same execution time. On the other hand, self scheduling [15] and dynamic schedul-
ing use different chunk sizes as the execution progresses. The main difference between self and

dynamic scheduling is that self scheduling defines chunk sizes before the execution starts, while

dynamic scheduling mechanisms adjust chunk sizes at runtime. These approaches minimize

load imbalance, but at the cost of greater overheads, because smaller chunks imply more fre-

quent scheduling and commit operations.

It is worthwhile noting that none of these methods takes into account the possibility of a

dependence violation. Both static and dynamic scheduling methods are offered as part of the

schedule clause present in OpenMP.

Within self scheduling, different alternatives have been proposed. A brief description

follows.

Fixed-size chunking (FSC)

In this approach [16], the iteration space is statically divided into chunks of fixed size. Each

free thread executes the following chunk. This solution reduces the synchronization overhead

in comparison with issuing a single iteration each time, with a better load balance than static

scheduling. Choosing an appropriate value for the chunk size, K, is critical for this scheme to

be efficient. Such a choice is difficult and can only be carried out with extensive

experimentation.

Guided self-scheduling (GSS)

This technique, proposed by Polychronopoulos and Kuck [17], addresses the problem of

uneven start times for each processor. Instead of using a fixed chunk size, they propose

decreasing chunk sizes, calculated as a decreasing function of the current iteration number i
being executed. As execution proceeds, smaller chunks improve the balance of the workload

toward the end of the loop.

In order to avoid having many small chunks by the end of the loop, an additional function

GSS(K) is proposed to bound the chunk size from below by K, specified either by the compiler

or the programmer.

Wang et al. [18] developed a version of GSS intended to mitigate hardware faults on shared

memory systems.

Factoring

This mechanism, proposed by Hummel et al. [19], is similar in concept to guided self-schedul-

ing, but the allocation of iterations to processors proceeds in phases. In each phase, a part of

the remaining iterations is divided into batches of P equal-size chunks.

Factoring can be viewed as a generalization of GSS and Fixed-Size Chunking: GSS is factor-

ing where each batch contains a single chunk, while Fixed-Size Chunking is factoring with a

single batch.

Trapezoidal scheduling (TSS)

This technique, proposed by Tzen and Ni [20], uses chunks that decrease in size linearly. This

approach is simpler to implement than GSS and especially GSS(K), thus reducing scheduling

overheads. Moreover, according to their authors, a big value of K in GSS(K) leads to a high

imbalance, while small values lead to too much scheduling overhead. Consequently, an opti-

mum value of K for GSS is difficult to obtain, particularly in unbalanced loops. By decreasing
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the chunk size linearly, TSS reduces the number of chunks, and hence the overhead, while sim-

plifying the calculation of the next chunk size, allowing its computation with atomic Fetch-
&-Increment operations.

If the loop being speculatively executed is composed of N iterations, the total number of

iterations being scheduled is at least N for all scheduling alternatives described. However, only

the Self Scheduling method guarantees that exactly N iterations are issued. Other methods

may attempt to issue more than N iterations. Consequently, the scheduler should always check

whether the upper limit of N iterations can be exceeded and order the execution of only the

remaining iterations, without issuing the execution of iterations outside the iteration space.

The same is true if the total number N of iterations is unknown until full completion of the

execution.

We now describe some dynamic proposals, that determine the optimum chunk size at run-

time based on the total available parallelism, the optimal grain size, and the statistical variance

of execution times for individual tasks.

The Tapering algorithm by Lucco [21] was one of the first dynamic approaches centered on

augmenting GSS methods with runtime parameters. Markatos and LeBlanc [22] proposed the

affinity scheduling, in which iterations were mainly assigned taking processor affinity into

account. Iterations were divided into the available processors until load imbalance occurred,

when idle processors ‘stole’ some iterations from others. Later, Jin et al. [23] improved this

algorithm by allowing the number of iterations to execute in each chunk to be changed. This

was one of the first approaches of pure-dynamic scheduling. Its authors used the number of

iterations executed so far to change the sizes of the following chunks. In the initial phase of

their scheduling policy, a first set of iterations was equally divided among the available proces-

sors. Then, at runtime, some of the remaining iterations of each processor were downloaded

to a queue, allowing other processors to execute them after finishing their own work. The

number of iterations downloaded changed according to the workload of the processor. Chen

and Guo [24] proposed an enhancement of the OpenMP static scheduling (based on FSC),

introducing dynamic chunk sizes so as to better mitigate load imbalance.

4 Scheduling iterations under TLS

Thread-level speculation aims to manage the parallelization of loops even in the presence of

dependence violations. Therefore, the scheduling problem in this case is more complex than

the scheduling carried out by the classic methods described above. In this section we will high-

light the main differences between the scheduling of loops with and without dependencies. A

more in-depth analysis can be found in [14].

Under TLS, the execution of an iteration or chunk of iterations can be discarded, so the

scheduling method should be able to re-assign the squashed iteration to the same or to a differ-

ent thread. The loop structure should also be changed to allow the re-execution of iterations

[4]. As can be easily seen, frequent dependence violations and the consequent generation of

squashes have an adverse effect in the performance.

Some approaches deal with TLS scheduling by addressing the problem of how to schedule

threads accordingly (see [13, 25, 26]), or by managing instruction scheduling [27]. Instead, we

center our discussion on how to calculate the size of the next chunk to be assigned to a proces-

sor, an issue that directly affects TLS performance.

The simplest solution is to apply the Fixed Size Chunking method described in the previous

section. Its main drawback is that it is not possible to calculate in advance the right chunk size.

To use it, the programmer need to run the code repeteadly, using different chunk sizes for

each input set, in order to determine which chunk size is most appropriate for each parallelized
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loop. This technique leads to good results if the parallel execution of the loop does not lead to

dependence violations. In these cases, the main goals are avoiding scheduling overheads as

much as possible and achieving a good load balance in the execution of the last chunks. Uses

of this technique can be found in [28, 29].

TLS papers usually give only brief details of their scheduling policy, e.g., [30], and many do

not describe their selected mechanism to schedule iterations. Thus, we suppose that most

works use FSC-based approaches, many of them delivering chunks of a single iteration. For

example, Gupta and Nim [1] affirm that their classic solution could easily be enhanced with a

dynamic scheduler of iterations, but they did not give more details. Raman et al. [31] gave

some hints about a load balancing algorithm which dynamically assigned iterations, but again

details are scarce. Feng et al. [32], in their approach, focused on adapting I/O operations to

TLS approaches, using the GSS algorithm described in the previous section.

There are also some solutions based on dependence analysis at compile time [25, 27, 33].

Such approaches review the possible dependence patterns in order to take scheduling deci-

sions, thus needing of an in-depth analysis of the loop.

Other solutions take advantage of the expected dependence pattern of the loop they want to

parallelize. A prominent example are Randomized Incremental Algorithms, which are known

to show a pattern where the first iterations of the loop accumulate the largest part of the depen-

dencies. In order to improve the performance of Randomized Incremental Algorithms, two

methods were proposed. MESETA [34], opts for dividing the execution into three phases. An ini-

tial stage, until reaching certain lower bound for the probability of a dependence arising,

schedules chunks of increasing sizes with the aim of compensating for possible dependence

violations. Afterwards, a second stage consists in applying FSC to execute the major part of the

iterations remaining. Finally, at a third stage the chunk size is gradually decreased, so that a

better load balance is aimed. An alternative mechanism called Just-In-Time (JIT) scheduling

was proposed in [35] which, on one hand, defines several logarithmic functions in order to

issue chunks of increasing size and, on the other hand, uses runtime information in order to

modulate those logarithmic functions taking into account how many dependence violations

effectively appear. Both MESETA and Just-In-Time scheduling methods will be described later

in more detail, in order to better understand the experimental results.

Kulkarni et al. [10, 36] discussed the importance of choosing the proper abstractions for the

data structures in irregular loops, with the aim of facilitating their speculative execution. These

authors parametrize scheduling policies using three design choices, namely clustering, labeling,
and ordering, to specify how a schedule behaves. Using their Galois framework, the authors

tested different strategies for each of the modules defined. The results show that each of the

applications they analyzed could be closely linked to one of different scheduling strategies,

thus advocating the implementation of application-specific scheduling policies. More recently,

Li et al. [37] propose AdapTRA, an adaptive thread partitioning approach for irregular pro-

grams that analyzes the program and generates a set of candidate partition schemes. A suitable

partition scheme is then selected based on a complexity model of the irregular code to be

scheduled.

Some approaches [38, 39] use Decoupled Software Pipelining to enhance the scheduling of

iterations. This technique, instead of executing full iterations by the same thread, is based on

dividing each iteration into smaller parts and assigning them to the available threads. Thus,

threads, ordered forming a pipeline, execute parts of all the iterations. Tian et al. [40], in their

Copy-or-Discard approach, addressed scheduling by unrolling loops to reduce dependencies.

Oancea et al. [41] tried to schedule iterations whose instructions had dependencies among

them to the same processor, i.e., avoiding the sequential order. To do so, they needed to per-

form a dependencies analysis before parallel executions. [42] introduced TProf, a profiler that
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targets the T4 compiler [43] on the Swarm architecture that aims to detect points of parallel

contention. The use of this tool allows the programmer to schedule parallel tasks to maximize

performance.

Both [44, 45] proposed the most similar scheduling techniques to those that are detailed in

this article, JIT [35] and Moody [46] (described in Sect. 7). Specifically, they increased or

decreased the number of executed iterations regarding the runtime parameters that reflected

the number of dependence violations produced.

Finally, other scheduling strategies have recently been proposed for specific domains to

handle the speculative execution of their workloads, such as Sched+ [47] to leverage cloud-

based computational loads, or Chronos [48] to schedule the speculative execution of MapRe-

duce jobs.

The purpose of this work is to compare different run-time scheduling methods for thread-

level speculation. The first task is to choose the methods to be compared. The review of the

existing literature with respect to thread-level speculation proposals shows that (1) Fixed-Size

Chunking is a common solution as it is simple to implement; (2) few TLS papers give details

about the scheduling policy used in their proposals; and (3) some scheduling solutions for TLS

rely on a prior compile-time analysis, or the use of application-specific scheduling policies that

are closely related to the data structures used in the sequential implementation. Both tech-

niques fall outside the scope of this work. With respect to the popular, classical scheduling

solutions described in Sect. 3, all of them deal with the problem of load balancing by assuming

that the loop is completely parallelizable, and that each iteration will be executed exactly once.

This assumption makes these scheduling techniques useless when dealing with the parallel exe-

cution of loops whose chunks of iterations may be squashed and restarted several times.

In this paper we compare the use of Fixed Size Chunking in the context of TLS with the

only methods that, to the best of our knowledge, can be applied with little or no knowledge of

the actual dependency pattern of the loop speculatively executed. These methods are MESETA, a

simple strategy that is an adaptation of Trapezoidal Self-Scheduling; JIT Scheduling, a

dynamic/adaptive solution that was the first that adjusts the chunk size at runtime in response

to dependence violations; and Moody Scheduling, a more general solution that makes no

assumptions about the actual dependence pattern. We first explain these methods in detail.

5 Meseta: Scheduling strategy for randomized incremental

algorithms

MESETA [34, 49], a scheduling strategy for TLS based on Trapezoidal Self Scheduling, was

designed to deal with loops where most of the dependence violations are located in the first

iterations of the loop. This is indeed the case of Randomized Incremental algorithms, an

important class of algorithms that obtain an acceptable average execution time by randomizing

the input set before being processed. This strategy, widely used in the field of Computational

Geometry, allows a solution to be gradually constructed, by iteratively processing the input set

at random. While the first points processed are likely to change the current solution, changes

are less probable as the computation advances. Therefore, dependence violations are far more

frequent at the early stages of a loop execution than at the end. Since a particular dependence

violation only leads to a squash if it crosses a chunk boundary, this fact complicates the choice

of an optimum chunk size in FSC, because the number of squashes is not known until execu-

tion time and it depends on the size of the chunks.

The general strategy followed by MESETA is to divide the loop execution into three parts.

(see Fig 1(b)). The first part schedules chunks of increasing size as execution proceeds, with

the aim of mitigating the adverse effects of the high number of dependence violations at the
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beginning of the loop. The second part assumes that, after a certain threshold, the number of

dependence violations will be stable. Most of the computation is carried out in this part.

Finally, the chunk sizes are progressively reduced, in order to achieve a good load balance

among the collaborating threads, where any of the techniques proposed in Section 3 can be

applied.

MESETA requires the user to set three parameters before being used. The first is to determine

the number of iterations that should be executed in the first stage, when the probability of find-

ing dependence violations is still very high. Fortunately, accuracy at this point is not critical for

the success of the scheduling mechanism, which performs well regardless of the particular

transition point chosen. A second, more important decision is to fix the chunk size for the sta-

ble part of the loop. This decision depends not only on the dependence pattern, but also on the

overheads produced by squashed threads. Therefore, it is highly dependent on the given prob-

lem, and its value should be set through experimentation. Finally, we should also set the

Fig 1. Plot of the chunk size depending on the chunk number with different scheduling strategies: (a) FSC, (b) MESETA scheduling following the trapezoidal

approach [20]. Finally, (c) and (d) show Just-In-Time scheduling in loops with and without dependencies, respectively.

https://doi.org/10.1371/journal.pone.0267602.g001
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percentage of iterations scheduled for the third part. This value, in turn, allows the iteration

number in which the descending part of MESETA starts to be determined.

While MESETA is a better alternative than FSC for Randomized Incremental algorithms, its

usefulness depends on the particular pattern of dependence violations that can be observed in

this family of algorithms.

6 Just-In-Time scheduling

To the best of our knowledge, JIT scheduling [35] was the first scheduling method which pro-

posed a solution for scheduling loops whose iterations have dependencies among them with-

out requiring either an in-depth knowledge of the problem, and/or a number of dry-run

experiments to learn how to schedule iterations. In this section we briefly describe Just-In-

Time scheduling, an approach that adapts its behavior automatically using runtime parameters

involved with the occurrence of dependencies.

In order to compute the number of iterations to be scheduled for the next thread, let e(h) be

the amount of times the previous h chunks were executed, considering not only the successful

executions, but also the re-executions needed due to dependence violations. Note we are sup-

posing all iterations to have the same complexity for clearness. Hence e(h) = h if no depen-

dence violations among threads have arisen because no chunk needed to be re-executed. If we

take the average number of executions per chunk �eðhÞ ¼ eðhÞ
h as a general guide, a scheduling

mechanism may adapt the number of chunks based on the number of dependence violations.

Thus, it may issue bigger or smaller chunks if no re-executions are needed, or if there are

dependence violations in the last chunks respectively.

At the beginning (compile time) the number of re-executions is unknown, however, we can

define a set of execution counters so as to save the amounts for each scheduled chunk. As a

result, a thread starting its execution can take advantage of �eðhÞ to compute its own chunk size.

These counters are not the only data taken into account to compute chunk sizes. The total

number of iterations N is a critical datum: Imagine our process has ten dedicated processors.

For loops of millions of iterations, a chunk of ten thousand iterations is completely reasonable.

Nonetheless, if the loop has only fifteen thousand iterations and we use the same number of

iterations, it will lead to a severe load imbalance. Similarly, the index i of the first iteration of

the chunk to be scheduled is a crucial datum. The appearance of dependence violations is

completely random, and therefore, it makes sense to start with small chunks and adjust their

size using the runtime information as execution proceeds.

The JIT scheduling method considers the three values mentioned as follows: �eðhÞ;N and i.
The thread responsible of executing the following chunk will calculate the chunk size C using

the information provided by the three variables mentioned. It depends directly on N and i and

inversely proportional to �eðhÞ. This work proposes this formula in order to calculate the chunk

size

C ¼
lnðiÞ � lnðNÞ

�eðhÞ

� �

ð1Þ

Note if the execution does not lead to dependence violations at runtime in the last h chunks,

both the last t execution counters, and �eðhÞ will be equal to one. Fig 1(c) shows graphically

how the function would look like in this example. However, if any dependence has arisen dur-

ing the execution of the last t chunks, their execution counters will be higher than one. As a

result, the value of �eðhÞ will as well be greater than one, making the size of the following chunk

smaller than another execution without dependencies. In the general case, the number of

squashes decrease, and therefore, the scheduling function will present some “potholes”, as
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shown in Fig 1(d). In order to initialize the value of h we recommend to use a fixed or propor-

tional value to the number of processors. The usage of a logarithmic function in both N and i
allows to smooth the increase or decrease in the chunk size.

As a result, if the iterations do not contain any dependence, Eq 1 will increase chunk sizes.

This fact conflicts with the desire to obtain a good load balance towards the end of the loop,

although avoiding the performance degradation due to misspeculation is more important for

speculation performance.

The function given by Eq 1 delivers small chunk sizes, a desirable situation if the loop has up

to a few thousand iterations. For example, if we consider a loop of 10000 iterations and without

dependencies, the biggest feasible chunk size at the end of the loop (say, at iteration 9900)

would be C = dln(9900). ln(10000)e = 85 iterations. In the same way, if a loop would have ten

million iterations, the maximum chunk size attainable value of C would have been just 260 iter-

ations. The usage of chunks with such small number of iterations would increase the execution

overheads. So, for such loops, the authors suggested a new formula that let C grow faster:

C ¼
lnðiÞ2 � lnðNÞ

�eðhÞ

� �

ð2Þ

Following the examples mentioned before, the biggest value for C produced by Eq 2 in a

loop with ten million iterations is 4187 iterations, thus reducing the execution overheads.

Finally, it is interesting to note that any base for the logarithmic function used in Eqs 1 and

2 will lead to similar behaviors as in the use of ln(x). In our experiments, we have used ln(x)

because the cost of its calculation was small enough, representing less than 0.01% of the experi-

ments’ execution time.

6.1 Dynamic and adaptive implementations

With the scheduling method described above each thread computes the number of iterations

ahead of starting the execution. At that time, the thread that starts the execution of a new

chunk will be the most speculative one, being able to access to the execution counters of all its

predecessors. Then, the most-speculative thread will set to one its own execution counter, cal-

culate the chunk size, and start the execution of its chunk of iterations, beginning with the next

iteration of the preceding chunk. To avoid race conditions with other threads, reads and

updates of the execution counters are performed inside a critical section. Fig 2 details this

information.

Fig 2. JIT scheduling, dynamic approach. The first time chunk 10 is executed, its size is calculated using the JIT

scheduling function and its execution counter is set to 1. The size will be preserved regardless of the number of re-

executions of chunk 10.

https://doi.org/10.1371/journal.pone.0267602.g002
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If our thread is squashed, it is because some predecessor has detected a dependence viola-

tion and issued a squash event to all its successors. We can address this issue through two

ways. As first and simpler solution, we can reuse the same chunk size already calculated for

this thread. Since we use a critical section to calculate the chunk size, avoiding to recompute a

value allows to reduce the execution time. Obviously, the counter for the number of executions

of threads is useless with this solution because the chunk size is only computed once, being

one always the value of this counter at that time.

However, with this simple approach we are omitting the significant difference between the

raw calculations and the numbers adapted due to an eventual squash operation. So, if a depen-

dence violation arises and some threads have to be re-executed, only new threads, which com-

putes the value of the new chunk for the first time, will take this situation into account, using

the new values of the counters. While threads squashed will restart their execution with the

same parameters.

The second solution focuses on taking into account these squashes which change the execu-

tion counters, and simply proposes to compute again the chunk size of the squashed threads

before restarting the execution. We can see this behavior in the Fig 3. Therefore, we check t + 1

execution counters because we not only take into account the execution counters of the

Fig 3. JIT scheduling, adaptive approach. (a) Size of chunk 10 is calculated using the JIT scheduling function. (b)

Chunk 9 issues a squash operation. (c) Squashed threads recalculate in program order the size of the chunk to be

executed, using the new value of the execution counters.

https://doi.org/10.1371/journal.pone.0267602.g003
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squashed threads, but also the counter from current chunk. This process, detailed in the fol-

lowing section, is more accurate in regard to the events occurred at runtime, but, as more cal-

culations are needed, it adds some overhead.

In summary, if the parallel execution does not lead to dependence violations, the size of the

following chunk will be computed only when the thread is going to start its execution. Con-

trarily, if any dependence arises, the scheduling method allows to modify chunk sizes with the

updated and more accurate information. At this point, there are two options. Either to com-

pute the size of the following chunk only the first time this particular chunk is issued or to re-

calculate the size of the following chunk each time the chunk is scheduled. The first approach,

called dynamic scheduling (see Fig 2), preserves the same size for subsequent re-executions.

The second solution, called adaptive scheduling (see Fig 3) tailors the size for subsequent re-

executions.

The advantage of adaptive over dynamic scheduling is that the first computation of the

chunk size may use obsolete data because there may be squashes during the execution of the

predecessors of a chunk. Adaptive scheduling will have always accurate numbers as it takes

into account all the updates in the counters. These constant updates, however, require to call

more times to the scheduling function with the costs associated with it.

7 Moody scheduling: Philosophy and design guidelines

In [14, 46] we proposed Moody Scheduling, a scheduling method which tries to predict, at

runtime and without the need for any knowledge about the underlying problem, the best size

for the following chunk using a scheduling function. A description of the method follows. A

more detailed description can be found in [14].

Moody Scheduling takes into account the number of squashes and re-executions needed

for the last h chunks so as to determine the size of the next chunk to be scheduled. Fig 4(a)

presents an example where we can compare for each scheduled chunk (x-axis), the number of

times it has been executed so far (y-axis).

This scheduling method calculates the size of the following chunk to be scheduled based on

two parameters: �eðhÞ and d. They use the information of the last h chunks regardless of

whether they had already been committed or not. On the one hand, the �eðhÞ is the average

Fig 4. (a) A possible execution profile for a given loop, and (b) an example of the use of linear regression to measure the tendency of the last h chunks.

Recall that the y-axis does not represent the chunk size, but the number of re-executions for each chunk.

https://doi.org/10.1371/journal.pone.0267602.g004
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number of executions of the last h chunks, and, as such, its value is always higher or equal to 1.

On the other hand, d is the tendency of these re-executions. Hence, d 2 (−1, 1) and shows

whether the number of executions remains unchanged (d = 0), is increasing (d> 0) or is

decreasing (d< 0). As we will see, d depends on the angle δ between the linear regression line

for the last h chunks and the horizontal axis (see Fig 4(b)).

Before explaining in the following section the implementation details and the mathematical

background behind this idea, we introduce a straightforward summary below and in Table 1.

1. d close to -1: The tendency of re-executions is decreasing.

a. If �eðhÞ is close to 1 (very low), we optimistically set the chunk size to maxChunkSize (the

maximum size appropriate for this algorithm).

b. If �eðhÞ is between the minimum value (1) and accMeanH (an acceptable value for the

average of re-executions), we optimistically increase the chunk size.

c. If �eðhÞ is between accMeanH and an maxMeanH (an upper limit for the average of re-

executions), the chunk size remains unchanged in order to continue reducing �eðhÞ.

d. If �eðhÞ is higher than maxMeanH, we use 1 as the size of the following chunk.

2. d close to 0: The tendency of re-executions is stable.

a. If �eðhÞ is close to 1 (very low), then we optimistically issue a larger chunk size.

b. If �eðhÞ is close to accMeanH, then the same chunk size remains unchanged.

c. If �eðhÞ is between accMeanH and maxMeanH, then the chunk size is pessimistically

decreased.

d. If �eðhÞ is higher than maxMeanH, then the size of the following chunk is set to 1.

3. d close to 1: The tendency of re-executions is increasing.

a. If �eðhÞ is close to 1 (very low), then the same chunk size is kept, so as to confirm whether

�eðhÞ really gets larger or not.

b. If �eðhÞ is close to accMeanH (acceptable), then the chunk size is decreased in order to

reduce the number of executions.

c. If �eðhÞ is close to (or bigger than) maxMeanH, then the chunk size is set to 1 in order to

reduce drastically the number of re-executions.

Finally, we need to decide what is the best size to initialize the size of the first chunk, when

we do not have any information about the re-executions. As exposed in Section 8, the use of 1

as initial value produces good performances in all the algorithms tested.

Therefore, if we know the current lastChunkSize and a pair of values ðd; �eðhÞÞ, the schedul-

ing function will follow the principles detailed above to suggest a new value for nextChunkSize.

The following section explains more in detail this implementation.

Table 1. Changes on the following chunk sized according to d and �eðhÞ parameters.

�eðhÞ � 1 �eðhÞ � accMeanH �eðhÞ � maxMeanH �eðhÞ > maxMeanH
d! −1 " % = 1

d � 0 % = & 1

d! 1 = & 1 1

https://doi.org/10.1371/journal.pone.0267602.t001

PLOS ONE On the choice of the best chunk size for the speculative execution of loops

PLOS ONE | https://doi.org/10.1371/journal.pone.0267602 May 17, 2022 14 / 27

https://doi.org/10.1371/journal.pone.0267602.t001
https://doi.org/10.1371/journal.pone.0267602


7.1 Moody scheduling function definition

The aim of this function is to calculate a new value for nextChunkSize. To do so, we use d,

�eðhÞ and the current value of lastChunkSize. δ is obtained computing the regression line deter-

mined by the last h points in our execution window (see Fig 4(b)).

The main problem with the procedure detailed above is that it leads to a discontinuous

function. The usage of this simple idea, with nested if. . .then constructs, would imply signifi-

cant differences for very similar cases.

To deal with that, we define a two-dimensional function that returns the size of the next

chunk to be scheduled for a given value of �eðhÞ and d. Fig 5 depicts a 3D representation of the

Moody Scheduling function proposed. Fig 6 depicts its projection onto a horizontal plane with

the same gray scale used in Table 1.

We should define several parameters in order to define this scheduling function properly. d
is computed measuring the angle δ of the tendency with respect to the horizontal axis. This

angle lies in (−π/2, π/2). Our growth tendency d 2 (−1, 1) is given by d ¼ d

p=2
.

accMeanH is the highest value of �eðhÞ considered as acceptable. To define this value, we

will assume that, on average, chunks have to be re-executed at most once, so we use

accMeanH = 2 as initial value.

maxChunkSize and maxMeanH depends on the slopes of the graphic of the two-dimen-

sional scheduling function as follows. If we fix d = 0 in the scheduling function, we obtain two

angles, α and β (see Fig 7). They represent how optimistically or pessimistically the chunk size

is going to increase (α) or decrease (β) respectively. So the bigger the value of the angles, the

quicker the size will change. Once the value of the angles is fixed, we obtain the value of

Fig 5. 3D representation of the Moody Scheduling function, that returns a value for nextChunkSize (nCS)

provided the current lastChunkSize and depending on d and �eðhÞ.

https://doi.org/10.1371/journal.pone.0267602.g005
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maxChunkSize. It is specified as the intersection between the vertical line defined by �eðhÞ ¼ 1,

and the segment from P with angle α. Similarly, the value for maxMeanH is specified as the

intersection between the horizontal line defined by nextChunkSize = 1, and the segment from

P with angle β. If lastChunkSize = 1, then β will be 0. In addition, α 6¼ 0 as long as accMeanH is

never set to 1.

The values described above define the nine special points determined by �eðhÞ 2
f1; accMeanH;maxMeanHg and d 2 {−1, 0, 1}. Given that the call to nextChunkSizeðd; �eðhÞÞ
will return maxChunkSize for the three points (−1, 1), (−1, accMeanH), and (0, 1), the function

will also return maxChunkSize to all points inside this triangle. Similarly, for all points inside

the triangle with vertices (1, accMeanH), (1, maxMeanH), and (0, maxMeanH), the function

will return 1. Notice that points on the diagonals (1, 1) to (0, accMeanH), and from there to

(−1, maxMeanH) will return lastChunkSize. These three facts provide a natural triangulation

for the space in Fig 6.
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Fig 6. 2D representation that connects our function with the intuitive behavior described in Sect. 7.

https://doi.org/10.1371/journal.pone.0267602.g006

Fig 7. Intersection of the graphic of nextChunkSizeðd; �eðhÞÞ with d = 0.

https://doi.org/10.1371/journal.pone.0267602.g007
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7.2 Dynamic and adaptive implementations

As it happens in JIT scheduling (see Section 6.1), this approach can also manage both the

dynamic and adaptive implementations described above. Fig 8 describes the dynamic version

of Moody Scheduling, whilst Fig 9 details the steps carried out in its adaptive version.

8 Experimental evaluation

We have used a software-based TLS framework called ATLaS [50] in order to execute in paral-

lel five different applications with irregular loops that are not parallelizable at compile time,

with and without dependencies among iterations. We first introduce ATLaS’ main features,

and we then show what happens when we speculatively execute these applications in the

ATLaS framework using different scheduling policies.

8.1 The ATLaS TLS framework

ATLaS is a complete TLS framework that allows the use of software-based speculative tech-

niques to parallelize loops whose parallelization at compile time is considered unsafe. The

ATLaS framework consists of two parts. The first is a library that manages speculative execu-

tion at runtime [4, 11]. Using this library, the loop is divided into chunks of iterations, whose

size depends on the scheduling policy being used. The execution of each chunk is assigned to a

different thread. The library is based on an aggressive sliding window, that consists of an array

of slots which store the status of each running thread, and pointers to their versions of the

speculative data. Commits are carried out in order from the non-speculative thread. Each time

a commit operation is finished, the sliding window advances one position, allowing a new,

most-speculative thread to start. This library uses eager conflict detection, checks for data

dependence violations on every speculative store, and avoids synchronization whenever possi-

ble. In fact, the ATLaS framework only requires the use of a critical section to schedule the

next chunk to an available thread, and to commit results once a chunk has successfully exe-

cuted: Both speculative reads and writes were carefully designed to avoid the use of explicit

synchronization operations. Communication among threads are carried out with the help of a

shared memory space, carefully designed to allow concurrent reads and writes without incur-

ring in race conditions, and using barriers which ensures sequential consistency when needed

[4]. If a dependence violation is found, the library offers two different squashing policies [7]:

To squash the offending thread and all its successors (a solution called inclusive squashing) or

Fig 8. Dynamic Moody Scheduling. The size for the following chunk to be executed (#10 in the example) is calculated

once, and its size will be preserved regardless of the number of re-executions of this chunk.

https://doi.org/10.1371/journal.pone.0267602.g008
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to squash just the offending thread and those successors that have consumed data generated

by it (exclusive squashing).
The second part of the ATLaS framework is a GCC plugin that extends OpenMP with a

new speculative() clause [51–53]. This extension allows the programmer to indicate that a loop

should be speculatively parallelized, and to declare the set of variables whose accesses may

potentially lead to a dependence violation. The use of variables labeled as speculative is then

monitorized by the runtime library to prevent dependence violations.

In this work, we have extended the ATLaS framework to support different scheduling poli-

cies: FSC, MESETA, dynamic and adaptive Just-in-Time (in their different versions), and

dynamic and adaptive Moody Scheduling. The study has been carried out using inclusive

squashing. We have used this framework to parallelize five different applications, as described

below.

The ATLaS framework and the benchmarks used can be freely downloaded from the

ATLaS website [50].

Fig 9. Adaptive Moody Scheduling. (i) Size of chunk #10 is calculated with the Moody Scheduling function. (ii)

Chunk #9 issues a squash operation. (iii) All squashed threads recalculate in program order the size of the chunk to be

executed, using the updated values of the execution counters.

https://doi.org/10.1371/journal.pone.0267602.g009
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8.2 Benchmark description

We used TREE [54] as one of the benchmarks because most of the runtime is spent to execute

a loop which cannot be parallelized automatically with the standard tools.

In addition, we used the 2-Dimensional Convex Hull (2D-Hull), a Randomized Incremen-

tal algorithm due to Clarkson et al. [55]. The aim of this algorithm is to obtain the smallest

enclosing convex polygon (convex hull) of a set of points. Since it depends completely in the

points used as input data, it cannot be parallelized by state-of-the-art compilers. Thus, we per-

formed our tests with three different input sets: A set of points defining a disc, a square and a

Kuzmin distribution [56].

The 2D-MEC [57] tries to find the minimum enclosing circle containing a given set of points

in the plane. As the result is computed incrementally, depending on input data, the application

cannot be parallelized without the use of a speculative approach. However, in this case, a depen-

dence violation requires to recalculate the whole solution, affecting severely the performance.

Finally, we used the Delaunay triangulation [58] of a two-dimensional set of points with an

input set of 100K points. Table 2 describes briefly the characteristics of each application

considered.

8.3 Experimental methodology

Experiments were carried out on a 64-cores server, equipped with four 16-core AMD Opteron

6376 processors at 2.3GHz and 256GB of RAM, which runs CentOS Linux 7.0.1406 with

dynamic frequency scaling disabled (preliminary results presented at EuroPar conference [46]

were obtained in the same machine but without disabling frequency scaling). All threads had

exclusive access to the processors during the execution of the experiments, and we used wall-

clock times in our measurements. For each application and scheduling policy, we have run a

set of experiments varying the number of threads from two to 64, always in the same order.

Each set was repeated three times, obtaining variations in the execution times smaller than 1%.

The average times obtained have been used to calculate the corresponding speedups. Applica-

tions were compiled with the gcc compiler and -O4 -fopenmp flags. Times shown below

represent the time spent in the execution of the main loop of the application. The time needed

to read the input set and the time needed to output the results have not been taken into

account. All the speculative versions are compared with their original, sequential version in

the same architecture.

8.4 Performance

Fig 10 depicts the results obtained in the ATLaS speculative parallelization framework [52] for

the applications described, using the previously reviewed scheduling mechanisms: Fixed-Size

Table 2. Characteristics of the algorithms and input sizes used.

Algorithm Input set description Loop

parallelized

Loop time as % of total

time

Iterations per

invocation

% of dependence

violations

FSC chunk size used

(iterations)

TREE Off-axis parab.

collision

accel_10 94 4 096 0 100

2D-Hull Kuzmin, 10M points Main loop 99 9 999 997 0.0008 11 000

2D-Hull Square, 10M points Main loop 99 9 999 997 0.0032 3 000

2D-Hull Disc, 10M points Main loop 99 9 999 997 0.021 1 250

2D-MEC Disc, 10M points Inner loop 99 Changes dynamically 0.009 1 800

Delaunay 100K points Main loop 99 95 000 0.5 2

https://doi.org/10.1371/journal.pone.0267602.t002
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Chunking (FSC); MESETA; Dynamic (DYN) and Adaptive (ADA) Just-In-Time, using Eqs 1

and 2; and the new Dynamic and Adaptive Moody Scheduling methods.

The use of FSC requires a particular chunk size to be chosen. To be as fair as possible with

this method, we have searched for the chunk size that delivers the best performance for each

benchmark and input set used. This search required more than 20 dry-runs per application.

These dry-runs used the same benchmark input that was used for the evaluation of FSC.

Regarding the tuning parameters for the remaining scheduling methods, for Moody Schedul-

ing we defined accMeanH = 2, b ¼ p

4
, and a value for h (the size of the window to be consid-

ered) equal to twice the number of processors for all applications. In regard to α, the values

vary in the following interval a 2 p

20
; p

6

� �
depending on the dependence violations that may

likely arise at runtime. Concerning the MESETA scheduling, we implemented a trapezoidal

approach [20]. To test our benchmarks, we took a 10% of the total amount of iterations for the

Fig 10. Performance comparison for 2D-Hull with disc, square, and kuzmin input sets, and 2D-MEC, delaunay, and TREE.

https://doi.org/10.1371/journal.pone.0267602.g010
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first zone, another 10% for the final zone, and the rest for the ‘tableland’. Fixed values chosen

for the middle zone for this solution also required several executions to be optimized.

In relation to 2D-Hull (Fig 10(a)–10(c)), the Moody scheduling methods lead to a better

performance than the best FSC for the Disc and Square input sets. For the Disc input set, the

Adaptive Moody version produces the highest speedup (2.76×) with 24 processors. For the

Square input set, the Adaptive Moody version produces the highest speedup (8.47×) with 56

processors. Finally, the Kuzmin input set, an input that presents almost no dependence viola-

tions, are similar for the best FSC and both Moody versions.

The 2D Smallest Enclosing Circle (Fig 10(d)) also shows very similar performance figures for

the best FSC and both Moody versions, with Just-in-Time scheduling using Eq 2 attaining 30 to

60% of the maximum speedup, and the remaining methods showed a poorer performance.

The Delaunay triangulation (Fig 10(e)) shows how Moody Scheduling achieves exactly the

same speedup as the best FSC, with the exception of the experiment with 32 processors, where

a particularly bad combination of dependence violations makes the FSC performance drop by

one third. MESETA achieves a remarkable result, while the JIT scheduling performance drops to

almost zero. The reason is that the best chunk size for this application is composed of very few

iterations, and the JIT methods were shown to be too optimistic for this situation.

In the case of TREE (Fig 10(f)), which presents no dependence violations, results for

Moody Scheduling are more consistent than those obtained for the remaining methods. The

best performance obtained with FSC needed 40 processors. The performance obtained with

Moody Scheduling, on the other hand, made use of all the available processors, as it continues

growing together with the number of processors available, achieving its peak when all are

used. It is worthwhile noting that, for TREE, both the Dynamic and Adaptive mechanisms are

similar: There are no dependence violations and, therefore, the size for each new chunk is

computed only once. We obtained the best performance in this benchmark (8.72×) with the

Adaptive version of Moody Scheduling and 64 processors, with the Dynamic version of

Moody Scheduling delivering very similar performance figures.

It is also interesting to see the behavior of FSC with TREE. The irregular loop in TREE has

4096 iterations. Using 40 threads and a chunk size of 100 iterations is a near-optimal distribu-

tion, because each thread receives around 1/40 part of the loop. The last chunk of 96 iterations

is executed by the first thread that finishes its work, while the remaining threads are still com-

mitting their results. Using more threads only adds execution overheads, since the additional

threads should be started and stopped even when they do not receive any task, negatively affect-

ing performance. Finally, recall that the irregular loop of TREE does not present dependence

violations. This explains why adaptive and dynamic approaches deliver similar performance fig-

ures. The results show that, even without dependence violations, our self-tuning mechanism

leads to better results than FSC even though it adds calls to the Moody Scheduling function.

Finally, it is worthwile mentioning that Moody Scheduling led to good performances even

without any tuning: The performance of FSC with chunk size 1 drops almost to zero (except

for Delaunay, when the best chunk size for FSC is 2), while Moody Scheduling reaches a per-

formance of 88.3% of the best FSC on geometric average even if we set the initial chunk size to

1. In regard to Dynamic or Adaptive approaches, we cannot affirm whether any of them are

better or worse than the other because the results vary depending on the application. As a

result, both versions are included in the ATLaS framework.

8.5 Scheduling costs

A frequent objection to the use of sophisticated scheduling methods is that they would impose

additional overheads that might not compensate for the performance gains. In this section we
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examine the cost associated to the calculation of the following chunk size for each of the sched-

uling methods and benchmarks considered, and how this cost grows with the number of

processors.

To understand the nature of these overheads, it is important to know how ATLaS works.

Each time a thread (either speculative or non-speculative) finishes its work, it enters a critical

section to perform different tasks. If the thread is non-speculative, it commits its own results,

and it also commits (in order) the results calculated by all subsequent threads that have already

finished their work. It then forwards the non-speculative pointer to the first thread that is still

working, which becomes the new non-speculative thread. If, on the contrary, the thread that

has entered the critical section is speculative, it simply changes the state of its associated data

structures from RUNNING to DONE, indicating that these data are ready to be committed

when the non-speculative thread finishes its work. At this point is where the thread inside the

critical section calls the scheduling function to calculate the size of the following chunk to be

executed, and leaves the critical section to start its speculative execution [4].

Fig 11 details the costs associated with the calculation of the following chunk size in those

approaches that define block sizes dynamically, namely JIT and Moody scheduling. In FSC,

this cost is negligible, because the chunk size is fixed. In the case of MESETA, chunk sizes are

just a function of the iteration number, not taking into account how the execution is progress-

ing, and it is equally fast.

Our results show the scheduling cost as a percentage of the average cost of executing each

chunk. To obtain the latter, we measured the accumulated execution time of all the chunks,

dividing this time by the total number of chunks executed. Note that, due to the occurrence

of dependence violations, some chunks have been executed multiple times before their results

are committed. In these cases, dynamic variants only calculate the sizes of each new chunk

once, while adaptive versions recalculate their sizes at each execution attempt of the new

chunk.

In the case of the 2D-Hull with Disc input set (Fig 11(a)), the complex dependencies

pattern makes the adaptive versions work harder; although the superior strategy of Moody

Scheduling clearly compensates for the extra work in terms of performance (see Fig 10(a)). For

the remaining benchmarks, the best choices carried out by the Moody strategy lead to fewer

invocations to the scheduling function, which in turn leads to a better performance. Another

interesting effect can be seen in the case of Delaunay Triangulation, a benchmark where the

best chunk size is composed of very few iterations. In this case, as described above, using Just-

in-Time scheduling with the formulation shown in Eq 2 turned out to be excessively

optimistic.

Generally speaking, calculating chunk sizes dynamically or adaptively does not increase

execution times. In most cases, iterations are dispatched with negligible costs (values lower

than 0.05); therefore, it can be affirmed that runtime scheduling methods impose almost no

additional charges regarding global performance.

Finally, an interesting question is how these scheduling methods can be applied to TLS

solutions that take advantage of hardware support, such as Hardware Transactional Memory

(HTM) extensions available in some machines (see e.g., [59, 60]). None of the scheduling

methods described require large data structures to be maintained. FSC uses a fixed chunk size;

MESETA calculates it dynamically using the iteration number; and both JIT and Moody Sched-

uling require the sizes of the last T chunks and their number of re-executions to be stored in

order to perform the calculations of the following chunk size. Therefore, for all methods men-

tioned except FSC, hardware dedicated to calculating this size using this information would be

needed.
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9 Conclusions

The scheduling of iterations is a key factor that directly influences not only the dependence

violations that occurred, but also the overall performance of parallel programs. In this paper

we have explored the design space of TLS scheduling alternatives, reaching two main conclu-

sions. First, that it is possible to achieve a better performance by scheduling threads using the

information about the actual pattern of dependence violations available at runtime, despite the

extra complexity and the added overheads. Second, as the Moody Scheduling method perfor-

mance shows, it is possible to obtain the best speedups with a general method that does not

rely on a-priori assumptions about the particular dependencies pattern of a given application,

as it happens with methods that take advantage of the randomized nature of the algorithm

Fig 11. Time spent in the scheduling calculations for 2D-Hull with disc, square, and kuzmin input sets, and 2D-MEC, delaunay, and TREE.

https://doi.org/10.1371/journal.pone.0267602.g011
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being parallelized. Our present and future work include to explore other scheduling techniques

that may be appropriate for particular domains.

All methods described in this paper are now part of the ATLaS TLS framework [52], which

can be freely downloaded from the ATLaS website [50].

Acknowledgments

The authors would like to thank the anonymous reviewers and the Editor for their valuable

comments.

Author Contributions

Conceptualization: Diego R. Llanos, David Orden, Belen Palop.

Data curation: David Orden.

Formal analysis: David Orden, Belen Palop.

Funding acquisition: Diego R. Llanos.

Investigation: Alvaro Estebanez, Diego R. Llanos, David Orden, Belen Palop.

Methodology: Diego R. Llanos, Belen Palop.

Project administration: Diego R. Llanos.

Software: Alvaro Estebanez, Diego R. Llanos.

Supervision: Diego R. Llanos.

Validation: Belen Palop.

Writing – original draft: Diego R. Llanos, David Orden, Belen Palop.

Writing – review & editing: Alvaro Estebanez.

References
1. Gupta M, Nim R. Techniques for speculative run-time parallelization of loops. In: Proceedings of the

1998 ACM/IEEE Conference on Supercomputing. SC ‘98. Washington, DC, USA: IEEE Computer Soci-

ety; 1998. p. 1–12. Available from: http://dl.acm.org/citation.cfm?id=509058.509070

2. Rauchwerger L, Padua D. The LRPD test: speculative run-time parallelization of loops with privatization

and reduction parallelization. In: PLDI 1995 Proc. ACM; 1995. p. 218–232.

3. Estebanez A, Llanos DR, Gonzalez-Escribano A. A Survey on Thread-Level Speculation Techniques.

ACM Comput Surv. 2016; 49(2):22:1–22:39. https://doi.org/10.1145/2938369

4. Cintra M, Llanos DR. Design Space Exploration of a Software Speculative Parallelization Scheme.

IEEE Transactions on Parallel and Distributed Systems. 2005; 16(6):562–576. https://doi.org/10.1109/

TPDS.2005.69

5. Dang FH, Yu H, Rauchwerger L. The R-LRPD Test: Speculative Parallelization of Partially Parallel

Loops. In: 16th IPDPS Proceedings. IEEE Computer Society; 2002. p. 20–29.

6. Rundberg P, Stenström P. Low-Cost Thread-Level Data Dependence Speculation on Multiprocessors.

In: Workshop on Multithreaded Execution, Architecture and Compilation; 2000.
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