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A B S T R A C T

The increasing adoption of additive manufacturing (AM) in the industrial sector is leading to an imbalance
between supply and demand of additively manufactured subcomponents: companies demanding AM services
require very specific products and AM suppliers differ widely in their capabilities. Some existing proposals aim to
help match supply and demand by merely making customer–supplier allocations. Only a few recent works go
beyond allocation issues and propose market mechanisms to also address pricing aspects. However, we observe
that these mechanisms do not fully exploit the potential of additive manufacturing techniques. The aim of this
paper is to design a market mechanism that considers the particularity of AM techniques, wherein suppliers can
benefit from manufacturing multiple heterogeneous parts from multiple customers in the same build area to
increase production throughput. This market mechanism has been implemented as an iterative combinatorial
double auction that adapts to this feature of the AM market: customers will bid to get their orders produced and
suppliers will submit asking quotes to win the production of combinations of those orders. The mechanism solves
the allocation and pricing of AM orders while seeking the maximization of social welfare. The procedure is
simulated in a theoretical environment to evaluate its performance and to identify the most appropriate con-
ditions for its implementation in a real environment. Unlike other existing proposals for client-supplier allocation
mechanisms in additive manufacturing, the proposed mechanism allows a single supplier to produce a combi-
nation of orders from different clients, leading to a pricing system that maximizes social welfare without par-
ticipants disclosing sensitive information.

1. Introduction

Additive manufacturing (AM) technology has transformative and
disruptive potential in almost every industry (Byskov & Vedel-Smith,
2023; Spieske et al., 2023). However, due to the high cost of high-
performance AM machines —especially metal AM machines— and the
need for great technology expertise, it is becoming increasingly common
for most industrial companies to outsource the production of additively
manufactured subcomponents to specialized AM manufacturers
(Khajavi et al., 2020; Kucukkoc, 2019; Li et al., 2019). These consequent
changes in the supply chain are leading to a redesign of production
networks in which new markets are emerging (Calignano & Mercurio,
2023; Meyer et al., 2021; Priyadarshini et al., 2023). These markets
involve subcomponent-demanding companies (i.e., customer com-
panies) and companies that use additive manufacturing techniques to

provide the demanded subcomponents (i.e., supplier companies).
However, the lack of coordination between supply and demand in

the current AM service transactions evidences that these markets are not
yet fully developed (Wu et al., 2022; Zehetner & Gansterer, 2023; Zhou
et al., 2017; 2018). On one side, demanders of AM services require very
specific products with detailed requirements. On the other side, since
AM is not yet a mature technology, AMmanufacturers may differ widely
in their capabilities: they need to evaluate if they are capable of
manufacturing the specific parts demanded to them and analyze
whether it is profitable to place the orders. Consequently, it may be
difficult for demanders to find an appropriate supplier (Friedrich et al.,
2022; Rayna et al., 2015). This process results in large transaction costs
for both demanders and suppliers (Tsay et al., 2018), which are even
worsened due to the high degree of customization and complexity of
parts in AM. In view of the growth of these markets, one of the key
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challenges is how to use the Internet and advanced IT techniques to
eliminate the unbalanced demands and supplies of AM resources in a
distributed environment (Cui et al., 2022).

The emergence of electronic (online) platforms in the AM procure-
ment sector provided an environment that facilitated contact between a
large number of customer companies demanding a wide variety of
customized products and a distributed network of independent suppliers
(Liu et al., 2021; Mendonça et al., 2022; Zhong et al., 2022), thus
drastically reducing transaction costs (Morar et al., 2023; Yang et al.,
2021). These first platforms helped match supply and demand by merely
facilitating bilateral conversations between customers and suppliers, but
they did not actually make any customer–supplier allocations
(Holzmann et al., 2020). For this reason, in recent years there have been
proposals of mechanisms that actively allocate orders from demanders
to suppliers, eliminating negotiation and selection tasks from market
participants, thereby further reducing transaction costs (Tolio et al.,
2023). Although these mechanisms successfully address the allocation
problem, pricing concerns are left unaddressed in most of these works
(Framinan et al., 2023; Mashhadi& Salinas Monroy, 2020). As shown in
the literature review (see section 2), only a few recent works go beyond
allocation issues and propose market mechanisms to address pricing
aspects as well. However, we observe that these mechanisms do not fully
exploit the potential of additive manufacturing techniques.

The aim of this paper is to design a market mechanism for a two-
sided electronic platform that solves allocation and pricing problems
while seeking the maximization of social welfare in the emerging AM
market for subcomponents. This proposed mechanism considers the
particularity of AM techniques wherein suppliers can benefit from
manufacturing multiple heterogeneous parts in the same build cycle to
optimize resource utilization (Chergui et al., 2018; Ying et al., 2022;
Zipfel et al., 2023). By occupying the maximum build area of the ma-
chines, AM manufacturers can increase production throughput. Conse-
quently, suppliers would earn higher revenues from accepting a selected
combination of orders from several customers than from accepting sin-
gle production orders (De Antón et al., 2022; de Antón et al., 2023; Oh
et al., 2020).

To leverage this property of AM, the market mechanism proposed in
this paper is based on an iterative price-based combinatorial double
auction that adapts to the AM environment. The platform gathers the
two sides of the market: customer companies that request orders of 3D-
printed parts and supplier companies with available AM resources.
Customers will submit production orders of one or more parts to be 3D-
printed1 and suppliers will be given the opportunity to compete for
combinations of the production orders submitted to the platform. A third
actor called the platform (or the auctioneer at a later stage) is the agent
who coordinates trade between customers and suppliers through an
iterative auction procedure. Once the buying bids from customers and
the selling bids from suppliers have been received, the platform will
solve the allocation of orders through an iterative auction process. As a
result, not only is an allocation obtained (i.e., determining which orders
are manufactured by which supplier), but also the prices to be paid by
the customers and the revenue for the suppliers are determined. This
market mechanism, aimed at increasing social welfare, is simulated in a
theoretical environment to evaluate its performance and identify the
most appropriate conditions for its implementation in a real-world
setting.

The rest of this paper is organized as follows. The related literature
about e-platforms and mechanisms to match supply and demand in AM
markets is reviewed in Section 2. Section 3 details the steps of the
auction mechanism, while in Section 4 the algorithm for implementing

the auction is described. A computational study of the auction is con-
ducted in Section 5 and the results are discussed in Section 6. Lastly,
Section 7 ends with the reached conclusions and proposals to further
extend this work.

2. Literature review

2.1. Electronic platforms in additive manufacturing

The initial platforms to emerge were those that simply connected
demanders and suppliers to enable the exchange of AM services. An
exhaustive list of this type of commercial platforms can be found in the
works by Rayna et al. (2015) and Baumann & Roller (2017). However,
these platforms merely acted as comparison sites and customers still
needed to select suppliers individually. Consequently, transaction costs
were little decreased, and market efficiency barely increased (Stein
et al., 2020; Yang et al., 2021).

Platforms that actively coordinated supply with demand in AM
markets started to emerge as a more efficient alternative. These plat-
forms acted as intermediaries between demanders and suppliers and
used matching mechanisms to determine the allocation of orders from
demanders to suppliers, thus eliminating time-consuming negotiation
tasks (Tolio et al., 2023). Besides addressing the allocation problem,
platforms seeking a further market optimization also introduced pricing
mechanisms to determine how to establish prices or to structure the
market such that prices were set in a competitive manner (Einav et al.,
2015; Mashhadi& Salinas Monroy, 2020). Table 1 summarizes the main
proposals of platformmechanisms to optimize the market of AM services
that have emerged since 2017. This table has been updated from the
review conducted in De Antón et al., 2024. The platforms are classified
based on whether they exclusively address the allocation problem or
also consider pricing. It is noticeable that only five examples of plat-
forms addressing both allocation and pricing have been found.

Numerous proposals of platforms that solve the allocation of orders
from demanders to suppliers in the AM environment have emerged in
recent years. Twomain trends are identified in the mechanisms designed
for these platforms: mechanisms centered in the matching between
supply and demand, and mechanisms focused on providing overall
production scheduling solutions.

Examples of mechanisms that exclusively address the matching be-
tween AM demanders and AM suppliers are found in the works by Luo
et al. (2020), Yang et al. (2021) and Zhang et al. (2022). The first two
works presented supply–demand matching methods based on graph
theory, whereas the last proposal was based on complex networks.

Table 1
Main proposals of mechanisms for addressing the allocation of AM tasks to AM
resources.

Reference Allocation Pricing Auctions

(Zhou et al., 2017) √  
(Zhou et al., 2018) √  
(Pahwa et al., 2018) √ √ √
(Liu et al., 2019) √  
(Chen, 2019) √  
(Mashhadi & Salinas Monroy, 2019) √ √ √
(Luo et al., 2020) √  
(Ma, 2020) √  
(Mashhadi & Salinas Monroy, 2020) √ √ √
(Stein et al., 2020) √ √ 
(Liu et al., 2021) √  
(Yang et al., 2021) √  
(Cui et al., 2022) √  
(Wu et al., 2022) √  
(Zhong et al., 2022) √  
(Zhang et al., 2022) √  
(Kang et al., 2023) √  
(Zehetner & Gansterer, 2023) √ √ √
(Gao, 2024) √  

1 In the submission, customer companies will send digital 3D files with the
geometric information of the parts requested. Parts in the same production
order are assumed to have the same production requirements (i.e., material,
colour, surface quality, etc.).
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Although primarily focused on the matching method, several works also
introduced scheduling concerns to provide an AM service matching and
task scheduling solution. This research line includes the works of Zhou
et al. (2017; 2018), where they proposed and extended a 3D printing
service selection method to reduce delivery time of tasks from de-
manders to suppliers; the works of Liu et al. (2019; 2021), proposing
non-cooperative selectionmethods based on game theory to schedule 3D
printing tasks in a dynamic environment; and the works of Kang et al.
(2023) and Gao (2024). While the last two works presented 3D printing
service allocation solutions, Kang et al. (2023) seeks to maximize the net
revenue of the platform, whereas Gao (2024) aims to minimize the
makespan.

Alternatively, the literature also includes proposals that emphasize
optimizing the allocation and scheduling of tasks for a network of 3D
printers. Chen (2019) proposed a 3D printing cloud platform for the
allocation and scheduling of tasks that considered uncertainty and early
termination. Ma (2020) developed an optimization model that allocates
printing tasks to a network of 3D printers while minimizing environ-
mental impact. More recently, Cui et al. (2022) developed a platform
prototype to interconnect distributed 3D printers in which a heuristic is
applied to determine the proper assignment and schedule to the pool of
available 3D printers. Similarly, Wu et al. (2022) proposed a cloud
platform for centralized production scheduling through a network of 3D
printers with real-time tracking. Shortly thereafter, Zhong et al. (2022)
deployed a cloud AM platform that utilizes resource sharing to assign
printing tasks to distributed 3D printers efficiently.

The reviewed works address the matching and allocation of tasks to
resources in AM platforms and, in some cases, also integrate the
scheduling of those tasks in their assigned resources. Notably, many of
these works have flourished under the Cloud Manufacturing paradigm
since it is suitable for the AM environment.2 Although the works
reviewed successfully deal with the allocation problem, pricing concerns
are left unaddressed (Framinan et al., 2023; Mashhadi & Salinas Mon-
roy, 2020). Indeed, they employ allocation mechanisms that are not
market-oriented as they focus mainly on finding efficient scheduling
solutions rather than improving the market’s social welfare.

Only a few proposals for market-oriented electronic platforms that
address both the allocation and pricing problems have emerged in the
AM field. Stein et al. (2020) presented a market-based coordination
mechanism aimed at raising social welfare in which pricing issues were
considered. The mechanism was designed for a platform where AM
suppliers with excess demand can temporarily outsource their produc-
tion orders to other suppliers with idle resources. However, this mech-
anism regulates a unilateral market in which only providers participate,
within a framework of collaborative manufacturing. Within this same
collaborative framework, the proposal by Zehetner & Gansterer (2023)
employs a combinatorial auction to resolve both manufacturing order
allocation and pricing. Finally, we find cases such as Mashhadi& Salinas
Monroy (2019; 2020) and Pahwa et al. (2018), where auctions are also
employed as mechanisms to resolve both allocation and pricing, but in
this case, they are implemented in a bilateral market involving both
providers and demanders of AM.

After conducting this literature review, we found only five proposals
that address both allocation and pricing mechanisms (Table 1). Of these
five, four utilize auction mechanisms to solve both problems simulta-
neously. Given these findings, it is worthwhile to further explore these
auction mechanisms to analyze their properties and their suitability for

the additive manufacturing market.

2.2. Auction mechanisms in AM markets

The literature review conducted has allowed us to identify only four
proposals of e-platforms implementing auctions to coordinate AM
markets (Table 1). Pahwa et al. (2018) presented a mechanism similar to
a reverse auction in which buyers state their bid prices and the platform
assigns a supplier that agrees with the price. In this mechanism, sup-
pliers do not compete with each other as the platform internally solves
the allocation. Later, Mashhadi & Salinas Monroy (2019) proposed a
multi-item forward auction that allocates printing area to the winning
buyers and determines prices. The mechanism, which is centrally
managed by an AM cloud, pools manufacturers’ resources to collabo-
ratively satisfy demand. In Mashhadi & Salinas Monroy (2020), the
previous auction was refined with a deep neural network that allowed
an increase in the utility obtained from the allocation and pricing pro-
cess. More recently, Monroy et al. (2023) have proposed a novel system
architecture to ease the access of demanders and suppliers to the AM
market based on their previous works on auction mechanisms.

Although the previous proposals offer solutions to the problem of
allocation and pricing in additive manufacturing platforms, we observe
that these mechanisms do not fully exploit the potential of the decen-
tralized AM market: The reviewed mechanisms do not consider the
particularity of AM techniques that enable manufacturers to enhance
production throughput by producing many heterogeneous components
in the same build area. Consequently, suppliers could benefit from a
mechanism that allows them to combine orders from different cus-
tomers. Also, we find two other improvement points as regards the
auction features. First, the mechanisms reviewed are one-sided auctions
where only buyers actively place bids, whereas suppliers play a passive
role. Secondly, these mechanisms require auction participants to
disclose private information for the auction to derive an efficient
outcome.

The proposal of our paper is to design a market mechanism that
adapts to the characteristics of the AM market while exploiting the ad-
vantages of using combinatorial auctions. Specifically, the market
mechanism proposed is an iterative combinatorial double auction aimed
at solving both the allocation and pricing problems while seeking the
maximization of the social welfare in the AM market. Unlike existing
mechanisms, this approach also incorporates a privacy-preserving
strategy for the participants.

The only work proposing a combinatorial auction to coordinate an
AM market is the recent article by Zehetner & Gansterer (2023). How-
ever, as we have seen in the previous section, it is used in a unilateral
market context where only manufacturers participate under a collabo-
rative production framework. In contrast, we aim to address the scenario
of a bilateral market involving both AM providers and demanders of
these services.

Themarket mechanism proposed in this paper gives AM suppliers the
opportunity to combine orders placed by different customers and
thereby benefit from a higher machine utilization. The combinatorial
double auction used for its implementation leverages this feature of the
AM market: customers will bid to get their orders produced and sup-
pliers will submit asking quotes to win the production of combinations
of those orders. The mechanism will then solve the allocation and
pricing of AM orders while seeking the maximization of social welfare.
To the best of the authors’ knowledge, this is the first proposal of a
market mechanism that allows matching supply and demand in AM
markets while also enabling suppliers to manufacture combinations of
customer orders, thus exploiting this peculiarity of additive
manufacturing.

3. Auction mechanism

Auctions that allow bidding on item combinations are generally

2 Cloud Manufacturing (CMfg) was introduced as a new service-oriented
manufacturing model by (B. H. Li et al., 2010). It provided a centralized plat-
form for sharing on-demand manufacturing resources and capabilities over the
Internet. The combination of CMfg and AM has been recurrently highlighted as
a promising means for improving the management of AM services (Baumann &
Roller, 2017; Cui et al., 2022; Framinan et al., 2023; Shoeb et al., 2023; L.
Zhang et al., 2020; Zhao et al., 2018; Zhou et al., 2018).
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known as combinatorial auctions (Cramton et al., 2006). This auction
variant is particularly interesting for the context of AM because, in
contrast to the conventional single-part sequential production of tradi-
tional manufacturing systems, AM features complementarity in the
production of parts (Bogers et al., 2016; De Antón et al., 2020; Kim &
Kim, 2022). This occurs when producing a combination of items for
different customers in the build surface of a single AM machine is more
cost-effective than producing a very small number of parts for single
customers (Canellidis et al., 2013; Y. Zhang et al., 2016). When items of
an auction show complementarities, it is preferable for agents to place
bids on combinations of items rather than just individual items.
Combinatorial auction mechanisms have already been successfully
applied in other allocation problems (radio spectrum, airport slots,
truckload transportation, etc.). Recently, Palacios-Huerta et al. (2024)
presented a survey of CAs that have been deployed in practice.

The auction designed in this work is a combinatorial auction with
multiple customers and suppliers trading multiple heterogeneous goods.
This particular type of combinatorial double auction is also called a
combinatorial exchange in the literature (Abrache et al., 2004; Lubin
et al., 2008; Mittelmann et al., 2021).

Fig. 1 shows an example of this market scheme with five orders and
three suppliers. Each supplier bids for a combination of orders that is
consistent with their available resources (recall that the actual resources
are, however, private information to each supplier). Supplier 1 places
two bids for the production of orders 1 and 4, and 2 and 3, respectively;
Supplier 2 bids for orders 2, 3 and 5; and Supplier 3 bids for orders 1 and
2. The auction will consist of several rounds in each of which a tempo-
rary allocation (i.e. which combination of parts will be produced by
which supplier) will be made. In each successive round, buyers and
sellers are given the possibility to update their bids, and thus new
temporary allocations will be formed. After several rounds, a final
allocation will be made. In the example shown in Fig. 1, Supplier 1 will
manufacture the combination of parts demanded by customers 1 and 4,
and Supplier 2 will provide the parts demanded by customers 2, 3, and 5.
Supplier 3 did not achieve the production of any of the orders.

The proposed auction introduces an iterative process in which pro-
visional allocations are being made and agents are allowed to update
their bids. This iterative setting helps agents express their preferences
without the need to directly disclose their private valuations (Parkes,
2006).

3.1. Auction steps

Tomatch the classic auction terminology, customers that request 3D-
printed parts orders will be referred to as buyers and suppliers with
available AM resources will be referred to as sellers as regards the
market mechanism. When requesting a production order, a buyer will
submit a buying offer showing the amount of money he or she is willing
to pay for that order, traditionally called a buying bid or simply a bid
(Friedman, 1993). After analyzing the set of orders in themarket, a seller
will submit a selling offer indicating the price he or she would be willing
to accept for producing a subset of orders, which is called an asking bid
or simply an ask (Friedman, 1993). Hence, buyers will place bids for
single orders and sellers will submit asks for bundles of orders.

The development of the auction consists of several steps, which are
shown in Fig. 2.

Step 0 (Requesting period, T). The platform collects parts orders from
buyers.
Step 1 (Asking period, ta). Sellers send asks on combinations of items.
Step 2 (Clearing period, tc). The auctioneer makes a temporary
allocation.
Step 3 (Updating period, tu). Non-winning agents are requested to
update their prices.
Step 4 (Ending period, te). The auctioneer makes the final allocation.

A detailed description of the actions performed at each step is shown
below. Table 2 summarizes the notation used in the auction model.

Step 0: Requesting period
A requesting period T is considered before starting the auction.

During this period, the platform (from now on the auctioneer) collects the
buying bids sent by buyers. Two considerations must be noted at this
point:

- Each order collected by the platform is considered one item i for the
auction and orders cannot be decomposed (i.e., items are
indivisible).

- Buyers are required to submit a purchase price (ppi) for each order i
requested to the platform, which is the price that buyers are initially
willing to pay to have their orders produced. Thus, a bid bi = {i, ppi}
is placed for each auction item by the corresponding buyer.

Fig. 1. Outline of the combinatorial auction mechanism for an AM market.
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Hence, before starting the auction, the auctioneer knows the pool of
items and the purchase price offered for each item. Once the time T is
reached, the auctioneer will trigger the auction to match supply with
demand through an iterative process consisting of several rounds.

Step 1: Sellers send asks on combinations of items.

The auctioneer informs participants of the start of the auction and
reveals the set N of distinct items to be auctioned. During the asking
period ta, sellers will place asks for the combinations of items in which
they are interested. Recall that sellers must make their own calculations
to determine which combinations of items provide them with the
highest utility (i.e., it is assumed that sellers place asks for the combi-
nations of items that optimize the capacity of their AM machines). A
seller wishing to win a subset of items S⊆N will submit an ask aj = {Sj,
apj}. The ask is composed of the desired subset Sj and the ask price apj
which shows the amount of money that the seller is willing to charge for
producing this bundle of items. These combinations cannot be changed
in following rounds and no asks on new combinations can be placed.

Step 2: The auctioneer makes a temporary allocation
After the asking period, the auctioneer has already received all the

asks placed by sellers and knows the bids initially submitted by buyers.
At this point, the auctioneer determines the temporary allocation of
items to sellers by solving the Winner Determination Problem (WDP).
The time devoted to performing this step is called the clearing period tc.
In the WDP, the allocation of items that optimizes the objective function

Fig. 2. Flowchart of the auction steps sequenced in their corresponding periods.

Table 2
Summary of notations used for the auction model.

N → Set of items

i ∈ N → Index for an item
M → Set of bundles
j ∈ M → Index for a bundle
bi → Bid on item i
ppi → Purchase price associated with bid bi
rpi → Reservation price for item i
aj → Ask for bundle j
apj → Ask price associated with ask aj

Sj → Subset S⊆N associated with ask aj

cj → Production cost of bundle j (or of subset Sj)
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considered is obtained. In this case, the maximization of the auctioneer’s
revenue is pursued. The WDP is formulated as a binary integer problem
(BIP) in Section 3.3.

Once the WDP has been solved, the auctioneer reveals the following
information to agents about the current allocation:

- Buyers are informed whether their order(s) will be manufactured at
the current purchase price(s).

- Sellers are informed whether their ask(s) is/are winning at the cur-
rent ask price(s).

Step 3: Non-winning agents are requested to update their prices.
Current losing agents who want to participate in the next round are

given an updating period tu to revise their prices. Non-winning buyers
are requested to raise their purchase prices, while non-winning sellers
are requested to decrease their ask prices. The auctioneer sets a mini-
mum amount to update prices. Once the time tu has elapsed, either the
process returns to step 2 if the stopping criterion is not met and a new
bidding round is started, or the process moves on to step 4 otherwise.

Step 4: The auctioneer makes the final allocation
When the stopping criterion has been reached, the temporary allo-

cation of items resulting from step 2 is now announced as the final
allocation. The auctioneer informs winning agents of the final allocation
of items and the corresponding prices. Lastly, the auctioneer announces
the closing of the current auction round. This last step takes place during
the ending period te.

This is a price-based iterative combinatorial double auction setting in
which combinatorial bidding is only allowed on the selling side of the
market. Therefore, buyers bid for single items —their own requested
items— while sellers ask for combinations of items. These combinations
are set in the first round and cannot be changed anymore. Instead, prices
are updated after each round: non-winning buyers will offer higher
purchase prices, while non-winning sellers will ask for lower payments.

3.2. Modeling of participants’ utility

Buyers and sellers are modelled as rational and self-interested agents
who try to maximize their utilities by participating in the market. In this
AM market, the utility that a buyer can obtain from a production order
requested through the platform is calculated as the difference between
the value that the order holds for the buyer and the price that they need
to pay to have it produced. In this regard, the value of a good for a buyer
is expressed as the maximum price the buyer is willing to pay for the
good (i.e., the buyer’s reservation price for this good). Let rpi be the
reservation price of a buyer for item i, ppi be the purchase price that the
buyer must pay for the item and xi be a binary variable to indicate that i
is a winning item; the utility obtained by the buyer for this item (BUi) is
defined as:

BUi = xi⋅(rpi − ppi) (1)

xi = {0,1} =

{
1, ifbidbiwinsauction

0, inothercase

After observing the set of orders in the AM market, a seller must
determine the combination that brings a better utility to them. The
utility for a seller is calculated as the difference between the price they
can charge to produce a combination of orders and the cost incurred
when producing these orders. Let cj be the cost incurred by a winning
seller in producing the combination Sj, apj be the price the seller charges
for that combination and yj be a binary variable to indicate that aj is a
winning ask; the utility obtained by the seller for that combination (SUj)
is defined as:

SUj = yj⋅(apj − cj) (2)

yj = {0,1} =

{
1, ifaskajwinsauction

0, inothercase

Both buyers and sellers will place bids and asks that bring them the
highest utility.

3.3. Winner determination problem

The main problem faced when designing a combinatorial auction
(CA) is deciding how to allocate bundles of items amongst the bidders so
as to optimize some criterion (De Vries & Vohra, 2003). This problem is
generally dubbed the Winner Determination Problem or WDP. A binary
integer problem (BIP) is developed to formulate the WDP of the auction
proposed in this work. The objective function is the maximization of the
auctioneer’s surplus (AS) and is expressed in equation (4).

Let N (i ∊ N) be the set of production orders (items) requested by
buyers. A bid bi = {i, ppi} placed by a buyer is defined as a two-valued
array in which the first value indicates the item index i, and the sec-
ond value expresses the purchase price offered for that item ppi. As an
example, a bid of a buyer offering 20€ for item 4 would be expressed as
b4 = {4, 20€}.

Let M (j ∊ M) be the set of bundles of items requested by sellers. An
ask aj = {Sj, apj} submitted by a seller is defined as a two-valued array in
which the first value is a one-zero vector in the form of Sj = (sj0, …, sji, …,
sjN) to define the subset of items requested, and the second is a number
to express the ask price for that subset. Considering a set of N=5 items, a
seller willing to charge 30€ for the supply of the bundle of items 1, 3 and
4 would submit an ask (say j = 1) expressed as a1 = {(1,0,1,1,0), 30€}.

The revenue that the auctioneer obtains from a bundle allocation
(ARj) is calculated as the difference between the sum of the purchase
prices offered for items of a winning combination Sj and the ask price
submitted by a seller for that combination. The binary variable yj is
included to indicate that aj is a winning ask, and the coefficient sji is used
to indicate if the item i is in subset Sj according to the input data of the
instance. Equation (3) shows the calculation of ARj.

ARj =

(
∑N

i=1
sji⋅ppi − apj

)

⋅yj (3)

The objective function of the WDP is thus to maximize the sum of ARj (i.
e., the auctioneer surplus, AS) by selecting the most profitable ask-bids
pairs, as expressed in (4). Hence, the items are allocated seeking to
maximize the difference between buyers’ total payment and sellers’
total revenue.

maximizeAS =
∑M

j=1

[(
∑N

i=1
sji⋅ppi − apj

)

⋅yj

]

=
∑M

j=1
ARj (4)

Lastly, two constraints must be included to ensure feasible solutions.
Constraint (5) ensures that no winning exchange yields a negative profit:
the sum of the purchase prices of the items in a winning combination is
not lower than the ask price of that combination. Constraint (6) ensures
that overlapping sets of items are never assigned.

ARj =

(
∑N

i=1
sji⋅ppi − apj

)

⋅yj ≥ 0∀j ∈ M (5)

∑M

j=1
sji⋅yj ≤ 1∀i ∈ N (6)

yj, sji ∈ {0,1}

ppi, apj ≥ 0
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4. Auction algorithm

This section presents the algorithm designed for implementing and
simulating the iterative auction procedure. In a real-world context, the
auction will allow distributed buyers and sellers to participate by
sending bids and asks and updating prices at their discretion. However,
for simulation purposes, the algorithm will define a procedure to
simulate agents’ decisions, assuming rational and self-interested
behavior. The iterative auction procedure and its implementation al-
gorithm are detailed in Section 4.1. Section 4.2 presents a simple case
example of a realistic auction implementation to enhance understanding
of the mechanism.

4.1. Iterative auction procedure

The multi-round process is designed to guide the auction toward
efficient market results while distributing computation across agents. In
each round t, the auctioneer makes a provisional allocation Wt by
solving equation (4) with the ask prices and purchase prices from the
current round t. These data are stored in the arrayWt, which collects the
purchase prices of the winning items ppit, the ask prices of the winning
asks apjt and the combinations of those winning asks Sj.

Agents failing to win their bids/asks in the provisional allocation will
be requested to update their bid/ask prices. While agents winning the
current round will have no incentives to update their prices, non-
winning agents must update theirs to have a chance of winning the
auction. At the start of the auction, the auctioneer will set the minimum
quantities λ and μ by which prices are to be updated. Non-winning
buyers will have to raise their purchase prices by at least μ units to
participate in the next round; non-winning sellers will have to decrease
their ask prices by at least λ units to hold their asks.

The auction procedure is started based on the information collected
by the platform from the buyers’ requests during the requesting period
(step 0 defined in Section 3.1). In this phase, the auctioneer receives
order requests together with their associated bids from buyers. Thus, the
input data of the auction algorithm are the set N of items and the bids on
round t = 1: bit=1 = {i, ppit=1}. Likewise, the number of bundles M is set
according to the number of sellers that is going to participate in the
auction. In addition, the auctioneer determines the values of the pa-
rameters λ and μ for the current auction. According to the procedure
explained in Section 3.1, the auction is a 4-step process: steps 1 and 4 are
one-shot phases, whereas steps 2 and 3 are iterative phases.

In the first step (lines 1–4 of Algorithm 1), the auctioneer collects the
asks from sellers; the combinations of items Sj (S⊆N) desired by sellers
are therefore set and will not be changed in future rounds. This step is
only computed once.

Subsequently, the iterative procedure starts with the while loop in
line 5 of Algorithm 1. Within each iteration of the auction, the WDP is
solved in step 2 and a temporary allocation Wt is obtained (line 6 of
Algorithm 1). After updating the round index t, the prices from non-
winning agents are updated according to the price updating scheme in
step 3 (lines 8–19 of Algorithm 1). Please note that, although in a real-
world scenario both customers and manufacturing companies will up-
date their bids and asks respectively as they see fit, in this simulation of
the auction, we have established that the agents’ bids and asks are
updated by exactly the minimum quantity. Specifically, non-winning
buying agents will increase their bids by λ monetary units, while
manufacturing agents will decrease their asks by μ monetary units.

Lastly, once the termination condition is reached (line 20 of Algo-
rithm 1), the iterative process ends and the temporary allocation from
the ongoing round (Wt) is announced as the final allocation W in what
constitutes step 4 (line 21 of Algorithm 1). The final winning ask and bid
prices are saved in variables apjf and ppif, respectively. Now the market is

cleared.
Algorithm 1 Price-Based Iterative Combinatorial Double Auction
 Input: N (Set of items), M (Set of bundles)

bit=1 = {i, ppit=1}
λ, μ

 Output: W(Set of winning asks)
1: Start of the auction. Initial round t = 1 {Step 1: Asking period}
2: for all j in M do
3: Collect ask ajt = {Sj, apjt}
4: end for
5: while termination condition is not true do
6: The auction is cleared by (4) and Wt is obtained {Step 2: Winner

determination}
7: t ← t + 1
8: for all j in M do {Step 3: Price update} #Ask price update
9: if apjt—1 not in Wt—1:
10: if apjt—1 – λ ≥ cj:
11: apjt = apjt—1 – λ
12: else apjt = apjt—1

13: end for
14: for all i in N do #Purchase price update
15: if ppit—1 not in Wt—1:
16: if ppit—1 + μ ≤ rpi:
17: ppit = ppit—1 + μ
18: else ppit = ppit—1

19: end for
20: Termination condition checking:

if stopping criterion == True: break
21: W [ppif, apjf, Sj] ← Wt [ppit, apjt, Sj] {Step 4: Final allocation}

4.2. Case example

A simplified example of the auction in the market environment
exposed is presented for a better understanding of the mechanism.
Within the timespan set for requesting orders (the requesting period T),
three customer companies (i.e., buyers) submit the orders they want to
get produced. Then, the auctioneer starts the auction with two AM
suppliers (i.e., sellers) that desire to obtain bundles of those orders. The
final allocation resulting from the auction mechanism will clear the
market.

The input parameters considered for this example case are N=4
items, bi1 as set below,M=2 bundles (i.e., one ask per seller), and λ = μ =

2 currency units (€). Also, the stopping criterion selected for this
example is that no prices are updated from one round to the next.

Requesting period
Buyers accessed the platform and requested four production orders

(items) with their corresponding purchase prices (ppi). As these are
initial bids, they are collected as bit=1 = {i, ppit=1}. Therefore, four bids
are collected by the auctioneer. Buyer 1 requested i1 and offered a
purchase price of 8€ (b11 = {1, 8€}); buyer 2 offered 10€ for i2 (b21 = {2,
10€}) and 6€ for i3 (b31 = {3, 6€}); buyer 3 requested i4 and offered 5€
(b41 = {4, 5€}). These initial bids can be seen in Fig. 3 above their cor-
responding items.

Round 1
After making their own calculations, each of the two sellers placed

one ask in the current round t = 1 (ajt=1 = {Sj, apjt=1}) for a combination
of production orders: seller 1 bid for the bundle j = 1 of items i2 and i4
with an ask price of 12€ (a11 = {(0,1,0,1), 12€}); seller 2 asked for 30€ to
manufacture the bundle j = 2 of items i1, i2 and i3 (a21 = {(1,1,1,0),
30€}). The two asks are shown in Fig. 3 next to their corresponding
bundles of items and identified by color.

The WDP can already be solved with the data of bids and asks. By
solving the BIP problem with the current prices, the temporary alloca-
tionWt=1 is obtained. In this simple example at most one ask will win the
auction since bundles S1 and S2 share item i2 and overlapping sets of
items cannot be assigned. Thus, the winning ask in the current round is
ap11= {(0,1,0,1), 12€} because the objective function (equation (4) takes
a greater value from AR1 = (

∑N=4
i=1 s1i⋅pp1i ) − ap1 = (0⋅8+1⋅10

+0⋅6+1⋅5) − 12 = 3 than from AR2 = (
∑N=4

i=1 s2i⋅pp1i ) − ap2 =

(1⋅8+1⋅10+1⋅6+0⋅5) − 30 = − 6. In fact, the ask a21 could never be
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allocated because it yields a negative utility for the auctioneer. Objective
function values for each ask –AR1 and AR2– are displayed under their
corresponding bundles of items and identified by colors in Fig. 3.

Round 2
Now for round 2, non-winning bids/asks must update their prices. In

this case example, it is assumed that all losing agents (both buyers and
sellers) will update their prices exactly λ = μ = 2€ to simulate the auc-
tion. Non-winning asks will update their ask prices according to apjt =
apjt—1 – λ; hence, the ask price from ask a2 in round 2 will be ap22 = ap21 –
2= 28€. Losing bids will update their purchase prices according to ppit=
ppit—1+ μ; the purchase prices updated in round 2 are pp12= 10€ and pp32
= 8€. From round 2 onwards, updated prices are shown in bold in Fig. 3,
while non-updated prices are placed between parentheses. The WDP is
newly solved with the current prices. The value of the objective function
for the ask a1 will be the same since their prices remain unchanged (AR1
= 3€), whereas that value for ask a2 is now AR2= 0€. As the value of AR1
is still higher, the winning ask in round 2 is again a1.

Round 3
Purchase prices pp12 and pp32 must be updated again. In this case, pp13

= pp12+ 2= 12€while pp33 raises to 10€. The ask price of the losing ask is
also updated to ap23 = ap22 – 2 = 26€. The temporary allocation of round
3, W3, returns as winner the ask a2 because AR2 = 6€ > AR1 = 3€.

Round 4
The only losing bid is now b4, so the purchase price for round 4 is

updated to pp44= pp43+ 2= 7. Losing ask a1 decreases its ask price to ap14

= 10€. The winner of round 4 is ask a1 because AR1 = 7€ > AR2 = 6€.
Round 5
Losing prices to be updated are pp14, pp34 and ap24. However, neither

buyers can increase their bids since they are reaching their reservation
prices, nor Seller 2 can decrease its ask price since that price is
approaching the production cost. Thus, pp14 = 12*, pp34 = 10* and ap24 =
26* are the final prices and they are displayed in red and signaled with
an asterisk (*) in Fig. 3. As no prices have been updated from the pre-
vious round, the stopping criterion is satisfied and the auction is
finished. The final allocation is S1 = (0,1,0,1) and the final prices are pp2f

= 10€, pp4f = 7€, and ap1f = 10€. The revenue obtained by the auctioneer
is AS = AR1 = 7€.

A summary of the rounds can be found in Table 3; updated prices are
written in bold, non-updated prices are written between parentheses and
final prices are written in red and added an asterisk (*).

5. Computational study

A computational study is developed to simulate the operation of the
auction mechanism by computing the algorithm proposed in this paper
(Algorithm 1). The objective is twofold: (i) to evaluate the performance
of the algorithmic procedure designed for simulating the auction and (ii)
to identify the best conditions for the auction to be implemented in a real
environment.

The main goodness of the auction mechanism proposed in this paper
is that it allows obtaining an efficient allocation without information
about reservation prices of buyers and production costs from sellers.
This study is aimed at comparing the outcome of this iterative auction
mechanism, in which private information from agents remains confi-
dential (which we will call the iterative-auction outcome), with the
allocation obtained by providing the solver with complete information
about reservation prices and production costs (which we will call the
complete-information outcome). The iterative-auction outcome is ob-
tained by computing Algorithm 1 as explained in Section 4.1. On the
other hand, the complete-information outcome is derived by providing
the BIP model from Section 3.3 with the actual values of reservation
prices and production costs. In the latter case, it is only necessary to run
the solver once, and the returned solution will be considered optimal.
This complete-information outcome will serve as an upper bound to
assess the quality of the solution returned by the iterative auction
mechanism (i.e., the iterative-auction outcome). This comparison will
allow to evaluate the portion of the social welfare attained by the
auction.

The rest of this section is structured as follows: first, the evaluation
metrics are defined; next, the generation of simulation instances is

Fig. 3. Summary of the auction rounds and the final allocation.
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described; lastly, the simulation experiments are detailed.

5.1. Metrics

To obtain the complete-information outcome (i.e., the allocation that
we will consider optimal, as it maximizes social welfare by taking into
account the private information of the auction participants), the BIP
model is directly provided with the actual information about reservation
prices of buyers for items (rpi) and the actual production costs of sellers
for the combinations they want to procure (cj), as shown in equation (7).
Now, the objective function is to maximize the market’s social welfare
(SW) as the difference between buyers’ reservation prices and sellers’
production costs. This model with complete information will then return
the optimal allocation W* that results in the largest difference between
the sum of reservation prices of winning items and the sum of production
costs of winning combinations (see Eq. (7)). The solution obtained with
this complete-information model (i.e., the social welfare of the optimal
allocation SW(W*), as calculated in equation (8)) will be used as the
reference against which the auction solution will be compared (i.e., the
upper bound).

maximizeSW =
∑M

j=1

[(
∑N

i=1
sji⋅rpi − cj

)

⋅yj

]

(7)

SW(W*) =
∑

i∈W*

xi⋅rpi −
∑

j∈W*

yj⋅cj (8)

To calculate the social welfare of the iterative-auction outcome, we first
simulate the auction, in which agents update their purchase prices (ppi)
and ask prices (apj) round after round until a final buyer–seller alloca-
tion is obtained (W). Recall that the iterative auction aims to maximize
the auctioneer’s surplus (i.e., the objective function of the WDP model
presented in Section 3.3, equation (4)). Also, recall that the participants’
private information (i.e., the buyers’ reservation prices rpi and sellers’
production costs cj) are not revealed during the auction process. Then,
we calculate the social welfare attained by the auction’s allocationW (i.
e., SW(W)) as the difference between winning items’ reservation prices
and winning bundles’ production costs, as shown in equation (9).

SW(W) =
∑

i∈W
xi⋅rpi −

∑

j∈W
yj⋅cj (9)

An efficiency metric Eff(W) is defined in (10) to compare the social
welfare obtained in the final allocation W by Algorithm 1 (i.e., the
iterative-auction outcome), in which the agents’ reservation prices and
production costs are not revealed, with the social welfare obtained in the
optimal solution W* (i.e., the complete-information outcome). This Eff
(W) metric will show how effective the auction is in determining item
allocations while maintaining confidentiality about the participants.
The closer the value of%Eff(W) is to 100 %, the higher the quality of the
iterative-auction outcome.

Eff(W) =
SW(W)

SW(W*)
=

∑
i∈Wxi⋅rpi −

∑
j∈Wyj⋅cj

∑
i∈W*xi⋅rpi −

∑
j∈W*yj⋅cj

(10)

%Eff(W) = Eff(W)⋅100% (11)

Another key aspect of assessing the goodness of the auction mechanism
is the amount of time it takes to reach the final solution. In a real context,
reaching an efficient solution in as few rounds as possible will be crucial.
In this case, the metric defined is precisely the number of rounds the
auction needs to make the final allocation in the process defined in Al-
gorithm 1. This metric will allow us to evaluate the time required to
obtain the final solution in different market scenarios.

5.2. Design of testing data

The generation of instances follows a process aimed at designing
feasible input values for each of the scenarios presented in Section 5.3.
The data generated for each instance are the N items to be auctioned and
the M bundles requested, the reservation price rpi and the initial pur-
chase price for each item ppi1, and the production cost cj and the initial
ask price for each bundle apj1.

In the first place, a binary matrixMxN that represents the bundles of
items requested by each supplier is generated using a saturation
parameter δ. According to the value of δ, cells in the matrix will take 1 or
0 following a random procedure in which it is ensured that at least one
cell of each row and one cell of each column is set to 1 (i.e., all the items
are requested in at least one bundle and all the bundles have at least one
item). For an instance with 10 buyers and 10 sellers (matrix of 10 ⋅ 10 =

100) and a saturation of δ = 0.1, a total of 10 cells (0.1 ⋅ 100 = 10) will
take 1. Thus, the matrix for each scenario is generated from the number
of rows M (bundles of items asked), the number of columns N (total
items) and the saturation parameter δ.

Subsequently, initial purchase prices ppi1 are drawn uniformly at
random from the interval [30, 80]. Reservation prices rpi are then
generated by adding to the purchase price a uniform random number
from the interval [16, 120]. Then, the sum-product number (spj) of each
row of the binary matrix and the array of initial purchase prices is
calculated. Initial ask prices apj1 are obtained by apj1 = spj + spj ⋅ U(1,
1.6), being U a uniform distribution. Last, production costs for each ask
submitted cj are generated by cj = apj1 − spj ⋅ U(0.2, 1). All the values
employed for the generation of initial prices have been derived from a
preliminary tuning process.

Given the above procedure for generating instances, seven scenarios
are simulated to evaluate the performance of the auction mechanism
and the sensitivity of the parameters. The input data for those scenarios

Table 3
Summary of the auction execution for the case example.

Round Purchase and ask prices Temporary allocation
(current winning ask)

ARj [€]

Buyer 1 Buyer 2 Buyer 3 Seller 1 Seller 2

i1 i2 i3 i4 [i2, i4] [i1, i2, i3]

pp1 [€] pp2 [€] pp3 [€] pp4 [€] ap1 [€] ap2 [€]

1 8 10 6 5 12 30 a1 = {[2, 4], 12€} 3
2 10 10 8 5 12 28 a1 = {[2, 4], 12€} 3
3 12 10 10 5 12 26 a2 = {[1, 2, 3], 26€} 6
4 12 10 10 7 10 26 a1 = {[2, 4], 10€} 7
5 12* 10 10* 7 10 26* a1 = {[2, 4], 10€} 7

Table 4
Simulation scenario settings.

Scenario I II III IV V VI VII

Items (N) 10 10 20 20 20 40 40
Bundles (F) 10 20 10 20 40 20 40
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is summarized in Table 4.

5.3. Simulation experiments

This section presents the two experiments conducted to evaluate the
performance of the auction mechanism and to find the most convenient
values of parameters for each scenario. The analysis focuses on the effect
of the input size (number of agents) and the values of parameters on the
efficiency of the solution reached and the time needed to find that so-
lution. Consequently, the metrics that will be measured in the experi-
ments are those defined in Section 5.1, i.e., the quality of the solution in
terms of market efficiency Eff(W) and the number of rounds needed to
reach the final solution.

The stopping criterion considered for all the experiments is that
either no improvements of the objective function are obtained in 10
consecutive rounds or a maximum of 40 auction rounds are reached. As
one of the objectives of the simulation is to analyze the conditions for the
auction to be run in a real context, it seems reasonable to think that
running an auction for more than 40 rounds is unpractical.

All the experiments are run using the COIN-OR CBC3 solver to
compute both the iterative-auction BIP model for the auction’s WDP and
the complete-information BIP model. All the simulations are imple-
mented on a general-purpose computer with a Core i7 2.6 GHz processor
with 16 GB of RAM, 512 GB of memory, and Windows 10 as the oper-
ating system.

The first experiment analyses the joint effect of the number of agents
and the minimum price step on the auction results. The minimum price
steps set by the auctioneer to both sellers (λ) and buyers (μ) are sensitive
parameters for the simulation in terms of efficiency. Since this is an
initial attempt to tune the parameters for implementing the auction in a
real context, the value of both parameters is considered the same (i.e., λ
= μ). In this experiment, the seven scenarios are simulated for four
different values of the price step: 1, 5, 10 and 15. The saturation
parameter for all the scenarios is set to δ = 0.2. Each type of instance is
run 20 times. The results are averaged and shown in Table 5 and Table 6,
respectively, and they will be discussed in Section 6.1.

The auctioneer will also be interested in knowing the best auction
configuration to ensure a proper result. The saturation parameter δ will
be analyzed to evaluate the auction response as the complexity of the
itemmatrix increases. In this second experiment, the seven scenarios are
simulated for three values of the δ parameter: 0.1, 0.2 and 0.3. The price
step is fixed to λ = μ = 5 for all the instances. Each scenario is run 20
times and the means of Eff(W) and of the number of rounds are obtained.
The results of this experiment are summarized in Table 7 and Table 8,
and they will be discussed in Section 6.1.

6. Discussion

This section is devoted to analyzing the simulation results and dis-
cussing the properties shown by the auction mechanism designed in this
work. In Section 6.1, the conclusions reached from the simulation are
discussed, and in Section 6.2, the auction features are examined.

6.1. Simulation results

This section reviews the results of the two experiments to discuss the
best conditions for implementing the auction in a real environment. The
objective of the auctioneer is to find an auction configuration with a
good balance between efficiency and duration (measured as the number
of rounds). Consequently, the auctioneer would be interested in
knowing the most appropriate values of price step λ(μ) and saturation δ
to be set for each scenario.

The results of the first experiment confirmed the importance of

setting a proper minimum price step λ(μ) to ensure a good balance be-
tween efficiency and duration. It is observed in Table 5 that the effi-
ciency of the auction increases as the size of the price step increases,
which might seem counterintuitive. This occurs in all seven scenarios.
Notwithstanding, this phenomenon is conditioned by the stopping cri-
terion of 40 rounds maximum set for all the simulations (since we are
interested in the conditions for practical implementation in a real
context, as previously indicated). As shown in Table 6 the number of
rounds on average is greater when the price step is small, and it is even
around 40 for scenarios with a larger number of agents. These results
suggest that in many of the instances with more agents and a smaller
price step, it takes more than 40 rounds to find the best solution possible.
However, the efficiency for instances with a greater price step does not
significantly differ among the different scenarios, whereas the number
of rounds clearly decreases as the price step increases. Thus, it can be
concluded that the size of the price step greatly influences the duration
of the auction but does not significantly affect the quality of the solution.

Similarly, the second experiment reports that the saturation of the
matrix δ is a sensitive parameter for the auction duration but not for the
efficiency of the resulting allocation. Results from Table 7 show only a
slight decrease in the efficiency as the saturation increases, especially in
large scenarios like VI and VII, while Table 8 reports a clear decrease in the
number of rounds as the saturation decreases. There is also a significant
reduction in the number of rounds for small scenarios (i.e., I and II) for all
three different saturation values. Therefore, an instance with fewer agents
and a lower saturation value should reduce the duration of the auction.

In light of the above results, the auctioneer must adapt the size of the
price step and the saturation of the matrix to the number of agents in the
auction. As the goal is to achieve an efficient result in the least number of
rounds possible, the auctioneer will be interested in setting a greater
price step as the number of agents increases. Also, the auctioneer should
try to keep the matrix saturation at low levels when arranging the sellers
and buyers that will participate in an auction.

According to the results, our proposed auction can be directly
implemented in scenarios with fewer agents (i.e., I-IV)—with sellers and
buyers updating their prices after each round— by selecting the
appropriate parameter values. However, if the scenarios are more
complex (i.e., VI-VII), it is advisable to explore the possibility of
implementing an autonomous multi-agent system in which sellers and
buyers have their software proxy agents that update their prices on their
behalf. This proxy bidding system would allow the auction to run for
more rounds with minimum effort from participants.

6.2. Model advantages and auction features

The primary advantage of the auction model developed in this work
is that it allows for addressing both the allocation and pricing problems
in a way that pursues market optimization while preserving desirable
auction properties. Specifically, this auction shows budget balance,
prevents collusion from participants, and achieves an efficient market
result without revealing agents’ private information. Subsequently, the
auction features that allow obtaining these properties are discussed.

The auction mechanism presented in this work is designed to adapt
to a highly competitive market environment such as the market of AM
services. In this market scenario, agents are assumed to adopt a myopic
best-response bidding strategy (Parkes, 2001): they bid focusing only on
the current round of the auction and are influenced neither by the other
agents’ strategies nor by the evolution of the auction in future rounds. As
buyers only bid on their own items, they know their valuations on those
items, and these do not depend on the valuations of other buyers. Sellers
place asks based on their own production costs, which are only known
by themselves and are not affected by other sellers’ cost functions. This
behavior of the agents follows the private value model as defined in
Vickrey (1961); agents only know their own values but not the values of
others. These myopically rational agents participate in a market with
private information to maximize their utilities.3 https://www.coin-or.org/.
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To properly manage this competitive market, the auction shows
three determinant features: an iterative procedure, a sealed-bid asking
strategy, and a partial and anonymized information feedback scheme.
This iterative sealed-bid-like configuration of the auction allows an
efficient result without the agents revealing their true valuations, an
undesirable feature of other types of auctions such as Vickrey auctions
(Rothkopf et al., 1990). Also, collusion by a set of agents is prevented
thanks to the partial information feedback strategy.

The asking procedure in each round of the auction is designed in a
sealed-bid fashion since sellers submit their asks during the asking
period without knowing the asks from other sellers (COPPINGER &
SMITH, 1980). Indeed, sellers need not reveal their production costs to
the auctioneer either. Classic combinatorial auctions that are centrally
managed, such as the Generalized Vickrey Auction (GVA), require
agents to disclose their values on items to obtain an efficient outcome
(Parkes, 2001; Vickrey, 1961). However, the only information that the
auctioneer receives in this auction setting is the purchase prices from

buyers and the ask prices from sellers, whereas their values need not be
informed. The auction proposed in this paper keeps agents’ sensitive
information confidential while obtaining efficient results.

The information received by agents at the end of each round is partial
and anonymized. The auctioneer only informs agents about their current
situation: whether they are winning their items (bundles) at the current
purchase prices (ask prices). Hence, agents will keep updating their
prices from one round to another according to their private valuations
and utilities. A rational buyer will increase their purchase price over an
item until its reservation price is reached. In contrast, a rational seller
will decrease their ask price over a bundle of items until their estimated
production costs for that bundle are reached.

This iterative procedure guides the auction towards an efficient
result while keeping the computational complexity at a reasonable level
by distributing the computation across all agents of the auction (Parkes,
2006). At the same time, the partial and anonymized information
feedback scheme prevents agent collusion and untruthful bidding

Table 5
Efficiency results %Eff(W) for different values of the price step (λ, μ).

% Eff(W)

Scenario I II III IV V VI VII

Items (N) 10 10 20 20 20 40 40
Bundles (F) 10 20 10 20 40 20 40
Instances 20 20 20 20 20 20 20
λ = μ = 1 66.949 68.907 64.374 64.390 75.430 51.669 64.650
λ = μ = 5 98.838 98.939 91.833 96.412 95.683 83.518 90.180
λ = μ = 10 99.872 99.504 99.994 99.734 98.675 93.341 97.950
λ = μ = 15 99.420 98.929 99.861 99.765 99.506 98.481 98.757

Table 6
Number of rounds for different values of the price step (λ, μ).

Number of rounds

Scenario I II III IV V VI VII

Items (N) 10 10 20 20 20 40 40
Bundles (F) 10 20 10 20 40 20 40
Instances 20 20 20 20 20 20 20
λ = μ = 1 31.601 35.568 33.719 37.308 39.949 33.741 40.000
λ = μ = 5 26.854 31.830 38.355 39.439 39.899 39.848 39.748
λ = μ = 10 13.246 16.254 27.715 30.307 33.352 38.695 39.638
λ = μ = 15 9.038 10.741 19.096 19.803 20.362 35.832 36.986

Table 7
Efficiency results %Eff(W) for different saturations of the item matrix (δ).

% Eff(W)

Scenario I II III IV V VI VII

Items (N) 10 10 20 20 20 40 40
Bundles (F) 10 20 10 20 40 20 40
Instances 20 20 20 20 20 20 20
δ = 0.1 98.692 99.162 99.743 99.321 99.403 99.116 99.633
δ = 0.2 99.872 99.504 99.994 99.734 98.675 93.341 97.950
δ = 0.3 99.658 99.859 94.697 98.133 97.484 88.760 89.990

Table 8
Number of rounds for different saturations of the item matrix (δ).

Number of rounds

Scenario I II III IV V VI VII

Items (N) 10 10 20 20 20 40 40
Bundles (F) 10 20 10 20 40 20 40
Instances 20 20 20 20 20 20 20
δ = 0.1 4.416 5.570 18.227 15.610 20.716 33.142 35.760
δ = 0.2 13.246 16.254 27.715 30.307 33.352 38.695 39.638
δ = 0.3 17.678 20.566 34.125 36.901 36.284 39.848 39.797
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strategies. Since sellers do not knowwhich buyer is requesting each item
and vice versa, agents cannot pursue collusion strategies. Also, partici-
pants have no incentives to seek untruthful strategies as they only know
their current market situation and nothing about the whole item
allocation.

The auction model presented in this work provides the basis for
further analysis of this market environment. The results obtained from
the simulation experiments allowed the successful verification of the
theoretical auction design and will serve as the first stage towards the
validation of the model in a real context.

7. Conclusions and future lines

The growing adoption of AM by manufacturers in a variety of in-
dustries is leading to an imbalance between the supply and demand of
additively manufactured subcomponents. The mechanisms proposed in
the literature to match demand and supply do not fully exploit the po-
tential of AM techniques. In this paper, we propose a market mechanism
that considers the unique characteristics of AM techniques, wherein
suppliers can benefit from manufacturing multiple heterogeneous parts
from multiple customers in the same build area to increase production
throughput. This market mechanism has been implemented as an iter-
ative combinatorial double auction that adapts to this feature of the AM
market: customers bid to have their orders produced, and suppliers
submit asking quotes to win the production of combinations of those
orders. The mechanism solves the allocation and pricing of AM orders
while seeking to maximize social welfare.

The mechanism designed in this work entails advantages for both
sides of an AM market. On one side, AM customers may easily access a
wide range of manufacturers and acquire competitive prices without
having to negotiate contracts individually. On the other side, AM sup-
pliers can combine orders from different customers in a way that allows
them to optimize their productive capacity.

Implementing the allocation mechanism through a combinatorial
double auction ensures that the mechanism exhibits desirable properties
of auctions, such as maximization of market welfare, budget balance and
collusion prevention. An iterative sealed-bid configuration and a partial,
anonymized feedback scheme are used to attain these properties. This
auction design allows obtaining a final allocation that improves the
overall utility of all the agents involved while it follows a privacy-
preserving strategy that does not require agents to disclose sensitive
information.

An algorithmic procedure to implement the auction is proposed. This
procedure has been simulated in a theoretical environment to evaluate
its performance and to identify the most appropriate conditions for its
implementation in a real environment. The simulation results showed
that for a scenario with no more than 20 buyers and 20 sellers and
adjusting the size of the price step, the auction could be directly
implemented and solved in a reasonable time. For larger scenarios, it
would be advisable to implement a proxy bidding system so that buyers
and sellers could automate their decisions.

Although the conducted simulations demonstrate that the proposed
mechanism leads to an allocation that maximizes social surplus, it is
important to consider that it relies on the assumption that manufacturers
are capable of evaluating the combinations of batches they would be
able to produce with their available resources. If suppliers encounter
difficulties in formulating their combinatorial bids, the mechanism may
result in suboptimal outcomes.

In this work, the study of the auction has been conducted by modeling
the participants as rational agents in a theoretical environment. However,
it may happen that in a real environment the agents do not behave
rationally. As a future direction, it would be compelling to develop a
multi-agent model for a more realistic simulation of the auction, consid-
ering sub-optimal behavior of the agents. This tuning of the mechanism’s
design will be the first step toward its implementation on electronic
platforms, allowing customer companies and AM suppliers to benefit from

the advantages of the allocation mechanism proposed in this paper.
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Planning Problems in Additive Manufacturing. In Industry 4.0: The Power of Data:
Selected Papers from the 15th International Conference on Industrial Engineering
and Industrial Management (pp. 193–201). Springer, Cham. https://doi.org/
10.1007/978-3-031-29382-5_20.

J. De Antón et al. Computers & Industrial Engineering 197 (2024) 110602 

12 

https://doi.org/10.1007/s10288-004-0033-y
https://doi.org/10.3390/JMMP1020015
https://doi.org/10.1016/J.TECHFORE.2015.07.024
https://doi.org/10.1016/J.TECHFORE.2015.07.024
https://doi.org/10.1007/978-3-031-15428-7_32
https://doi.org/10.1016/J.CLSCN.2023.100103
https://doi.org/10.1016/j.cad.2012.12.002
https://doi.org/10.1017/S0890060419000222
https://doi.org/10.1016/J.CIE.2018.09.048
https://doi.org/10.1016/J.CIE.2018.09.048
https://doi.org/10.1111/J.1465-7295.1980.TB00556.X
https://doi.org/10.1111/J.1465-7295.1980.TB00556.X
https://doi.org/10.7551/mitpress/9780262033428.003.0001
https://doi.org/10.1016/j.rcim.2021.102256
https://doi.org/10.1007/978-3-031-57996-7_18
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