
J Supercomput (2014) 70:786–798
DOI 10.1007/s11227-014-1212-z

Optimizing an APSP implementation for NVIDIA
GPUs using kernel characterization criteria

Hector Ortega-Arranz · Yuri Torres ·
Arturo Gonzalez-Escribano · Diego R. Llanos

Published online: 18 May 2014
© Springer Science+Business Media New York 2014

Abstract During the last years, GPU manycore devices have demonstrated their use-
fulness to accelerate computationally intensive problems. Although arriving at a par-
allelization of a highly parallel algorithm is an affordable task, the optimization of
GPU codes is a challenging activity. The main reason for this is the number of para-
meters, programming choices, and tuning techniques available, many of them related
with complex and sometimes hidden architecture details. A useful strategy to system-
atically attack these optimization problems is to characterize the different kernels of
the application, and use this knowledge to select appropriate configuration parame-
ters. The All-Pair Shortest-Path (APSP) problem is a well-known problem in graph
theory whose objective is to find the shortest paths between any pairs of nodes in
a graph. This problem can be solved by highly parallel and computational intensive
tasks, being a good candidate to be exploited by manycore devices. In this paper, we
use kernel characterization criteria to optimize an APSP algorithm implementation
for NVIDIA GPUs. Our experimental results show that the combined use of proper
configuration policies, and the concurrent kernels capability of new CUDA architec-
tures, leads to a performance improvement of up to 62 % with respect to one of the
possible configurations recommended by CUDA, considered as baseline.

H. Ortega-Arranz · Y. Torres · A. Gonzalez-Escribano · D. R. Llanos (B)
Dpto. Informática, Universidad de Valladolid, Valladolid, Spain
e-mail: diego@infor.uva.es

H. Ortega-Arranz
e-mail: hector@infor.uva.es

Y. Torres
e-mail: yuri.torres@infor.uva.es

A. Gonzalez-Escribano
e-mail: arturo@infor.uva.es

123

Optimizing an APSP implementation for NVIDIA GPUs 787

Keywords APSP · Cache configuration · Concurrent kernel · GPU ·
Kernel characterization · Threadblock size

1 Introduction

Nowadays, GPUs are among the most powerful HPC devices. However, their use with
programming models such as CUDA implies to take several decisions in terms of
configuration parameters. Some of these CUDA specific configuration parameters,
such as the threadblock size, the configuration of the L1-cache size, and the amount
concurrent kernels [9], do not need changes in an application code. Optimizations,
such as prefetching, coalescing-maximization, and unrolling, that require the modifi-
cation of the original algorithm are not considered in this paper. The joint use of the
considered techniques can lead to significant performance improvements, but there
are many possible combinations. Until now, the only way to ensure which are the
best values for these configuration/optimization parameters is to carry out an empir-
ical study that explores the complete search space. In order to avoid this costly task,
CUDA recommends the use of threadblock sizes that maximize the occupancy as a
proper choice for a good NVIDIA GPU performance [9]. However, the authors of [15]
have shown through synthetic micro-benchmarking that this recommendation does not
always correlate with the values that lead to the optimal performance. Instead, they
proposed some rules to select the optimal values depending on the kernel features.

Many problems that arise in real-world networks imply the computation of shortest
paths, from any source to any destination point. Some examples include traffic simula-
tions [1], or Internet route planners [13]. The All-Pair Shortest-Path (APSP) problem
is a well-known problem in graph theory whose objective is to find the shortest paths
between any pair of nodes in a graph G = (V, E) where V and E are the set of
nodes and edges, respectively. It is a generalization of the Single-Source Shortest-
Path (SSSP) problem that consists in computing the shortest paths from one source
node s to every v ∈ V .

There are two classical ways to solve the APSP problem. The first solution is to exe-
cute |V | times a SSSP algorithm selecting a new node as source on each iteration. Let
m be the number of edges of the graph, and n the number of vertices of the graph. Then,
the asymptotic complexity of the execution time of this approach is O(m+n log n)×n.
The second solution is to execute an algorithm that globally solves the APSP problem
using dynamic programming, for example the Floyd–Warshall algorithm [2] present-
ing an asymptotic complexity of O(n3). Sparse graphs (graphs with m << n2) are
representative of a wide class of problems, such as routing in different contexts [1,13].
For this kind of graphs, the n × SSS P strategy is asymptotically more efficient than
the second one [2], and it is the focus of this work.

The classical algorithm that solves the SSSP problem is due to Dijkstra [5].
Although this algorithm has three steps that must be carried out sequentially and
iteratively, each step can be parallelized using the GPUs. Some GPU implementations
have been previously developed to solve this problem [10,12] using some modifica-
tions of Dijkstra’s algorithm. The solution presented in [12] offers better performance
against the other state-of-the-art GPU solutions.

123

788 H. Ortega-Arranz et al.

The contributions of this paper are the following: (1) An extended criteria to select
optimal values of the previously described parameters in terms of kernel code char-
acterization; (2) an empirical study covering a wide range of the search space for the
parameter combinations for the APSP problem; and (3) a study of the impact of the
use of concurrent kernel techniques in the selection criteria, and overall performance
of the APSP problem. As far as we know, there are no rules to predict the optimal
values for the concurrent kernel technique, and no study to assess if its use disturbs
the selection criteria for the threadblock size and cache configurations.

Our experimental results show that, for the APSP problem, the correct choice of
the parameter values leads to a performance improvement of up to 62 % compared
with a baseline choice based on the CUDA programming guidelines.

The rest of the paper is organized as follows. Section 2 describes the related work.
Section 3 introduces the chosen GPU implementation [12]. Section 4 presents our
characterization of the kernels, and the predicted values for the parameters. Section
5 describes the experimental setup. Section 6 discusses the results obtained. Finally,
Sect. 7 summarizes the conclusions and future work.

2 Related work

There is a lack of studies focused on the tuning of CUDA configuration parameters.
A correct choice of them is critical to take advantage of GPU capabilities, even when
applied previous code optimizations techniques. For example, Grauer-Gray et al. in
their work [7] use annotated sequential code to generate optimized CUDA kernels.
This kind of works focus on high-level code transformations, such as tiling, unrolling,
permutation, and fusion-fision techniques. Ocelot [6] is a dynamic compilation frame-
work for heterogeneous systems. This tool transforms a PTX instruction set into dif-
ferent formats, such as CUDA or LLVM, and optimizes the code applying unrolling
and independent-instruction gathering techniques. Our kernel characterization can be
applied after these code changes in order to get better performance using the same
GPU solution.

Our work can also be used to complement other tuning or auto-tuning techniques.
For example, Ocelot [6] analyzes the PTX virtual instruction set and returns a collection
of statistics and relevant metrics related with the kernel performance. These data are
used by [4] with the aim to create an analyzer of kernel performance.

3 GPU parallel version of Dijkstra’s algorithm

As we described in Sect. 1, in this work, we focus on the optimization of the
n × SSS P parallel approach. We have chosen the best performance SSSP imple-
mentation reported so far for GPUs [12], an implementation of the Crauser’s algo-
rithm [3]. In that implementation, the three Dijkstra’s algorithm steps (relax step,
minimum-computation step, and update step) have been mapped into three CUDA
kernels supporting Crauser modifications.

The relax kernel (Alg. 1 (left)) decreases the tentative distances for the remaining
unsettled nodes at the current iteration i , u ∈ Ui , through the outgoing edges of the

123

Optimizing an APSP implementation for NVIDIA GPUs 789

Algorithm 1 Pseudo-code of the relax kernel (left) and the update kernel (right)

relax_kernel(U, F, δ)
1: tid = thread.Id;
2: if (F[tid] == TRUE) then
3: for all j successor of tid do
4: if (U[j] == TRUE) then
5: δ[j] = Atomic min{δ[j], δ[tid] + w(tid, j)};
6: end if
7: end for
8: end if

update_kernel(U, F, δ, �)
1: tid = thread.Id;
2: F[tid]= FALSE;
3: if (U[tid]==TRUE) then
4: if (δ[tid] <= �) then
5: U[tid]= FALSE;
6: F[tid]= TRUE;
7: end if
8: end if

frontier nodes f ∈ Fi . A GPU thread is associated for each node in the graph. Those
threads assigned to frontier nodes traverse their outgoing edges, relaxing the distances
of their unsettled adjacent nodes.

The minimum kernel computes the minimum tentative distance of the nodes that
belongs to the Ui set plus its corresponding Crauser values. To accomplish this task,
we have used the reduce4 method included in the CUDA SDK [8], just inserting an
additional sum operation per thread before the reduction loop. The result value of this
reduction is �i .

The update kernel (Alg. 1 (right)) settles the nodes that belong to the unsettled set,
v ∈ Ui , whose tentative distance, δ(v), is lower or equal to �i . This settling-node
task extracts them from Ui to generate the following-iteration unsettled set, Ui+1, and
putting the extracted ones into the following-iteration frontier set Fi+1. Each single
GPU thread checks, for its corresponding node v, whether U (v) ∧ δ(v) ≤ �i . If so,
it assigns v to Fi+1 and deletes v from Ui+1.

4 Kernel characterization

In this section, we describe the APSP kernel characterization with respect to a clas-
sification criteria based on the work presented in [15]. This criteria is based on three
kernel code features that can be obtained by inspection of the source code: Memory
access pattern, Computational load ratio, and Data sharing. We will refine the criteria
by determining new specific value ranges, and classification methods for each of these
three features. These ranges have been determined by experimental measures for the
platforms considered [14].

Memory access pattern: It refers to how each thread accesses the global memory
positions in an instant of time. Three different kind of patterns are defined as follows:
(a) Full-coalesced: Each warp requests only one transaction segment (also known
as cache line) at the same time. This means that every thread is requesting data in
the same segment, and therefore, the number of memory requests is small. The mem-
ory requests are overlapped with the instruction computation or the memory request
latencies of the following warps. This overlapping is optimized when the SM occu-
pancy is maximized [9]. (b) Medium-coalesced: Each warp requests between two and
four transaction segments at the same time. This means that there are threads of the
same warp that request data from different segments. Thus, the overlapping benefits of
computation and global memory latencies depend on other kernel features described
below. (c) Scatter: Each warp requests more than four transaction segments. Thus, the

123

790 H. Ortega-Arranz et al.

number of memory requests significantly increases with respect to the full-coalesced
pattern needing more computational load warps to compensate the memory latencies.

Computational load ratio (CLr): It refers to the ratio of logic or arithmetic
instructions per thread compared to the memory accesses of the same thread. Note
that this metric is related to the operational intensity metric of [16], but our metric
considers the number of memory transfers independently of their number of bytes,
which differs depending on the L1 activation configuration (32 bytes when deactivated,
and 128 otherwise). We define three ranges for this ratio: Low, ratio values between
0 and 10; Medium, ratio values between 10 and 100; and High, ratio values over
100. Note that during the time that one or more warps are computing, other warps
blocked due to global memory request can finish their communication phase, hiding the
memory latencies. Broadly described, the communication-computation overlapping
is optimized using maximum-occupancy threadblock sizes for full-coalesced memory
access patterns with a low CLr, medium-coalesced memory access patterns with a
medium CLr, and scatter access patterns with a high CLr.

Data sharing across blocks ratio (DS): It refers to the ratio of data sharing com-
pared to the number of memory accesses per thread. We name the limit values for this
metric as: High DS, when all threads of a block re-uses all values fetched by other
threads; Low DS, when there is no DS (each thread accesses to different data). We
consider as Medium DS all situations between the limits described. When there is a
high DS in a kernel, the recommendation in [15] is to increase the number of threads
per block in order to take profit of the data present in the cache memories. Moreover,
they recommend to augment the L1 cache size in order to store more reused values
for Fermi architecture, or to increase the L1 local data bandwidth for Kepler’s.

4.1 Input set parameters

Let d(G) be the mean fan-out degree of the input graph G(V, E), defined as the mean
number of outgoing edges for the graph nodes, and n = |V |. For the APSP problem, the
kernel characterization criteria not only depends on the kernel programming but also on
these graph properties. We define as low d(G) graphs those graphs with d(G) ∈ [1, 20).
Medium d(G) graphs those graphs with d(G) ∈ [20, 200]. And high d(G) graphs those
graphs with d(G) > 200.

The behavior of the GPU differs when the number of launched threads overpasses
the maximum limit of active threads. In this case, we say that the GPU enters in a
stressed situation. Let stressing ratio (st) be the ratio between the number of launched
threads and the maximum number of active threads in the GPU device. For the APSP
problem, the number of launched threads is equal to n. Thus, we can associate this
graph property with the previously defined ratio, st (G). We define lowst (G) as those
with st (G) ∈ (0, 1.5]. Medium st (G) as those with st (G) ∈ (1.5, 3]. And high st (G)

as those with st (G) > 3.
Depending on these two graph parameters, the number of required hardware

resources and the memory hierarchy bottlenecks vary for the programmed kernels.
Thus, the recommendation for proper values of the configuration parameters depend-
ing on the kernel characterization could vary.

123

Optimizing an APSP implementation for NVIDIA GPUs 791

Table 1 Characterization of the APSP kernels depending on the stressing ratio (A), memory access pattern
(B), computational load ratio (C), and data sharing across blocks (D)

Kernel A B C D

Relax Low Medium-coalesced Low Low

Medium Medium-coalesced Low Ledium

High Medium-coalesced Low High

Minimum Low/med./high Full-coalesced Medium Low

Update Low/med./high Full-coalesced Low Low

4.2 APSP kernel characterization

Table 1 summarizes the relax, minimum, and update kernel properties using the clas-
sification criteria described above. Relax kernel: The first condition [(line 2 of Alg. 1
(left)] performs coalesced memory accesses, whereas the inner instructions carry out
low- or medium-coalesced accesses. Therefore, we consider that it has a medium-
coalesced pattern. The CLr is low because there are less than 10 logic/arithmetic
instructions on the code of Alg. 1, and several global memory accesses. Finally, the
DS will increase as d(G) and n increase. Minimum kernel: It has a full-coalesced
pattern because contiguous threads access to contiguous memory addresses. It has a
medium CLr. The DS is not affected by d(G) nor n, and hardly any DS is performed
(low DS). Update kernel: All data structures are accessed with a full-coalesced pat-
tern, and there is just one instruction per access (low CLr). There is no DS present in
this kernel.

4.3 APSP predicted values

A trial-and-error optimization of the GPU performance through the considered tech-
niques would imply a very large experimentation space due to the big number of
possible combinations. Through the kernel characterization described above and the
guidelines proposed in [15], we predict which configuration values lead to good per-
formance for this GPU implementation. Relax kernel: A medium-coalesced access
pattern with a low CLr suggests the use of the minimum value of the threadblock sizes
that maximize the occupancy. Depending on the st (G) the kernel DS across blocks
varies. As this reutilization increases, the optimal threadblock size is higher: (a) For
low st (G): The lowest value that maximizes the occupancy (192 for Fermi, and 128 for
Kepler); (b) For medium st (G): The two lowest values that maximize the occupancy
(192/256 for Fermi, and 128/256 for Kepler); (c) For high st (G): Even higher val-
ues than the ones predicted for medium st (G) due to high reutilization (192/256/384
for Fermi, and 256 for Kepler). Minimum kernel: A full-coalesced access pattern
with a medium CLr suggests the use of the minimum value of the threadblock sizes
that maximize the occupancy, or even slightly lower values, although they do not fully
maximize the occupancy. (128/192 for Fermi, and 96/128 for Kepler). Update kernel:

123

792 H. Ortega-Arranz et al.

A full-coalesced pattern with a low CLr leads to the use of the minimum value of the
threadblock sizes that maximize the occupancy. (192 for Fermi, and 128 for Kepler).

L1 cache management. There are three possibilities: without cache L1, normal
state, and increased state. In kernels where the shared memory is not totally filled
up, the increase on the size of the cache L1 memory does not lead to a performance
degradation, and it alleviates memory thrashing effects. This is the case for the APSP
kernels. The number of requested transaction segments from global memory will be
highly increased for high st (G). When there is too much thrashing in the L1 cache,
the performance can be increased by deactivating it, and consequently reducing the
size of these segments (from 128 to 32 bytes). Therefore, our conclusion is that dis-
connecting the cache L1 memory for high st (G) will lead to performance improve-
ments.

5 Experimental setup

In this section, we describe an experimental study to evaluate the benefits in terms
of performance of the described configuration and optimization techniques and to
validate the predictions based on kernel characterizations.

5.1 Methodology, platform, and input sets

We experimentally tested a wide range of combinations of the possible configuration
values, across the full search space. We issued this experimental study for the APSP
problem, measuring the execution time of the whole program and of each kernel
separately. The measures were repeated with different input sets, and for two different
architectures. The values obtained were then compared with the predictions suggested
in Sect. 4 by the kernel characterization.

Target architectures: The experiments have been carried out using the CUDA
Toolkit 4.2, and the GPU devices GTX 480 (Fermi GF 110) and GTX 680 (Kepler
GK 104) with 23,040 and 16,384 maximum concurrent threads, respectively. The host
machine used is an Intel(R) Core(TM) i7 CPU 960 3.20GHz, with 6 GB of memory
with an Ubuntu Desktop 10.10 (64 bits).

Input set characteristics: The input set is composed by a collection of random
graphs generated with a technique designed to produce random structures [11]. This
decision was taken in order to: (1) Avoid dependences between a particular graph
structure of the input sets and performance effects related to the exploitation of the
GPU hardware resources; and (2) avoid focusing on specific domains, such as road
maps, physical networks, or sensor networks among others, that would lead to loss of
generality. Because the GPUs have more integer arithmetic computational units than
float ones, the weight of each edge is chosen as a random integer number uniformly
distributed in the range [1 . . . 100].

In order to evaluate how the studied techniques are dependent on some graph
features, we have generated a collection of nine kind of graphs using three sizes
n ∈ {24 576, 49 152, 98 304} and three fan-out degrees d(G) ∈ {2, 20, 200}. These
sizes have been chosen to have graphs with the stressing ratio in the three levels
previously defined (24k–low, 49k–medium, 98k–high).

123

Optimizing an APSP implementation for NVIDIA GPUs 793

5.2 Considered values for CUDA configuration/optimization techniques

Threadblock sizes: CUDA recommends the use of threadblock sizes that maximize
the SM occupancy of the GPU [9]. These sizes are dependent on the GPU architecture,
being 192, 256, 384, 512, and 768 for Fermi, and 128, 256, 512, and 1,024 for Kepler.
Nevertheless, following the recommendations of [15], we have also evaluated lower
values (occupancy ≥ 0.75). Note that all values should be multiples of 32 (warp size)
in order to maximize the core exploitation of the SM. Consequently, the block sizes
that lead to a medium ratio of SM occupancy have been also tested (96 and 128 for
Fermi, and 96 for Kepler). The grid and blocks use one-row shapes to couple the thread
indexes with the elements of the unidimensional array where the graph is stored.

Cache L1 state: We have included in our experimentation the three different states
that this cache can adopt: Normal state (16K of cache L1), Augmented state (48K of
cache L1), and No-L1 state (cache L1 deactivated).

Number of concurrent kernels: We have evaluated the following number of con-
current kernels: 1, 2, 4, 8, 16, and 32. The concurrent kernel technique allows to send
several instances of the same kernel simultaneously with a synchronized end. Each of
these instances operates in a different memory workspace to solve its corresponding
SSSP task. Due to the concurrent kernel synchronization, these memory workspaces
are transfered with a single operation.

Best versus Baseline values: Once we have obtained the best configuration combin-
ing the three techniques, we compare it with what we have called the baseline configu-
ration. This configuration applies the following values: (1) From the best threadblock
sizes recommended by CUDA, the one that returns the lowest performance; (2) No
cache modifications (normal state); and (3) No kernel concurrency (one kernel at a
time).

6 Experimental results and their evaluation

In this section, we present and discuss the experimental results through a performance
comparison between the best configuration and the baseline one, between the optimal
values obtained and the predicted ones, the lessons learned that could be applied to
other kernels, and the architecture differences.

Performance improvements for the APSP scenarios. Figure 1 shows the execution
time breakdown of the different scenarios chosen for Fermi architecture. For each
scenario, we present the baseline and the best execution times experimentally obtained
for any tested configuration value combination, together with the performance gain
percentages. The execution breakdown of Kepler is similar. For Fermi, the use of the
considered techniques turns out in a global performance gains from 21.5 to 53.9 %,
whereas for Kepler they are in the range from 33.75 to 58.53 %.

The joint use of these optimization techniques not only returns performance
improvements in the total execution time of the GPU implementation, but also it
always improves the execution time of each kernel independently (see non-white
boxes in Fig. 1). Comparing the best values of the configuration parameters with the
results for baseline values, we obtain the following performance gains for Fermi: (1)

123

794 H. Ortega-Arranz et al.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

24k-2deg

24k-20deg

24k-200deg

49k-2deg

49k-20deg

49k-200deg

98k-2deg

98k-20deg

98k-200deg

T
im

e
(s

ec
on

ds
)

Execution times of the different APSP scenarios (Fermi architecture)

53.9% 37.5% 21.5%

44% 35.7% 36.3%

40.1% 33.9% 45.2%

Graph scenarios (size - fan-out degree)

Relax
Minimum

Update
Rest

Fig. 1 Execution time breakdown of the APSP kernels as well as other operations (data transfers) on the
different scenarios, and the performance gain percentages for Fermi architecture between the baseline (left
column) and the best (right column) configurations

relax kernel from 12 to 47.2 %, (2) minimum kernel from 25.4 to 48.5 %, and (3)
update kernel from 29.2 to 54.4 %. For Kepler, the performance gains are as follows:
(a) relax kernel from 28.8 to 62.4 %, (b) minimum kernel from 27.1 to 43.8 %, and (c)
update kernel from 27.3 to 45.3 %.

Additionally, the use of the concurrent kernel technique has significantly reduced
the memory transfer times between CPU and GPU (see the white boxes in Fig. 1).
This transfer time reduction is due to the fact that it is more efficient to transfer
bigger data sets than a lot of smaller data sets. Due to the data offloading-transfer
management chosen for our implementation, the higher the number of concurrent
kernels, the bigger the amount of data in a single transfer, and the less transfer iterations
needed.

Optimal values for configuration/optimization techniques. Table 2 shows the best
and the baseline values of CUDA parameters for the APSP kernels. The first column
contains the graph properties, n and d(G). The remaining ones show the best values
found for the studied parameters with the performance gain between the best and the
baseline configuration. These optimal values match the ones predicted through the
kernel characterization (see Sect. 4).

Summary of optimization guidelines. For those kernels of any application that
fulfill the same characterizations presented in Table 1, we expect that they will present
the same performance behavior when using the same configuration values. Thus, we
can extrapolate the following optimization guidelines:

1. Use the minimum size that maximizes the occupancy for kernels with a: (i) Full-
coalesced access pattern, a low CLr, and a low DS (see all scenarios of update
kernel in Table 2c). (ii) Medium-coalesced access pattern, a low CLr, and a low
DS (see 24k-scenarios of relax kernel in Table 2a). (iii) Full-coalesced access
pattern, a medium CLr, a low DS, and high stressing ratio (see 98k-scenarios of
minimum kernel in Table 2b).

123

Optimizing an APSP implementation for NVIDIA GPUs 795

Table 2 The best values of configuration parameters (threadblock size, number of concurrent kernels, and
L1 cache state) obtained experimentally for the relax, minimum and update kernels and their percentage of
performance gain with respect to the baseline configuration

Graph properties Fermi GF110 Kepler GK104

(a) Relax kernel

24K-nodes deg2 192-8-Increased→ 41.4 % 128-4-Increased→ 35.3 %

24K-nodes deg20 192-4-Increased→ 16.5 % 128-4-Increased→ 28.8 %

24K-nodes deg200 192-1-Increased→ 12.0 % 128-1-Increased→ 30.8 %

49K-nodes deg2 192-4-Increased→ 35.4 % 256-4-Increased→ 34.3 %

49K-nodes deg20 192/256-2-Increased→ 28.2 % 256-2-Increased→ 38.3 %

49K-nodes deg200 256-1-Increased→ 34.0 % 256-1-Increased→ 49.4 %

98K-nodes deg2 192-8-Increased→ 39.7 % 256-8-Increased→ 40.9 %

98K-nodes deg20 256-2-Increased→ 34.8 % 256-2-Increased→ 48.9 %

98K-nodes deg200 384-1-Increased→ 47.2 % 256-1-Increased→ 62.4 %

Baseline configurations 768-1-Normal 1024-1-Normal

(b) Minimum kernel

24K-nodes deg2 128-8-Increased→ 48.5 % 96-8-Increased→ 43.8 %

24K-nodes deg20 128-4-Increased→ 41.6 % 96-8-Increased→ 38.1 %

24K-nodes deg200 128-4-Increased→ 41.1 % 96-8-Increased→ 35.5 %

49K-nodes deg2 128-4-Increased→ 34.7 % 96-8-Increased→ 40.5 %

49K-nodes deg20 128-2-Without→ 30.0 % 96-4-Increased→ 34.1 %

49K-nodes deg200 128-2-Without→ 30.5 % 96-4-Increased→ 34.7 %

98K-nodes deg2 192-4-Without→ 30.0 % 128-4-Increased→ 36.8 %

98K-nodes deg20 192-2-Without→ 25.4 % 128-2-Without→ 27.1 %

98K-nodes deg200 192-2-Without→ 26.0 % 128-2-Without→ 28.1 %

Baseline configurations 768-1-Normal 1024-1-Normal

(c) Update kernel

24K-nodes deg2 192-8-Increased→ 54.4 % 128-8-Increased→ 45.3 %

24K-nodes deg20 192-8-Increased→ 45.5 % 128-8-Increased→ 36.8 %

24K-nodes deg200 192-8-Increased→ 45.0 % 128-8-Increased→ 34.5 %

49K-nodes deg2 192-8-Increased→ 44.6 % 128-8-Increased→ 37.4 %

49K-nodes deg20 192-8-Increased→ 37.4 % 128-8-Increased→ 28.6 %

49K-nodes deg200 192-8-Without→ 38.1 % 128-8-Without→ 29.6 %

98K-nodes deg2 192-8-Without→ 41.0 % 128-8-Without→ 40.2 %

98K-nodes deg20 192-8-Without→ 29.2 % 128-8-Without→ 27.3 %

98K-nodes deg200 192-8-Without→ 32.0 % 128-8-Without→ 30.4 %

Baseline configurations 512/768-1-Normal 1024-1-Normal

2. Use lower sizes than the minimum one that maximize the occupancy for: Full-
coalesced patterns with a medium CLr, a low DS, and a low/medium st kernels
(see 24k and 49k scenarios of minimum kernel in Table 2b).

123

796 H. Ortega-Arranz et al.

3. Jump to higher maximizing occupancy sizes from the minimum one for: Medium-
coalesced patterns with a low CLr, and a medium/high DS kernels (see 49k and
98k-scenarios of relax kernel in Table 2a).

4. Increase the L1 cache size for non-high stressing situations for the GPU, or high
data sharing situations. As predicted, the use of a bigger cache L1 size speeds up
the execution time compared with the normal size configuration, because thrash-
ing effects are alleviated, and compared with a deactivated cache configuration,
because the global memory requests are slower than cache ones. That is the case
of 24k-scenarios (low st (G)) and most of the 49k-scenarios (medium st (G)), and
the 98k-scenarios of relax kernel (high DS).

5. Deactivate the L1 cache size when the GPU enters in a high stressed state with
non-high data sharing. In the 98k-scenarios (high st (G)) with non-high DS, the
number of memory accesses is increased, due to the thrashing effect. As it was
predicted, in order to alleviate the memory traffic, it is better to disconnect the L1
cache, due to the reduction of the transaction segment size.

Concurrent kernel technique. The results suggests that the use of the concurrent
kernel execution with the other two techniques does not interfere with the predictions
made. In all cases, the best configuration values using only one concurrent kernel
matches the same value using more concurrent kernels.

Using this technique, a performance improvement in all scenarios is obtained; up
to 52.8 % for Fermi, and up to 44.3 % for Kepler (both cases for the update kernel
in 24k-nodes deg2), with the exception of the deg200 cases for the relax kernel. In
there, it was better to leave a sequential-kernel execution instead launching concurrent
kernels. This occurs because the number of memory accesses significantly increases
when each thread is looking for the “200” successors of its corresponding frontier
node (see line 3 of Alg. 1 (left)). The minimum kernel has also to carry out more
memory accesses when calculating the minimum value for graphs with bigger d(G)

because there are more reached nodes with tentative distance values to compute in
each iteration. This effect can be seen in the deg200 scenarios, where the optimal
concurrent kernel number is lower compared to the other cases. Otherwise, for the
update kernel, the increment of d(G) of each graph does not lead to more memory
accesses, so the optimal number of concurrent kernels is the same for all cases.

Following these results, we can include into the programmer guidelines the recom-
mendation of reducing the number of concurrent kernel deployment for kernels with
big number of memory accesses.
Similar performance behavior for Fermi and Kepler. Although each architecture
has its own values that maximize the occupancy, both architectures have presented a
similar behavior in our experimentation. We can observe from Table 2 that the optimal
values for all kernels deployed on both architectures follows the guidelines described
in Sect. 4. Thus, we conclude that the lessons learned described above can be applied
to any Fermi and Kepler.

7 Conclusions

This paper shows how the combined use of different configuration and optimization
techniques can significantly enhance the kernel performance of a GPU solution. When

123

Optimizing an APSP implementation for NVIDIA GPUs 797

applied to the our non-synthetic problem case study, the APSP problem, we obtained a
global performance improvement up to 62 % compared with baseline configurations.
We have shown how the kernel characterization technique was a useful procedure to
predict the configuration parameter values for the threadblock size and the cache L1
state, leading to significant performance improvement in NVIDIA GPUs in the APSP
problem. We have shown that the CUDA recommended values are not always the
proper choice, and due to the big search space of possible combinations, we find these
predictions and guidelines very helpful for non-expert CUDA programmers, or even
for auto-tuning tools that aim to automatically configure the kernel execution for an
optimal performance. Regarding to the concurrent kernel technique, the experimental
results suggest that its use does not interfere with the predictions of the kernel charac-
terization criteria. This technique results more profitable for kernels with few memory
accesses.

Our future work includes to extend this experimentation for other non-synthetic
applications with different kernel characterizations. Finally, an interesting work would
be to adapt an analyzer already present scientfic community in order to automatically
obtain the kernel characterization needed to apply our prediction values.

Acknowledgments This research has been partially supported by Ministerio de Economía y Competitivi-
dad (Spain) and ERDF program of the European Union: CAPAP-H4 network (TIN2011-15734-E), MOGE-
COPP project (TIN2011-25639); and Junta de Castilla y León (Spain) ATLAS project (VA172A12-2).

References

1. Barceló J, Codina E, Casas J, Ferrer JL, García D (2005) Microscopic traffic simulation: a tool for the
design, analysis and evaluation of intelligent transport systems. J Intell Robot Syst 41:173–203

2. Cormen TH, Stein C, Rivest RL, Leiserson CE (2001) Introduction to algorithms, 2nd edn. McGraw-
Hill Higher Education, Burr Ridge, Il 60521

3. Crauser A, Mehlhorn K, Meyer U, Sanders P (1998) A parallelization of Dijkstra’s shortest path
algorithm. In: Brim L, Gruska J, Zlatuška J (eds) Mathematical foundations of computer science 1998,
LNCS, vol 1450. Springer, Berlin, pp 722–731

4. Dasgupta A (2011) CUDA performance analyzer. Ph.D. thesis, School of Electrical and Computer
Engineering, Georgia Institute of Technology

5. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1:269–271
6. Farooqui N, Kerr A, Diamos G, Yalamanchili S, Schwan K (2011) A framework for dynamically

instrumenting GPU compute applications within GPU Ocelot. In: Proceedings of 4th workshop on
GPGPU, GPGPU-4, x. ACM, New York, NY, pp 9:1–9:9

7. Grauer-Gray S, Xu L, Searles R, Ayalasomayajula S, Cavazos J (2012) Auto-tuning a high-level
language targeted to GPU codes. InPar 2012:1–10

8. Harris M (2008) Optimizing parallel reduction in CUDA. NVIDIA
9. Kirk DB, Hwu WW (2010) Programming massively parallel processors: a hands-on approach. Morgan

Kaufmann, San Francisco, CA, USA, p 258
10. Martín P, Torres R, Gavilanes A (2009) CUDA solutions for the SSSP problem. In: Allen G, Nabrzyski

J, Seidel E, van Albada G, Dongarra J, Sloot P (eds) Computational science—ICCS 2009, LNCS, vol
5544. Springer, Berlin, pp 904–913

11. Nobari S, Lu X, Karras P, Bressan S (2011) Fast random graph generation. In: Proceedings of 14th
international Conference on EDBT/ICDT ’11. ACM, NY, pp 331–342

12. Ortega-Arranz H, Torres Y, Llanos DR., Gonzalez-Escribano A (2013) A new GPU-based approach to
the shortest path problem. In: High performance computing and simulation (HPCS), 2013 international
Conference on, pp 505–512

123

798 H. Ortega-Arranz et al.

13. Rétvári G, Bíró JJ, Cinkler T (2007) On shortest path representation. IEEE ACM Trans Netw 15:1293–
1306

14. Torres Y, González-Escribano A, Llanos DR (2012) uBench: performance impact of CUDA block
geometry. In: Techniocal report IT-DI-2012-0001, Universidad de Valladolid

15. Torres Y, Gonzalez-Escribano A, Llanos DR (2013) uBench: exposing the impact of CUDA block
geometry in terms of performance. J Supercomput 65:1–14

16. Williams S, Waterman A, Patterson D (2009) Roofline: an insightful visual performance model for
multicore architectures. Commun ACM 52(4):65–76

123

	Optimizing an APSP implementation for NVIDIA GPUs using kernel characterization criteria
	Abstract
	1 Introduction
	2 Related work
	3 GPU parallel version of Dijkstra's algorithm
	4 Kernel characterization
	4.1 Input set parameters
	4.2 APSP kernel characterization
	4.3 APSP predicted values

	5 Experimental setup
	5.1 Methodology, platform, and input sets
	5.2 Considered values for CUDA configuration/optimization techniques

	6 Experimental results and their evaluation
	7 Conclusions
	Acknowledgments
	References

