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Abstract 

The adaptation of energy production to demand has been traditionally very important for utilities 

in order to optimize resource consumption. This is especially true also in microgrids where many 

intelligent elements have to adapt their behaviour depending on the future generation and con-

sumption conditions. However, traditional forecasting has been performed only for extremely 

large areas, such as nations and regions. This work aims at presenting a solution for Short-Term 

Load Forecasting (STLF) in microgrids, based on a three-stage architecture which starts with pat-

tern recognition by a Self-Organizing Map (SOM), a clustering of the previous partition via k-

means algorithm, and finally demand forecasting for each cluster with a MultiLayer Perceptron. 

Model validation was performed with data from a microgrid-sized environment provided by the 

Spanish company Iberdrola. 
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1. Introduction 

Electricity generation in the classical model of electric power systems is centralized in a very 

small number of elements, big power plants, which are normally located far away from final 

users. This model, while presenting many advantages for facilitating control and management 

of energy production, results in several problems such as transportation losses (caused by the 

long distances travelled by the energy) or problems, and long reaction times for adaptation of 

the network to dynamic requirements. 

During the last years, national governments and international organizations have been 

developing and implementing strategies to achieve energy efficiency and low carbon 

emissions, and in general terms, to guarantee a more sustainable energy production system. 

Particularly in Europe, the Strategic Energy Technology Plan (SET-Plan) [1] established by the 

European Commission has been developed to coordinate, manage and foster efforts to this end 

across the continent. The European Industrial Initiative on the electricity grid aims at 

developing,, demonstrating and validating, at scale, the technologies, system integration and 

processes to: enable the transmission and distribution of dispersed and concentrated renewable 

sources, integrate national networks into a truly pan-European network, optimise the 

investments and operational costs involved in upgrading the European electricity networks, 

guarantee a high quality of electricity supply to all customers and engage them as active 

participants in energy efficiency, and anticipate new developments such as the electrification of 

transport. In order to face all these challenges it is necessary to introduce enhanced intelligence 

and planning capabilities into the network, and therefore, to monitor and anticipate the 

behavior of demand and generation (renewable generation sources) using forecasting 

mechanisms, and specifically, the systems and algorithms studied along this paper. 

One of the technological solutions devised to facilitate adaptation of generation and demand is 

the Smart Grid (SG), an intelligent network based on Information and Communication 

Technologies to optimize the distribution grid. SGs are autonomic environments which not 

only can assist in the coordination of resources to accomplish collaborative tasks but are also 



capable of self-management to reduce operators’ interventions as much as possible. Tang et al. 

[2] present for instance an autonomic real-time transaction service that can dynamically 

discover grid services as participants to execute specified sub-transactions, coordinate these 

participants to achieve the real-time and transactional requirements, and assign priorities to 

schedule concurrent transactions. 

According to the Consortium for Electric Reliability Technology Solutions (CERTS), a micro-

grid is: “…an aggregation of loads and microsources operating as a single system providing 

both power and heat (...)” (Lasseter et al. [3]). A microgrid is conceived as a place to generate 

and consume energy more efficiently, and for that a microgrid needs support applications and 

services. 

One of those required support services is demand forecasting. In the case of microgrids, these 

forecasts are essential, allowing the precise adjustment of generation and consumption. While 

the state of the art is rich in the study of demand forecasting in large environments (nations or 

regions), there is a lack of scientific literature regarding demand forecasting in microgrids. The 

aim of this work is therefore to develop a forecasting method suitable for these microgrid-sized 

environments and evaluate its results, including also a methodology to control error evolution 

depending on the amount of data available. 

After this introduction, Section 2 presents the state of the art of models based on ANN, which 

are not applied in microgrids. Section 4 presents the proposed architecture and research data, 

and Section 3 details the models used in this architecture. Section 5 presents the results 

obtained, which show that the model described is optimal. Section 6 shows the distribution of 

errors, errors in a weekday and month, and the dependence of the error on the number of 

learning patterns. Finally, Section 7 summarizes the conclusions and future work. 

2. Related Works 

Utilities are always trying to adjust power production to the specific requirements of the 

demand they are covering, since the storage of electrical energy is expensive. This is also true 

for microgrids, where load curves are much more irregular and dynamic than national or 



regional environments (due to the disaggregation of loads), and therefore more difficult to 

forecast. Some initial works regarding data processing in microgrid environments are being 

carried out. For instance, Venayagamoorthy and Welch [4] present two energy dispatch 

controllers for use in a grid-independent photovoltaic (PV) system; the solution of the energy 

dispatch controllers presented in this paper is based on an ANN. Hernández et al. [5] show a 

data processing system to cluster energy consumption patterns in industrial parks (potential 

microgrids). 

There are different criteria to classify the demand forecasting models traditionally applied to 

large areas. With regard to the forecasting interval, different typologies can be identified: very 

short-term forecasting; short-term forecasting (STLF); and  

.3medium-term [6] and long-term forecasting [7]. Regarding the number of forecasting values, 

there are two main groups: a single value or more-than-one value. 

Therefore, it is possible to forecast a value or multiple values. Concerning the first group, 

different techniques using ANN can be found in the literature; Park et al. [8] and Ho et al. [9] 

use ANNs for forecasting certain hours of the following day and peak load respectively; Ho et 

al. [10] and Dash [11] apply the forecasting of the peak load to feed an expert system and 

obtain a load curve; in Drezga and Rahman [12,13] and McMenamin and Monforte [14] 

multiple ANNs in parallel based on a single value are used.  

Regarding the second group, that is forecasting using multiple values, some good examples can 

also be identified: Lee et al. [15] divide the day into three periods and make an independent 

forecasting; Lu et al. [16] use data from two utilities, adjusting each model separately; 

Papalexopoulos et al. [17] and Bakirtzis et al. [18] use nonlinear functions of temperature and 

setting of holidays; finally, Lou and Dong [19] present a real application based on type-2 (T2) 

fuzzy sets. Deihimi and Showkati [20] present the application of Echo State Network (ESN) to 

the STLF problem in power systems for 24-h ahead predictions while using the least number of 

inputs: current-hour load, predicted target-hour temperature, and only for 24-h ahead 

forecasting, day-type index. 

http://www.sciencedirect.com/science/article/pii/S0952197609001572
http://www.sciencedirect.com/science/article/pii/S0952197609001572


Self-Organizing Maps (SOM) have also been used in different ways in the past; for example, 

Marín et al. [21] apply SOM for the classification of historical data; Joya et al. [22] use SOM 

for forecasting the load and analysis of contingencies; Mori and Itagaki [23] use SOM for the 

classification of data and combines it with Radial Basis Function Network (RBFN); Carpinteiro 

and Reis [24] apply two SOM in cascade; Wang [25] uses SOM and fuzzy for forecasting; Fan 

and Chen [26] show two different stages in the forecasting process: a first stage with SOM is 

used to classify and in the second, 24 Support Vector Machine (SVM) are applied to every 

group. In Farhadi and Tafreshi [27], SOM is used to classify normal and abnormal days, and a 

MultiLayer Perceptron (MLP) to manage temperature data. From a different perspective, Fan 

et al. [28] use a particular method to forecast the price of electricity with SOM and SVM. 

Valero et al. [29] make classifications based on the first 8, 10 and 12 hours of day in order to 

compare the errors among them. Che et al. [30] use presents an adaptive fuzzy combination 

model based on the SOM, the Support Vector Regression (SVR) and the fuzzy inference 

method. 

Regardless of the model used in the prediction, all works previously presented are applied to 

large areas or whole countries. Some other particular examples of forecasting in large areas 

with specific information about consumption values are the following ones: Chu et al. [31] 

handle values of 33000 MW to forecast the peak load; Wang et al. [32] manage high 

consumption in two large areas of China; on the other hand, Rejc and Partos [33] predict 

consumption between 1000 and 1500 MW in Slovenia, and Kebriaei et al. [34] show a large 

area of Iran with an approximate consumption of 1550 MW. Therefore, it was found necessary 

to extend this knowledge domain in order to study forecasting in smaller and less-aggregated 

environments which might have higher variability in the demand curve.  

Demand forecasting is very important but not only in the context of large regions but also in 

disaggregated environments such as microgrids. That is why our work is focused on 

microgrids, a paradigm that is starting to be used in research but requires supporting tools -

which still have to be developed- in order to reach its full potential. The work is completed 

with a study of error control in ANN models. 



3. Computational Tools 

This section shows the computational tools on which our architecture is based. In particular, 

the mathematical concepts of SOM model, clustering (k-means algorithm) and MLP model are 

presented. 

3.1. SOM 

SOM is one of the most popular ANNs; it was first described by Kohonen, who observed that in 

many regions of the brain cortex of higher animals there are areas where neurons that detect 

traits are distributed in a topological order (Kohonen [35]). The representation of the 

information in the brain cortex appears often organized spatially, and that is the real potential 

of SOM models (Kohonen [36,37]). 

As shown in Figure 1, neurons are arranged in a two-layer architecture. The first is the input or 

sensory layer, consisting of m neurons (one for each input variable). The second layer forms a 

map of features and represents the space where processing occurs; this layer is usually square 

(mxm), but it may be arranged in a different way.  

Input neurons are labeled with the index k (1≤k≤m), and nxxny map neurons with a pair of 

indices i≡(i,j) (1≤i≤nx,1≤j≤ny), which determines its spatial location. Each input neuron (k) is 

connected to all the neurons (i,j) on the map by a synaptic weight (wij). In the learning phase, 

each neuron identifies particular features in the input space. Once an input vector x(t) is 

submitted and processed, the weight of winner neuron is modified in order to assimilate x(t). 

This process is repeated for a multitude of input vectors; when it is completed, the model 

identifies the specific domains (Voronoi domains) of the input space (Kohonen [38]). 

3.2. Clustering: k-means algorithm 

A Q clustering means partitioning a data set into a set of clusters Qi, i=1,…,C; a widely 

adopted definition of optimal clustering is a partitioning that minimizes distances within and 

maximizes distances between clusters. An example of a commonly used algorithm is the k-

means, which minimizes an error function (Vesanto and Alhoniemi [39]): 
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where C is the number of clusters, and ck is the center of k cluster. k-means is one of the 

simplest unsupervised learning algorithms that solve the well-known clustering problem. The 

procedure follows a simple and easy way to classify a given data set through a certain number 

of clusters fixed a priori. The main idea is to define k centroids, one for each cluster. 

In order to measure the strength of the associations of the potential clusters, a validation index 

is needed. In this work, we will use the Davies-Bouldin index (Davies and Bouldin [40]). This 

validation index is the most suitable for the evaluation of k-means partitioning since it provides 

low values, indicating good clustering results for spherical clusters, as some studies, such as 

Shim et al. [41], have demonstrated. Concretely, they compared several indexes. 

k-means algorithm is currently being employed in different areas. For instance, Lee and Park 

[42] use k-means for image processing; Bishnu and Bhattacherjee [43] use k-means to forecast 

failures in software modules; on the other hand, Jiang et al. [44] use this algorithm for the 

detection of events in video images, and Nourbakhsh et al. [45] use it to identify customer 

types of unknown load profiles.  

Vesanto and Alhoniemi [39] show that clustering of the SOM renders better results than 

clustering the data directly. The primary benefit of the two-level approach (SOM+clustering) is 

the reduction of the computational cost; even with relatively small number of samples, many 

clustering algorithms (specially hierarchical ones) become intractably heavy; for this reason, it 

is convenient to cluster a set of prototypes rather than clustering the data directly. Another 

benefit is noise reduction; after SOM, the prototypes are local averages of the data and, 

therefore, less sensitive to random variations than the original data. 

3.3. MLP 

Perceptron is a neural model that was introduced by Rosenblatt in the late fifties; its structure 

is based on the processing stages of sensory systems. MLP model -presented by Rumelhart 

(Rumelhart et al. [46])- has a topology of N layers, with off-line supervised learning and is 



built by adding layers to a single Perceptron. MLP architecture (Figure 2) is used in economic 

environments to detect crisis, pattern recognition, image segmentation, data compression, 

applications in robotics, coding information, text translation of spoken language, applications 

in cardiology, etc. 

The aim of the learning phase in MLP is to reach an optimal compromise in the adjustment of 

the weights in the different layers, using for this purpose the backpropagation algorithm. For 

minimizing the error the gradient descent method is used: a gradient to adjust the weights of 

the output layer (w'kj) and a gradient to adjust the hidden layer (wji). In order to achieve this 

goal, pairs of input-target patterns are presented. 

4. Architecture Model 

4.1. Research data 

The Spanish utility Iberdrola has facilitated the set of data necessary to do this research. This 

dataset includes historical information from 1 January 2008 to 31 December 2010, from the 

provincial capital of Soria (Castilla y León, Spain). The range of consumption varies from 7 to 

39 MW, definitely much lower than values typically observed in a large aggregated 

environment. Its load curve presents all the features of that of a microgrid: moderate/small 

consumption figures, complex and highly variable shape, connected or disconnected to the 

grid. 

From all the data, 70% were used for learning the global model, and the remaining 30%, for the 

prediction in the operation phase of the model. 

4.2. Model 

Hernández et al. [47] noted that all “smart models” (Smart City, SG, etc.) are aimed at 

achieving a set of common goals: sensing the environment, monitoring the operation and 

performing intelligent adaptation; the referenced work presents the umbrella term Smart World, 

meaning a framework for the interconnection and cooperation of several Smart Systems. The 



authors present a study of the relationship between weather variables and electric load at 

microgrid scale, demonstrating that, even in a small scenario, this relationship still exists. SGs, 

systems capable of precise adaptation to particular local conditions, can greatly benefit from 

understanding the small-scale influence of weather (and other variables) in electric load. This is 

important because most of current SG deployments do not actually monitor weather variables 

nor employ them in their adaptation and prediction tasks. The correlation could potentially 

change with time in the same way that it has changed in the past; the place where the 

correlation tests are performed also influences the strength of this relationship, as it will be 

stronger in an environment with extreme weather than in a region with stable warm weather; 

therefore, as time and physical location are essential factors, applications should evolve with 

time, and focus on the site specific to the study, in order to obtain accurate information on the 

changing relationship between weather variables and electric power demand.  

Most of the algorithms currently employed in power grids are designed to operate at a nation-

wide scale, and it is necessary to adapt them for operation in small environments (microgrids, 

Smart Buildings, etc.). This is especially true for load forecasting algorithms, and there is still a 

lot of work to do in order to be able to predict loads at small microgrids and even single nodes 

[48], but it is also true that new control algorithms have to be designed to operate at a 

extremely small scale. The study reported along [47] represents a very important step, since 

local weather variables and other parameters will be an extremely valuable input for node 

load/production forecast.    

Hernández et al. [49] also confirm that demand forecasting models have focused on big regions 

or even entire countries. With the birth of the new energy environments (microgrids and Smart 

Buldings), the chance arises to conduct a more detailed study of the variables affecting electric 

load at smaller, localized areas.  

The model developed consists of three stages as shown in Figure 3a. All the stages are based 

on the application of well-known algorithms, but their innovative combination in this complex 

architecture brings unique results. The first stage uses historical data (calendar and electricity 

consumption) to classify the patterns of different days using a SOM. In the second stage, the 



SOM results are clustered using the k-means algorithm, in order to obtain the optimal neural 

classification. These two clustering stages operate in cascade in order to provide a better 

clustering than they can when operating on their own. The SOM is capable of identifying 

similarities among the different load patterns, and form different clusters. The SOM network 

uses the entire data set, it is not necessary to introduce the patterns with order. However, its 

output does not give information about how similar these clusters are one to another. Then, the 

k-means algorithm is capable of identifying these similarities among different clusters, and 

group similar clusters together. An easy explanation of the process is that the SOM operates 

grouping all the training patterns into mxn clusters. Each of these clusters is represented in the 

feature space by one “prototype” pattern which is effectively the “hyper-centroid” of the 

cluster, effectively reducing the dimension of the training sample that k-means has to face. 

Then, the k-means algorithm is used to cluster the SOM prototypes with better results. The 

input parameters given to k-means are the same ones than those used in the SOM network, 

completed with an additional variable which represents the number of the SOM neuron to 

which each pattern has been assigned in the first stage. 

In the third stage, a dedicated MLP for each cluster is trained to properly forecast the load 

curve.  

In the operation phase (once the networks have been trained), the cluster selector decides the 

appropriate cluster for the forecasting day, so its corresponding MLP is executed in order to 

obtain the forecast. Then, the necessary data is extracted from the database, including a set of 

variables that will be detailed later in this Section. 

The complete algorithm is shown in Figure 3b. Its different sub-tasks are: 

 Data selection: when the prediction starts a data selection process is activated,  to 

connect with the database andretrieve the information from the different networks (see 

next step). Moreover, the process formats the dataset according to the learning strategy 

configured for each network. 



 Data in database: the database contains raw data collected by several sensor networks 

(electric, weather, calendar, etc.). The database is therefore connected with different 

smart meters and dataloggers in order to obtain the data. 

 Data quality: this process detects outliers with Principal Component Analysis (PCA), as 

shown in [50]. If the retrieved data is labeled as outlier, it is discarded the process “data 

selection” is called again, so a new set of data is retrieved. 

 Creation of the SOM network: the main parameters of the SOM used in this research are 

the following ones: the SOM dimension is 5x5 (25 neurons), which allows a good data 

dispersion; the shape of the neuron connections is hexagonal; the neighbourhood 

function employed is Gaussian; the initializing vector is linear; and the learning 

algorithm is a batch type. 

 Training of the SOM network: the SOM network starts the learning stage, with the 

appropriate data. Electricity demand is dependent on the month, day of the week, 

workability and electricity demand from previous days, as shown in ([5], [13], [21], 

[29], [47] and [49-50]); therefore the number of inputs is 27, and the input variables of 

the SOM are, for each input patter: month (January=1,...,December=12); weekday 

(Sunday=0,...,Saturday=6); workability (holiday=1 and workingday=2); and 24 values 

of hourly electricity consumption (daily load curve) of the day before the one to be 

forecasted. 

 k-means algorithm over SOM network: the result of the SOM’s pattern recognition is 

used as an input to the k-means algorithm, whose configuration parameters are: 

maximum number of cluster, maximum number of trials and k-means algorithm batch 

type; the clustering is done in an unattended way. García-Lagos et al. [51] employ a 

SOM network for pattern recognition, then apply a manual clustering to create 

“superclasses” grouping several neurons together; the present work applies k-means 

after the SOM to perform this clustering task automatically. 

 Partitioning: in a similar way to [5], the partition generated is studied in order to design 

a cluster selector, which allows the identification of the cluster one specific day belongs 



to, according to its calendar parameters (Monday or Friday, Holiday or not, etc.); for 

example, a given cluster of days with low consumption is most likely to contain 

Sundays and holidays; then, the cluster selector is designed to assign Sundays and 

holidays to this cluster. 

 Creation of the MLP networks: the MLP network is created. To optimize the topology 

of the MLP, we used a script varying all possible parameters, obtaining the following 

optimal configuration: the learning function used was the Bayesian Backpropagation 

Regulation; the function network performance was the Sum Squared Error; the number 

of entries in the network was 29; and the number of neurons of the hidden layer was 8, 

6 and 10 in the clusters 1, 2 and 3 respectively. 

 Learning of the MLP network: the MLP network starts the learning stage, with the 

appropriate data. In the MLP architecture (shown in Figure 4) periodic variables (day of 

the week and month) are supplied in the form of values of sines and cosines; it has been 

demonstrated that this transformation improves the performance, as shown by Drezga 

and Rahman [52] and Razavi and Tolson [53]. 

In a similar way to “Learning of the SOM network”, the model takes input values of 

electric consumption, day of the week and month of the day before the day to forecast; 

in addition, the estimation of the aggregated total consumption of the day to forecast is 

also fed into MLP. This input parameter list have been systematically optimized for this 

specific scenario and dataset. Therefore, variables in the input and output layer are the 

following ones: 

 Input: 

o The electrical consumption is dependent on the consumption of the previous 

day, then, 24 values of the load curve (L(d-1)1,L(d-1)2,…,L(d-1)24) of day d-1 are 

used (day before the forecasting day d).  

o The electrical consumption is dependent on the day of the week of the 

previous day, then, day of week (referring to d-1) is used, entered as two 



different variables, in the form of sines and cosines, by means of 

sin[(2πday)/7](d-1) and cos[(2πday)/7](d-1).  

o The electrical consumption is dependent on the month of the previous day, 

then, month (referring to d-1) is used, entered as two different variables, in 

the form of sines and cosines, by means of sin[(2πday)/12](d-1) and 

cos[(2πday)/12](d-1).  

o Hernández et al. [54] present a two-stage model which first estimates some 

unknown values of the day to be forecasted (for example the aggregated 

demand -total load-) before stimating the hourly load. Following this model, 

Next Day’s Total Load (NDTLd) is used. Although there are many models 

available to estimate NDTLd, as shown in Hsu and Chen [55], the aim of this 

paper is to present a simple architecture that uses a specific set of variables 

and yields excellent results; therefore, an error ranging ±2% with respect to 

the real value is added and the resulting values are used as input to validate 

the architecture proposed. 

 Output: 24 values of the load curve (Ld1,…,Ld24) corresponding to the forecasting 

day (d). 

 Cluster selector: cluster selector identifies the cluster to which the next day belongs 

(forecasting).  

 STLF with MLP: with the data obtained (from the “data in database” process) and the 

selected cluster, the MLP network (MLP of the winner cluster) is executed tothe 

forecast. 

 

 

 

 



 

Complementing Figure 3b, the on-line scheme of operation of the predictor as shown in Figure 

5 (to forecast the d day). The predictor selects the input data referring to d-1. In parallel, the 

cluster selector decides to which cluster belongs the d day. After this decision, the MLP of the 

selected cluster is executed along with the data selected by the predictor and the estimation of 

NDTLd.  

Formulas in [56] are employed to evaluate the performance of the model. During the operation 

phase, where the forecasting of d day is obtained, the Mean Absolute Percentage Error 

(MAPE) is calculated using: 
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where Ld(i) is the value measured for t=i and d day, and )i(L̂d  
is the estimated value.  

The mean error of all the days of the operation phase is given by: 
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where k is the number of days to forecast.  

The error for each of the 24 hours of the load curve in the operation phase is given by: 
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where n is the size of the operation phase, i=1, ..., 24, and MAPEik is the error for i hour and k 

day. 



5. Results 

Along this section, the results of the operation phase are presented. The 70% of the data 

(without outliers) are used to be classified by SOM; the result of this classification is clustered 

by k-means algorithm, and finally the data belonging to each cluster are used to train a MLP 

linked to each cluster. The remaining 30% of the data will be used to obtain the prediction of 

load curves in the operation phase. 

5.1. Pattern recognition with SOM 

Figure 6 shows an activation scheme of the SOM map. In this Figure, hexagons represent 

neurons and links between neurons, so each neuron hexagon is surrounded by link hexagons 

representing connections with neighbor neurons. The result is that a 5x5 neuron grid is 

represented by a 9x9 hexagon grid, with five neurons in each row and column, and the rest of 

the cells representing the connections among them. 

Then these hexagons are shaded to represent in addition the number of patterns classified by 

each neuron and the strength of each link. Finally, the image is colored to superimpose a 

specific example of the classification of holiday patterns (in red) vs. working days patterns (in 

blue):  the bigger the colored neuron, the larger the number of patterns classified in that neuron. 

A visual analysis of the figure shows that holidays tend to be located in a particular area of the 

SOM (they are classified in neurons at the top-left corner of the map) and working days on a 

different one (classified in neurons at the bottom and right edges of the map). 

After preliminary series of analyses, the following results were found: regarding workability, 

holidays are separated from the working days; referring to months, months patterns with 

similar seasonality are grouped in proximal neurons; respect to the day of the week, patterns 

linked to Saturdays and Sundays are grouped in close neurons, while the rest of the days do it 

in a different way. 



5.2. Clustering with k-means 

The results obtained by the different evaluations of the clusters with k-means show that the 

optimal number of clusters is three. 

Once the clustering is done, it reminds visual conclusions that could be extracted after the 

phase of classify by SOM. The particularities of these clusters, including the number of neurons 

integrated in each of them are stated below: 

 Cluster 1: working days of January, February, March, April, November, December 

and October (from 15
th

 to 31
st
). Neurons: 3, 4, 5, 8, 9, 10, 13, 14, 15 and 20. 

 Cluster 2: Saturdays, Sundays and Holidays. Neurons: 1, 2, 6, 7, 11, 12 and 16. 

 Cluster 3: working days of May, June, July, August, September and October (from 

1
st
 to 14

th
). Neurons: 17, 18, 19, 21, 22, 23, 24 and 25. 

Figure 7 shows all the curves belonging to each of the three clusters; it is easy to identify the 

high similarity between curves of the same cluster, and the appreciable difference when 

compared with those of the other clusters. 

5.3. General results 

Once the three MLP networks have been trained with the set of patterns corresponding to each 

cluster, the operation phase is performed. The days to forecast (d) pass through the cluster 

selector, and it decides to which cluster belongs d. 

For each day to forecast, the load curve and its mean error of the day is calculated with (2). For 

example, in Figure 8 the evolution of errors in cluster 1 is represented with the mean, 

mean±standard deviation and mean±2xstandard deviation. On the vertical axis, the error per 

unit is shown and the abscissa axis represents the forecasting day. The labels on the graphic, 

for example “2 4/1 - 4 1”, can be interpreted as follows: “2” represents workability of the 

previous day; “4 /”corresponds to the month of the day to forecast (April); “/ 1” represents the 

day of the month to forecast; “4” designates the day of the week (Thursday) of the forecasting 

day; and “1” is workability of the forecasting day. The mean error in the operation phase for 



each cluster is obtained using (3), being 2.7615% for cluster 1, 3.1755% for cluster 2 and 

2.7159% for cluster 3. 

Most of the errors occur in the first interval, as shown in Table 1, in which the number of days 

with error is represented in the following ranges: mean and mean±standard deviation; mean 

and mean±2xstandard deviation; over the standard deviation and over the 2xstandard 

deviation. 

Figure 9 shows the errors per hours calculated with (4); for cluster 3, the highest percentage of 

error is shown in specific segments of the load curve (the two points with the lowest 

consumption and the two points with the highest consumption). The data corresponding to the 

error per hour (4) of each cluster are 2.7615% in cluster 1, 3.1755% in cluster 2 and 2.7159% 

in cluster 3. 

Figure 10 represents the forecasting curves of three days with a high percentage of error, each 

one belonging to a different cluster, where: a) 12/24/2010 (cluster 1) with an error of 4.529%; 

b) 6/24/2010 (cluster 2) with an error of 4.42%; and c) 6/28/2010 (cluster 3) with an error of 

5.1361%. The red curve in the figure shows the real curve (the curve that wants to be 

forecasted); the black one outlines the forecasting done and the green curves represent all the 

curves similar to the day that is forecasted (same day of the week and workability). 

On the other hand, Figure 11 shows the forecasting curves of three days with a low percentage 

of error (each belonging to a different cluster), where: a) 12/21/2010 (cluster 1) shows an error 

of 1.0925%; b) 7/24/2010 (cluster 2) presents an error of 1.6733%; and c) 8/25/2010 (cluster 3) 

shows an error of 1.4844%. 

6. Analysis of Results 

6.1. Distribution of errors 

As seen in Figure 8 and Table 1, mean errors of the day are included in the mean±standard 

deviation range, corresponding to errors between 4.01%–1.51% for the cluster 1, 4.29%–2.05% 

for cluster 2 and 3.89%–1.53% for cluster 3. These ranges can be considered acceptable. 



As seen in Figure 9 and Figure 10, the mean error per hours shows that the highest errors 

correspond to particular zones of the load curve for all clusters. Therefore, it is possible to use 

some information of the load curve to forecast, in connection with the aforementioned zones, 

which enables a more accurate prediction. 

6.2. Errors per day of week and month 

Figures 12, 13, and 14 show the evolution of mean error per days in every cluster (it appears 

per day of the week). It is necessary to emphasize that in cluster 2 (Saturdays, Sundays and 

holiday), holidays (not weekend) represent a very small number of days; that is why it has not 

been included in the figure. In all the clusters, every Friday (beginning of the weekend) 

normally has a behavior with less consumption than the rest of working days (from Monday to 

Thursday); for this reason, its mean error can be slightly higher in mean than that of the rest of 

the days. In clusters 1 and 3, the highest mean errors correspond to Friday, for the same reason 

mentioned above, and Monday tends to have lower consumption patterns because of the inertia 

of the weekend; that why, they are days more complicated to forecast with the information of 

the cluster. In cluster 2, the high errors of holiday days from Monday to Friday can be 

explained by the low number of patterns with similar characteristics in the learning phase. 

If the same study is done for months, mean error per month changes from 3.5302% to 2.199% 

in cluster 1, from 3.8811% to 2.3646% in cluster 2 and from 3.3739% to 2.2385% in cluster 3. 

From the monthly point of view, the forecasting can be considered optimum. 

6.3. Dependence of the error with the number of learning patterns 

It is important to understand the evolution of the error (operation phase – MAPE) with respect 

to the number of learning patterns. The aim of this section is therefore to know if there is a 

chance to get a sensible improvement on the learning phase using a larger dataset for training, 

and therefore to understand which is a good size of the training dataset. With this size, a 

“sliding window” can be implemented in order to always employ the fresher data available (to 

account for the dynamicity of the system) while still retaining enough historical data to 

properly train the forecaster.  



Hamamoto et al. [57] show the effect of the learning patterns with respect to the number of 

hidden layer neurons, paying special attention to the results when the number of features is 

large or when the number of learning patterns is small; that’s why Raudys and Jain [58] 

emphasize the importance of paying attention to design. Blamire [59] explores the impact of 

the relative size of the sample sets used to define candidate classes in order to improve 

accuracy in the classification process using ANN techniques, suggesting that the network uses a 

lot of time in the formation of classes. Foody et al. [60] combine these results to use them in 

the imaging area, or in the area of medicine, as Figueroa et al. [61] show.  

For these reasons, it was considered very important to demonstrate the dependence of the mean 

error (operating phase) with the number of learning patterns (for each cluster), taking into 

account that network topology varies with the number of patterns. Table 2 shows the 

improvement of error percentage at the beginning of cluster 3 versus the other two clusters, 

because load curves in cluster 3 are more similar to each other. 

Figure 15 shows the evolution of the error versus the number of patterns for each cluster. Later, 

results are adjusted with the best fitting function for each cluster, the functions are: 

).(X.Y 484740014942      (5) 

).(X.Y 327580626818      (6) 

2012207.09005.39005.3 XXY     (7) 

where Y is the mean error in the operation phase and X represents the number of patterns in the 

learning phase; (5) corresponds to the cluster 1 (Figure 15a), (6) to the cluster 2 (Figure 15b) 

and (7) to the cluster 3 (Figure 15c). To compare the improvement, an architecture has been 

developed with a single MLP and the same variables. This model is trained with 730 patterns 

and an operation phase similar to the one presented in this work. Figure 15d represents the 

evolution of the error with respect to the number of patterns. MLP model has an error of 3.50% 

compared to 2.78% of cluster 1 (for 275 patterns); an error of 4.06% compared to 3.19% of 

cluster 2 (for 225 patterns); and an error of 4.27% compared to 2.73% of cluster 3 (for 200 

patterns). 



Figure 15d shows that MLP does not have a sensible tendency to decrease the error percentage 

above 700 patterns; however, the three clusters (sequence SOM+k-means+MLP) do have a 

tendency to improve, given that the test has a number of 275, 225 and 200 learning patterns for 

each one of the three clusters. Therefore, it has been demonstrated the improvement of the 

classification and subsequent clustering to forecast load curves, since each cluster is 

specialized in similar curves, obtaining smaller forecasting error. With 200 patterns, if 25 

patterns are added, the improvement is: 0.50% (cluster 1), 0.14% (cluster 2) and 0.10% (cluster 

3); the improvement of the model MLP (Figure 15d) would be 0.02%. 

Chan et al. [62] present a STLF model for a microgrid, using a Multiple Classifier Systems 

(MCS), with a set of learning data similar to the set used in this work, and a load curve with a 

peak of 2 MW, but with a phase operation of 20 days (shorter than the one presented here). The 

MAPE of this model for the operation phase is 15.12%, doing a combination with Radial Basis 

Function Neural Network (RBFNN); and 15.66%, doing a combination with Generalized 

Regression Neural Network (GRNN). In both models, MAPE is higher than even in the worst of 

our clusters (3.1755%), so we can conclude that our model is more efficient; moreover, it is 

necessary also to keep in mind that the number of patterns used along this work is much lower 

than the number used in other models. 

An et al. [63] propose a novel approach that combines a MLP with empirical mode 

decomposition based signal filtering and seasonal adjustment. The MAPE of this model for the 

operation phase is 1.07%-4.79%, MAPE is higher than even in the worst of our clusters. The 

work is applied to a large area, New South Wales. 

7. Conclusions and Future Works 

Microgrids are a reality, being physical spaces characterized by small electricity consumption 

compared to larger provinces or countries. Therefore, the development of new models based on 

ANN for STLF appears to be very attractive and show a margin of improvement. 

In this paper, a model based on three levels has been presented: a pattern recognition to classify 

with SOM, a clustering with k-means algorithm, and finally a MLP model for each of the 



clusters obtained in the clustering process. The model produces low errors compared to other 

simple models that are not specialized by means of classification and clustering. Moreover, a 

methodology to control the error evolution has been presented and shows the dependence of 

error (operation phase) on the number of patterns (learning phase), which has led to the usage 

of a “sliding window” for system training. 

In future works we will include new demand prediction models and generation in 

disaggregated environments. Several factors such as predictions using the information of the 

curve to be predicted will be added. Moreover, we will try to validate our system in other 

microgrid-sized environments. Continuing with the work of Marinescu et al. [64], we will 

prove local variables (for example the climatic ones of the microgrid). Marinescu et al. [64] 

demonstrate that a simple on-demand water heater (5 kW) switched on at a different time of the 

day can shift the overall demand with more that 10% for one hour, therefore, climatic variables 

must be employees in the models, therefore, climatic variables must be employees in the 

models. Tomic [65] focuses on the impact of forecasting errors on the economic effects of 

trading and balancing in the microgrid: while lower forecasting accuracy induces greater 

differences between forecasted and real consumption/generation, and hence higher need for 

balancing energy, higher forecasting precision may increase the cost of the system; the 

Microgrid System Operator (MSO) operates the local market and balances demand and supply. 
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Figure 1. SOM architecture. 

 

 

Figure 2. MLP architecture scheme: xi represents the input of the network, yi is the output of the hidden layer, zk is 

the output of the output layer, tk represents the target output, wji is the weight of the hidden layer, θj is the thresh-

old of the hidden layer, w'kj is the weight of the output layer and θ'k is the threshold of the output layer. 

 



 

Figure 3. a) General model; b) Complete algorithm 

 



 

Figure 4. MLP architecture. 

 



 

Figure 5. On-Line operation of the predictor. 

 

 

Figure 6. Activation map for workability.  

 

Figure 7. Load curves of three clusters: a) cluster 1; b) cluster 2; c) cluster 3. 



 

Figure 8. Errors per day in cluster 1. 

 

Table 1. Distribution of errors per days. 

CLUSTER 1 CLUSTER 2 CLUSTER 3 

Variable % Variable % Variable % 

Mean 2.76 Mean 3.17 Mean 2.71 

Std. Des. 1.25 Std. Des. 1.12 Std. Des. 1.18 

Over x1 Std. 11.88 Over x1 Std. 13.97 Over x1 Std. 13.97 

Between x1 Std. 81.18 Between x1 Std. 78.49 Between x1 Std. 76.34 

Under x1 Std. 6.69 Under x1 Std. 7.52 Under x1 Std. 9.67 

Over x2 Std. 4.95 Over x2 Std. 3.22 Over x2 Std. 5.37 

Between x2 Std. 95.04 Between x2 Std. 96.77 Between x2 Std. 94.62 

Under x2 Std. 0.00 Under x2 Std. 0.00 Under x2 Std. 0.00 

 



 

Figure 9. Errors per hours in cluster 3. 

 

 

Figure 10. Forecasting with high errors: a) cluster 1: 12/24/2010; b) cluster 2: 6/24/2010; c) cluster 3: 6/28/2010. 

 

Figure 11. Forecast with low errors: a) cluster 1: 12/21/2010; b) cluster 2: 7/24/2010; c) cluster 3: 8/25/2010. 



 

Figure 12. Errors per days: cluster 1. The vertical axis shows the forecasting error (per unit), and the abscissa axis 

represents the number of days forecasted for that day of the week. 

 

Figure 13. Errors per days: cluster 2. The vertical axis shows the forecasting error (per unit), and on abscissa axis 

the number of days forecasted for that day of the week is represented. 



 

Figure 14. Errors per days: cluster 3. The vertical axis shows the forecasting error (per unit), and on abscissa axis 

each the number of days forecasted for that day of the week is represented. 

 

 

Table 2. Dependence of the error on the number of learning patterns. NN: network number; Ptt: patterns; N: num-

ber of neurons; MAPE(%): mean error of total days in the operation phase; Std. Desv. (%): standard deviation of 

the operation phase (MAPE). 

CLUSTER 1 CLUSTER 2 CLUSTER 3 

NN Ptt N MAPE 
 

Std. 
Desv

. 

NN Ptt N MAPE 
 

Std. 
Desv

. 

NN Ptt N MAPE 
Std. 
Des

v 

1 50 3 9.63 7.13 1 50 3 7.58 5.60 1 50 3 4.50 2.55 

2 75 3 8.13 6.15 2 75 3 6.58 4.52 2 75 4 3.59 1.63 

3 100 4 5.53 3.45 3 100 4 5.39 3.29 3 100 4 2.90 1.45 

4 125 5 4.11 2.25 4 125 4 3.86 1.84 4 125 6 2.87 1.32 

5 150 6 4.10 2.21 5 150 4 3.51 1.50 5 150 8 2.83 1.31 

6 175 6 3.72 1.85 6 175 4 3.47 1.39 6 175 9 2.78 1.26 

7 200 7 3.22 1.30 7 200 4 3.34 1.21 7 200 10 2.73 1.20 

 



 

Figure 15. Evolution of the mean error in the operation phase versus the number of learning patterns: a) cluster 1 

with 275 patterns; b) cluster 2 with 225 patterns; c) cluster 3 with 200 patterns; d) MLP trained with 700 patterns. 

 




