1826

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 7, JULY 2014

Squashing Alternatives for Software-Based
Speculative Parallelization

Alvaro Garcia Yaguez, Diego R. Llanos, Senior Member, IEEE, and Arturo Gonzalez-Escribano

Abstract—Speculative parallelization is a runtime technique that optimistically executes sequential code in parallel, checking that

no dependence violations arise. In the case of a dependence violation, all mechanisms proposed so far either switch to sequential
execution, or conservatively stop and restart the offending thread and all its successors, potentially discarding work that does not depend
on this particular violation. In this work we systematically explore the design space of solutions for this problem, proposing a new
mechanism that reduces the number of threads that should be restarted when a data dependence violation is found. Our new solution,
called exclusive squashing, keeps track of inter-thread dependencies at runtime, selectively stopping and restarting offending threads,
together with all threads that have consumed data from them. We have compared this new approach with existent solutions on a real
system, executing different applications with loops that are not analyzable at compile time and present as much as 10% of inter-thread
dependence violations at runtime. Our experimental results show a relative performance improvement of up to 14%, together with a
reduction of one-third of the numbers of squashed threads. The speculative parallelization scheme and benchmarks described in this

paper are available under request.

Index Terms—Thread-level speculation, optimistic parallelization, loop-based parallelization

1 INTRODUCTION

PECULATIVE parallelization (SP), also called Thread-Level

Speculation (TLS) [1]-[3] or Optimistic Parallelization [4],
[5] aims to automatically extract loop- and task-level paral-
lelism when a compile-time dependence analysis cannot
guarantee that a given sequential code is safely parallelizable.
Speculative parallelization optimistically assumes that the
code can be executed in parallel, and relies on a runtime
monitor to ensure that no dependence violation is produced.
Aslong as not many dependence violations arise, speculative
parallelization can speed up these non-analyzable fragments
of code.

Speculative parallelization can be either implemented in
hardware or software. While hardware mechanisms do not
need changes in the code and do not add overheads to
speculative execution, they require changes in the processors
and/or the cache subsystems (see e.g. [6]-[10]). Software-
based speculation, on the other hand, requires to augment the
original code with instructions that drive the parallel execu-
tion and the runtime dependence analysis. Although these
instructions imply a performance overhead, software-based
SP can be effectively used in current shared-memory systems
with no hardware changes.

In a given stage of the speculative execution, different
threads cooperate by executing fragments of the code in
parallel. The thread executing the earlier fragment of code

® The authors are with the Departamento de Informdtica, ETS Informdtica,
Universidad de Valladolid, Campus Miguel Delibes, 47011 Valladolid,
Spain. E-mail: alvarga87@gmail.com, {arturo, diego}@infor.uva.es.

Manuscript received 12 Nov. 2012, revised 14 Feb. 2013; accepted 15 Feb. 2013.
Date of publication 05 Mar. 2013; date of current version 27 June 2014.
Recommended for acceptance by R. Gupta.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TC.2013.46

according to sequential semantics is called non-speculative,
while the thread executing the last fragment is called the most
speculative. A dependence violation appears when a given
thread generates a datum that has already been consumed by
a successor. In this case, the results calculated so far by this
successor (called the offending thread) are not valid and should
be discarded. It is easy to see that the risk of consuming a
wrong value increases from the non-speculative to the most-
speculative thread.

If the runtime monitor detects a dependence violation, a
corrective operation should be carried out to let the execution
progresses. Early proposals [3], [11] stop the parallel execu-
tion and restart the loop serially. A more sophisticated solu-
tion is to stop the offending thread, re-executing it with the
correct value. As long as some successors of the offending
thread may have consumed a value from it, usually all
successors are stopped and restarted as well (see, e.g. [1],
(2], [12], [13]).

This contribution goes one step further on the choice of
threads that should be re-executed if a dependence violation
arises. Our proposal keeps track of inter-thread dependencies,
in order to only re-execute threads that are known to have
consumed values from the offending thread. Being P the
number of threads used, the spatial complexity of this solution
is just P? memory words. Regarding temporal complexity,
our proposal has the same complexity as conservative ap-
proaches regarding speculative loads and stores, that are in
O(P). If a dependence violation is found, the cost of discard-
ing threadsis in O(P?) instead of O(P). We have implemented
this solution upon an optimized version of a software-based
speculative parallelization scheme [1], [14], and evaluate it
with six different applications that present loops whose data
dependences cannot be analyzable at compile time, because of
the use of subscripted subscripts, complex interprocedural
data flow, or input-dependent data and control flow. Our

Authorized licensed use limited t&oﬂﬁégfgﬁ%ﬁpﬁé&g%%%’ggg%L@E@ﬂ&g&gg&;ﬁC”g‘ﬁé@%ﬁgﬁg&%ﬁ% gtrq%?gi"f%m@{gif%?ﬂ'lEEE Xplore. Restrictions apply.

GARCIA YAGUEZ ET AL.: SQUASHING ALTERNATIVES FOR SOFTWARE-BASED SPECULATIVE PARALLELIZATION

experimental results show that keeping inter-thread depen-
dences leads to a relative performance improvement of up to
14%, together with a reduction of 35% in the number of
squashed threads comparing with the squashes produced
when discarding the offending thread and all its successors.

The rest of the paper is organized as follows. Section 2
discusses the fundamentals of software-based speculative
parallel execution. Section 3 analyzes in detail the design
space of the squash operation, showing all the possible alter-
natives. Section 4 describes the implementation of the
software-based, speculative parallelization scheme that will
be used to evaluate the new mechanism proposed. Section 5
shows the algorithms used by the original speculative paral-
lelization scheme to implement the squash operation. Sec-
tion 6 presents the new algorithms needed to implement the
new squashing proposal. Section 7 discusses the asymptotical
complexity of the new mechanism proposed. Section 8 pre-
sents a detailed performance comparison of the squashing
alternatives studied. Section 9 describes related work, while
Section 10 concludes the paper.

2 SOFTWARE-BASED SPECULATIVE
PARALLELIZATION

Unlike hardware-based mechanisms, software-based specula-
tive parallelization does not need any changes in processors or
caches. Instead, it allows to optimistically execute a loop in
parallel using commodity shared-memory systems. To detect
dependence violations, the code is augmented at compile time
with functions that monitor the parallel execution, obtain the
most recent value for a given variable and stop and re-start
threads that have consumed wrong values. This technique
makes possible to generate automatically a parallel version of a
sequential loop, opening the possibility of obtaining speedups
in a parallel system without the development cost of a manual
parallelization, even in the presence of dependence violations.

The runtime monitor checks for dependence violations by
tracking all access to the speculative data. The possible data
dependencies are WAR (Write-after-Read), WAW (Write-
after-Write) and RAW (Read-After-Write), and a dependence
violation occurs if these dependencies execute out-of-order.
WAR and WAW dependence violations can be effectively
handled at runtime by using versions of data and forwarding
mechanisms that will be described below. A RAW depen-
dence violation occurs when a thread prematurely loads a
datum that later is modified by a predecessor. In this case, the
thread executing the latter iteration should be stopped, its
partial results discarded, and re-executed using the correct
values. This is known as a squash operation. The squash
should also be extended, at least, to any successors of the
consumer thread that have consumed a value from it.

To simplify squashes and avoid rollbacks, threads that
execute each chunk of iterations are not allowed to change the
shared data directly. Instead, each thread maintains a version
of the shared structure. Only when the execution of the block
of iterations succeeds, a commit operation reflects changes to
the original shared structure. This operation should be done
preserving the total order for each block of iterations, from the
non-speculative thread to the most-speculative one. In the
case of a squash operation, the data versions of all squashed
threads are simply discarded. A detailed description of an

1827

example of thread-level speculation runtime management can
be found at [14].

To take advantage of a speculative parallelization scheme,
some simple adjustments, within the capabilities of modern
compilers, have to be done to the sequential code. A summary
of these changes follows.

2.1 Changes in the Loop Structure and Chunk
Scheduling

Several threads should be spawn to execute the loop in parallel.
Each thread receives an initial chunk of consecutive iterations.
After a successful computation of this chunk, threads acquire a
new one according to a given scheduling strategy. The problem
of finding the optimal chunk size for parallel and speculative
execution, together with the choice of an appropriate schedul-
ing strategy, have been extensively studied in the literature.
Solutions go from the Fixed-Size Chunking (FSC) strategy [15],
where all blocks have the same size and the optimal chunk size
has to be found in advance, to the Unit Policy where each chunk
has size one (default policy in[16]). Itis also possible to design a
particular scheduling mechanism for a specific problem or
even for a specific input set. This approach can be as challeng-
ing as designing parallel code for the problem, since it needs a
deep understanding of the parallelization mechanism in order
to predict and try to avoid dependence violations.

2.2 Speculative Loads

As far as each thread maintains its own version of the shared
structure, all original reads to this shared data should be
augmented with code that searches backwards for the most
up-to-date version of the value being read. This operation is
known as forwarding. If no predecessor owns the value, the
main copy of the value is used.

2.3 Speculative Stores

Any modification to a version of the shared structure per-
formed by a thread may lead to a dependence violation, if a
successor thread has already forwarded an outdated value.
Therefore, all writes to the shared structure should be aug-
mented with code that searches forwards for threads that may
have consumed a wrong value. If such threads are found, a
squash operation will place and their execution will be re-
started to consume the updated value.

2.4 Commit and Thread Management

After executing a block of iterations, each thread should check
that it has not been squashed and performs the commit when
appropriate. Instead of performing one final commit if the
entire parallel execution succeeds, a common solution is to use
a sliding window mechanism [6], [2] to hold the version data of
the chunks being speculatively executed. When the non-
speculative thread finishes its chunk, an in-order, partial
commit takes place and the sliding window is advanced.

3 DESIGN SPACE OF THE SQUASH OPERATION

If a dependence violation occurs, the runtime monitor should
decide what to do with the parallel execution. The design
space for squashing policies can be resumed in the following
options.

Authorized licensed use limited to: UNIVERSIDAD DE VALLADOLID. Downloaded on October 04,2024 at 14:34:51 UTC from IEEE Xplore. Restrictions apply.

1828

3.1 Stops Parallel Execution

The first, most conservative solution is to simply discard the
parallel work done so far, restarting the loop serially. This is the
approach followed in speculative parallelization pioneering
works [3], [11]. If the runtime monitor does not detect any
dependence during the speculative execution, data is committed
at the end of the loop. As far as this mechanism does not tolerate
even a single dependence violation during parallel execution, it
is only suitable for loops that cannot be analyzed at compile
time, but that are expected to be fully parallelizable [17].

3.2 Inclusive Squashing
This policy stops and restarts the first offending thread found
and all its successors, regardless of the data consumed by
them. We call this policy inclusive squashing, since all threads
that are more speculative than the offending thread are
included in the squash. Once the offending thread is restarted,
it is labeled as the new most-speculative thread, and all
discarded successors should get subsequent chunks of itera-
tions. This mechanism has been extensively implemented in
both software-based (e.g. [1], [2], [12]) and hardware-based
(e.g. [6], [18]) speculative parallelization schemes, allowing the
parallel execution of loops even in the presence of dependence
violations. The inclusive squash strategy keeps the sliding
window “compact”, since all threads inside the window are
guaranteed to be valid. This solution simplifies the forward-
ing operations and the search for dependence violations at
runtime, at the cost of discarding potentially valid work.
The inclusive squashing policy admits two variants. The
first one, that we will call eager inclusive squashing, checks for
dependence violations after every speculative store. The ad-
vantage of this solution is that offending threads are detected
and squashed very quickly, thus reducing the total amount of
work being discarded. However, this check for violations
imposes an overhead to the speculative store operation. The
second variant, that we will call lazy inclusive squashing, post-
pones the check for violations to commit time. Before com-
mitting, the non-speculative thread checks for threads that
have incorrectly consumed values changed in the window
slot being committed. This second variant leads to faster
speculative store operations, at the cost of slower commits
and more work discarded.

3.3 Exclusive Squashing

In this paper we propose an exclusive squashing mechanism,
where only offending threads and all their successors that
have consumed any value generated by them are discarded.
Note that we do not need to keep the exact dependence graph
for all speculative variables being loaded and stored, but just
the dependence between producer and consumer threads.
Being P the number of threads, this solution leads to a spatial
complexity for the data structure needed of 1 x P2. Note that,
with this solution, the sliding window may contain “bubbles”
of squashed threads whose data are not valid. This fact
complicates speculative operations such as forwarding of
updated values, search for violations or thread scheduling.
Depending on the application, this solution leads to a signifi-
cant reduction of squashed threads, at the cost of maintaining
these inter-thread dependencies at runtime, regardless of the
number of dependence violations effectively produced.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 7, JULY 2014

As in the case of the inclusive squashing, exclusive squash-
ing also admits two variants: eager exclusive squashing, where
the check for dependence violations is carried out after every
speculative store, and lazy exclusive squashing, where the check
is postponed until the non-speculative thread commits the
values of each block of iterations successfully calculated.

3.4 Perfect Squashing

There is a fourth possibility in this design space: Squashing
only offended threads and all their successors that have
consumed wrong values generated by them. This solution
implies to keep track of the dependence graph of every single
speculative variable being read or written. Our experimental
results suggest that this analysis is too costly to be carried out
by software-only monitors, not compensating the further
reduction in the number of squashes. Therefore, we believe
that perfect squashing is unlikely to speed up the parallel
execution in software-based TLS systems.

4 ARCHITECTURE OF A SOFTWARE-BASED TLS
SYSTEM

Our exploration of the squashing policies design space has
been built upon an optimized implementation of the software-
based speculative parallelization scheme described in [1].
This scheme performs all the tasks described in Section 2,
including the scheduling of blocks of iterations, speculative
loads and stores, and commits of speculative data. The origi-
nal version of this speculative scheme only supports eager
inclusive squashing. In this section we will describe the data
structures needed to handle speculative execution in this
baseline scheme: The additional structures needed to support
exclusive squashing will be discussed in Section 6.

Fig. 1(a) shows the data structures defined by the original
scheme. This scheme assumes that all the data that will be
speculative accessed is packed inside a “reference vector” (ref
in the figure). This solution allows to a fast implementation of
speculative loads, stores, and commit operations. However,
this advantage comes at the cost of the need of packing/
unpacking speculative data before the parallel execution if
speculative variables are not into a single data structure. The
additional data structures needed by the original speculative
parallelization scheme are the following;:

4.1 Window

This is a vector of W slots used to implement the sliding-
window mechanism. W represents the window size used,
typically a small multiple of the number of threads available.
Elements in this window store the status of different threads
associated to each slot. When a thread starts the computation
of a new block of iterations, a new window slot after the most
speculative one is assigned and its state is set to “TRUNNING”.
Other possible states are “DONE”, indicating that the thread
has already finish with its chunk of iterations and the results
should be committed; “SQUASHED”, indicating that the
associated thread has been squashed, or “FREE” if the win-
dow is not being used. Two variables, called non_spec and
most_spec, indicate which slots are used by the threads that
execute, respectively, the non-speculative and most-speculative
chunks.

Authorized licensed use limited to: UNIVERSIDAD DE VALLADOLID. Downloaded on October 04,2024 at 14:34:51 UTC from IEEE Xplore. Restrictions apply.

GARCIA YAGUEZ ET AL.: SQUASHING ALTERNATIVES FOR SOFTWARE-BASED SPECULATIVE PARALLELIZATION

B) Data Structures for Exclusive Squashing

! window
| non_spec most_spec 0 1 2 3

ref 3 version 0 1 2 3
0)
1 b
2 L2

consumer list
Bubbles

Jug

Fig. 1. Data structures needed for the (a) inclusive and (b) exclusive
versions of the speculative scheme used.

4.2 Version

Thisisa M x W matrix used to store the version copies of the
M elements that form the data structure being speculatively
accessed. The main copy of this structure is called ref in the
figure. A thread running in slot ¢ is able to modify its version
copy (column ¢ of the Version array), and to read version
copies owned by other threads. Although this solution is not
space-efficient when not all threads access all speculative
data, it allows to a very fast forwarding of data from pre-
decessors, simply by requesting the corresponding datum. It
also allows to an equally fast checking for dependence
violations.

4.3 AM (Access Matrix)

This is a M x W matrix used to store the state of each
corresponding value stored in the Version matrix. State
values include NotAcc, indicating that the element has not
been used yet by the current thread; ExpLp, indicating that
the current thread has forwarded a value for this element
from a predecessor; ExPLbDMop, indicating that the current
thread has forwarded and later modified the value for this
element; and Mop, indicating that the current thread has
written a new value for this element. There are other states
that handle reduction operations, not shown here for
simplicity.

We have optimized the original speculative parallelization
scheme with the use of W MDL (Modified Data Lists) (not
shown in Fig. 1 for simplicity). For each window slot, we
maintain a list of the indices of the data that has been modified
by the thread working in each window slot. The listis updated
after every speculative store. Its use leads to a faster commit
operation, since the non-speculative thread does not longer
need to traverse the entire Access Matrix in order to find the
elements that should be committed to the reference copy.

1829

5 INCLUSIVE SQUASHING IMPLEMENTATION

As we stated in Section 2, a speculative parallelization scheme
should perform several operations, including speculative
loads, speculative stores, and commit and thread manage-
ment. We will now briefly describe how the base scheme
handles each operation, and then we will show the changes
needed to implement the exclusive squash mechanism.

5.1 Inclusive Speculative Loads

Algorithm 1 shows the speculative load process in detail. If
a thread is using slot tid of the data structure and it has never
accessed this value (line 1), it first marks the value as
speculatively loaded (line 2), and ensures that all threads
flush their cache copies of the AM matrix, being aware of
this state change (line 3). This memory fence also ensures
that the compiler will not reorder the associated instruc-
tions, getting the value before setting its state, that would
lead to a race condition. Our thread now searches back-
wards in the AM structure for a copy of the value in states
Mob or ExrLpMob (line 5), and forwards this value to its
own version copy (line 6). If it has not found any predeces-
sor with a value for this element, it gets the reference version
(line 11).

Itis interesting to note that values in ExpLp state should not
be forwarded. Since our thread first marks the value to be read
as ExrLp in the AM column, and later forwards the value, a
thread that is more speculative than ours might see our state
as ExrLp and try to forward the value before our thread has
time to complete the speculative load.

Algorithm 1. Inclusive speculative load operation

input: Main copy of the speculative data (ref), index of the
speculative element to be accessed ¢, index of cur-
rent thread tid

output: Most up-to-date version of i-th speculative element
is returned.

if AM[i][tid] = NotAcc then
AM]i][tid] — ExpLd
#pragma memory fence

for j — tid — 1 to non_spec do

if (AM{[i][j] = Mod) or
(AM[i][j] = ExpLdMod) then

g = W N =

versionli][tid] < version]i][7]
forwarded — TRUFE
break

O© ® N &

end

10 end

11 if forwarded # TRUE then
version[i|[tid] <« ref]i]

12 end

13 Return versionl[i][tid)

Authorized licensed use limited to: UNIVERSIDAD DE VALLADOLID. Downloaded on October 04,2024 at 14:34:51 UTC from IEEE Xplore. Restrictions apply.

1830

5.2 Inclusive Speculative Stores

If a thread should write a speculative value, it stores the
value in its own version copy, and sets its state to ExpLdMod
or Mod as needed. If an eager squashing policy is used, this
speculative store also should search for threads that could
have consumed an outdated version of this value. If a lazy
squashing policy is used, this search is postponed until the
non-speculative thread starts a commit operation. The
search operation to be carried out in both cases is described
below.

5.3 Inclusive Search for Dependence Violations

The inclusive search for violations can be carried out by
each speculative store operation (eager version) or by the
non-speculative thread before committing data (lazy ver-
sion). In both cases, a forward search looks for any successor
that have used an outdated copy of the value (looking for
entries in ExrLD or ExpPLDMoD states in the AM matrix). If
such a successor is found, our thread triggers a squash
operation, marking the first offending thread and all its
successors as SQUASHED. Algorithm 2 shows the search
for dependence violations in detail. If thread tid finds
that thread j has consumed a wrong value, a dependence
violation is found (lines 1-3). In this case, the offending
thread and all its successors are squashed inside a critical
section (lines 4-10), marking thread j — 1 as the new most-
speculative thread. Since thread j and all its successors have
been squashed, our thread stops the search for violations
(line 11).

Algorithm 2. Inclusive search for violations and squash
mechanism

input: Index of the speculative element to be accessed i,
index of current thread fid.

output: Successors that have consumed a wrong value are
squashed, together with all their successors.

1 for j < tid + 1 to most_spec do

2 if AM{[j][tid] = Mod then break; // shield found

3 else if AM|j][tid] # NotAcc then

4 #pragma critical section

5 for k — j to most_spec do

6 if window[k] = RUNNING then
windowlk] «— SQUASHED

7 else if windowl[k] = DONE then
window([k] «— FREE

8 end

9 most_spec < (j-1)

10 # pragma end critical section

11 break

12 end

13 end

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 7, JULY 2014

5.4 Inclusive Commit and Thread Management
When a thread finishes the execution of a chunk of iterations, it
enters in a critical section to commit results. Inside this critical
section, one of the following three situations can arise:

1. The thread is found to be the non-speculative one. In this
case, the thread should commit all its changes to the ref
version, and also commit all the data generated by all
consecutive successors to it that are in the DONE state.
After this commit operation, the non-spec pointer is
advanced to the first thread not yet committed, and that
becomes the new non-speculative one. If the eager
inclusive squashing policy is used, no search for viola-
tions is carried out at this moment. However, the use
of the lazy inclusive squashing policy forces the non-
speculative thread to search for possible dependence
violations (using Algorithm 2) before committing the
data generated by each thread.

2. The thread is found to be speculative. In this case, it only
changes its own state from RUNNING to DONE, letting
the non-speculative thread to later commit its results.

3. The thread has been squashed. In this case, its slot state is
changed to FREE and no further action is required.

After that, the thread exits the critical section, and if the

sliding window is full, it will spin-wait until the sliding
window is moved by the non-speculative thread, thus gener-
ating free slots. The thread then enters the critical section,
acquires the next available slot and its associated chunk of
iterations to be computed, increments the most-spec pointer,
exits the critical section and starts the work. Note that this
thread will always be the new most-speculative thread. This
behavior ensures that all window elements between the
non_spec pointer and the most_spec pointer are either RUN-
NING or DONE, keeping the sliding window free of squashed
threads.

Algorithm 3. Speculative load operation, exclusive version

input: Main copy of the speculative data (ref), index of the
speculative element to be accessed i, index of cur-
rent thread tid.

output: Most up-to-date version of i-th speculative ele-
ment is returned.

if AM[i][tid] = NotAcc then

AM[i][tid) « ExzpLd

#pragma memory fence

for j — tid — 1 to non_spec do

if (window[j] = DONE) or
(window[j] = RUNNING) then

6 if (AM{[j][tid] = Mod) or
(AMTj][tid] = ExpLdMod) then

g = W N =

7 #pragma memory fence
8 consumer_list[tid][j] — TRUE
9 if (window([j] = DONE) or

(window[j] = RUNNING) then

10 | version[i][tid] — version[i][j]

Authorized licensed use limited to: UNIVERSIDAD DE VALLADOLID. Downloaded on October 04,2024 at 14:34:51 UTC from IEEE Xplore. Restrictions apply.

GARCIA YAGUEZ ET AL.: SQUASHING ALTERNATIVES FOR SOFTWARE-BASED SPECULATIVE PARALLELIZATION

11 forwarded +— TRUE

12 break

13 end

14 end

15 end

16 end

17 if forwarded # T RUE thenversionl[i][tid] < ref]i]
18 end

19 Return version[i][tid]

6 EXCLUSIVE SQUASHING IMPLEMENTATION

After reviewing the general behavior of the speculative
scheme used as a baseline for our study, we will see how its
operations should be modified to handle both eager and lazy
exclusive squashing. The design goals of our system are:

* Squashing only offending threads, together with any
threads that may consumed incorrect data from the
offending threads (called consumer threads).

* Avoiding the use of additional critical sections to handle
speculative loads and stores, since these operations are so
common that the need of critical sections would destroy
any performance gain.

The exclusive squash mechanism proposed extends the
data structures used in the speculative scheme with a new
consumer_list matrix (see Fig. 1(b)). This structure is a boolean
W x W matrix that keeps the relationship between each
thread and all successor threads that may have consumed
a value from it. If thread ¢ has loaded a speculative datum
previously stored by thread j, consumer_list[i][j] is set to
TRUE. If thread j has consumed an outdated version of a
datum, the offending thread j and also all threads marked as
consumers in column j of the consumer_list matrix will be
squashed. All consumers of data stored in squashed threads
are squashed as well. As we will see, this structure is enough
to effectively track inter-thread dependencies.

All the basic operations described in the previous section
(speculative loads, speculative stores, and thread

1831

management) need the following changes to handle this new
squashing policy.

6.1 Exclusive Speculative Loads
Recall that the speculative load operation should forward the
most up-to-date value from a predecessor thread, returning
the reference value if no predecessor has used the value so far.
To implement the exclusive squash mechanism, we should
take into account two different issues. First, the new specula-
tive load operation should keep record of the data depen-
dence generated by the forwarding operation, by writing into
the consumer_list structure. Second, when searching for the
most up-to-date version of the datum, the speculative load
should be aware that now there may be squashed or empty
slots between our thread and the non-speculative one. These
“bubbles” are a consequence of selectively squashing threads.
We have found a way to perform both operations without
the use of any additional critical section. Algorithm 3 shows the
exclusive load speculative operation. The main differences
between the inclusive version and this new version are in lines
5 and 7-9. Line 5 checks if the predecessor being examined is
still valid (in RUNNING or DONE states). If the predecessor is
valid and it has the datum, our thread proceeds with the
forwarding. After a memory fence to avoid reordering (line 7),
the new dependence generated is stored (line 8). Before
effectively perform the forwarding (lines 10-12), our thread
checks again that the predecessor is still alive (line 9). This check
avoids the following race condition: If our thread just checks
that the predecessor is alive (line 5), store the dependence (line 8)
and get the value (line 10), the predecessor might be squashed
while our thread is executing lines 5 to 8, and the new depen-
dence would remain unnoticed. The additional check in line 9
ensures that our thread will skip that value in this case. Thisrace
condition does not exist in the base system, because if the
predecessor is squashed, our thread will be squashed as well.

6.2 Exclusive Speculative Stores

With respect to the storage of the new value, speculative stores
are the same regardless of the squashing mechanism used,
since accounting for inter-thread dependences are carried out
in speculative load operations.

Algorithm 4. Exclusive search for violations and squash mechanism

input: Index of the speculative element to be accessed i, index of current thread tid.

output: Successors that have consumed a wrong value are squashed, together with all their successors that have consumed a

value from them.

for j «— tid + 1 to most_spec do

if AM[j][tid] = Mod then break; // shield found
else if (AM[j][tid] # NotAcc) then

else if (window[j] = DONE) then

1
2
3
4
5 # pragma critical section
6
7
8 | window(j] — FREE

if (window(j] # SQUASHED) and (window|j] # FREE) then

if (window[j] = RUNNING) then window[j] «— SQUASHED

Authorized licensed use limited to: UNIVERSIDAD DE VALLADOLID. Downloaded on October 04,2024 at 14:34:51 UTC from IEEE Xplore. Restrictions apply.

1832 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 7, JULY 2014
9 bubbles < bubbles + 1

10 end

11 for k = j 4 1 to most_spec do /] Search for additional offending threads
12 if (window[k] # SQUASHED) and (window[k] # FREE) then
13 if (AM[k][tid] = Mod) then break (shield found)

14 else if (AM[k][tid] # NotAcc) then

15 if (window[k] = RUNNING) then window[k] «— SQUASHED
16 else if (window[k| = DONE) then

17 window[k] < FREE

18 bubbles < bubbles + 1

19 end

20 end

21 end

22 end

23 for k = j to most_spec do // Search for consumers

24 if (window[k] = SQUASHED) or (window[k] = FREFE) then
25 for c = (k+ 1) to most_spec do

26 if (consumer_list[c][k] = TRUFE) then

27 if (window|c] = RUNNING) then

28 window|c] «— SQUASHED

29 end

30 else if (window[c] = DONE) then

31 window|c| «— FREE

32 bubbles < bubbles + 1

33 end

34 end

35 end

36 end

37 end

38 # pragma end critical section

39 break

40 end

41 end

42 end

6.3 Exclusive Search for Violations

This is the core part of the exclusive squashing mechanism. As
with the inclusive squash policy, the search for violations can
be carried out after each speculative store (eager version) or at
commit time (lazy version). While the inclusive squash policy
searches for the first offending thread and then squashes that
thread and all its successors, the exclusive squash mechanism
proceeds in two phases. First, it will selectively squash every

offending thread. Second, it will squash all threads that have
consumed any value from a squashed thread. Since our system
just store inter-thread data dependencies, this operation
squashes all consumers even if the data forwarded is not
related to the datum that has triggered the squash operation.

Algorithm 4 shows the exclusive search for violations and
squashing mechanism. When searching for offending threads,
our thread tid should skip window slots that are either in

Authorized licensed use limited to: UNIVERSIDAD DE VALLADOLID. Downloaded on October 04,2024 at 14:34:51 UTC from IEEE Xplore. Restrictions apply.

GARCIA YAGUEZ ET AL.: SQUASHING ALTERNATIVES FOR SOFTWARE-BASED SPECULATIVE PARALLELIZATION

SQUASHED or FREE states (line 2). If it finds an offending
thread (line 4), it will enter in a critical section (line 5). Note
thatno critical section will be entered if no dependencies arise,
an important issue to guarantee a fast execution in this case.
Inside this critical section it marks the offending thread as
SQUASHED or FREE (lines 6-10), and proceed in the same
way with any additional offending threads (lines 11-22).
Afterwards, our thread will examine the consumer list asso-
ciated with the squashed threads, squashing them as well
(lines 23-37). Since squashes are performed selectively, the
most_spec pointer is not changed here but in the thread
management function, described below.

6.4 New Commit and Thread Management

The commit operation in the exclusive squash mechanism
does not change in comparison with the inclusive mechanism
described in the previous section. Regarding thread manage-
ment, the main difference between the inclusive and exclusive
version is the management of “bubbles” of SQUASHED or
FREE slots inside the sliding window. Recall that the inclusive
thread management operation always assigns new threads
for execution by advancing the most_spec pointer. In our
scheme, there may be some FREE cells in the window that
should be assigned for re-execution before advancing the
most_spec pointer. A new global variable, called bubbles, re-
cords the number of FREE cells in the window. This variable is
incremented each time a window cell reaches the FREE state
due to a dependence violation (lines 9, 18 and 32 of the
speculative store operation shown in Alg. 4). If bubbles is not
zero, the thread management function will search for the
FREE cell, assigning it for execution to the current thread,
and decreasing the counter. Otherwise, the most_spec pointer
is advanced as usual.

An execution example that describes this process in more
detail can be found in the Supplementary Material, which can
be found in the Computer Society Digital Library at https://
doi.ieeecomputersociety.org/10.1109/TC.2013.46.

7 TRADEOFFS AND COST ANALYSIS

As we have shown in the previous section, the implementa-
tion of this exclusive squashing mechanism requires some
changes in the speculative load and store operations and in the
thread management functions. These changes result in un-
necessary operations if the loop speculatively parallelized has
no dependence violations and no squashes are needed. For-
tunately, these costs are indeed modest. A detailed discussion
follows:

* Speculative loads: To implement the new mechanism, the
only additional operations are to skip empty slots when
searching for the most up-to-date values, and to mark the
new dependence in the consumer_list structure. Although
these operations are not costly by themselves, they are done
in every speculative load, adversely affecting performance.
The asymptotical cost of the speculative load operation is
the same than in the inclusive squashing version.

* Speculative stores: The search for violations in both
schemes are the same, so the new solution does not affect
performance if no squashes arise. In the case of a depen-
dence violation, the squash procedure inside the critical
section is in O(P?) instead of O(P), being P the number of

1833

threads. Depending the application, the benefits of avoid-
ing unnecessary squashes may compensate for this cost.

* Thread management: In the new scheme, a finishing
thread will first look if there are any “bubbles” in the
sliding window and choose the associated slot in that
case. The cost of this additional operation is in O(P), and
should be performed only if a bubble exists.

It is important to highlight that our implementation of the
exclusive squashing mechanism does not add any additional
critical section to the original solution. Therefore, scalability is
not compromised, despite of the extra work carried out inside
the critical sections. Finally, it is worthwhile to note that this
solution allows a very flexible implementation of the specu-
lative scheme used, since the squash policy can be changed in
any moment, even during the speculative execution of a loop.
To do so, the scheme just needs to squash all running threads
and re-scheduling them with a different squashing policy.

8 EXPERIMENTAL RESULTS

Experiments were carried out on an Intel S7000FC4URE
server, equipped with four quad-core Intel Xeon MPE7310
processors at 1.6 GHz and 32 GB of RAM. The system runs
Ubuntu Linux operating system. All threads had exclusive
access to the processors during the execution of the experi-
ments, and we used wall-clock times in our measurements.
We have used the gcc compiler suite for C applications, with
—04 optimization level, and SunStudio f90 compiler for For-
tran applications, with —04 —xarch = native optimization
flags. Times shown in the following sections represent the
time spent in the execution of the parallelized loop for each
application. The time needed to read the input set and the time
needed to output the results have not been taken into account.

8.1 Applications Considered

To evaluate our new scheme, we compare the behavior of an
implementation of the speculative scheme described in [1]
with a modified version that incorporates our exclusive
squashing mechanism. We evaluate our solution with six
different applications, both with and without dependence
violations produced at runtime.

Three of the applications considered are written in Fortran,
and three are written in C. To parallelize these applications,
we have developed C and Fortran versions of the speculative
parallelization schemes being evaluated, using OpenMP [19]
task-parallelism primitives.

8.2 Loops With No Dependence Violations

The first part of our study shows how the use of different
squashing mechanisms affects the performance of applica-
tions whose loops do not produce dependence violations. We
study three Fortran applications: TREE [20], MDG (part of the
PERFECT Club Benchmark suite [21]), and SPEC{p2000’s
WUPWISE [22]. Each one of these applications have one or
more loops (accel_10in TREE, muldeo_200 and muldoe_200in
MDG, and interf_1000 in WUPWISE) that consume a signif-
icant part of the execution time, but that cannot be parallelized
at compile time because they access data structures using
indices whose values depend on the program control flow
and/or the data input sets. Despite this fact, these loops donot

Authorized licensed use limited to: UNIVERSIDAD DE VALLADOLID. Downloaded on October 04,2024 at 14:34:51 UTC from IEEE Xplore. Restrictions apply.

1834

Speedup, TREE, blocks of 2 iterations

Speedup, WUPWISE, blocks of 2 iterations

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 7, JULY 2014

Speedup, MDG, blocks of 2 iterations

8 8 10
Inclusive squash —— Inclusive squash —— Inclusive Squash ——
7 Exclusive squash - 7 Exclusive squash - 9 Exclusive Squash -
8
6
————— 6 b
o 5 o5 o g
3 3 3
3 4 S 4 g s
Q. Q. Q.
@ 3 » 3 @ 4
2 2 3
2
1 1 1
0 0 0
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

Processors

Fig. 2. Speedup results for applications with no dependence violations.

produce any dependence violations at runtime, making them
excellent candidates to be parallelized using speculative par-
allelization techniques.

Fig. 2 shows the relative performance of TREE, MDG and
WUPWISE chosen loops when executed with our software-
based speculation scheme and both squash mechanisms de-
scribed before: Inclusive and Exclusive Squash. Since no
dependence violations arise at runtime, both eager and lazy
solutions lead to the same performance results.

The results show a slowdown ranging from 2.7% for
MDG to 16.2% for WUPWISE. As we stated in Section 7,
this performance degradation of the exclusive squash is due
to the cost of keeping data dependencies among threads in
the speculative load operation. As far as these applications
present no dependence violations, no performance gains
alleviate this cost. Note that speculative stores do not con-
tribute to the performance degradation, since their behavior
is the same for both versions due to the lack of runtime
dependence violations.

As we suggested in Section 7, the runtime system might
use the inclusive squashing policy by default, and switch
on-the-fly to the exclusive squashing mechanism if the
number of dependence violations that arise exceeds a certain
threshold.

8.3 Influence of Dependence Violation Rates

After measuring the effects of the squashing mechanisms in
applications whose loops do not produce dependence viola-
tions at runtime, we will now study how the behavior of these
mechanisms is affected by different rates of dependence
violation in the same application. To do so, we will use a C
implementation of the randomized incremental algorithm
that builds the Convex Hull of a two-dimensional set of
points. This algorithm, that we will call 2D-Hull, due to
Clarkson et al. [23], computes the convex hull (smallest en-
closing polygon) of a set of points in the plane. The input to
Clarkson’s algorithm is a set of (x,y) point coordinates. The
algorithm starts with the triangle composed by the first
three points and adds points in an incremental way. If the
point lies inside the current solution, it will be discarded.
Otherwise, the new convex hull is computed. Note that any
change to the solution found so far generates a dependence
violation, because other successor threads may have been
used the old enclosing polygon to process the points
assigned to them.

The probability of a dependence violation in the 2D-Hull
algorithm depends on the shape of the input set. For example,
if N points are distributed uniformly on a disk, the i-th
iteration will present a dependence with probability in

Processors

Processors

0(+/i/i). If points lie uniformly on a square, the probability
of a dependence will be in 6(log(4) /7).

We have compared the performance of our different
squashing mechanisms using four different, 10-million point
input sets. The first one, Kuzmin, is an input set that follows a
Gauss-Kuzmin distribution, where the density of points is
higher around the center of the distribution space. This input
set leads to very few dependence violations, since points far
from the center are very scarce. The Square and Disc input sets
are uniform distributions of points inside a square and a disc,
respectively. It is easy to see that the Square input set leads to
an enclosing polygon with fewer edges than the Disc input set,
thus generating fewer dependence violations. Finally, the
Circle input set distributes all the points around a circle,
leading to a huge number of dependence violations.

The effects of these input sets in the execution of the 2D-
Hull are summarized in Table 1. Both the amount of data
speculatively accessed and the number of dependence viola-
tions depend on the number of edges in the final convex hull.

Fig. 3 shows the results obtained in the execution of the 2D
Hull for these input sets. Results include the speedup obtained,
the number of dependence violations that have arisen, and the
total number of the squashed threads for the four squashing
alternatives examined. Each plot indicates the size of the blocks
of consecutive iterations scheduled to each thread.

From the results we can draw the following observations.
First, the eager exclusive squash policy leads to a relative
performance improvement up to 1.9% for Kuzmin, 9.0% for
Square, 14.2% for Disc, and 5.7% for Circle input sets with
respect to the eager inclusive policy. As expected, the higher
the rate of dependence violations, the more the benefits of this
new squashing policy technique. However, the extremely
high number of dependence violations with the Circle input
set makes squashes so frequent that the benefits derived from
the exclusive squashing policy are subsumed by a 3x perfor-
mance slowdown.

Second, eager versions (that search for dependence viola-
tions in every speculative store operation) leads to better
speedup results in all cases. This situation, that is consistent

TABLE 1
Characteristics and Effects of Different Input Sets When
Computing the 2D-Hull Algorithm

Input set | Edges of the | Spec data size | Dependence
convex hull per thread violations
Kuzmin 161 4 Kb 0.0008 %
Square 647 15.25 Kb 0.0032 %
Disc 4393 103.14 Kb 0.0219 %
Circle 206797 4.73 Mb 10.3400 %

Authorized licensed use limited to: UNIVERSIDAD DE VALLADOLID. Downloaded on October 04,2024 at 14:34:51 UTC from IEEE Xplore. Restrictions apply.

GARCIA YAGUEZ ET AL.: SQUASHING ALTERNATIVES FOR SOFTWARE-BASED SPECULATIVE PARALLELIZATION

Speedup, 2D-Hull, Kuzmin, 10M points, blocks of 10K iterations

Violations, 2D-Hull, Kuzmin, 10M, blocks of 10K iterations

1835

Squashes, 2D-Hull, Kuzmin, 10M, blocks of 10K iterations

7 300 600
Inclusive squash, eager —— Inclusive squash, eager — Inclusive squash, eager mm—
6 Exclusive squash, eager - Exclusive squash, eager Exclusive squash, eager &
Inclusive squash, lazy 250 Inclusive squash, lazy 500 Inclusive squash, lazy e
5 Exclusive squash, lazy ---a-- Exclusive squash, laz Exclusive squash, lazy @zzzi
200 400
a @ @
s c @
3 4 L2 =
e T 150 g 300
& 3 s =3 i
> 100 ® 200 4
2
1 50 100 N o8
0 0 0 - IR “ % Rl » i
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Processors Processors Processors
Speedup, 2D-Hull, Square, 10M points, blocks of 5K iterations Violations, 2D-Hull, Square, 10M, blocks of 5K iterations Squashes, 2D-Hull, Square, 10M, blocks of 5K iterations
7
Inclusive squash, eager 1000 Inclusive squash, eager mmm— 2100 Inclusive squash, eager mmm—
6 Exclusive squash, eager - Exclusive squash, eager & Exclusive squash, eager Gy
Inclusive squash, lazy - Inclusive squash, lazy 1800 Inclusive squash, lazy =% A
5 Exclusive squash, lazy ---&-- 800 Exclusive squash, lazy 1560 Exclusive squash, lazy
5
o 2 8
3 4 S 600 £ 1200
] 5 = S
=%) 3
@ S 400 g 90 i
2 600 e
1 200 G B B 300 ; il 2
0 0 e (5 § il 5 0 i 1 Al Rl cEl 5
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Processors Processors Processors
Speedup, 2D-Hull, Disc, 10M points, blocks of 1K iterations Violations, 2D-Hull, Disc, 10M, blocks of 1K iterations Squashes, 2D-Hull, Disc, 10M, blocks of 1K iterations
4 10000 16000
Inclusive squash, eager —— Inclusive squash, eager Inclusive squash, eager
Exclusive squash, eager 9000 Exclusive squash, eager 14000 Exclusive squash, eager ey
Inclusive squash, lazy 8000 Inclusive squash, lazy Inclusive squash, lazy &szsez
3 Exclusive squash, lazy 7000 Exclusive squash, lazy 12000 Exclusive squash, lazy wzzzzi
Py 2 6000 g 10000
3 2 £ 5000 § 8000
Q o
@ S 4000 & 6000
3000
1 4000
2000 B <
1000 2L 2000
0 0 B i Sl 0
0 2 4 6 8 10 12 14 16 0 2 4 8 10 12 14 16 0
Processors Processors Processors
Speedup, 2D-Hull, Circle, 10M points, blocks of 100 iterations Violations, 2D-Hull, Circle, 10M, blocks of 100 iterations Squashes, 2D-Hull, Circle, 10M, blocks of 100 iterations
= 400K s ™ -
Exclusive squash, eager —— Inclusive squash, eager Inclusive squash, eager
0.8 Inclusive squash, eager - Exclusive squash, eager Exclusive squash, eager &
Exclusive squash, lazy - Inclusive squash, lazy 800K Inclusive squash, lazy
Inclusive squash, lazy --a- 300K i 2 Exclusive squash, lazy &
0.6 4
o 2 . b) 8 600K
3 S ’ o f S
3 T 200K K # @
o 04 ° 1 2 =
17} 2 4 S 400K
T e £
= & 100K 3
02 * g g 200K
0 0 il i 0 - et I .
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Processors Processors Processors

Fig. 3. Speedup, violations and squashes generated by the four versions of the speculative engine while computing the two-dimensional Convex Hull of

10 M points using different input sets.

with our earlier study [14], is motivated by the added con-
tention time due to the longer check-and-commit operation. In
lazy versions, the search for violations is inside the critical
section, thus belonging to the critical execution path. On the
other hand, in eager versions searches are carried out concur-
rently by all threads, only entering the critical section when a
dependence violation is found.

Third, regarding dependence violations and number of
squashed threads, it is interesting to note that the exclusive
squashing mechanism leads to twice dependence violations
on average, although only around two thirds of the threads
are squashed. Regarding eager versions, the results show a
relative dependence violation increment of 223.58% for
Kuzmin, 224.03% for Square, 210.86% for Disc, and 204.70%
for Circle input sets on average. On the contrary, the number of
squashed threads decrease by 31.63% for Kuzmin, 29.92% for
Square, 35.46% for Disc, and 34.07% for Circle input sets on
average. The rationale of this effect is the following. For each
dependence violation found, inclusive mechanisms squash all

successors, preventing the occurrence of new dependence
violations that are “waiting to happen” since all successors
will sooner or later use the speculative solution to check
whether their points lie outside the convex hull. On the
contrary, exclusive squash mechanisms only squash offend-
ing threads and their current consumers, but the survivals will
generate new dependence violations that lead to additional,
exclusive squash operations. As the experimental results
show, this situation does not depend on the particular rate
of dependence violations.

We can conclude that, despite the increment of the number
of dependence violations triggered, the use of the exclusive
squashing policies leads to noticeable performance improve-
ment in all cases.

8.4 Influence of the Speculative Data Access Pattern
The last part of our study examines the influence of the
squashing mechanism in the execution of two C applications
with very different access patterns to the speculative data.

Authorized licensed use limited to: UNIVERSIDAD DE VALLADOLID. Downloaded on October 04,2024 at 14:34:51 UTC from IEEE Xplore. Restrictions apply.

1836

Speedup, Delaunay, 1M points, 5K anchors, blocks of 20 iter.
4 25000

Violations, Delaunay, 1M, 5K anchors, blocks of 20 iter.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 7, JULY 2014

Squashes, Delaunay, 1M, 5K anchors, blocks of 20 iter.

Inclusive squash, eager ——
Exclusive squash, eager -

Inclusive squash, lazy -
3 Exclusive squash, lazy -

20000

15000

lons

Speedup
n
lati

o
£ 10000

5000

0 0

Processors

Inclusive squash, eager mm—m
Exclusive squash, eager Gy
Inclusive squash, lazy 3

Exclusive squash, lazy @2z J
#

Processors

100000

Inclusive squash, eager
Exclusive squash, eager
Inclusive squash, lazy
Exclusive squash, lazy w2z

80000

60000

40000

Squashes

20000

0

Processors

Fig. 4. Speedup, violations and squashes generated by the four versions of the speculative engine while computing the two-dimensional Delaunay

triangulation.

8.4.1 The Delaunay Triangulation

The first application is the randomized incremental construc-
tion of the Delaunay triangulation using the Jump-and-Walk
strategy, introduced by Miicke et al. [24], [25]. This incremen-
tal strategy starts with a number of points, called anchors,
whose containing triangles are known. The algorithm finds
the closest anchor to the point to be inserted (the jump phase),
and then traverses the current triangulation until the triangle
that contains the point to be inserted is found (the walk phase).
After this location step, the algorithm divides this triangle into
three new triangles, and then updates the surrounding edges
to keep the Delaunay properties. This local modification to the
current Delaunay solution may lead to dependence viola-
tions, since other threads may have traversed the old solution
while trying to add new points.

The shared data access pattern of the Delaunay algorithm
is fundamentally different than the one of the 2D-Hull. In the
Delaunay algorithm all threads modify the speculative solu-
tion, not only a subset of them. However, despite these
modifications, successor threads do not need to be squashed
if their own work is carried out in a different zone of the
triangulation.

The expected amount of dependence violations generated
by the Delaunay Triangulation depends on the number of
processors and the length of the traversing path. It is easy to
see that, the shorter the distance between the closest anchor
and the point to be inserted, the fewer triangles that are visited
in the walk and the smaller the probability of a dependence
violation. This fact suggests that the algorithm should work
with many anchors. However, the bigger the number of
anchors, the more distance comparisons have to be performed
to find the closest anchor to our point, thus degrading se-
quential performance. Our implementation uses a number of
anchors that represents a good balance between these effects
for the input size used. Our implementation is composed by
two loops: The first one builds a Delaunay Triangulation of
the first 5 000 points, that will be used later as anchors, while
the second loop inserts all the remaining points (up to one
million). We have speculatively parallelized this second loop.

Fig. 4 shows the speedup, number of dependence viola-
tions and squashes produced during the execution of the
Delaunay Triangulation algorithm on a set of one million
points uniformly distributed on a disc. The performance
results are consistent with those obtained with the 2D-Hull
algorithm, with a relative speedup increment of 8.90% for the
eager exclusive squashing policy. As in the 2D-Hull case, the
number of dependence violations generated by the eager

squashing policy is higher (122.33% on average), but the
number of squashed threads decreases by 58% on average.

It is interesting to examine the reasons for the poor perfor-
mance results of the lazy squashing policies in this case. Since
in this algorithm all threads modify the solution, all window
slots have data to be committed by the non-speculative
thread. Therefore, the additional cost due to the search for
dependence violations at commit time is proportionally
higher in this case than in the 2D-Hull algorithm, leading to
a significant performance slowdown.

8.4.2 The Minimum Enclosing Circle

The 2-dimensional Minimum Enclosing Circle (2D-MEC) is
the smallest circle that comprises a set of points. We will study
the behavior of the randomized incremental construction due
to Welzl [26]. Due to its randomized incremental nature, the
algorithm solves the problem in linear time. This algorithm
starts with a circle of radius equal to zero located in the center
of the search space. If a point lies outside the current solution,
the algorithm defines a new circle that uses this point as one of
their frontiers. It is interesting to note that points that laid
inside the old solution may laid outside the new one. There-
fore, all points should be processed again to check if the new
circle encloses them. The solution is defined by two or three
points, and the algorithm is composed of three nested loops.
We have speculatively parallelized the innermost loop, that
consumes 45% of the total execution time.

The speculative data access pattern of this application is
different than the access pattern of the 2D-Hull and Delaunay
algorithms. In this case, the data shared among threads are the
coordinates of two or three points that define the current
solution. If this solution changes, all successors should be
squashed, making exclusive squashing policies less useful in
this case.

Fig. 5 shows the speedup, number of violations and
squashes produced by the four combinations of squashing
policies being studied. As expected, the lazy inclusive squash
leads to the best performance for this application. With respect
to exclusive policies, the eager exclusive squash presents a
performance degradation when augmenting the number of
threads. The reason is that this policy combines a higher
number of dependence violations (since the mechanism does
not avoid dependence violations that will happen shortly)
with a higher number of squashes (due to the high number of
successors affected by each dependence violation). Lazy ver-
sions, on the other hand, minimize the number of dependence
violations, leading to better performance.

Authorized licensed use limited to: UNIVERSIDAD DE VALLADOLID. Downloaded on October 04,2024 at 14:34:51 UTC from IEEE Xplore. Restrictions apply.

GARCIA YAGUEZ ET AL.: SQUASHING ALTERNATIVES FOR SOFTWARE-BASED SPECULATIVE PARALLELIZATION

Speedup, 2D-MEC, 10M points, blocks of 2K iterations

Violations, 2D-MEC, 10M points, blocks of 2K iterations

1837

Squashes, 2D-MEC, 10Mpoints, blocks of 2K iterations

4 2100

Inclusive squash, eager ——
Exclusive squash, eager 1800 Exclusive squash, eager &=
Inclusive squash, lazy
3 Exclusive squash, lazy - 1500
12}
= 5 1200
g 2 ks
a8 g 900
1 600
300
0 0
0 2 4 6 8 10 12 14 16 0 2 4 6

Processors

Inclusive squash, eager

Inclusive squash, lazy s
Exclusive squash, lazy

8 10
Processors

Inclusive squash, eager

8000 Exclusive squash, eager t:
Inclusive squash, lazy
Exclusive squash, lazy

6000

Squashes
B
o
o
o

2000

o 2 4 6 8 10 1
Processors

Fig. 5. Speedup, violations and squashes generated by the four versions of the speculative engine while computing the two-dimensional Minimum

Enclosing Circle.

A more detailed discussion on the applicability of both
squashing alternatives can be found in the Supplementary
Material, available online.

9 RELATED WORK

Since squashes are unavoidable if an inter-thread dependence
violation occurs, a great effort has been done in reducing their
occurrences. However, to the best of our knowledge, no
software-based speculation scheme with exclusive squashing
policy has been proposed so far in the literature.

Regarding hardware TLS systems, a combination of tech-
niques are used in [27] to reduce the number of squashes
produced by a hardware speculative parallelization mecha-
nism with inclusive squashing. An analysis of approaches to
buffer and manage multi-version speculative memory state in
multiprocessors is presented in [28], together with a detailed
tradeoff analysis for both single and multi-chip multiproces-
sors. The study is also based on the use of inclusive squashing.
A hardware architecture for TLS in high-coupled multipro-
cessors is presented in [29]. The execution mechanism is
composed by two threads: one non-speculative and other
speculative. Once the non-speculative thread reaches the
starting point of the speculative thread, it replays all incorrect
instructions with the help of a hardware speculation result
buffer. Thanks to the hardware support and to the fact that
only two threads cooperate in the task, squashes are always
“perfect”, in the sense described in Section 3. In [13], a model
that combines different techniques such as thread-level spec-
ulation, helper threads and run-ahead execution is proposed
to dynamically choose at runtime the most appropriate com-
bination. The proposed TLS system also uses inclusive
squashes. An adaptive approach for speculative loop execu-
tion that handles nested loops has been recently proposed
[30]. This proposal also relies on inclusive squash to squash
the offending thread and all its successors at the same nesting
level.

Several works propose speculative parallelization
mechanisms that benefit from different degrees of code
transformations. Tian et al. [31] propose the use of the
Copy-or-Discard (CorD) execution model to avoid expensive
state recovering mechanisms in case of misspeculation. This
proposal requires an in-depth analysis of the original loop,
and the use of code transformation techniques that reduce the
probability of misspeculation. The mechanism proposed just
squashes the offending thread and not its successors, simply
because this proposal does not use forwarding to recover the

most up-to-date value of speculative variables. Instead, spec-
ulative loads in this proposal always get the non-speculative
version of the data, so successors of the offending thread are
not affected by misspeculations. This design tradeoff leads to
good speedups when dependence violations are highly un-
likely. This is the case for the CorD execution model, because it
minimizes the possibility of dependence violations thanks to
its compile-time code transformations.

A recent paper of the CorD group [32] also aims to reduce
the cost of misspeculation, but from a different perspective.
Instead of squashing only offending threads and other
threads that have used their data, this proposal records
intermediate states during the speculative execution. In this
way, instead of aborting a complete task, only a portion of the
task is re-executed. This solution comes at the cost of a more
complex code analysis, in order to insert intermediate check-
points where the earliest reads of the speculative variables are
found.

In [17], a software-based TLS system is proposed to help in
the manual parallelization of applications. The system re-
quires from the programmer to mark “possibly parallel re-
gions” (PPR) in the application to be parallelized. The system
relies on a so-called “tournament” model, with different
thread cooperating to execute the region speculatively, while
an additional thread runs the same code sequentially. If a
single dependence arises, speculation fails entirely and the
sequential execution results is used instead. The usefulness of
this system is based on the assumption that the code chosen by
the programmer will likely not present any dependencies. An
improvement to this scheme is described in [33], relying on
dependence hints provided by the programmer to allow
explicit data communication between threads, thus reducing
runtime dependence violations.

Finally, exclusive squashing at a finer lever of granularity
has been proposed in the context of transactional memory.
Ramadan et al. [34] perform value forwarding while tracking
individual dependences between transactions, allowing to
only abort dependent transactions. Since the system pro-
posed, called DASTM, is based in the use of effective ad-
dresses, it works at a finer level of granularity than SP, and
therefore there is almost no possibility of discarding poten-
tially valid work due to false-sharing issues. However, in the
context of speculative parallelization, different threads may
access to different data in the same speculative working set.
This coarser level of granularity makes false-sharing situa-
tions common. As far as we know, our solution is the first
system that avoid losses of valid work in this case.

Authorized licensed use limited to: UNIVERSIDAD DE VALLADOLID. Downloaded on October 04,2024 at 14:34:51 UTC from IEEE Xplore. Restrictions apply.

1838

10 CONCLUSIONS

This work explores the design space of solutions to avoid
unnecessary squashes in software-based speculative paralle-
lization, and their evaluation in terms of performance. In the
event of a dependence violation, most software-based TLS
systems discard the work done by the offending thread and all
its successors, potentially losing and repeating correct com-
putations. In this work we devise a new squashing policy,
called “exclusive squashing”, that only squashes threads that
have effectively consumed an incorrect value, and all their
successors that have consumed any value from them. We have
performed an exhaustive exploration of the squashing policy
design space, not only with respect to the squashing strategy
being used, but also taking into account the different stages
when dependence violations can be detected and corrected.
Our experimental results show that the exclusive squashing
policy effectively leads to performance improvements in
applications where a dependence violation does not invali-
date all the work carried out by the successors of the offending
thread.

The speculative parallelization scheme and benchmarks
described in this paper are available under request.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees
for their valuable suggestions, and Dr. Marcelo Cintra and
Dr. Belén Palop for many helpful discussions on this topic.
This research is partly supported by the Spanish Government
(TIN2007-62302, TSI-020302-2008-89, CENIT OCEANLI-
DER), the CAPAP-H network (TIN2010-12011-E, TIN2011-
15734-E), and Junta de Castilla y Ledn, Spain (VA172A12-2).
Part of this work was carried out under the HPC-EUROPA2
project (project number: 228398), with the support of the
European Community, Research Infrastructure Action of
the FP7.

REFERENCES

[1] M. Cintra and D. R. Llanos, “Toward efficient and robust software
speculative parallelization on multiprocessors,” in Proc. 9th ACM
SIGPLAN Symp. Principles Practice Parallel Program. (PPoPP), 2003,
pp. 13-24.

[2] F. H. Dang, H. Yu, and L. Rauchwerger, “The R-LRPD test: Specu-
lative parallelization of partially parallel loops,” in Proc. 16th Parallel
Distrib. Process. Symp., 2002, pp. 20-29.

[3] M. Gupta and R. Nim, “Techniques for speculative run-time paral-
lelization of loops,” in Proc. IEEE/ACM Conf. Supercomput. (ICS),
1998, pp. 1-12.

[4] M. Kulkarni et al., “Optimistic parallelism benefits from data
partitioning,” in Proc. 13th Architectural Support Program. Languages
Operat. Syst. (ASPLOS), 2008, pp. 233-243.

[5] M. Kulkarni et al., “Optimistic parallelism requires abstractions,”
in Proc. Program. Language Des. Implemen. (PLDI), 2007,
pp. 211-222.

[6] M. Cintra, J. F. Maritnez, and J. Torrellas, “Architectural support
for scalable speculative parallelization in shared-memory multi-
processors,” in Proc. 27th Int. Symp. Comput. Archit. (ISCA), 2000,
pp- 13-24.

[7] L. Hammond, M. Willey, and K. Olukotun, “Data speculation
support for a chip multiprocessor,” in Proc. 8th Int. Conf. Architectural
Support Programm. Languages Operat. Syst., 1998, pp. 58-69.

[8] P. Marcuello and A. Gonzilez, “Clustered speculative multi-
threaded processors,” in Proc. 13th Int. Conf. Supercomput. (ICS),
1999, pp. 365-372.

Bl
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 7, JULY 2014

J. G. Steffan et al., “A scalable approach to thread-level speculation,”
in Proc. 27th Annu. Int. Symp. Comput. Archit., 2000, pp. 1-12.
L.R.Y. Zhan and J. Torrellas, “Hardware for speculative Run-Time
parallelization in distributed Shared-Memory multiprocessors,” in
Proc. 4th Int. Symp. High-Perform. Comput. Archit. (HPCA), 1998, p. 162.
L.Rauchwerger and D. Padua, “The LRPD test: speculative run-time
parallelization of loops with privatization and reduction paralleli-
zation,” in Proc. Conf. Programm. Lang. Des. Implement., pp. 218-232,
Jun. 1995.

P. Rundberg and P. Stenstrom, “An all-Software thread-level data
dependence speculation system for multiprocessors,” J. Instr.-Level
Parallelism, vol. 3, Oct. 2001.

P. Xekalakis, N. Ioannou, and M. Cintra, “Combining thread level
speculation helper threads and runahead execution,” in Proc. 23rd
Int. Conf. Supercomput. (ICS), 2009, pp. 410-420.

M. Cintra and D. R. Llanos, “Design space exploration of a software
speculative parallelization scheme,” IEEE Trans. Parallel Distrib.
Syst., vol. 16, no. 6, pp. 562-576, Jun. 2005.

C. Kruskal and A. Weiss, “Allocating independent subtasks on
parallel processors,” IEEE Trans. Softw. Eng., vol. SE-11, no. 10,
pp- 1001-1016, Oct. 1985.

M. Kulkarni et al., “Scheduling strategies for optimistic parallel
execution of irregular programs,” in Proc. 20th Annu. Symp. Parallel-
ism Algorithms Archit. (SPAA), 2008, pp. 217-228.

C. Ding et al., “Software behavior oriented parallelization,” in Proc.
ACM SIGPLAN Conf. Program. Language Des. Implementation (PLDI),
2007, pp. 223-234.

J. G. Steffan et al., “The STAMPede approach to thread-level specu-
lation,” ACM Trans. Comput. Syst., vol. 23, no. 3, pp. 253-300, 2005.
R. Chandra et al., Parallel Programming in OpenMP, 1st ed. San
Mateo, CA: Morgan Kaufmann, Oct. 2000.

J. E. Barnes. (Jan. 1997). TREE. Hawaii: Institute for Astronomy,
University of Hawaii. [Online]. Available: ftp: //ftp.ifa.hawaii.edu/
pub/barnes/treecode/

M. Berry, D. Chen, and P. Koss, “The PERFECT club benchmarks:
Effective performance evaluation of supercomputers,” Int. |. Super-
comput. Appl., vol. 3, no. 3, pp. 5-40, 1989.

Standard Performance Evaluation Council, SPEC CPU2000 bench-
mark suite [online]. Available: http://www.spec.org/cpu2000/

K. L. Clarkson, K. Mehlhorn, and R. Seidel, “Four results on ran-
domized incremental constructions,” Comput. Geom. Theory Appl.,
vol. 3, no. 4, pp. 185212, 1993.

L. Devroye, E. P. Miicke, and B. Zhu, “A note on point location in
Delaunay triangulations of random points,” Algorithmica, vol. 22,
pp- 477482, 1998.

E. P. Miicke, I. Saias, and B. Zhu, “Fast randomized point location
without preprocessing in two- and three-dimensional Delaunay
triangulations,” in Proc. 12th ACM Symp. Comput. Geom., 1996,
pp- 274-283.

E. Welzl, “Smallest enclosing disks (balls and ellipsoids),” in New
Results New Trends Comput. Sci. (Lecture Notes Comput. Sci.),
vol. 555, pp. 359-370, 1991.

M. Cintra and J. Torrellas, “Eliminating squashes through learning
cross-thread violations in speculative parallelization for multipro-
cessors,” in Proc. 8th Int. Symp. High-Perform. Comput. Archit.
(HPCA), 2002, pp. 43-54.

M. J. Garzaran et al., “Tradeoffs in buffering speculative memory
state for thread-level speculation in multiprocessors,” ACM Trans.
Archit. Code Optim., vol. 2, no. 3, pp. 247-279, 2005.

X. Li et al., “Speculative parallel threading architecture and compi-
lation,” in Proc. Int. Conf. Workshops Parallel Process. (ICPP), 2005,
pp. 285-294.

L. Gao et al., “SEED: A statically greedy and dynamically adaptive
approach for speculative loop execution,” IEEE Trans. Comput.,
vol. 62, no. 5, pp. 1004-1016, 2013.

C. Tian et al., “Copy or discard execution model for speculative
parallelization on multicores,” in Proc. 41st IEEE/ACM Int. Symp.
Microarchit. (MICRO-41), Nov. 2008, pp. 330-341.

C. Tian et al., “Enhanced speculative parallelization via incremental
recovery,” in Proc. 16th ACM Symp. Principles Practice Parallel Pro-
gram. (PPoPP), 2011, pp. 189-200.

C. Ke et al., “Safe parallel programming using dynamic dependence
hints,” in Proc. ACM Int. Conf. Object Oriented Program. Syst. Lan-
guages Appl. (OOPSLA), 2011, pp. 243-258.

H. E. Ramadan et al., “Committing conflicting transactions in an
STM,” in Proc. 14th ACM SIGPLAN Symp. Principles Practice Parallel
Program. (PPoPP), 2009, pp. 163-172.

Authorized licensed use limited to: UNIVERSIDAD DE VALLADOLID. Downloaded on October 04,2024 at 14:34:51 UTC from IEEE Xplore. Restrictions apply.

Alvaro Garcia-Yagiiez received the MSc degree
in computer science and the MSc degree in
research in information and communication tech-
nologies from the University of Valladolid, Spain,
in 2010 and 2011, respectively. His research
interests include parallel and distributed comput-
ing and automatic parallelization of sequential
code. He is the cofounder of Novagecko (http://
www.novagecko.com), a software company in the
field of mobile application development.

Diego R. Llanos received the MS and PhD de-
grees in computer science from the University of
Valladolid, Spain, in 1996 and 2000, respectively.
He is Associate Professor of Computer Architec-
ture atthe Universidad de Valladolid. His research
interests include parallel and distributed comput-
ing, automatic parallelization of sequential code,
and embedded computing. He is a recipient of the
Spanish government’s national award for aca-
demic excellence. He is a Senior Member of the
IEEE Computer Society and Member of the ACM.

GARCIA YAGUEZ ET AL.: SQUASHING ALTERNATIVES FOR SOFTWARE-BASED SPECULATIVE PARALLELIZATION 1839

Arturo Gonzalez-Escribano received the MS
and PhD degrees in computer science from the
University of Valladolid, Spain, in 1996 and 2003,
respectively. He is an Associate Professor of
Computer Science at the Universidad de Valla-
dolid. His research interests include parallel and
distributed computing, parallel programming mod-
els, and embedded computing. He is a Member of
the IEEE Computer Society and Member of the
ACM.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

Authorized licensed use limited to: UNIVERSIDAD DE VALLADOLID. Downloaded on October 04,2024 at 14:34:51 UTC from IEEE Xplore. Restrictions apply.

