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Abstract The advent of multicore technologies has increased the interest in paral-
lelization techniques for existing sequential applications. These techniques include the
need of detecting loops that are good candidates for parallelization, and classifying all
variables of these loops according to their use, a task surprisingly hard to be carried
out manually. In this paper, we introduce the BonaFide C Analyzer, an XML-based
framework that combines static analysis of source code with profiling information to
generate complete reports regarding all loops in a C application, including loop cov-
erage, loop suitability for parallelization, a classification of all variables inside loops
based on their accesses, and other hurdles that restrict the parallelization. This infor-
mation allows to analyze how particular language constructs are used in real-world
applications, and helps the programmer to parallelize the code. To show the features of
the framework, we present the results of an in-depth loop characterization of C appli-
cations that are part of the SPEC CPU2006 benchmark suite. Our study shows that
47.72 % of loops present in the applications analyzed are potentially parallelizable with
existent parallel programming models such as OpenMP, while an additional 37.7 %
of loops could be run in parallel with the help of runtime speculative parallelization
techniques.
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1 Introduction

Multicore technologies have increased the peak performance of computing systems
during the last decade. However, unlike previous advances in computer architecture,
existent code cannot immediately take advantage of these architecture improvements.
To fully exploit multicore capabilities, programmers should parallelize their applica-
tions, a difficult task that requires an in-depth knowledge of both the application and
the underlying computer architecture [10].

Fortunately, there exist different shared-memory parallel programming models that
aim to facilitate parallel programming, being OpenMP [11] the most popular one. With
OpenMP, the programmer can exploit loop-level parallelization by simply adding an
OMP PARALLEL directive just before the target loop.

However, and despite their usefulness, these parallel programming models need
the programmer to address two critical issues. The first one is the decision of which
loop is more profitable to be parallelized. To answer this question, it is necessary to
know the percentage of the total execution time consumed within each loop of the
application, known as the loop coverage [35]. Loops which represent a significant
amount of execution time compared with the total execution time of the program are
usually good candidates, because their effective parallelization may lead to a significant
improvement in the execution time of the whole program. Since this information
usually depends on the application control flow as well as its input data, the loop
coverage cannot be obtained with static analysis alone. Thus, auxiliary profiling tools
that return loop coverage are required.

Once a candidate loop has been chosen, programmers face a second problem: To
ensure that the loop can be safely run in parallel. Informally speaking, only loops
whose iterations do not depend on other iterations can be parallelized. To ensure that
the code can be run in parallel, the programmer should be able to classify all variables
present in the code into “private” variables (i.e., variables that are always written in an
iteration before being used in the same iteration), and “read-only shared” variables,
that are only read and not written in any iteration. If all variables inside a loop are
either private or read-only shared, then the loop can be safely parallelized!. Figure 1
shows an example of such parallelizable loop. If a single variable is found that does not
fit in these two categories, then the loop is not parallelizable at compile time, and we
have to draw on other techniques such as software-based speculative parallelization. It
is easy to see that this dependence analysis is a tedious and error-prone task, difficult
to be done by hand if the target loop has more than a few dozen lines of code.

In this paper, we address the problem of obtaining the characterization and cov-
erage of target loops automatically. To do so, we have developed an experimental
framework that solves both issues, merging static analysis with dynamic information.
Our framework, whose preliminary version was presented in PDP’11 [2], transforms
the source code of a C application into a single XML [8] tree, in which every element
of the source code is represented using XML nodes and attributes. Our framework,
partially based on the Cetus source-to-source C compiler [21], works as follows:

! Further analysis may be required to ensure that, after parallel execution, final values stored in private
variables meet sequential semantics.
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for (i =0; i < 100; i++ ) { // i controls the loop and it is private

v[i] = alil + i; // v is private (only written), and a is read-only shared

}

Fig. 1 Example of a loop with private (1 and v []) and read-only shared (a [ ]) data structures

1. We have extended Cetus to develop a new tool called XMLCetus, that generates
an XML tree of the sequential source code based on Cetus Intermediate Repre-
sentation (IR).

2. This XML tree is then automatically augmented with profiling information
obtained by running the sequential code.

3. The resulting XML tree is later explored using XPath [6] capabilities, to perform
different analyses, including the characterization of all loops in terms of cover-
age, together with the definition and use of all variables inside all loops of the
application.

The final result is a complete report regarding all loops in the application, includ-
ing loop coverage, loop suitability for parallelization with OpenMP directives, and
a classification on the definition and usage of all variables inside all loops. Besides,
Bonafide C Analyzer (BFCA) is designed to locate and quantify some hurdles that
affect the parallelization. Thus, these reports can also be used to guide the automatic
parallelization of the code.

In order to evaluate our approach, we have conducted an extensive study of the C
applications present in the SPEC CPU2006 benchmark suite [29]. The study not only
characterizes in both quantitative and qualitative terms the loops of these applications
regarding their suitability for parallel execution, but it also reports to what extent the
use of automatic parallelization techniques may help to further reduce the execution
time. The study also classifies all loops in these benchmarks according to different
characteristics that may affect their parallelization, including the use of pointer arith-
metic, [/O and memory management calls, and dependencies of static and global
variables, together with their aggregate coverage. This kind of information, extremely
hard to obtain by other means, can also be used to guide future developments in the
field of automatic parallelization.

The main contributions of this paper are the following:

— This work combines the compile-time analysis and the loop-based, runtime pro-
filing information of a source code in a single, XML-based representation. As far
as we know, this approach is unique with respect to the related work described
in Sect. 2, and helps to close a gap described in the literature, since traditional
profilers focus primarily on functions and inner loops [45].

— The resulting XML tree can be easily used for a variety of purposes. We have used
the combined static and dynamic information of the code to characterize all loops
with respect of the loop-based parallelization opportunities they offer, not only in
terms of loop coverage but also with respect to the possibility of a dependence
violation among iterations.

— The flexibility offered by the XML representation allows to extend this framework
for other purposes, such as automatic source code optimization.
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The rest of the paper is organized as follows:

Section 2 describes some related approaches. Section 3 describes the overall archi-
tecture of the framework developed, together with its components.

Section 4 presents some background knowledge needed to understand Cetus, and
how we have modified it to build the XML tree. Section 5 shows how to merge the
XML tree that represents the original program with the profiling information obtained
after a test run of the application. Section 6 describes how the augmented XML tree
can be queried to obtain both the coverage of FOR loops and the definition and use
of all relevant variables inside each loop. Section 7 makes an introduction to XSLT
capabilities, and how template rules can be used to transform the XML tree back to
C. Section 8 shows a detailed analysis of the opportunities for parallelization in the C
applications of the SPEC CPU2006 benchmark suite. Section 9 briefly compares the
capabilities of our framework with respect to the use of Cetus for the same purpose.
Section 10 compares the performance of our framework with respect to previous
approaches, including Cetus. Finally, Sect. 11 concludes our paper.

2 Related work

The related work can be subdivided in two branches. One branch is focused in paral-
lelism discovery into sequential code, while the other explores ways to represent code
using XML.

2.1 Parallelism discovery and loops selection

A correct selection of loops to be parallelized can have noteworthy benefits in the
overall performance of the applications. In order to get an accurate source code paral-
lelization, the profiling information has been proved as an invaluable tool to achieve
a correct loop selection [55]. Although extracting and using correctly this informa-
tion has a performance penalty, and includes scalability problems [36], many works
have shown that it is not pointless. For example, obtaining an optimal loop selec-
tion, Wang et al. [55] get speedups of 20 % in SPEC2000 integer benchmarks, and
Packirisamy [46] reports speedups of 60 % in SPEC CPU2006 benchmarks.

Some recent papers present results about which loops have to be selected in a
speculative parallelization context. Focusing on hardware-based approaches, there are
many that benefit from the selection of loops [12,30,33,37,38,56]. Johnson et al. [33]
make the selection of loops and the decision on the number of threads to execute
them at the same time the profile run executes. Following a different approach to the
problem, Luo et al. [38] estimate the parallel performance of each loop in terms of
the probability and cost of speculation failure. BFCA 1is not only suitable to detect
speculative parallelization niches, but also reveals hurdles that may affect any kind
of parallelization. Finally, POSH [37] is a compiler targeted to hardware-based TLS
architectures. POSH uses a compiler pass to discard ineffective loops on the basis of
some heuristics that are previously calculated. The profiling information returned by
POSH is related to the use of hardware resources in those architectures, such as cache
and register usage. By contrast, the data collected by our solution are not related to
hardware resources, but to the source code itself.
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Other approaches rely on cost models which use the information extracted by a
profiler to select loops, on the basis of the density of data dependence [48,58], the cost
of re-executing iterations due to dependence violations [24], the Amdahl’s law [9], the
different overheads of a parallel execution [23], the frequency of dependencies [52],
or speedup estimations based on graphs [27,55]. BFCA does not use theoretical cost
models. Instead, it characterizes loop coverages using real executions and classifies
based on the potential dependence violations, with the aim of guiding programmers
to parallelize the code using this information.

As many of the papers of the literature expose, pure static loop analysis is insuffi-
cient. This kind of analysis requires complex models and results in inherent inaccuracy
estimations. As a direct consequence, a lower number of loops are parallelized [36].
That is the reason why we propose to complete static information with dynamic infor-
mation, obtained through profiling, which has been demonstrated as a very efficient
technique to improve loop selection. As a novelty feature, BFCA goes further, not
only pointing which loops are better to be parallelized, but also locating which hur-
dles presented in a code may affect the parallelization.

2.2 XML representation

BFCA takes advantage of the benefits derived from using XML. With XML, we
can directly represent, analyze and manipulate the program structure. As McArthur
et al. [43] pointed out, as long as the granularity of the details of the source code in
the XML is higher than in plain text representation, it is possible to create a huge
variety of tools to manipulate, transform and extract information from source codes.
There are several examples of these useful tasks, such as counting all the occurrences
of a syntactic construct, even in a particular context; finding the number of functions
called by a function; or finding the number of functions calling a particular function.
Such tasks cannot easily be done with plain text representations. Examples of more
advanced tasks are refactoring [18,44], exchanging [7,31], differencing [14], program
slicing [28], generation of UML models [50], addressing source code [15], source
code transformations [19], or fact extraction [16,17].

There are some works that use XML to represent source code to extract some
information. One of the first XML representations of source code is JavaML [5], used
to describe Java source codes. Like BFCA, JavaML directly represents the structure
of source codes by nesting XML nodes, not preserving formatting information. Other
approaches do store formatting information, such as JavaML 2.0 [22], srcML [40],
XSDML [42],JaML [26] and PALEX [39]. In consequence, storing all this information
requires much more space than BFCA, which only preserves structural information
of the code. Preservation of formatting information is not a priority to our framework,
since it is focused on the analysis of source code.

BFCA only needs the Abstract Syntax Tree (AST) that represents the code for
its purposes, and thus, BFCA’s XML files only represent explicitly the entire AST,
removing the formatting information such as OOML [41] and Zou’s and Kontogiannis’
proposal [59]. Other data, including the flow information, are implicitly stored. This
feature allows BFCA to save memory resources, unlike other approaches, such as the
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Fig. 2 Architecture of the BonaFide C Analyzer

XREF model [4], which stores the relations across multiple files; ACML [28], which
generates XML trees more than a hundred times larger than the original source codes
to store all the syntactic and semantic information; or the proposals of Al-Ekgram and
Kontogiannis [1], and Putro and Liem [49], which represent higher level abstractions
that are not needed by the BFCA operation such as the Control Flow Graph (CFG),
the Program Dependence Graph (PDG), and the Call Graph.

On the other hand, there are approaches that store partial ASTs, only marking
selected nodes, such as XMLizer [43], or Cordy’s proposal [20]. These approaches
generate XML trees that are smaller than BFCA’s, but they do not contain all the
information needed to the kind of analysis that BFCA does. In [51], Sun etal. propose
to obtain the XML representation directly and faster than using an AST or a compilation
process. This solution is not applicable in our approach, since we have based the XML
transformation on the Cetus IR obtained through compiling the source code.

Finally, to avoid the low scalability associated with the bottom-up parsers, and
presented in some proposals such as Power’s and Malloy’s [47], BFCA follows a
top-down approach. Moreover, BFCA is not graph-based, as GraX [25], GXL [31],
or Wagner’s et al. [54] approaches, which are not intended to represent the exact
program code, but instead its higher-level structure. This level of representation is
closer to others, for example control flow graphs.

After briefly describing the relevant literature, we will now discuss the architecture
of BFCA and all its components (XMLCetus, Profilazer, Loopest and Sirius) in more
detail.

3 BFCA framework architecture
Figure 2 shows the architecture of the BFCA. The inputs of the framework are

the C source files and an example input set. The original C code is used in two
ways. A module called XMLCetus builds an XML tree representing the original C
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code, with all the information needed to later rebuild the source code. XMLCetus is a
modified version of Cetus [21], a source-to-source compiler infrastructure. XMLCetus
extends Cetus’ functionality by building an XML representation of Cetus’ Intermediate
Representation (IR) tree.

Using XML to represent source code has several advantages. Besides being simple,
extensible and a standard format to exchange data, XML is well suited for representing
hierarchical data. Thus, the structure of the source code is explicitly reflected in the
nesting of elements into the XML document. This structure can be easily explored
using XPath queries, and even transformed by XSLT rules. Exploiting these technolo-
gies, we merge static analysis with profiling information.

In order to obtain runtime information, the C code is compiled with the Intel® C
compiler. The reason to use this commercial compiler to instrument codes instead of
open-source solutions is that the Intel compiler has a feature not available elsewhere:
the ability of providing profiling information on each loop in an XML format, in
which each loop is represented by a node, and its attributes are used to store relevant
information, including the inclusive and exclusive execution times consumed by each
loop2. This differs from what other profilers do, as Sun’s or OProfile, which generate
a text file with only the instructions and functions of the source file, annotated with
execution times. This text file needs to be post-processed to obtain the loop coverage,
and information about how these loops are nested. This is an unnecessary step if we
use the XML file generated by the Intel® compiler.

A second module, called Profilazer, receives the XML file generated by XMLCetus
and, using the profiling information for each loop, augments the XML tree with the
inclusive and exclusive execution times of every FOR loop, together with the number
of executions of all loops in the code. Merging the XML representation of the source
code with the execution times of the FOR loops provides useful information about the
structure and nesting of these loops.

This augmented XML tree is received by a third module called Loopest. This
module uses a collection of XPath expressions to query the XML DOM tree. We have
implemented queries that perform a dependence analysis of scalar variables, arrays,
structures, and function parameters, also looking for other constructs (such as memory
management, I/O function calls, pointer arithmetic, static variables) in the context of
every single FOR loop. These queries generate a complete analysis report that can
be used to either parallelize the application using OpenMP directives or to guide the
development of new automatic parallelization tools. Thus, as a direct application of
these reports, Loopest is able to augment the XML tree with additional statements,
and hence, allowing the instrumentation of the code using the extracted information.
This opens a door to the automatic parallelization of the code, by either inserting
OpenMP directives or special code constructs to handle the speculative parallelization
of promising loops.

Finally, we have developed a tool that converts the XML tree back into C language,
to check the correctness of the process, and to take advantage of the possible aug-

2 Inclusive execution time of a loop is the amount of time that the loop consumes, including the time spent
by its nested loops and functions called from this loop. By contrast, exclusive execution time of a loop is
the time that the loop consumes by itself, excluding the time spent by its nested loops and function calls.
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Fig. 3 IR tree structure example. Each part of the source code corresponds with a node in the tree. A
“TranslationUnit” is a file containing source code

mented codes produces by Loopest. We have developed a module that performs such
transformation, called Sirius. The code generated by Sirius is equivalent to the original
code.

One of the main advantages of using BFCA for program analysis instead of other
alternatives (including Cetus) is extensibility. New functionalities can be easily added,
inserting new XPath queries into Loopest. As we will see in Sect. 9, the development
of the XPath queries needed for the present functionalities of BFCA is much simpler
than directly modifying Cetus for the same purpose.

4 XMLCetus: building the XML tree

BFCA has a modular architecture composed by four components. XMLCetus is the
first component and it is based on Cetus. Cetus [21] is a compiler infrastructure written
in Java for source-to-source transformation of C programs developed by Purdue Uni-
versity. Cetus builds an Intermediate Representation (IR), an abstract representation
that holds the block structure of a C program. The IR is implemented in the form of a
class hierarchy and accessed through its class member functions. Figure 3 shows an
example of Cetus IR from a C source code.

Although Cetus is a powerful tool, adding new functionalities requires an in-depth
knowledge of Java, Cetus IR, and its associated data structures. Due to both simplicity
and extensibility reasons, instead of using Cetus capabilities to develop our compiler
framework, we modify it to build an XML representation of its IR, and we use XML
standard tools to perform queries and modifications to the structure.

XMLCetus is a modification of Cetus that generates an XML DOM tree based on
Cetus IR. The main changes to Cetus are made just after Cetus has finished the analysis
of the C source and has generated the IR. At this point, the XML tree is created having
the Program node as first node, and traversing the Cetus IR in pre-order, depth-first
search. Every node of the IR will have a corresponding representation in the XML
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<ForLoop condition="i&It;10" initial=
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Fig.4 XML code generated by XMLCetus for a FOR loop statement (fop), and the binary expression that

represents the loop initialization (bottom)

DOM tree, thus preserving the original structure of the Cetus IR, as well as the name
of the IR elements. This procedure generates an XML document that represents the
DOM tree, and it is printed into a new XML file. Figure 4 shows an example of this
XML generated. A more detailed description of this process can be found in [2].

5 Profilazer: augmenting the XML tree with profiling information

The output XML file generated by XMLCetus is passed to Profilazer, which uses the
profiling information provided by the Intel® compiler to generate a new XML tree
that is augmented with the inclusive and exclusive execution times of every FOR loop

in the original source code.

It is not straightforward to calculate the coverage of every loop in the code in
terms of execution times. Most profiling tools only return execution times consumed
by function calls and C statements. Fortunately, the Intel® compiler has a -profile-
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loops=all option, that allows the executable file to generate an XML report with
both inclusive and exclusive execution times of every loop. Since we already have
an XML file describing the source code, combining both XML trees is conceptually
straightforward. This combination is made by Profilazer. Both XML trees contain
XML nodes representing the FOR loops with attributes that identify them properly.
Therefore, for each of these nodes in the XML tree generated by XMLCetus, Profilazer
assigns the execution times of the corresponding FOR loop encoded in the XML tree
generated by the profiler.

Obtaining the relevance of each loop in terms of execution time is very useful to
choose which loop is more profitable to parallelize. An XML tree representing the
source code, augmented with profiling information, satisfies this need not only for
manual parallelization purposes, but also to build heuristics to automatically choose
target loops.

6 Loopest: querying and modifying the XML tree

Loopest is a Java module that analyzes the augmented XML tree and provides three
sets of functionalities: (a) generation of reports on the aggregate coverage of every
FOR loop, (b) generation of reports on the definition and use of all variables in the
context of every FOR loop, and (c) the ability of modifying the XML tree according
to this analysis, inserting automatic parallelization directives.

Loopest relies on XPath capabilities to perform queries on the augmented XML
tree returned by Profilazer. XPath syntax is easy to learn, and allows to build complex
queries with few words or lines. The result of these queries may be new node-sets
that can be combined into new queries. XPath queries work in a similar way than
recursive searches in a directory-based file-system structure, allowing to select nodes
or set of nodes in an XML document, based on the nodes’ attributes. As an example,
Fig. 5 shows the queries used in Loopest to isolate variables that are written inside
a loop. Such queries are much simpler to develop than directly modifying the Java
code that manages the IR structure in Cetus. For example, the first query in Fig. 5 has
three different parts that isolate the variable x as written in the statements x = 2,
int x = 0,and function (&x), respectively.

The simplicity of XPath syntax allows a fast prototyping of new solutions. As a
result, Loopest can be modified to detect other features in a source code by imple-
menting new XPath queries, either to describe new rules in the variables classification,
or to detect new languages constructions. This property guarantees the extensibility
of Loopest.

In order to classify variable usage inside FOR loops, Loopest executes a set of
XPath queries that determine the variables being read, written, or read and then writ-
ten. These results are combined with other queries using set theory operations’ to
classify variables into private, read-only shared, and speculative classes, including
the detection of private variables that are used after the end of the loop. We have

3 This feature has been added with the help of the ListUtils package, provided by Apache Commons [32],
that allows to apply operations as union or intersection over sets of variables.
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// (1) QUERY TO ISOLATE VARIABLES WRITTEN.
// VARIABLES AS INDEXES IN AN ArrayAccess ARE NOT CONSIDERED TO BE WRITTEN.
Statement [2] /CompoundStatement//
( (AssignmentExpression/Expression[1]//Identifier[
not (ancestor: :AccessExpression) and not(ancestor::ArrayAccess)
n
| (VariableDeclarator[ descendant::Initializer 1/
Expression//Identifier[
not (ancestor: :AccessExpression) and not(ancestor: :ArrayAccess)
n
| (FunctionCall/Expression[ position()!=1 1//
UnaryExpression[ Qoperator=’&’ ]//Identifier[
not (ancestor: :AccessExpression) and not(ancestor: :ArrayAccess)
D
)

// (2) ArrayAccess WRITTEN.
Statement [2] /CompoundStatement//
( (AssignmentExpression/Expression[1]//
ArrayAccess/Expression[1]//
Identifier[ not(ancestor::AccessExpression) ])
| (VariableDeclarator[ descendant::Initializer ]/
Expression//ArrayAccess/Expression[1]//
Identifier[ not(ancestor::AccessExpression) 1)
| (FunctionCall/Expression[position()!=1]1//
UnaryExpression[ @operator="&’ ]//ArrayAccess/Expression[1]//
Identifier[ not(ancestor::AccessExpression) 1)

)

// (3,4) AccessExpression VARIABLES WRITTEN.
// THE OPTION "VARIABLEDECLARATOR + INITIALIZER" IS NOT CONSIDERED BECAUSE THAT
// CONSTRUCTION IS NOT POSSIBLE. (EXAMPLE: long date.rl = 5).
Statement [2] /CompoundStatement//
( (AssignmentExpression/Expression[1]1//
AccessExpression[ not(ancestor::AccessExpression) 1)
| (FunctionCall/Expression[position()!=1]//
UnaryExpression[@operator="&’1//
AccessExpression[ not(ancestor::AccessExpression) ])

)

// (5) VARIABLES READ AND WRITTEN (FROM UNARY INCREMENTS OR DECREMENTS).
Statement [2] //ExpressionStatement/Expression//(UnaryExpression
[ @operator=’post ++’ or @operator=’post --’
or Qoperator=’pre ++’ or Qoperator=’pre --’
n /7
( (Identifier[ not(ancestor::AccessExpression) ])
| (AccessExpression[ not(ancestor::AccessExpression) 1)

)

Fig. 5 XPath code that searches for variables written inside a loop. This code includes queries which
detects / variables written as a result of being located at the left-hand side of an assignment expression, 2
writes to array elements, 3 writes to fields inside data structures, 4 variables affected by an address operator,
and 5 implicit writes due to unary increments or decrements

used set theory operations to simplify queries, and obtain a better mapping with the
classification rules. For example, a variable that is written and also read is detected
when we perform the union of the list of variables written and the list of variables
read, both obtained through XPath queries. More precisely, private variables are: (1)
variables that control the execution of a loop; (2) variables that are always written in
an iteration before being read, and are not read after the loop execution; (3) variables
that are only written and read after the loop, or written before being read; and (4) data
structures that only contains private variables. Shared variables are: (1) variables that
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are only read; (2) variables that are involved in the main loop control (but they are
not the control variable), as long as they are read-only variables; (3) data structures
that all their elements are shared; and (4) global variables that are only read inside the
loop. Variables that are not private nor shared are considered speculative, because their
definition and use may lead to race conditions during a parallel execution. Loopest
detects variables that match each subtype described above, and then applies several
set operations, such as union or intersection, to obtain the final variable classification.

The XPath queries used by Loopest process all FOR loops present in the code,
regardless of their depth level, and all user functions called by them. All these data
provide the enough information that can be used to guide loop-level speculative par-
allelization of the code.

As we have stated above, Loopest has three different functionalities. The first one
is to use profiling information of every FOR loop, provided by the augmented XML
file, to perform a classification of loops by their relevance in terms of execution time.
The second one is to generate a report with a taxonomy of variable usage for a target
loop. Finally, a third functionality offered by Loopest is the possibility of augmenting
the XML tree with additional branches, thus allowing the instrumentation of the code
using the acquired information. This opens a door to the automatic parallelization of
the code, either inserting OpenMP directives or function calls that allow the speculative
parallelization of promising loops [13]. Our research group is currently exploring this
possibility.

7 Sirius: regenerating the C code

After building and analyzing the XML tree, the last part of the process is to convert
this representation back into C code, for testing purposes (i.e., to check whether the
generated C file has the same functionality than the original). To do so, we have devel-
oped a Java module called Sirius, that receives an XML document describing either
the original C code as produced by XMLCetus or the augmented C code produced by
Loopest.

Sirius is based on XSLT [34] capabilities, and uses the template rules to correctly
translate the XML document back to C. As a result of the transformation made by
Sirius, a C source file is generated. Since all formattings (indentation, spaces, and line
breaks) have been lost in the process, we use the GNU tool indent to format the output
file and make it more pleasant for the reader.

To apply the XSLT transformation rules, we have chosen the Saxon tool [53], due
to its open-source nature and because it implements XPath and XSLT 2.0.

8 A case study: loop characterization of SPEC CPU2006 C benchmarks

To demonstrate the capabilities of our analysis framework, we will characterize a
set of C benchmarks to measure the potential gain that could be obtained with the
parallelization of some of their loops. As long as we focus on loop-level parallelization,
both the coverage of FOR loops in terms of execution time and the definition and use
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of all variables inside them should be taken into account. For this study, we will use
some of the C benchmarks provided by the SPEC CPU2006 benchmark suite [29].

Our study has several parts. First, we will discuss the opportunities for paralleliza-
tion of each SPEC CPU2006 C benchmarks considered, classifying FOR loops in
different categories with respect to their suitability for parallel execution and taking
into account the existence of potential dependence violations. Second, a more in-depth
analysis is performed to characterize all FOR loops with respect to different situations
that may affect parallelization, such as the use of pointer arithmetic and variables,
memory management function calls, I/O activity, or static variables.

In order to obtain the more accurate results, we use the three input sets that SPEC
CPU2006 provides for each benchmark: Test, which is used to check for the correct
execution of the benchmark; Train, which involves a bigger workload and it is used to
optimize benchmarks by feedback; and Reference, which is the biggest workload set
used to obtain execution times and hence, the final performance results. The conditions
of use of the benchmarks suite include the mandatory use of these input sets, with the
aim of ensuring that the observed level of performance can be reproduced by other
researchers. A detailed description for each input set can be found in [29].

Regarding the experimental evaluation, we have run each input set three times
and obtained the average percentage. Since the evaluation of the results in terms of
precision or recall is not feasible to large source codes (because it requires a manual
checking), we have used regression tests designed to cover the whole search space.
With these tests, we try to cover every possible situation in a code, manually checking
whether the results are correct in these tests.

8.1 Loop characterization with respect to potential dependence violations

Loops are one of the main sources of parallelism because of their repetitive nature.
However, not all loops are parallelizable. There are several reasons for this. The most
important one is the possibility of the occurrence of dependence violations. This
possibility may force the in-order execution of different instructions, thus limiting
the amount of parallelism that could be extracted. In fact, parallelizing compilers
conservatively refuse to parallelize loops that may incur in dependence violations.
Other reasons that limit the amount of parallelism to be extracted include the presence
of system calls that should be carried out in order, the use of pointer arithmetic, or
memory management functions.

In this section, we will use BFCA capabilities to isolate FOR loops that do not
present potential dependence violations, and therefore are valid candidates to be par-
allelized at compile time. Once a candidate loop is detected, programmers can decide
to parallelize this loop using standard, shared-memory APIs such as OpenMP. BEFCA
gives a first estimation of the degree of parallelism that could be extracted with compile-
time techniques. This estimation is only an upper bound of that degree, because, as
we stated before, there are several additional factors that limit in practice how much
parallelism can be obtained. These factors will be examined in the next section.

We have analyzed all benchmarks using the three input sets provided by SPEC
CPU2006 for each benchmark, to obtain loop coverages in different circumstances. We
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Table 1 Well-formed FOR

Joops Application Well-formed FOR Loops

% of Coverage  Coverage  Coverage

Loops test test reference
401.bzip2 93.33 35.69 29.8 31.43
429.mcf 63.64 7.39 3.69 2
433.milc 64.11 2.5 2.1 1.9
456.hmmer 88.23 94.29 98 98.1
458.sjeng 91.67 19.2 159 19.59
462.libquantum  92.13 22.5 19.7 21.4
464.h264ref 95.31 75.69 76.09 77.59
470.1bm 100 96.8 99.8 100
482.sphinx3 80.4 40.8 64.69 81.99
Average 85.42 43.87 45.53 48.22

Table 2 Room for compile-time and runtime parallelization techniques

Application Well-formed FOR loops parallelizable at Well-formed FOR loops potentially

compile time parallelizable at runtime

% of Cov. Cov. Cov. % of Cov. Cov. Cov.

Loops  Test Train Ref. Loops Test Train Ref
401.bzip2 46.67 16.94 7.56 13.71 46.66 18.75 22.24 17.72
429.mcf 30.3 3.5 2 1.2 33.34 3.89 1.69 0.8
433.milc 33.25 14 1.3 1.3 30.86 1.1 0.8 0.6
456.hmmer 46.55 18.5 1.8 1.1 41.68 75.79 96.2 97
458.sjeng 51.39 17.5 14.5 17.7 40.28 1.7 14 1.89
462.libquantum 48.31 0.2 0.1 0.1 43.82 22.3 19.6 21.3
464.h264ref 57.59 37.6 34.69 39.1 37.72 38.09 41.04 38.49
470.1bm 69.57 94.9 98.7 99.8 30.43 1.9 1.1 0.2
482.sphinx3 45.86 1.8 2.89 4.9 34.54 39 61.8 77.09
Average 47.72 21.37 18.17 19.88 37.7 22.5 27.36 28.34

are aware that the coverage obtained with a particular input set cannot be extrapolated
to other input sets, but we believe that this information is still useful to guide the choice
of loops to be parallelized. As long as the loop coverage can be heavily influenced
by the input set provided, users should select a “representative” input set for their
applications.

As an example of the capabilities of the framework, we have accumulated the
information regarding each particular FOR loop returned by Loopest to show the
degree of parallelism present in each application. Tables 1 and 2 summarize the results
of the study of our SPEC CPU2006 C benchmarks. For each benchmark considered,
the tables show the following information:
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for (i=0;i<100;i++) { for (i=0;i<100;i++) { for (i=0;i<100;i++) {
b = function(i); v[i] = a[i] + i; v[i] = v[function(i)];
} } }
(a) (b) (c)

Fig. 6 aExample of a “well-formed” FOR loop. b Loop that only holds private (1, and v [ ]) and read-only
(a[]) data structures. ¢ Loop not safely parallelizable at compile time, because the statement can lead to a
dependence violation

— Summary of “well-formed” FOR loops (Fig. 6a), i.e., loops that (a) have a single

control variable, (b) all three fields of the FOR structure (initialization, conditional
evaluation, and increment) are being used, and (c) perform no changes to the control
variable inside the loop body. These loops are much easier to be parallelized than
other loops, mostly because the iteration space is known in advance. According
to BFCA results, these loops represent more than 85 % of all loops present in the
benchmarks considered.
Table 1 also shows the percentages of execution time that these “well-formed”
FOR loops represent with respect to the total running time, for each one of the
three working sets defined in the SPEC CPU2006 benchmark suite. For some
benchmarks, such as 401.bzip2, larger working sets consist of several executions
of the same executable with different input files. In these cases, we have calculated
the average percentages of all executions. As can be seen in the table, these loops
account for 43-48 % of the total running time.

— Summary of loops that only holds private and read-only shared variables; i.e, loops
that are valid candidates to be parallelized at compile time (Fig. 6b). As can be
seen in the table, roughly half of the loops fall into this category. As we stated
before, it might not be profitable to parallelize the smallest loops due to thread
management overheads. The table also summarizes their coverage for each input
set, accounting for approximately 20 % of the total execution time.

— Summary of loops that cannot be safely parallelizable at compile time (Fig. 6c¢).

This does not imply that these loops must be executed sequentially. Indeed, they
usually present some degree of parallelism, but the BFCA analysis has shown a
potential dependence violation that prevents them to be parallelized at compile
time. In these cases, the use of runtime, software-based speculative parallelization
techniques may help to extract their inherent parallelism [13].
According to our results, speculative parallelization techniques could extract some
degree of parallelism from an average 37.7 % of all loops present in the benchmarks
considered, covering around 26 % of the execution time on average. These results
highlight the importance of runtime techniques to further parallelize sequential
applications.

8.2 Loop characterization with respect to parallelization hurdles
As we stated in the previous section, it is not enough for a loop to be free of

potential dependence violations to be parallelizable at compile time. There are other
parallelization hurdles as well, such as the use of pointer arithmetic and/or the existence
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Table 3 Relevance of challenges for parallelization techniques: pointers and memory management

Application Number of Loops with pointer arithmetic Loops with memory management
FOR loops
%o Cov. Cov. Cov. % Cov. Cov. Cov.
Test Train Ref. Test Train Ref
401.bzip2 120 88.33 452 41.09  40.88 0.83 0 0
429.mcf 33 96.97  66.1 3319 393 0 0 0
433.milc 418 87.56 722 71.8 72.6 239 0 0
456.hmmer 739 9581 9429 98 98.14 352 05 0.1 0
458.sjeng 216 10.19 9.4 8 9.6 0 0 0
462 .libquantum 89 87.64 228 19.9 214 0 0 0 0
464.h264ref 1,792 88.23 7589  76.19 7789 323 02 0 0
470.1bm 23 78.26 3.5 0.3 0 0 0 0 0
482.sphinx3 556 9371 492 71.89  86.09 054 0 0 0
Average 443 80.74  48.73  46.71 4954 1.17  0.08 0.01 0

Table 4 Relevance of challenges for parallelization techniques: I/O activity and use of static variables

Application Number of Loops with I/O activity Loops affected by static variables
FOR loops % Cov. Cov. Cov. % Cov. Cov. Cov.
Test Train Ref. Test Train Ref
401.bzip2 120 7.5 0.6 9.86 161 0 0 0 0
429.mcf 33 1212 2.6 0.8 0 6.06 533 26.8 342
433.milc 418 19.86 0.1 0.2 0.1 3.11 0.1 0.2 0.8
456.hmmer 739 13.67 0 0.1 0 825 5.7 0.4 0.25
458.sjeng 216 417 0 0 0 18.98 8.5 6.7 8.6
462.libquantum 89 787 0 0 0 2697 04 0 0
464.h264ref 1,792 089 0 0 0 826 0.9 0.8 0.7
470.1bm 23 4348 13 0.1 0 435 0 0 0
482.sphinx3 556 142 137 6.5 2.6 12.05 1.9 3.6 4.5
Average 443 13.75 2.03 1.95 048 9.78  17.87 4.28 5.45

of memory management function calls, that inconveniences the static analysis of the
code at compile time; the existence of I/O function calls that should be carried out in
order; or the presence of static variables in user-space function calls that forces to a
certain execution order to meet sequential semantics. Note that the analysis described
here is extremely difficult, if not impossible, to be carried out by other means.

Tables 3 and 4 summarize the results obtained for the different characteristics
described above. For each considered benchmark, the table shows the following infor-
mation:

— Summary of loops that use pointer arithmetic (Fig. 7a). This situation is detected
using the data type of the variables present in the loop, described in the field of
the XML element that describe a particular variable. The average number of loops
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int * p, q; int * p; static s;
for (i=0;i<100;i++) for (i=0;i<100;i++) for (i=0;i<100;i++) for (i=0;i<100;i++)
{ { { {
p = &q; p=(int*)malloc(..); printf(...); s = function(i);
free (p);
} } } }
(a) (®) () @

Fig. 7 a Example of a loop using pointer arithmetic. b Loop containing memory management functions.
¢ Loop containing I/O function calls. d Loop affected by static variables

(around 80 %) reflects the importance of supporting pointer arithmetic in compile-
time or runtime parallelization schemes, a problem that has not been solved yet
in the general case. Execution time coverages of these loops are also high: only
458.sjeng and 470.1bm have coverage values lower than 10 %. Note that this analy-
sis explains why, despite the high coverage of “well-formed”, parallelizable loops
in the benchmarks considered (as shown in the previous section), parallelizing
compilers still obtain only marginal improvements in the execution time of these
benchmarks [3].

— Summary of loops that perform calls to memory management functions, such as
malloc() or free() (Fig. 7b). In order to detect this hurdle, we look for XML nodes
inside the loop that represent standard, memory-management function calls, such
asmalloc () or free ().Onaverage,only 1.17 % of loops make use of dynamic
memory capabilities, with a negligible coverage in terms of execution time. This
result suggests that dynamic memory management may not be a priority in the
list of problems that automatic parallelization techniques should solve to speedup
these benchmarks.

— Summary of loops that contain I/O function calls (Fig. 7c). As in the previous
case, we perform a search for standard, I/O system calls. Loops with such system
calls cannot be parallelized at compile time, and runtime speculative techniques
are neither capable of handling speculative I/O calls. Therefore, these loops cannot
be parallelized with existent tools. As happens with loops that present memory
management function calls, this category of loops is not quite representative, being
13.75 % of the total number of loops, with around 2 % of execution time coverage.
These results suggest that the solution to this problem may not be a priority for
automatic parallelization techniques.

— Percentage of loops that are affected by static variables (Fig. 7d). These loops are
detected searching for static variables being written not only in the loop itself, but
also inside the functions called inside the loop body, and recursively, functions
called by these functions. These are variables whose lifetime extends across the
entire run of the program, and thus, writing values on these variables should be
maintained after the FOR loop. This circumstance conditions parallelism and it
may be taken into account by any automatic parallelization mechanism. Writings
on static variables are only contained in a 9.78 % of the loops considered, although
for some benchmarks this percentage reaches a 27 %. Their coverage for all input
sets considered is not so high, even null or almost zero in some benchmarks as
401.bzip2, 433.milc, 462.libquantum or 470.1bm.
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FOR loop (file sphinx3.c; line 12504; inclusive time 2.0%; exclusive time 0.2})
FOR loop (file sphinx3.c; line 12505; inclusive time 0.1%; exclusive time 0.1%)
fe_frame_to_fea (file sphinx3.c; line 12510)
fe_spec_magnitude (file sphinx3.c; line: 12895)
FOR loop (file sphinx3.c, line 12928; inclusive time 0.0%; exclusive time 0.0%)
FOR loop (file sphinx3.c; line 12932; inclusive time 0.0%; exclusive time 0.0%)
FOR loop (file sphinx3.c; line 12939; inclusive time 0.0%; exclusive time 0.0%)
FOR loop (file sphinx3.c; line 12943; inclusive time 0.0%; exclusive time 0.0%)
fe_fft (file sphinx3.c; line 12950)
FOR loop (file sphinx3.c; line 13037; inclusive time 0.0%; exclusive time 0.0%)
(static int) k (file sphinx3.c)

Fig. 8 Excerpt of the report returned by Loopest for 482.sphinx, notifying the use of static variable k and
describing both the functions and loops affected, together with their coverage

8.3 Characterization of the usage of static variables

Static variables declaration can be easily found with standard Unix tools, such as grep.
However, until now it was extremely difficult to know which loops and functions were
affected by the declaration of a particular static variable. The identification of all loops
and function calls affected by the existence of static variables is another example
of the powerful capabilities of BFCA framework. This feature can be considered
critical when working with applications such as 429.mcf, where loops affected by
static variables reach a 53.3 % of coverage for the Test input set.

The BFCA framework includes a Loopest’s XPath rule to detect static variables,
reporting all FOR loops and functions affected by them. An example of such a report
can be seen in Fig. 8, showing an excerpt of the report generated by BFCA when
analyzing 482.sphinx. The fragment shown indicates in its last line that a static variable
k has been found, and shows all the FOR loops and functions (in our case, functions
fe_frame_to_fea(), fe_spec_magnitude(),and fe_£fft ())affected by
that declaration, together with their inclusive and exclusive coverage. None of these
loops or function calls can be safely parallelized without taking this variable k into
account.

These are just some examples of the studies that can be conducted with our frame-
work. The flexibility provided by XML tools makes easy to modify XPath queries to
further investigate the possibility of using emerging parallelization techniques.

9 Why we do not use Cetus to detect variables usage

It is important to highlight the differences between our framework and a system based
exclusively on Cetus that detects variables usage. The main differences between both
approaches are simplicity and extensibility. Detection of private and read-only shared
variables is within Cetus capabilities, but the code required to implement this func-
tionality is much longer and complex than Loopest’s code. Modifying Cetus requires
a deeper knowledge of Java, Cetus IR, and its associated data structures. In our sys-
tem, adding new functionalities can be done simply adding new XPath queries, that
just requires some basic knowledge about XPath and Java to combine the results into
meaningful reports. Using the number of code lines needed as an effort indicator, in
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Table 5 Generation times of XML documents for SPEC CPU2006 benchmarks, rates of slowdown respect
to Cetus’ original execution, and file sizes

Application Lines of Time in seconds Rate of Size on Kilobytes
code Cetus  XMLCetus slowdown Source XML Rate

401.bzip2 7,292 5.67 7.16 1.26 200 4,320 21.60
429.mcf 2,044 2.69 3.33 1.24 40 648 16.20
433.milc 12,837 7.67 10.10 1.32 400 7,560 18.90
456.hmmer 33,210 9.00 12.82 1.42 1,024 13,616 13.30
458.sjeng 13,291 6.33 8.17 1.29 288 5,188 18.01
462.libquantum 3,454 2.99 4.46 1.49 76 1,612 21.21
464.h264ref 46,142 10.64 1591 1.50 1,448 25,648 17.71
470.1bm 875 4.25 4.77 1.12 36 1,852 51.44
482.sphinx3 18,280 7.09 9.10 1.28 516 7,676 14.88
Average 15,269 6.26 8.42 1.32 448 7,569 21.47

Cetus at least eight Java classes take part directly to locate the private variables of
a given loop, representing 2,573 lines of code (calculated with SLOCCount [57]).
Meanwhile, Loopest only needs 425 lines of lower-complexity code to carry out the
same task, representing a reduction of around 83 %.

Regarding extensibility, making changes to Cetus’ functionalities requires also a
deep knowledge about Cetus software and its intermediate representation. Changes
in Loopest software are much easier, because it is developed with XPath, not even
requiring a widespread knowledge about Java or XML. In fact, our framework can
be easily adapted to other transformation tasks not directly related with automatic
parallelization, just modifying or creating new XPath queries or XSLT transformations.

Finally, the combination of our XML representation of the source code and the
profile-based analysis provided by Intel® compiler is straightforward. This greatly
increases the possibilities of our framework. As an example, it is possible to extract
execution times of every loop with XPath and set new attributes with this information
in the same XML tree.

10 BFCA performance considerations
In this section, we will compare the performance of the BFCA framework with other
solutions, including Cetus, both in terms of execution time and size of the generated

files. To do so, we will analyze the performance of each phase of the BFCA framework
separately.

10.1 XMLCetus performance

Table 5 resumes the execution times of both XMLCetus and the original Cetus frame-
work. The right part of the table shows the sizes in Kilobytes of both the original code
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Table 6 Execution times of

Profilazer and Loopest for SPEC Application Lines of code FOR Loops Time in seconds

CPU2006 C benchmarks. Profilazer Loopest
401.bzip2 7,292 120 49.66  3.56
429.mcf 2,044 33 372 1.73
433.milc 12,837 418 71.78  2.27
456.hmmer 33,210 739 111.09  7.53
458.sjeng 13,291 216 121.49  9.29
462.libquantum 3,454 89 18.68  2.15
464.h264ref 46,142 1792 1,064.19 45.92
470.1bm 875 23 532  5.16
482.sphinx3 18,280 556 227.11  7.99
Average 15,269 443 185.89  9.51

and its corresponding XML representation for each analyzed benchmark. As expected,
the larger the source code, the longer the XMLCetus takes to transform the source file
into an XML-based representation. However, a single line can be very simple, thus
generating a few XML nodes, or very complex, generating a large number. Therefore,
complexity of source codes also affects the generation times. This explains the lower
time consumed by benchmarks that have more code lines.

Differences between the time needed by XMLCetus and Cetus are not so large, with
a rate of slowdown of 1.32 on average for SPEC CPU2006 benchmarks, with a peak
value of 1.50 for 464.h264ref. These differences, which do not alter the user experience,
are significantly reduced respect to results described in Power and Malloy’s work [47],
where the rate of slowdown reaches an 25.2 on average for different benchmarks.

Regarding file sizes, as Power [47], Maruyama [42], and Maletic [40] remarked,
XML-based representations of source codes require larger files to contain them,
because of all tags, attributes, and the expanded way of representing source struc-
tures that detail each particular element. XMLCetus creates XML files that are on
average 21.5 times larger than original source code documents for SPEC CPU2006
benchmarks. XML file sizes generated by BFCA are bigger than files generated by
McArthur’s et al. [43], where XML files are 6.25 times larger on average, because they
only represent partial ASTs, not the entire AST as BFCA does. BFCA also generates
bigger XML files than srcML’s—five times larger on average than the original source
code [40]—because BFCA does not stop the creation of XML nodes at the expression
level. This approach is good to obtain smaller XML file sizes, but makes more diffi-
cult the XPath searches and analysis that we implement in BFCA. On the other hand,
BFCA XML file sizes are smaller than those obtained with ACML representation [28],
with XML files more than a hundred times larger than the original source code.

10.2 Profilazer and Loopest performance

Once XMLCetus has generated the XML-based representations of source code, Profi-
lazer and Loopest are executed. Sizes of XML files created by Profilazer, after adding
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profiling information to the XMLCetus’ source code representation, are quite similar
to XML files created by XMLCetus, because Profilazer only adds a few attributes in
For Loop nodes. It hardly means a few bytes to the total size, and thus, these sizes are
not shown in this study.

Table 6 shows Profilazer and Loopest execution times. As it occurs with XMLCetus
execution, in general terms, the larger the source code, the longer the time needed by
Profilazer and Loopest. However, an important factor that affects executions of both
applications is the number of FOR loops that benchmarks contain. Since FOR loops
are the focus of the analysis performed by Loopest, and the focus of the Profilazer
operation, it is clear that the performance of both applications will also depend on the
number of these loops.

In the case of Loopest, its performance is not only affected by the number of FOR
loops, but also by their complexity. Since Loopest should report how statements,
functions and variables inside all loops are related with the rest of the source code, the
more complex FOR loops are, the longer Loopest takes to run.

11 Conclusions

This paper addresses the problem of automatic characterization and coverage of
sequential loops. We handle this problem with the development of the BFCA, a flexible
and robust framework that provides complete and helpful reports that characterize the
loops in a code. This information, including loop coverage and variable usage, allows
fast prototyping of new solutions regarding code analysis and/or guiding the paral-
lelization of the application, using either shared-memory programming models such
as OpenMP, or speculative parallelization techniques. Our framework, which is based
on Cetus, takes an advantage of the XML representation and its associated analysis
and transformation tools. The resulting system extends Cetus capabilities in a much
more flexible way: as an example, the use of our system leads to an 83 % reduction on
the number of code lines needed to perform private variable analysis.

Our current and future work include the use of this framework with three purposes.
First, to discover parallelization niches in widely used benchmarks that may benefit
from software-based speculative parallelization. Second, to use this information to
decide what limitations of current parallelization schemes ought to be faced first.
Third, to instrument the augmented XML code with runtime parallelization function
calls, to automatically transform the code into a speculative, parallel version of the
code, and letting Sirius translate the modified XML tree into C language, finishing
the process. We hope that the use of this framework will help runtime parallelization
technology to be mature enough for its inclusion in mainstream compilers.

The BFCA framework is available under request. Please, contact the authors for
more information.
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