
J Supercomput (2013) 65:1150–1163
DOI 10.1007/s11227-013-0921-z

uBench: exposing the impact of CUDA block geometry
in terms of performance

Yuri Torres · Arturo Gonzalez-Escribano ·
Diego R. Llanos

Published online: 3 April 2013
© Springer Science+Business Media New York 2013

Abstract The choice of thread-block size and shape is one of the most important user
decisions when a parallel problem is written for any CUDA architecture. The reason
is that thread-block geometry has a significant impact on the global performance of
the program. Unfortunately, the programmer has not enough information about the
subtle interactions between this choice of parameters and the underlying hardware.

This paper presents uBench, a complete suite of micro-benchmarks, in order to
explore the impact on performance of (1) the thread-block geometry choice criteria,
and (2) the GPU hardware resources and configurations. Each micro-benchmark has
been designed to be as simple as possible to focus on a single effect derived from the
hardware and thread-block parameter choice.

As an example of the capabilities of this benchmark suite, this paper shows an
experimental evaluation and comparison of Fermi and Kepler architectures. Our study
reveals that, in spite of the new hardware details introduced by Kepler, the principles
underlying the block geometry selection criteria are similar for both architectures.

Keywords GPU · Benchmarking · CUDA · Fermi · Kepler · Performance
measurement

1 Introduction

Currently, Graphics Processing Units (GPUs) are among the most powerful High Per-
formance Computing (HPC) devices. The amount of single cores and the low power

Y. Torres · A. Gonzalez-Escribano (�) · D.R. Llanos
Universidad de Valladolid, Valladolid, Spain
e-mail: arturo@infor.uva.es

Y. Torres
e-mail: yuri@infor.uva.es

D.R. Llanos
e-mail: diego@infor.uva.es

mailto:arturo@infor.uva.es
mailto:yuri@infor.uva.es
mailto:diego@infor.uva.es


uBench: exposing the performance impact of CUDA block geometry 1151

consumption are two characteristics of the hardware accelerators that make them a
valuable resource for high-performance computing. CUDA is a high-level parallel
language for NVIDIA GPUs that aims to reduce the programmer’s burden in writing
parallel applications. In GPUs, the thread-block size and shape has a significant im-
pact on both performance and GPU hardware resources usage. In CUDA, it is always
needed to specify the thread-block and Grid size-shape. So far, many programmers
do not use any thread-block selection criteria, thus spending a significant amount of
time to find a good configuration by trial-and-error. There exist tools to automatically
select the block size and shape, but they cannot be applied to any kind of problem,
and/or they do not lead to good choices in some situations (see, e.g., [1]).

In this paper, we present uBench, a complete suite of micro-benchmarks to ex-
plore the impact on performance of (1) the thread-block size and shape choice cri-
teria, and (2) the GPU hardware resources and configurations. This benchmark suite
covers the hardware details of Fermi [2] and Kepler [3] architectures. Each micro-
benchmark has been designed as simple as possible to focus on a single effect de-
rived from the hardware and thread-block parameter choice. This paper correlates the
block geometry with several performance issues, including bottlenecks in access to
GPU global-memory or L1/L2 caches, global-memory bank conflicts, or thrashing
on L1 cache memory. As a case study, we have used uBench to compare both Fermi
and Kepler architectures, analyzing their similarities and differences related to block
geometry and L1 cache memory configuration. Our experimental results show that,
in spite of the new hardware details introduced by Kepler, the principles underlying
the block geometry selection criteria are the same for both architectures. The uBench
suite is available upon request.

The rest of this paper is organized as follows. Section 2 discusses the related
work. Section 3 briefly reviews the architecture of CUDA supported GPUs. Section 4
presents the uBench micro-benchmark suite. Section 5 shows an experimental eval-
uation on different architectures and discusses the results. Finally, Sect. 6 concludes
our paper.

2 Related work

In this section, we discuss some related work on the choice of an adequate block
geometry for NVIDIA CUDA supported GPUs, and prior attempts in GPU bench-
marking.

Regarding the thread-block geometry choice, the most common policy is to choose
a thread-block that maximizes the SM (Streaming Multiprocessor) Occupancy. Thus,
maximizing opportunities to hide the latencies when accessing global memory of the
device [4, 5]. Many authors focus on block shapes that simplify the programming
task, such as square shapes.

Focusing on Fermi, in [6], it is shown how the cache memory hierarchy helps to
take advantage of data locality significantly improving the global performance. How-
ever, taking into account the cache hierarchy leads to a very complicated performance
prediction model. We have presented in [1, 7] a practical study of the Fermi architec-
ture, focused on how the thread-block parameters and the use of hardware resources



1152 Y. Torres et al.

affect performance. These works do not consider each single hardware effect sepa-
rately or how new hardware resources may affect the thread-block selection criteria.

The use of benchmarks to evaluate hardware configurations has a long tradition.
In this work, we focus on benchmarking of GPU devices.

The authors in [8] introduce a suite of micro-benchmarks to measure GPU perfor-
mance, and how it changes when a specific optimization strategy is used. The authors
measure execution times, deriving latencies for the same thread-block configuration.
The study focuses on pre-Fermi architectures.

In [9], the authors introduce a performance model for pre-Fermi GPUs. This model
is based on the results of a set of micro-benchmarks in order to measure the time of
each kind of instruction, and the time of global/shared memory accesses. The authors
always use the same thread-block shapes (square), showing the associated memory
data transfer bandwidth.

In summary, these works do not systematically explore a wide range of the thread-
block configuration space, and do not relate the thread-block configuration with the
underlying hardware effects. Moreover, several of these tests have been conducted
using previous NVIDIA CUDA architectures.

3 Brief review of NVIDIA GPUs architectures

Pre-Fermi is the first NVIDIA CUDA supported architecture, launched in early 2007.
Fermi is the second generation of CUDA architectures [2], launched on early 2010.
The latest generation of CUDA architecture is Kepler [3, 10], released on early 2012.
Table 1 summarizes their main characteristics.

Each new architecture generation has increased the number of SPs (Streaming
Processors), and the maximum number of threads, per SM (Streaming Multiproces-
sor). This leads to different relations between the thread-block configuration and the
occupancy on the SMs. Thus, the policies to select a good thread-block configuration
are potentially different.

The main change introduced by Fermi is a transparent L1/L2 cache hierarchy that
has been maintained in Kepler. However, the sizes and configurations possibilities
are different. The programmer can select to enable/disable the L1 cache. When the

Table 1 Summary of CUDA architecture parameters (pre-Fermi, Fermi, and Kepler)

Parameter Pre-Fermi Fermi Kepler

SPs (per-SM) 8 32 192

Max. number of blocks (per-SM) 8 8 16

Max. number of threads (per-SM) 1024 1536 2048

Max. number of threads (per-block) 512 1024 1024

L2 cache − 768 KB ≥512 KB

L1 cache (per-SM) − 0/16/48 KB 0/16/32/48 KB

Size of global memory transaction 32/64/128 B 32/128 B 32/128 B

Global memory banks 8–9 5–6 4



uBench: exposing the performance impact of CUDA block geometry 1153

L1 cache is active, the size of the cache and local SM memory has two possible
configurations in Fermi, and three in Kepler.

The size of the memory transaction segment can be adjusted. In Pre-Fermi it is
automatically chosen by the compiler, while in Fermi and Kepler is associated with
the L1 configuration chosen. Nevertheless, this maximum size is always 128 bytes.
This size is relevant for the alignment of data in memory.

The global memory is organized is several banks. The number of banks has been
decreased on Fermi and Kepler. Concurrent data-accesses directed to the same bank
produce conflicts that can affect the performance. Thus, the number of memory banks
becomes important for decisions related to code optimizations, data alignment, and
thread-block shape.

4 The uBench suite

We present in this sections the uBench micro-benchmark suite. These benchmarks are
designed to explore different performance effects for a significant set of thread-block
sizes and shapes.

4.1 uBench design principles

We first discuss the design principles of the uBench micro-benchmark suite. To better
control the cache use, and isolate effects derived from patterns used to access the
global memory, all benchmarks use as input/output parameter a single array structure.
Some benchmarks logically access to it as a two- dimensional matrix, while others
access to it as a vector.

4.1.1 Data sizes and storage order

Matrices are stored in row-major order. All benchmarks work with integer elements.
Kernels working with single-precision float elements have a similar behavior as inte-
ger computations. Float elements use the same memory space as integers, and each
SP also has one unit for single precision arithmetic operations. On the other hand,
double precision numbers require double memory space, but there are not as many
double precision arithmetic units as SPs. Instead, two SPs are coordinated to issue one
single double precision operation. Thus, considering one double precision number as
two floats, most performance effects can be extrapolated.

The number of threads launched by the uBench kernels is equal to the number
of matrix elements. We have designed micro-benchmarks that fulfill the following
guidelines: (a) each thread access only one global memory location, a different one
for each thread, and (b) each thread access several global memory locations with a
given pattern, exploring effects that appear in scenarios where there are more input
data elements than the number of kernel threads.

Coalescing is one of the most important issues that affect the code performance.
Different micro-benchmarks explore different classes of coalescing patterns. Never-
theless, negative performance effects can also appear due to conflicts in global mem-
ory banks (this effect is known as Partition Camping [11, 12]). Due to the introduc-
tion of L2 cache memory in Fermi and Kepler architectures, the global-memory bank



1154 Y. Torres et al.

conflicts are significantly reduced on applications with high transaction-segment re-
utilization. However, with low data reutilization, the L2 cache has a limited ben-
eficial effect, and the global-memory bank conflicts can appear. We design micro-
benchmarks with different data reutilization degrees to test this effect.

4.1.2 Data sizes and alignment

Threads accessing out of bounds of the data structures should be avoided in kernels.
In codes that correlate thread indexes with data-structure indexes, CUDA program-
mers tackle this problem in two possible ways. Either the kernels include divergent
branches to skip processing for out-of-bounds threads, or data padding is added to
the data structures to align them with the chosen thread-block shape. In both cases,
the performance impact is very small. More irregular applications may need more
sophisticated codes to deal with the alignment of threads and data structures. Their
behavior can be extrapolated from results of micro-kernels that test access patterns
not correlated to thread indexes in array structures.

Alignment of data structures to thread-block sizes. To keep the micro-kernel and
launcher codes simple, we select matrix sizes with dimensional cardinalities, which
are multiples of any of the thread-block geometries to be considered in the study.
In this way, we can avoid data padding, or trivial divergent branches, without losing
generality. Due to the maximum number of threads per thread-block supported by
Fermi and Kepler architectures (1024 threads) the thread-block shapes should fulfill
the following criteria: (1) (#rows and #columns) ∈ [1,1024]; (2) (#rows × #columns)
≤1024. To reduce the search space, we only use thread-block geometries where (3)
#rows and #columns are multiple of two and/or three. This ensures that we include
in the tests all possible combinations that can derive in maximum Occupancy in any
current CUDA architecture. Recall that the maximum number of concurrent threads
per SM in Fermi is 1536, which is a multiple of three.

Memory bank alignment. In order to selectively introduce memory access pat-
terns that reproduce or skip the effects of the global-memory bank conflicts described
above, the cardinalities should also include multiples of (a) the number of memory
banks, and (b) the width of the memory-bank, for any CUDA architecture studied.

Choosing the order of magnitude of array sizes. Coalescing patterns can effec-
tively hide global memory latencies when there are enough warps scheduled in the
SM during the computation. If the total amount of threads is not enough to fill all the
SMs in the GPU device, there are not enough active warps to hide global memory
latencies. In our study, the total amount of threads in the whole computation (TT) is
related to the total size of the data set. The maximum number of active threads in the
whole device (MT) is the product of the maximum of active threads per SM by the
number of SMs (recall that in Fermi MT = 1536 × [14,16], while in current Kepler
release MT = 2048 × 8). We choose matrix sizes with the following criteria: (1) TT
less than MT; (2) TT slightly higher than MT (latency hiding may start to happen);
(3) TT much higher than MT (latency hiding can be fully exploited). To keep execu-
tion times bounded, for this last category we select two different matrix sizes: The
first one, for the kernels with high computational load, is 1024 times bigger than the
size in category (2); the second one, for those kernels with low computational load, is



uBench: exposing the performance impact of CUDA block geometry 1155

9 × 1024 times bigger than the size in category (2) (to generate an array that is near
to fill up the global memory of the devices).

The matrix sizes chosen to achieve all the previous criteria in the different CUDA
architectures considered are 96×96, 192×192, and 6144×6144 or 18432×18432.

4.1.3 Computational load and independence of L1 cache configuration

The micro-kernels are designed to execute at most one basic arithmetic operation
with each data element accessed. Some of them include an extra loop with dummy
computations on constant values, or on data read, to generate a configurable load
by changing the number of iterations. Thus, overload can be added to ensure that
the computation times between memory accesses are higher than the global-memory
latencies. This allows to test the impact of hiding global-memory latencies by coa-
lescing, and/or by overlapping computation with communication.

All uBenchs are designed to correctly work regardless of the L1 cache configura-
tion. This allows to test the performance behaviors using the different cache configu-
rations (enabled with 16 K, enabled with 48 K, or disabled).

4.1.4 Access patterns

To isolate the effects produced by single global-memory access patterns, the first
subset of uBench micro-kernels are designed with only one pattern. These kernels do
not read data: They use constant values or computed data to write in global memory.
To study the interaction of read-write patterns, a second set of micro-kernels combine
more sophisticated read patterns with a simple writing pattern.

These read/write patterns do not intend to represent the whole space of access pat-
terns that can appear in an application. Instead, we focus on pattern classes that can
produce different performance trends due to hardware effects. The selected patterns
cover: The main categories of coalesced patterns; patterns that spread concurrent ac-
cesses across the global memory banks vs. patterns that stress the bank-conflicts; and
patterns that interleave accesses across thread-blocks vs. patterns that make threads
in different blocks traverse data structures simultaneously.

Regarding writing patterns, we have chosen first two basic types of coalesced pat-
terns. Both represent patterns where each thread access only one data element. Then
we also add three more types to study non-coalesced patterns, and other special situ-
ations.

– Pattern I: Each thread accesses one matrix element using the thread global coordi-
nates (y index indicates the row, and x index indicates the column):

row ← blockIdx.y × blockDim.y + threadIdx.y

column ← blockIdx.x × blockDim.x + threadIdx.x

– Pattern II: Each thread is assigned to a single uni-dimensional coordinate used to
access the array as a vector. For a given grid, independently of the thread-blocks
shape and size, each thread always accesses to the same data position.

index ← (blockIdx.y × gridDim.x + blockIdx.x) × blockSize

+ (threadIdx.y × blockDim.x + threadIdx.x)



1156 Y. Torres et al.

– Pattern III: The threads use their local block indexes to compute a flattened index:
threadIdx.y × blockDim.x + threadIdx.x. Then each thread writes in the matrix
element corresponding to element of the main diagonal with the thread index on
both dimensions. This completely non-coalesced pattern ensures that all threads in
the block accesses to a different transaction segment. But all blocks access to the
same small set of transaction segments. Thus, there are not cache trashing effects,
and there is high reutilization across blocks.

– Pattern IV: Only one thread per block (the one with threadIdx.x = threadIdx.y =
0) writes in a matrix position selected as in Pattern I. The remaining threads do
not perform any access. This pattern recreates the effect of sparse patterns but, due
to minimum number of accesses per block, there are no cache thrashing effects
involved.

– Pattern V: All threads access to the first position of the array (vector[0] = value).
This pattern has been designed to produce a high degree of memory bottleneck.

Finally, reading patterns include different types of coalescing and memory align-
ment techniques, including examples in which threads read many data elements. They
produce different degrees of data reutilization.

– Pattern A: Each thread reads the full column of the matrix with its global x index.
It is a perfectly coalesced pattern with reutilization of the data by other threads
of the same column in different iterations. Thus, reutilization inside the block is
dependent on the exact shape. In different iterations, the same memory banks are
accessed.

– Pattern B: Each thread reads the full row of the matrix with its global y index.
Data that are in consecutive positions in global memory are read in different loop
iterations. This pattern can be considered coalesced in the sense that on each read
operation, threads in the same warp are accessing to data in the same transaction
segment. There is reutilization of the transaction segments on the cache across
iterations, and also by threads in the same row. Reutilization inside the block is
dependent on the exact shape. The accesses of all the threads from the same block
are concentrated in the same memory bank on each iteration, cyclically changing
the bank as the loop advances.

– Pattern C: The threads compute a starting position in the array using the block
global indexes and the block size. All the threads in the same block obtain the
same position. Threads from different blocks obtain positions, which differ in a
multiple of the block size. The threads execute the same loop to read all the array
positions corresponding to the block. All threads in the same block reuse the same
data independently of the shape.

– Pattern D(s): All threads traverse once the whole array structure as a vector.
However, threads from different blocks start at a different position, traversing the
vector cyclically. The position is computed using the global block identification:
blockIdx.y × gridDim.x + blockIdx.x, multiplied by a stride parameter (s). When
s = 1, there is a high overlapping of blocks accessing to the same transaction seg-
ments, producing bank conflicts, but there is also a very high reutilization of L1
and L2 caches. When s = 32, we ensure that each block is accessing to different
transaction segments, and the accesses are balanced across memory banks. Bank
conflicts are reduced but reutilization of caches, specially L2, also decreases.



uBench: exposing the performance impact of CUDA block geometry 1157

4.2 uBench suite description

This section includes an enumeration and short description of the benchmarks in-
cluded in the uBench suite.

uBench-0 This kernel is designed to test the performance impact of the device sched-
ulers when facing different thread-block shapes, without memory access interfer-
ences. It does not do computation, and neither do the threads access any data.

uBench-1 No read. Each thread copies the same constant value in its position using
Pattern I.

uBench-2 No read. Each thread copies the same constant value in its position using
Pattern II.

uBench-3 No read. The same as uBench-1 but with an overload loop with one thou-
sand iterations.

uBench-4 No read. The same as uBench-2 but with an overload loop with one thou-
sand iterations.

uBench-5 No read. Each thread copies the same constant value in a position using
Pattern III.

uBench-6 No read. Only the thread with threadId.x = 0 and threadId.y = 0 of each
block stores in its global matrix position the same constant value.

uBench-7 No read. Each thread copies a calculated value to the first vector position.
The values are calculated using a loop of one thousand iterations.

uBench-8 Each thread copies in its position the sum of the matrix values in the col-
umn with its global x index.

uBench-9 Each thread copies in its position the sum of the matrix values in the row
with its global y index.

uBench-10 The same as uBench-8 but with an overload loop with one thousand iter-
ations.

uBench-11 The same as uBench-9 but with an overload loop with one thousand iter-
ations.

uBench-12 Each thread sums the values of a matrix block selected with Pattern C,
and stores the result in a position selected using Pattern II.

uBench-13 Each thread stores in its position the sum of all the elements of the whole
data structure. Each thread starts to cyclically traverse the array at a different posi-
tion with stride 1.

uBench-14 The same as uBench-13 but using stride 32 to compute the starting posi-
tion.

4.3 uBench classification criteria

The uBench benchmarks have been classified according to the following criteria,
summarized in Table 2:

1. Types of global-memory access patterns.
2. Ratio of arithmetic instruction per thread compared to the number of global mem-

ory access (high, low, or none).
3. Ratio of L1 cache memory lines evictions compared to the size of this memory

(low, medium, or high).



1158 Y. Torres et al.

Table 2 uBench classification, according to the criteria proposed

uBench (1)
Access
patterns

(2)
Load
ratio

(3) L1
eviction
ratio

(4) Data
reutilization
in/across blocks

uBench-0 -.- None None None

uBench-1 -.I Low Low Low

uBench-2 -.II Low Low Low

uBench-3 -.I High Low Low

uBench-4 -.II High Low Low

uBench-5 -.III Low Low Low/High

uBench-6 -.IV Low Low Low/High

uBench-7 -.V High Low High/High

uBench-8 A.I Low High Shape/Medium

uBench-9 B.I Low Medium Shape/Medium

uBench-10 A.I High High Shape/Medium

uBench-11 B.I High Medium Shape/Medium

uBench-12 C.II Low Medium High/Low

uBench-13 D(1).I Low Medium High/High

uBench-14 D(32).I Low Medium High/Medium

4. Ratio of global memory data reutilization across threads in the same block, and
across blocks, compared to the number of global memory accesses per thread (low,
medium, or high). We also consider a special class (Shape) for those benchmarks
in which in-block reutilization is dependent on the exact shape of the block.

5 Evaluation and experimental results

Experiments have been conducted for all the benchmarks described using both Fermi
and Kepler architectures. We have explored, in terms of execution time, all the com-
binations of sizes for each thread-block dimension that complies with the shape re-
strictions proposed (1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512,
768, 1024), L1 configurations (enabled, disabled, increased), and input data sizes (96,
192, and 6144 or 18432).

To show an example of how the results obtained with uBench can be extrapolated
to real life applications, we have tested two CUDA implementations of a real-life
application: Cannon’s algorithm for matrix-matrix multiplication [13]. The first im-
plementation is a direct translation of the algorithm, and the second one modifies the
order in which matrix blocks are accessed to force each thread-block to start reading
from a different global memory bank. The codes are included in the uBench release.

The experiments have been run on a GeForce GTX 480 (Fermi) and a GForce
GTX 680 (Kepler) NVIDIA GPU devices. The uBenchs have been developed using
CUDA 4.2 toolkit and the 295.41 64-bit driver.



uBench: exposing the performance impact of CUDA block geometry 1159

Fig. 1 Example of diagrams for results tables for uBench-1, with default L1 configuration, matrix size
6144 × 6144 (TT � MT), in (a) Fermi, and (b) Kepler architectures. Grey shaded cells indicate block ge-
ometries that lead to maximum occupancy. Symbols used: � for best performance results; • for execution
times up to 5 % more than the optimum; ◦ for execution times up to 25 % more than the optimum

All the numerical results are compiled into 270 tables for the uBench kernels, and
36 tables for the Cannon’s algorithm implementations. The tables are presented in a
technical report publicly available [14]. The tables are accompanied by graphical di-
agrams. We include two example diagrams in Fig. 1 to help the reader to understand
how we used them in the following discussion of results. During the discussion, we
consider good choices for thread-block geometry those that lead to execution times
with less than 5 % difference with the best execution time obtained with any geome-
try.

5.1 Thread-block geometry and the scheduling system

The scheduling system of both Fermi and Kepler architectures works faster with
blocks of medium size. The results of uBench-0, with no memory accesses and no
computation on any thread, show this effect. As the total number of threads and
blocks increases the good thread-block choices concentrate more and more in the
geometries with a medium size (384 in Fermi, 256 in Kepler), independently of the
shape. Compared with Fermi, Kepler presents a performance degradation of up to
20 % for the good thread-block geometries. Kepler’s block/warp scheduling system
is slower than Fermi’s. There are many more units than in Fermi, and they are more
complex. This effect is compensated by the faster memory system. The impact of
this effect can also be partially seen in kernels with scarce data accesses and low
computation, like uBench-6.

5.2 Coalesced patterns for simple writing operations

The thread-block geometry choice has a great impact in the performance of typical
coalesced patterns. Results for uBench-1 to uBench-4 show the key trends. uBench-1



1160 Y. Torres et al.

explores a classical coalesced pattern, with low ratio of arithmetic operations per
thread, and reutilization of the same transaction line only due to coalescence. Not
only the size, but the shape of the thread-block, highly influence the performance (see
Fig. 1). Good results are obtained for the smallest block sizes that lead to near maxi-
mum occupancy (more than 90 %), and shapes with a number of columns equal to or
greater than the size of the SM’s scheduling unit: Half a warp in Fermi (16 threads);
a whole warp in Kepler (32 threads). Smaller blocks derive in faster replacement
of the blocks that finish by new blocks, in the SM queues. While in Fermi similar
good results are obtained for sizes from 192 to 512, the trend to obtain better results
for smaller blocks is more clear in Kepler, where good candidates are those with
128 and 192 threads. In Fermi architecture, even blocks with 128 threads (leading
to occupancy of 67 %) also derive in good performance. These results confirm and
generalize previous observations [1].

uBench-2 results also confirm that the performance obtained for good candidates
in uBench-1 can be obtained for any shape of the same size if the proper pattern can
be devised for the specific application.

For a very small number of total threads there are not enough warps to hide laten-
cies due to coalescing. Thus, the restrictions on the thread-block shape, and the policy
of trying to achieve maximum occupancy of the SMs become less relevant. This is
confirmed by the results of all these benchmarks with small input sets (TT < MT).

When there is a high ratio of arithmetic operations per data access, the global-
memory latencies are overlapped with computation, obtaining good performance for
all sizes and shapes that lead to near maximum occupancy. uBench-3 and 4 are ver-
sions of 1 and 2 with extra computational load. Their results for enough number of
threads TT � MT, show this effect. The same effect is also noticeable in the results
of uBench-7, that also includes an overloaded loop that allows to hide memory laten-
cies.

For these benchmarks, when TT � MT, performance for the best thread-block
geometry choices is not affected by changing the L1 cache configuration.

5.3 Non-coalesced and scarce patterns

Non-coalesced patterns cannot benefit from the previous global-memory latency hid-
ing effects. We do not find shape restrictions, and for certain applications the best
performance results are found with small thread-block sizes that lead to medium oc-
cupancy factors. This effect is more noticeable in Fermi due to the faster schedul-
ing system. For example, uBench-5 results for Fermi, show that the best choices are
blocks with 64 threads, while in Kepler the best choices are blocks with 128 to 192
threads. uBench-6 uses a pattern where only one thread per block writes. But each
block writes in a different position. The amount of writing operations is very small
and there is no memory bottleneck. Due to the small amount or writing operations
the good block sizes are bigger than for uBench-5: 256 to 768 threads in Fermi, 256
to 512 in Kepler.

Changing the configuration or the L1 cache does not significantly change the per-
formance results for the best thread-block geometry choices, even in the presence of
a non-coalesced writing pattern.



uBench: exposing the performance impact of CUDA block geometry 1161

5.4 Reading multiple data elements with coalesced patterns

When each thread traverses whole parts of a data structure, the amount of data reuti-
lization across the threads of the same block depends on the form of the shape.

For example, uBench-8 and uBench-9 present different types of coalesced pat-
terns, while traversing a complete row or column of a matrix. uBench-8 has the
classical coalesced pattern with consecutive threads in a warp reading consecutive
data elements from the same transaction segment. Good results are obtained for the
smallest block sizes that lead to near maximum occupancy, and shapes with a number
of columns equal to or greater than the size of the SM’s scheduling unit. The same
conclusions as presented for uBench-1, which have a similar pattern for writing.

uBench-9 presents a complete different type of coalescence, where consecutive
threads in the warp access to the same data element in the same loop iteration, and to
consecutive data elements across loop steps. There is only one transaction segment
required per block row simultaneously. Results indicate that in this case, the columns
limitation due to the scheduling unit also appears, but any block size that achieves
a near to maximum occupancy produces good performance. uBench-10 and 11 are
versions of uBench-8 and 9 with a loop that introduces extra computational load be-
tween consecutive accesses. As expected, the exact shape becomes irrelevant and any
block with a size that produces near maximum occupancy obtains good performance
results.

A different scenario appears when threads in the same block highly reutilize the
same data, and there is no reutilization across blocks. In this case, the good choices
for block size are related to the transaction segments size, like in classical tiling tech-
niques. For example, the results of uBench-12 show that the good block sizes are
between 24 and 32 for both architectures.

The impact of L1 cache configurations is much more noticeable in Kepler than
in Fermi. Kepler supports twice the same blocks and threads in an SM than Fermi,
while the L1 cache size is the same.

There are several techniques to alleviate memory bottlenecks that lead to per-
formance improvements. In general, these techniques improve performance without
changing significantly the conclusions about the thread-block geometry choice. For
example, uBench-13 overlaps the accesses of consecutive blocks of the grid. Results
show similar behaviour as the reading coalescing pattern in uBench-8, with L2 cache
alleviating the bank conflicts to obtain better performance. uBench-14 tries to allevi-
ate memory bottlenecks distributing the accesses of consecutive blocks across banks,
like it is explained in [11]. For uBench-14, the good thread-block geometries are
those with 384 threads, independently of the shape.

5.5 Extrapolation to real life applications

Observation of the main loop in the threads of the CUDA implementation of Cannon’s
algorithm easily reveals the access patterns for the two input matrices (Pattern A,
and Pattern B, respectively), and for the output matrix (Pattern I). The results show
that the choice of the thread-block geometry is influenced mainly by Pattern A and
Pattern I (smallest block sizes that lead to near maximum occupancy, and shapes



1162 Y. Torres et al.

with columns equal to or greater than the size of the SM’s scheduling unit). But the
influence of Pattern B also relaxes the first condition, leading to similar performance
in blocks with slightly bigger or smaller sizes than the previous good candidates.

For the modified version, we apply the technique discussed in [11] to alleviate
bank conflicts spreading accesses from consecutive blocks to different banks. As ex-
pected, the results show performance improvements for the same good thread-block
geometries. For the best thread-block choices, we observe a reduction in execution
times of 23 % in Fermi, and 18 % in Kepler. It is more noticeable in Fermi due to its
higher number of banks.

6 Conclusions

This paper introduces uBench, a suite of micro-benchmarks designed for exploring
the impact on performance derived from the combination of (1) the thread-block ge-
ometry choice criteria, and (2) the GPU hardware resources and configurations. The
suite has been tested with the NVIDIA Fermi and Kepler architectures. Our results
show that uBench can be used to get a deeper insight of the performance impact of
the thread-block geometry choice for different architectures and applications. This
understanding improves the ability of a programmer to develop better policies for
thread-block selection, and also to apply code tuning techniques. Finally, uBench can
be used as a test bed for autotuning techniques that automatically select the thread-
block geometry.

Acknowledgements This research is partly supported by the Ministerio de Industria, Spain (CENIT
OCEANLIDER), MINECO (Spain) and the European Union FEDER (MOGECOPP project TIN2011-
25639, CAPAP-H network TIN2010-12011-E and TIN2011-15734-E), Junta de Castilla y León
(VA172A12-2), and the HPC-EUROPA2 project (project number: 228398) with the support of the Eu-
ropean Commission—Capacities Area—Research Infrastructures Initiative.

References

1. Torres Y, Gonzalez-Escribano A, Llanos DR (2012) Using Fermi architecture knowledge to speed up
CUDA and OpenCL programs. In: Proc. ISPA’2012, Leganes, Madrid, Spain, 2012

2. NVIDIA (2010) NVIDIA CUDA programming guide 3.0 Fermi
3. NVIDIA (2012) NVIDIA CUDA programming guide 4.2: Kepler
4. Kirk DB, Hwu WW (2010) Programming massively parallel processors: a hands-on approach, Febru-

ary 2010. Morgan Kaufmann, San Mateo
5. Ryoo S, Rodrigues CI, Baghsorkhi SS, Stone SS, Kirk DB, Hwu WW (2008) Optimization principles

and application performance evaluation of a multithreaded GPU using CUDA. In: Proc. PPoPP’08,
Salt Lake City, UT, USA, pp 73–82

6. Xiang Cui CZ, Chen Y, Mei H (2010) Auto-tuning dense matrix multiplication for GPGPU with
cache. In: Proc. ICPADS’2010, Shanghai, China, December 2010, pp 237–242

7. Torres Y, Gonzalez-Escribano A, Llanos DR (2011) Understanding the impact of CUDA tuning tech-
niques for Fermi. In: Intl. conf. on high performance computing and simulation, HPCS 2011, pp 631–
639

8. Wong H, Papadopoulou M-M, Sadooghi-Alvandi M, Moshovos A (2010) Demystifying GPU mi-
croarchitecture through microbenchmarking. In: Proc. ISPASS’2010, March 2010, pp 235–246

9. Zhang Y, Owens J (2011) A quantitative performance analysis model for gpu architectures. In: Proc.
HPCA’2011, February 2011, pp 382–393



uBench: exposing the performance impact of CUDA block geometry 1163

10. NVIDIA (2012) NVIDIA’s Next Generation CUDA Compute Architecture: Kepler GK110. Last
visit: June 2012. http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-
Whitepaper.pdf

11. Greg Ruetsch PM (2010) NVIDIA optimizing matrix transpose in CUDA, June 2010. Last visit:
December 2, 2010. http://developer.download.nvidia.com/compute/cuda/3_0/sdk/website/CUDA/
website/C/src/transposeNew/doc/MatrixTranspose.pdf

12. Aji AM, Daga M, Feng W-c (2011) Bounding the effect of partition camping in GPU kernels. In: Proc.
8th ACM int. conf. on computing frontiers, ser. CF’11. ACM, New York, pp 27:1–27:10 (online).
Available: http://doi.acm.org/10.1145/2016604.2016637

13. Cannon LE (1969) A cellular computer to implement the Kalman filter algorithm. Ph.D. disser-
tation, Montana State University, 1969 (online). Available: http://portal.acm.org/citation.cfm?coll=
GUIDE/&dl=GUIDE/&id=905686

14. Torres Y, Gonzalez-Escribano A, Llanos DR (2012) uBench: performance impact of CUDA block ge-
ometry. Dept. Informatica, Universidad de Valladolid, Tech. Rep. IT-DI-2012-0001, December 2012.
http://www.infor.uva.es/investigacion/publicaciones.html

http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/sdk/website/CUDA/website/C/src/transposeNew/doc/MatrixTranspose.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/sdk/website/CUDA/website/C/src/transposeNew/doc/MatrixTranspose.pdf
http://doi.acm.org/10.1145/2016604.2016637
http://portal.acm.org/citation.cfm?coll=GUIDE/&dl=GUIDE/&id=905686
http://portal.acm.org/citation.cfm?coll=GUIDE/&dl=GUIDE/&id=905686
http://www.infor.uva.es/investigacion/publicaciones.html

	uBench: exposing the impact of CUDA block geometry in terms of performance
	Abstract
	Introduction
	Related work
	Brief review of NVIDIA GPUs architectures
	The uBench suite
	uBench design principles
	Data sizes and storage order
	Data sizes and alignment
	Computational load and independence of L1 cache configuration
	Access patterns

	uBench suite description
	uBench classification criteria

	Evaluation and experimental results
	Thread-block geometry and the scheduling system
	Coalesced patterns for simple writing operations
	Non-coalesced and scarce patterns
	Reading multiple data elements with coalesced patterns
	Extrapolation to real life applications

	Conclusions
	Acknowledgements
	References


