
J Supercomput (2011) 58:226–234
DOI 10.1007/s11227-009-0367-5

TRASGO: a nested-parallel programming system

Arturo González-Escribano · Diego R. Llanos

Published online: 10 December 2009
© Springer Science+Business Media, LLC 2009

Abstract Programming models of pure nested-parallelism are appealing due to their
ease of programming and good analysis and debugging properties. Although their
simple synchronization structure is appropriate to represent abstract parallel algo-
rithms, it does not take into account many implementation issues. In this work we
present TRASGO, a programming system based on high-level, nested-parallel speci-
fications. We show how it allows to easily express complex combinations of data and
task parallelism with a common scheme, hiding the layout and scheduling details.
The approach allows the development of a modular compiler where automatic trans-
formation techniques may exploit lower level and more complex synchronization
structures, unlocking the limitations of pure nested-parallel programming. This arti-
cle presents an overview of the features of TRASGO, and its architecture. We present
some performance results using well-known parallel algorithms, and a roadmap of
improvements and new features to be added to TRASGO.

Keywords High-level programming models · Parallel compilers

1 Introduction

Many current high-performance scientific applications do not fully exploit their dif-
ferent levels of inherent parallelism, combining particular parallelization strategies.
The diversity and complexity of modern parallel platforms make it very difficult to
efficiently develop parallel applications in terms of the low-level concurrent program-
ming model provided by the target machine. Important decisions in the implemen-
tation trajectory, such as choosing a scheduling scheme or a data-layout, become

A. González-Escribano · D.R. Llanos (�)
Departamento Informática, Universidad de Valladolid, Valladolid, Spain
e-mail: diego@infor.uva.es

A. González-Escribano
e-mail: arturo@infor.uva.es

mailto:diego@infor.uva.es
mailto:arturo@infor.uva.es

TRASGO: a nested-parallel programming system 227

extremely difficult to optimize. Programmers need languages or tools that support
unified, simple and combinable parallel specifications to express them. Tools should
allow to capture design decisions and rely on the compiler and run-time system to do
the associated complex mapping.

Message-passing portable APIs (e.g. MPI, PVM) are widely used in high-
performance environments, as they propose an abstraction of the machine architec-
ture, still obtaining good performance. However, programming directly with these
unrestricted coordination models can be extremely error-prone and inefficient, as the
synchronization dependencies that a program can generate are complex and difficult
to analyze by humans or compilers [4].

More abstract and restricted programming models, such as nested-parallelism, are
becoming an important trend in parallel programming, especially for multicore and
other shared-memory platforms. Nested-parallel models represent a good trade-off
between expressiveness, complexity and ease of programming [10]. They restrict the
coordination structures and dependencies to those that can be represented by series-
parallel (SP) task-graphs (DAGs). Due to the inherent properties of SP structures [11],
they provide clear semantics and analyzability characteristics [5], a simple composi-
tional cost model [8, 12] and efficient scheduling [2]. These properties can lead to
automatic compilation techniques that increase portability and performance.

Previous research in our group has produced a highly-abstract XML intermedi-
ate representation for nested-parallel programs, named SPC-XML [3]. The sequen-
tial parts of the code are programmed in a convenient sequential language, such as C.
These code pieces are programmed inside functions, specifying the input/output char-
acteristic of each parameter. The functions have optional information of the asymp-
totic or average load of the code, based on the input sizes if needed. All this in-
formation simplifies the compiler data-dependence analysis and the runtime system
load-balancing decisions.

The coordination algorithms are expressed by hierarchical XML tags. Recursive
decompositions and parallel regions are easily expressed with clear semantics free of
race conditions and deadlocks. Some attributes of the XML tags use generic names
for mapping techniques which are provided as plug-ins in the system. Thus, they
are highly extensible. Programming in SPC-XML reduces the development costs of
parallel programs compared to directly using OpenMP or MPI. However, the quality
of the automatic transformation system, and the implementation techniques included,
is the key of the efficiency of the automatic-generated executables.

The extensibility properties of the framework give support to any specific set of
compile-time scheduling and data-layout techniques, or generic runtime scheduling
mechanisms, such as work-stealing. As an example, an extended version of SPC-
XML has been successfully used for parallel stream-programming [14].

In this paper we present a complete development and compilation model called
TRASGO (a Spanish name for a kind of goblin). This model introduces SPC-
XML v0.7, a significant evolution of previous versions, as intermediate language rep-
resentation. TRASGO performs expression analysis to build cost models and automat-
ically generate the code needed for communications, instead of expanding complete
task graphs as in previous SPC-XML systems. In SPC-XML v0.7 we have redesigned
the unified parallel primitive in SPC-XML to better represent the mapping para-
meters in three levels, distinguishing logical processes, virtual topology and layout

228 A. González-Escribano, D.R. Llanos

Fig. 1 TRASGO architecture

functions. Thus, the mapping modules are simpler and more composable, including
simple, static data-layouts and dynamic load-balancing techniques. The programmer
reasons in terms of logical (not physical) processes of any granularity. Task- and
data-parallel programs are expressed with similar expressions and semantics.

The rest of the paper is organized as follows. Section 2 describes the TRASGO

architecture, including the different stages of the compilation pipeline and the use
of the SPC-XML intermediate representation. Section 3 shows some experimental
results obtained using TRASGO to develop and execute an example application. Sec-
tion 4 discusses some related work. Finally, Sect. 5 concludes the paper and presents
some future work.

2 TRASGO architecture

We present a complete development and compilation model, called TRASGO. The
core of TRASGO is the new SPC-XML v0.7 transformation system, together with
a new automatic mapping approach, front-end languages and translators and an im-
proved runtime system. We discuss here key features of TRASGO.

The TRASGO model architecture is depicted in Fig. 1. The input for the TRASGO

model is an explicit, nested-parallel code that can be written in any traditional sequen-
tial language with some parallel extensions (A). As an example, we have developed
an extension to C-language named CSPC, supporting all SPC-XML features. The
particular language used is decoupled from the system through the use of a front-end
translator (1) that generates SPC-XML intermediate code (B). Part of the power of the
SPC-XML internal representation [3] is the existence of versatile XML tools, such
as XPath and Xslt. These tools allow to detect structure properties of the document
and to apply document transformations. TRASGO exploits them through an expres-
sion builder, and several plug-in transformation modules (2). They add annotations,
new tags, and transform the initial SPC-XML document into a new one, including
all the mapping and communication information needed (C). Finally, a back-end (3)
translates this XML code into a target code (D), written in a given sequential lan-
guage, which is linked against a standard communication library and a new runtime
library (E), named HITMAP, developed by the authors as part of the TRASGO envi-
ronment. Currently we provide a back-end which generates complete MPI programs

TRASGO: a nested-parallel programming system 229

Fig. 2 Details of code transformation phases of TRASGO

in C-language, and a C-implementation of the HITMAP functionalities, ready for the
native compiler (4) to produce the binary executable (F).

We show in Fig. 2 a simple excerpt of CSPC code and part of the associated XML
representation. For simplicity, we omit the full tag tree for all the involved expres-
sions. In CSPC there are two types of functions. The first type are classic C functions
containing standard sequential C-code, but adding an in,out or inout modifier to
each parameter. All data manipulation should be enclosed in one of these functions
to define a clear interface behavior for the computational sequential code pieces. The
second type of functions are preceded by a __coordination__ modifier. Inside
these functions only calls to other functions and coordination primitives are allowed,
but not arbitrary data manipulation code. This clear separation of sequential code
pieces and coordination primitives simplifies the parsing and recognition of the syn-
chronization structure of the application in terms of the underlying SPC process al-
gebra (see e.g. [12]).

In Fig. 2 we also show a brief example of the code generation process and how
the generated target code interacts with the underlying runtime library. A key part of
TRASGO is the unified parallel primitive. It allows to spawn independent parallel
processes, map them automatically to the available processors, and build a global
state at the end. This parallel primitive hides the details of the implementation
and potential dynamic decisions that otherwise should be taken by the programmer.

230 A. González-Escribano, D.R. Llanos

It has the following format:

parallel(shape ; layoutFunction() ; topologyFunction())

We have reordered the equivalent tag attributes in Fig. 2 for drawing clarity. This
primitive, redesigned in SPC-XML v0.7, has three parameters which clearly split
the design decisions at three different levels of abstraction: (1) a declaration of the
amount of logical processes (computational units of any grain) to spawn in parallel,
called shape; (2) a layout function name that will be used at runtime to map the
logical processes to virtual processors; and (3) the name of a function that will gen-
erate, also at runtime, a virtual topology of processors. The last two parameters can
be chosen from different options provided in the HITMAP library, such as blocks,
cyclic, or other classical layouts. Thus, the programmer never reasons in terms of the
number of processors, and does not need to develop complex formula to calculate
data partitions or communications. Getting rig of resource constraints allows to use
the levels of granularity or decomposition most appropriate to express the algorithm
semantics.

The code associated with the logical processes is specified inside the body, using
one or more parblock statements. The parallel primitive supports replication
of the same code on each logical process or different codes for each task. Thus, data-
and task-parallelism are supported by a single primitive. The parameters of the par-
allel primitive are used to select the layout and virtual topology functions that will
be invoked by the target code at runtime (see Fig. 2). These functions will use the
available information about the physical topology to build a data-structure containing
the mapping between logical processes and virtual processors. Expressions inside the
parblock statements will be transformed to allow the use of this mapping informa-
tion.

The transformation of the XML internal representation is guided by templates in-
terpreted by a Xslt 2.0 processor. The Xslt language has powerful tools to detect given
properties in parts of the document, and to manipulate the XML code accordingly.
Thus, many typical structural and expression transformations are easily programmed
with Xslt: expression simplification, propagation, loop transformations, etc.

In previous versions we expanded the whole application graph to apply data-flow
analysis and detection of code structure. In the new compilation path an expression
builder, together with several plug-in transformation modules, analyzes the expres-
sions in the SPC-XML document and uses them to derive multiple new expres-
sions. They include calls to the runtime mapping information in order to schedule
the selected logical processes’ code to the right processors, and to derive communi-
cations.1

The result is another XML document named “mapped program.” In the example
in Fig. 2, the $Pi-1 expression is rewritten in SPC-XML. This expression refers to
the index of the neighbor of the logical process on the first dimension. The mapping
mechanism will group logical processes in neighborhoods following the mapping

1Other plug-in modules may detect opportunities to exploit low-level synchronization structures which
are non-SP (e.g. barrier elimination, applying stencil-oriented skeletons, etc.), but keeping the original SP
semantics.

TRASGO: a nested-parallel programming system 231

Fig. 3 Execution times of manually- and automatically-generated programs for a 2D iterative PDE solver
(block partition), and a divide & conquer Quick-Sort algorithm

information provided by the runtime library, adjusting the communications accord-
ingly. The HITMAP runtime library has support for hierarchical and cyclic tiling
for multidimensional arrays, several functions for dynamic layout, virtual topologies,
scheduling, communication of subarrays, etc.

3 Experimental results

In this section we present performance results obtained on real high-end machines to
show the efficiency obtained by our automatically generated programs. We compare
the execution times of reference MPI programs, manually developed and optimized,
with those obtained by the codes automatically generated by TRASGO. Our exam-
ple applications represent two important classes of programs: a 2D iterative PDE
solver using block partition, based on data-parallelism; and a divide & conquer sort-
ing algorithm, based on task-parallelism with a dynamic partition and load-balancing
technique. The PDE solver is based on a 4-star stencil operation on each element of
a 5000 × 5000 matrix. The program executes a fixed number of 5000 iterations. The
Quick-Sort algorithm recursively balances the load across processors after each piv-
oting stage. We use an array of 50 millions of floating-point elements. In both cases,
the high-level TRASGO programs use no more than three lines of code to express
parallelism.

We present results obtained on two platforms. The first one is named HPCx. It
is an IBM Power5 cluster formed by 16-processor nodes. The second one is named
Geopar. It is a shared-memory machine formed by four Intel QuadCore boards. We
show results for one example on each machine, but the following discussion also
applies to results obtained on the other machine.

Figure 3 shows the execution times. In all cases we observe good scalability. How-
ever, the programs obtained by TRASGO present a performance penalty. The penalty
is proportional to the number of sequential operations in the critical path, plus a small
constant overhead. In the case of the PDE solver the number of sequential operations
decreases proportionally to the number of processors. Thus, the penalty is a constant
factor of the manual program execution time. The Quick-Sort algorithm executes

232 A. González-Escribano, D.R. Llanos

the sequential local stage in O(n logn) operations. As the number of processors in-
creases, the number of sequential operations in the critical path reduces faster than
n divided by the number of processors. Thus, the performance delay is also dimin-
ished. This effect is derived from: (1) constant inefficiencies on each data element
access through the internal structures we use to manipulate the hierarchical tiling of
arrays; and (2) bad optimization delivered by the native compiler when facing the
data-partition expressions generated by TRASGO. Changing the problem data-sizes
confirms the effects. The added constant overhead observed in all cases is generated
by some inefficient buffer duplication and data management on the communication
operations.

All these problems can successfully be solved by a new version of the HITMAP

library and a simplified expression builder, which are currently being developed. The
improvements include a simplification of the expressions generated for data-partition,
and an evolution of the internal structures that handle matrix accesses, such as unnec-
essary pointer elimination. Despite these initial performance limitations, it is impor-
tant to highlight that TRASGO provides excellent speedups at a modest fraction of the
cost of a manual parallelization.

4 Related work

From the programmer’s point of view, TRASGO provides the simple semantics, cost
models, and implementation advantages of coarse-grain nested-parallel programming
models, such as BSP or nested versions of BSP [9]. Nevertheless, it also supports
automatic grain computation from simple fine-grain data-parallel expressions, like
those used in HPF [13], avoiding complex decisions related to program mapping.

Pthreads and Java have nested fork-join mechanisms, but they are not particularly
convenient for expressing data parallelism or automatically manipulate the computa-
tion grain. Cilk [2] was one of the first nested-parallel systems to fully exploit the
efficient work-stealing scheduling technique, but this leads to similar grain prob-
lems. OpenMP targets only shared-memory. It provides different programming ap-
proaches, synchronized parallel-for structures, teams of coarse threads, and task-
queue schedulings. However, specific non-SP coordination structures are difficult to
be programmed efficiently without using the non-SP mechanisms provided by the
language (like lock-variables, or sparse atomic operations).

CUDA [6] is a nested-parallel multithreading language for all-purpose program-
ming on GPUs. The construction of parallel structures is somehow similar to our
approach. The system automatically and dynamically balances the computations hid-
ing the machine details. But the programmer should still reason with the number
of threads spawned and with the computation grain. Lacking a powerful data-flow
analysis, the structures of the code are not flexible and the synchronization barriers
cannot be eliminated. Thus, the programmer also has access to shared-memory com-
munications between grouped threads to skip the hard nested-parallel restrictions.

Intel Threading Building Blocks [7] present a conceptually similar approach, fo-
cused on data-parallel intensive computations. It solves the introduction of non-SP
structures by adding a limited set of common simple patterns (like pipeline) as paral-
lel constructors. The programmer needs to reason about more complex combinations

TRASGO: a nested-parallel programming system 233

and structures, hindering further decomposition of parallelism under the same ana-
lyzability conditions. Concepts like our logical-process shapes and blocking-layout
functions have equivalents on Intel TBBs. However, the layouts are more limited and
the blocking size and grain level need to rely on programmer decisions or heuristics
(in version 2.0). Too coarse-grained computations may not be exploiting all paral-
lelism; but too fine-grained computations make the work-stealing scheduler work
very inefficiently.

Finally, our supporting runtime library includes some features similar to other
hierarchical tiled arrays libraries, such as [1].

5 Conclusion

We have presented the key features of TRASGO, a compiling system for pure nested-
parallel programming. It is based on expressing parallelism with a simple and unified
approach which hides low-level details, and focuses the programmer on design deci-
sions. The system automatically applies transformations, and generates code which
uses the static or dynamic information provided by the selected mapping techniques.
The transformation system also adapts the grain of the computation to the available
processors, simplifying the use of hierarchical task or data decompositions. TRASGO

is an extensible system. Currently, it includes several plug-in transformation tech-
niques, a runtime library supporting hierarchical tiling of dense arrays, and several
predefined layout and scheduling techniques. The experimental results obtained show
that TRASGO can derive efficient codes, from high-level and abstract specifications.

TRASGO is currently being improved and developed in several ways. While it is
straightforward to develop new front-ends, back-ends and runtime libraries for other
programming models are a challenge to tackle new portability issues. Simplified ex-
pression management will allow better data-flow dependence analysis and workload
modeling. The runtime library is being reworked to implement more efficient man-
agement of hierarchical tiling for dense arrays, eliminating performance penalties.
Support for sparse and more complex data-structures may be also considered.

Acknowledgements This research is partly supported by the Ministerio de Educación y Ciencia,
Spain (TIN2007-62302), Ministerio de Industria, Spain (FIT-350101-2007-27, FIT-350101-2006-46, TSI-
020302-2008-89, CENIT MARTA, CENIT OASIS), Junta de Castilla y León, Spain (VA094A08), and also
by the Dutch government STW/PROGRESS project DES.6397. Part of this work was carried out under the
HPC-EUROPA project (RII3-CT-2003-506079), with the support of the European Community–Research
Infrastructure Action under the FP6 “Structuring the European Research Area” program. The authors wish
to thank Dr. Valentín Cardeñoso-Payo, and Prof. Arjan van Gemund, for their support in the early stages
of this research; and Dr. Mark Bull, Dr. Murray Cole, Prof. Michael O’Boyle, Prof. Henk Sips, and Ana
Lucia Varbanescu for many helpful discussions.

References

1. Bikshandi G, Guo J, Hoeflinger D, Almasi G, Fraguela BB, Garzarn MJ, Padua D, von Praun C
(2006) Programming for parallelism and locality with hierarchical tiled arrays. In: PPoPP’06. ACM,
New York, pp 48–57

234 A. González-Escribano, D.R. Llanos

2. Blumofe RD, Leiserson CE (1994) Scheduling multithreaded computations by work-stealing. In: Proc
annual symp on FoCS, pp 356–368

3. González-Escribano A, van Gemund AJC, Cardeñoso-Payo V (2005) SPC-XML: A structured rep-
resentation for nested-parallel programming languages. In: Medeiros PD, Cunha JC (eds) Euro-par
2005, parallel processing. LNCS, vol 3648. ACM, New York, pp 782–792

4. Gorlatch S, (2001) Send-Recv considered harmful? Myths and truths about parallel programming. In:
Malyshkin V (ed) PaCT’2001. LNCS, vol 2127. Springer, Berlin, pp 243–257

5. Lodaya K, Weil P (1998) Series-parallel posets: Algebra, automata, and languages. In: Proc
STACS’98, Paris, France. LNCS, vol 1373. Springer, Berlin, pp 555–565

6. Nickolls J, Buck I, Garland M, Skadron K (2008) Scalable parallel programming with CUDA. ACM
Queue 6(2):40–53

7. Reinders J (2007) Intel threading building blocks: outfitting C++ for multi-core processor parallelism.
O’Reilly, Sebastopol

8. Skillicorn DB (1995) A cost calculus for parallel functional programming. J Parallel Distrib Comput
28:65–83

9. Skillicorn DB (1996) miniBSP: A BSP language and transformation system. Technical report, Dept
of Computing and Information Sciences, Queen’s University, Kingston, Canada

10. Skillicorn DB, Talia D (1998) Models and languages for parallel computation. ACM Comput Surv
30(2):123–169

11. Valdés J, Tarjan RE, Lawler EL (1982) The recognition of series parallel digraphs. SIAM J Comput
11(2):298–313

12. van Gemund AJC (1997) The importance of synchronization structure in parallel program optimiza-
tion. In: Proc 11th ACM ICS, Vienna, pp 164–171

13. VanderWiel SP, Nathanson D, Lilja DJ (1997) Complexity and performance in parallel programming.
In: Proc HIPS’97, Geneva, Switzerland. IEEE Comput. Soc, Los Alamitos

14. Varbanescu AL, Nijhuis M, González-Escribano A, Sips H, Bos H, Bal H (2007) SP@CE-An SP-
based programming model for consumer electronics streaming applications. Lect Notes Comput Sci
4382:33–48

	Trasgo: a nested-parallel programming system
	Abstract
	Introduction
	Trasgo architecture
	Experimental results
	Related work
	Conclusion
	Acknowledgements
	References

