
126 Computer

H O W T H I N G S W O R K

P arallel systems are increas-
ingly common. Thanks to the
use of chip multiprocessor
(CMP) architectures, even
commodity desktop proces-

sors offer multicore technologies.
These capabilities make the system

faster by executing several processes
at once. However, because compilers
are still largely unable to extract the
parallelism inherent to sequential
code, it’s difficult to take advantage of
parallel hardware with a sequential
application.

Numerous parallel languages, par-
allel extensions to sequential lan-
guages, and library functions are
available for developing parallel code.
However, manual parallelization of a
sequential algorithm is still a difficult
and error-prone task.

Taking advantage of a parallel sys-
tem’s capabilities requires a deep
understanding of the algorithm itself,
the programming model being used,
and the underlying architecture for
specific optimizations.

The lack of a universally accepted
parallel model for programs or
machines and the huge amount of
sequential code developed so far make
the idea of automatic parallelization
extremely attractive.

COMPILER-BASED AUTOMATIC
PARALLELIZATION

To execute an algorithm in parallel,
the first problem to solve is determin-
ing which parts of the code the com-
piler can parallelize.

Most parallelizing compilers focus
on loop-level parallelism, studying
how to execute different iterations
simultaneously. To be parallelized, two
iterations shouldn’t present any data
dependency—that is, neither should
rely on calculations that the other one
performs. As Figure 1 shows, if no
dependences are found, the compiler
can safely parallelize the loop.

Unfortunately, in many cases, the
compiler can’t determine whether two
sets of iterations are independent. For
example, the code in Figure 2 presents
a dependency between two iterations.
The particular iterations involved
depend on the value of a variable k,
whose value is unknown at compile
time.

In this situation, the compiler con-
servatively refuses to execute the loop
in parallel, although in our three-
threads example, some values of k
such as 3, 6, or 9 don’t produce cross-
thread dependences. Sequential code
that uses complex subscript or pointer
arithmetic leads to similar situations.

Despite these difficulties, compiler-
based automatic parallelization is a
major trend for parallel programming.
The sequential programmers’ exper-
tise, accumulated across decades, and
the huge legacy of sequential code are
important reasons for supporting this
approach.

SPECULATIVE PARALLELIZATION
The most promising technique for

automatically parallelizing loops
when the system cannot determine
dependences at compile time is spec-
ulative parallelization. Also called
thread-level speculation, this tech-
nique assumes optimistically that the
system can execute all iterations of a
given loop in parallel.

A hardware or software monitor
divides the iterations into blocks and
assigns them to different threads, one
per processor, with no prior depen-
dence analysis. If the system discovers
a dependence violation at runtime, it
stops the incorrectly computed work
and restarts it with correct values. Of
course, the more parallel the loop, the
more benefits this technique delivers.

To better understand how specula-
tive parallelization works, it is neces-
sary to distinguish between private and
shared variables. Informally speaking,
private variables are those that the pro-
gram always modifies in each iteration
before using them. On the other hand,
values stored in shared variables are
used in different iterations.

If all variables are private, no depen-
dences can arise, and the system can
execute the loop in parallel. Shared
variables can lead to dependence vio-
lations only if a value is written in a
given iteration and a successor has
already consumed an outdated value.

Figure 2 shows this situation, which
is known as read-after-write depen-
dence. To handle this dependence,
speculative parallelization discards
and reexecutes the consumer thread
and all threads that execute subse-
quent blocks with the new, correct
values. Figure 3 shows this process,
which is called a squash operation.
Note that some subsequent threads
may indeed be correct, but the over-

Speculative
Parallelization
Arturo González-Escribano and Diego R. Llanos
University of Valladolid, Spain

Some emerging technologies

try to exploit the parallel

capabilities of modern processors.

r12How.qxp 27/11/06 1:21 PM Page 126

Authorized licensed use limited to: UNIVERSIDAD DE VALLADOLID. Downloaded on October 04,2024 at 15:22:11 UTC from IEEE Xplore. Restrictions apply.

head of checking which ones are cor-
rect is usually too high.

To simplify squashes, threads that
execute each block of iterations don’t
directly change the shared variables;
instead, each thread maintains its own
version of those variables. Changes
are reflected to the original shared
variables through a commit operation
only if the execution of all iterations
up to this point succeeds. However, if
the thread is squashed, the system dis-
cards its version of the data.

Either a hardware or software mon-
itor can detect dependence violations
and issue all the auxiliary operations,
such as spawning and stopping threads.
Hardware solutions rely on additional
hardware modules to detect depen-
dences, while software methods aug-
ment the original loop with new instruc-
tions that check for violations during
the parallel execution. When a depen-
dence violation occurs, the monitor per-
forms the squash operation and restarts
the execution of the consumer threads.

It’s easy to see that speculative par-
allelization’s effectiveness depends on
how many iterations the system can
execute in parallel. If the loop is mostly
sequential, the overhead that the mon-
itor expends during the speculative
execution can result in performance
losses with respect to the sequential
version of the same algorithm. Even if
the loop is fully parallel, the overhead
can make the speculative paralleliza-
tion slightly slower than a good, man-
ually parallelized version.

December 2006 127

do i=1,9
 v[i] = f(v[i])

)]3[v(f =]3[vod dne
v[2] = f(v[2])
v[1] = f(v[1])

v[9] = f(v[9])
v[8] = f(v[8])
v[7] = f(v[7])

v[6] = f(v[6])
v[5] = f(v[5])
v[4] = f(v[4])

Original code

Parallel execution

Thread 1
(iterations 1 to 3)

Thread 2
(iterations 4 to 6)

Thread 3
(iterations 7 to 9)

Figure 1. Parallel execution of a loop with no dependences using three threads. Because all iterations of the loop are independent, the

compiler can issue them in parallel.

v[3] = f(v[3])
v[2] = f(v[2])
v[1] = f(v[1])

v[9] = f(v[9])
v[8] = f(v[8])
v[7] = f(v[7])

v[6] = f(v[6])
v[5] = f(v[3])
v[4] = f(v[4]) v[i] = f(v[i])

do i=1,9
 if (i == k) then
 v[i] = f(v[i−2])
 else

 end if
end do

Parallel execution
Original code

Thread 1
(iterations 1 to 3, k = 5)

Thread 2
(iterations 4 to 6, k = 5)

Thread 3
(iterations 7 to 9, k = 5)

Figure 2. In this loop, a value k not known at compile time prevents loop parallelization by the compiler: If k = 5, thread 1 may not have

computed the value of v[3] in time for use by thread 2. Note that if the dependence did not cross thread boundaries (for example, with

k = 6), the compiler could parallelize the loop.

v[3] = f(v[3])
v[2] = f(v[2])
v[1] = f(v[1])

v[9] = f(v[9])
v[8] = f(v[8])
v[7] = f(v[7])

v[6] = f(v[6])
v[5] = f(v[3])
v[4] = f(v[4])

v[6] = f(v[6])
v[5] = f(v[3])
v[4] = f(v[4])

v[9] = f(v[9])
v[8] = f(v[8])
v[7] = f(v[7])

 v[i] = f(v[i])

do i=1,9
 if (i == k) then
 v[i] = f(v[i−2])
 else

 end if
end do

Parallel, speculative execution

Original code

3

1
2 2

Thread 1
(iterations 1 to 3, k = 5)

Thread 2
(iterations 4 to 6, k = 5)

Thread 3
(iterations 7 to 9, k = 5)

Figure 3. Speculative parallelization starts the execution in parallel of the loop, while a monitor tracks the execution to detect cross-

thread dependence violations. If such a violation occurs, (1) speculative parallelization stops the consumer thread and all threads that

execute subsequent blocks, (2) discards its partial results, and (3) restarts the threads to consume the correct values.

r12How.qxp 27/11/06 1:21 PM Page 127

Authorized licensed use limited to: UNIVERSIDAD DE VALLADOLID. Downloaded on October 04,2024 at 15:22:11 UTC from IEEE Xplore. Restrictions apply.

128 Computer

A utomatic parallelization is a
lively research topic. Researchers
are expending considerable

effort to develop better compile-time
analysis techniques, more sophisti-
cated mechanisms for speculative par-
allelization at runtime, and more
reliable theoretical models to predict
whether the parallelization of a par-
ticular loop will be profitable. Its suc-
cessful development would allow us to
take full advantage of new hardware
while running our old code. ■

Arturo González-Escribano is assistant
professor of computer science in the
Departamento de Informática, Univer-

Speculative parallelization’s main
advantage is that it can automatically
parallelize loops of a sequential appli-
cation without knowing the depen-
dence pattern at compile time. Thus,
it can obtain speedups in a parallel,
multithreaded machine without the
development cost of manual paral-
lelization. This requires only some
simple adjustments to the original
sequential code—all within the capa-
bilities of modern compilers. These
adjustments include inserting special
functions to schedule threads, per-
forming speculative loads and stores,
and commiting data when a thread
successfully finishes.

sidad de Valladolid, Spain. Contact him
at arturo@infor.uva.es.

Diego R. Llanos is associate professor of
computer architecture in the Departa-
mento de Informática, Universidad de
Valladolid. Contact him at diego@infor.
uva.es.

H O W T H I N G S W O R K

Computer welcomes your submissions
to this bimonthly column. For
additional information, contact Alf
Weaver, the column editor, at
weaver@cs.virginia.edu.

• Visualization Corner

• Computer Simulations

• Book Reviews

• Scientific

Programming

• Technologies

• Education

• Your Homework

Assignment

Save 42%
off the non-

member price!

$43 print subscription

Subscribe to CiSE online at http://cise.aip.org and www.computer.org/cise

Anatomic Rendering
& Visualization
Stochastic Modeling of
Complex Systems
Python: Batteries Included
Anatomical Medical Model Ren-
dering/Simulation
Computing in Combinatorics
High-Performance Computing
Defense Applications

Jan/Feb

Mar/Apr

May/Jun
Jul/Aug

Sep/Oct
Nov/Dec

Peer- Reviewed Theme & Feature Articles

2 0 0 7

The magazine that helps scientists
and engineers to apply

high-end software
in their research!

Focuses not on how computers work,

but how scientists can use computers

more effectively in their research.

Specific tips

from one scientist

to another

Top-Flight
Departments
in Each Issue!

Speed up and improve

your research

r12How.qxp 27/11/06 1:21 PM Page 128

Authorized licensed use limited to: UNIVERSIDAD DE VALLADOLID. Downloaded on October 04,2024 at 15:22:11 UTC from IEEE Xplore. Restrictions apply.

